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12 Abstract

15 Accurately modeling and predicting RNA biology has been a long-standing challenge,

16 bearing significant clinical ramifications for variant interpretation and the formulation of
17 tailored therapeutics. We describe a foundation model for RNA biology, “BigRNA", which
18 was trained on thousands of genome-matched datasets to predict tissue-specific RNA
19 expression, splicing, microRNA sites, and RNA binding protein specificity from DNA

20 sequence. Unlike approaches that are restricted to missense variants, BigRNA can

21 identify pathogenic non-coding variant effects across diverse mechanisms, including

22 polyadenylation, exon skipping and intron retention. BigRNA accurately predicted the

23 effects of steric blocking oligonucleotides (SBOs) on increasing the expression of 4 out
24 of 4 genes, and on splicing for 18 out of 18 exons across 14 genes, including those

25 involved in Wilson disease and spinal muscular atrophy. We anticipate that BigRNA and
26 foundation models like it will have widespread applications in the field of personalized
27 RNA therapeutics.

28 Main

29 Building machine learning models that can predict gene expression from DNA sequence
30 has been a long-standing research goal’, and one that has seen significant strides

31 owing to recent advancements in deep learning®. These models could revolutionize

32 drug discovery by pinpointing how pathogenic genetic variants alter gene expression

33 and gene processing, and by designing customized drug candidates to counteract these
34 effects®. Currently, most efforts have focused on predicting data that measures overall
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35 gene expression levels®*, which are not suited to predicting regulatory interventions, for
36 example, specific transcriptional perturbations on splicing or polyadenylation.

37

38 RNA sequencing (RNA-seq) data provides a widely-available resource for measuring

39 RNA expression at high resolution and capturing complex transcriptional regulation

40 events across diverse genotypes. This includes both exome variation inherently coded
41 within RNA-seq data itself, and through extensive resources like the Genotype-Tissue
42 Expression® (GTEX) project that pairs RNA-seq with Whole Genome Sequencing (WGS).
43 While building deep neural networks that directly learn from RNA-seq offers the

44 opportunity to understand how changes in DNA sequence lead to changes in complex
45 transcriptional phenotypes, this goal has remained elusive.

46

47 We introduce “BigRNA”, a deep learning model that is directly trained on RNA-seq

48 datasets. BigRNA learns from paired genotype and 128bp resolution RNA expression
49 data from many individuals, and can also be applied in a range of downstream tasks

50 such as predicting RNA-binding protein (RBP) specificity and microRNA binding sites.
51 Because BigRNA directly models RNA-seq data, it can discover a diverse set of

52 pathogenic non-coding mechanisms that would each require a specialized model, and
53 can pinpoint their effects on a transcript. We show that BigRNA can discover the

54 effects of non-coding variants on expression and splicing, and matches or exceeds the
55 performance of specialized models in recovering known pathogenic variants.

56

57 BigRNA can also help design different types of RNA based therapeutics, including steric
58 blocking oligonucleotides (SBOs). Without any additional training, BigRNA accurately
59 identifies compounds that induce a targeted splicing change, and recovers known

60 approved SBO therapies with high specificity. The ability of BigRNA to understand

61 regulatory mechanisms also allows it to design SBOs that block predicted inhibitory

62 regions to increase the expression of a disease gene. BigRNA represents a new

63 generation of massive deep learning models that can be applied to a range of different
64 personalized RNA therapeutic discovery tasks.

o5 Results

66 BigRNA accurately predicts tissue-specific RNA expression and the binding sites of

67 proteins and microRNAs

68

69 To train BigRNA to predict RNA-seq data from the corresponding DNA sequence, we

70 employed a transformer-based architecture? and utilized the GTEx® resource (Methods).
71 Given an individual's genotype, we input two potential haplotypes independently into
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72 identical instances of the model, and train it to predict the observed RNA-seq data as
73 the combined output from these haplotypes (Fig. 1a, Supplementary Figs. S1 and S2).
74 Each output "head" of the model predicts the expression of a single GTEx sample, so
75 that it learns to predict the outputs of 2,956 RNA-seq samples from 70 individuals,
76 covering 51 tissues in total. After training on these RNA-seq datasets, the model is
77 fine-tuned to predict the specificity of RBP and microRNA binding sites (Fig. 1a).
78
79 We first evaluated the ability of BigRNA to predict the expression of unseen genomic
so sequences. We measured the model's ability to predict tissue-specific expression levels
81 for all genes outside of genomic regions in the training set. BigRNA exhibited strong
82 performance for predicting expression levels of unseen genes, achieving a correlation
83 coefficient (r) between 0.47 and 0.77 across all tissues (mean=0.70, Fig. 1b). We
84 observed slightly stronger performance in brain tissues than non-brain tissues (mean
85 r=0.74 versus 0.69, p=5e-03), and highlight that the model is able to accurately predict
86 expression levels in the hypothalamus (r=0.74, Fig. 1c). The ability to predict overall
87 expression levels and capability to accurately delineate intron/exon junctions is
88 illustrated by BigRNA's predictions for SLC7A8, an amino acid transporter within the test
89 set (Fig. 1d). To evaluate BigRNA on the much harder task of predicting differences
90 between pairs of tissues, we used BigRNA predictions to compute the fold-change in
91 total exonic coverage between tissue pairs and compared that to observed
92 fold-changes. Across all inter-tissue comparisons, we observed a mean correlation of
93 r=0.4, owing to the increased difficulty of this task (Fig. 1e). We highlight a comparison
94 between liver and the hypothalamus (r=0.58, p=7e-64, Fig. 1f) to illustrate this capability.
95
96 Since drug discovery tasks benefit from clarity of mechanisms, we next examined how
97 well the fine-tuned BigRNA model could predict RBP binding specificity and microRNA
98 binding sites. For the RBP task, we used a large-scale resource of transcriptome-wide
99 binding profiles for 223 datasets covering 150 unique human RBPs in K562 and HepG2
100 cells®. We found that BigRNA achieved high average precision for many RBPs and
101 performed better than the previously-published DeepRiPe’ system for all 142 datasets
102 that they had in common (Fig. 1g). On predicting microRNA binding sites, BigRNA
103 achieved a median AUC of 0.84 and for all 12 cell lines that we tested, performed better
104 than a previously published method, TargetScan® (Fig. 1h). These predictions are useful
105 for identifying regulatory factors that are altered by variants and SBOs (see below).
106
107 Predicting the effects of variants on gene expression
108
109 A key challenge in human genetics is to predict the impact of sequence variants that
110 may be found within the human population. Many deep learning models that do well on
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111 Uunseen genes using certain metrics, such as AlphaFold®, struggle to predict variant

112 effects’. While some accurate methods exist for predicting the pathogenic impact of
113 rare missense variants'"'?, non-coding variants, such as those located within the 3' and
114 5" untranslated regions (UTRs) of genes, remain difficult to interpret.

115

116 To address this gap, we evaluate BigRNA's ability to predict the impact of a curated set
117 of pathogenic or likely pathogenic (P/LP) UTR variants from ClinVar'. We found that
118 BigRNA exhibited strong performance as a general pathogenicity model for variants in
119 both the 3’ UTR and 5’ UTR (AUC=0.95 and 0.8, Fig. 2a) by predicting their effects on
120 the expression of their associated disease genes. The weaker performance in the &'

121 UTR may be due to a smaller proportion of P/LP variants that modulate RNA expression
122 (18/47 compared to 16/17 for the 3' UTR amongst variants with known mechanismes,
123 p=0.046), and a substantial proportion of mechanisms that affect translation (29/47).
124 We further investigated a known pathogenic expression-decreasing variant in the 3’ UTR
125 of NAA10™ (NM_003491.4:c.*43A>G). This variant is known to cause syndromic

126 X-linked microphthalmia, and reduces expression by disrupting the polyadenylation site
127 (PAS) of the NAA10 transcript. The BigRNA predictions highlight the

128 expression-decreasing effects of this variant (false positive rate, FPR <0.5%), and also
129 predicted the expected lengthening of the 3’ UTR that was observed in RNA-seq

130 samples of affected patients' (Fig. 2b). An in-silico saturation mutagenesis near this
131 variant highlighted the importance of the PAS, and confirmed the effects of two other
132 nearby P/LP variants (c.*39A>G, ¢.*40A>G)" (Fig. 2c).

133

134 We compared BigRNA to Framepool', a ribosomal load model, Saluki'®, an RNA stability
135 model, and Enformer?, an expression model that learns from CAGE-seq. We observed
136 improved performance compared to Enformer for pathogenic variants in both the 5’ and
137 3' UTR (p=0.04 and p=0.02, respectively, Supplementary Fig. S3). Framepool, a model
138 that predicts ribosomal load"®, performed similarly to BigRNA for pathogenic variant

139 classification in the 5’ UTR (AUC=0.67 versus 0.78 for BigRNA, p=0.07, Supplementary
140 Fig. S3), but BigRNA performed better at classifying the subset of pathogenic 5’ UTR
141 variants that are known to modulate RNA expression (AUC=0.61 versus 0.86 for

142 BigRNA, p=0.002, Supplementary Fig. S4). Saluki, an RNA half-life model, had similar
143 performance on the 3’ UTR task (AUC=0.87 vs 0.94 for BigRNA, p=0.27).

144

145 Within these genes, we noted many variants of uncertain significance (VUS) in their

146 untranslated regions. Applying BigRNA to these variants at a 5% FPR yielded 12

147 potential expression-modulating variants in the 3' UTR (out a total of 139) and 23 in the
148 5" UTR (out a total of 222) (Fig. 2d). For example, the 3’ UTR of HBB had the highest

149 number of VUSs surpassing this threshold (n=6). The highest scoring VUS
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150 (NM_000518.5(HBB):c.*112A>T) is in the PAS of this gene, and shares the same

151 position as a known pathogenic variant (c.*112A>G). The PAS region of HBB also

152 contains the majority of known P/LP variants (6 of 8). The second-highest scoring VUS
153 (€.*47C>G) was outside of the PAS, and less is known about its function. Looking

154 further, we found that despite being classified as a VUS, this variant is reported to cause
155 decreased expression of HBB, supporting the BigRNA prediction’’. We also noted that
156 three additional P/LP variants in the HBB PAS, which were not included in our

157 benchmark due to a lack of evidence in the ClinVar submission'®, scored above this

158 threshold (Fig. 2e), providing computational support for their P/LP classification.

159

160 In more genetically complex diseases, it can be challenging to discover causal

161 expression-modulating variant(s) due to linkage disequilibrium (LD). For example,

162 rs705379 and rs854572 are both annotated as expression quantitative trait loci (eQTLs)
163 for Paraoxonase 1 (PON17) in GTEX, but a luciferase reporter assay and statistical

164 fine-mapping of the locus show that only rs705379 has an effect on expression’®'?,

165 which is consistent with BigRNA's prediction of a much stronger effect and its direction,
166 despite the strong LD. BigRNA also assigned a stronger effect, and correct direction, for
167 two other known expression modulation variants, rs854571 and rs3735590% (Fig. 2f).
168 To benchmark BigRNA more broadly, we evaluated its ability to identify fine-mapped

169 eQTLs from negative controls matched on effector gene (eGene), distance to

170 transcription start site (TSS), and minor allele frequency. We saw considerable

171 performance for this task (AUC = 0.74, Fig. 2g), improving over Enformer (AUC = 0.70,
172 p=4.8e-04 for difference, Supplementary Fig. S5). We note that a series of

173 improvements in eQTL scoring, including matching the predictions to the eQTL tissue of
174 interest, and evaluating over the entire contiguous coding sequence rather than the

175 transcription start site made significant improvements to our performance for both

176 models (Supplemental Note 1). BigRNA's classification performance was similarly

177 strong for variants more than 10 kilobases from their eGene’s TSS (AUC 0.73, versus

178 0.66 for Enformer, p=8.0e-05 for difference, Supplementary Fig. S6). Together, these

179 results indicate that BigRNA is able to help prioritize causal variants that mediate more
180 common diseases, which has been challenging for sequence-based deep neural

181 networks™".

182

183 Predicting the effects of variants on splicing and intron retention

184

185 An important subset of pathogenic variants affect splicing, such as those which cause
186 skipping of an exon. These variants often occur in coding regions, and may be

187 incorrectly classified as benign mutations based on their amino acid substitutions,

188 despite their pathogenic splicing effects?’. We evaluated BigRNA's ability to classify the
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189 splicing impact of exonic variants that cause substantial (>50%) exon skipping, versus
190 those that do not cause any splicing changes, using results from a massively parallel
191 splicing assay (MaPSy)?'. By predicting a change in junction coverage caused by these
192 variants, BigRNA was able to accurately predict these skipping variants (AUC = 0.89 Fig.
193 3a), and showed better performance compared to a previously published method,

194 SpliceAl* on this task (AUC=0.80, p<1e-05 for difference, Supplementary Fig. S7). We
195 further investigated a pathogenic variant that causes skipping of exon 6 in the ACADM
196 gene, leading to a potentially fatal medium-chain acyl-CoA dehydrogenase

197 deficiency®?*. BigRNA predicted the exon skipping effects of this variant (FPR = 0.002,
198 Fig. 3b), and that it causes this skipping by creating a binding site for the TDP-43

199 protein?, yielding insight into the mechanism-of-action. We further investigated a VUS
200 in ATP7B (c.3243+5G>A), a gene which clears copper from liver cells and causes Wilson
201 disease when it is defective®. This variant was predicted by BigRNA to cause in-frame
202 skipping of ATP7B exon 14 (FPR=0.004, Fig. 3c), which contains the ATP site and other
203 critical elements®?®, thus causing a pathogenic loss-of-function. We generated a

204 homozygous HepG2 line and used RT-PCR to assay the effects of this variant and

205 confirm the exon skipping predicted by BigRNA (Fig. 3c).

206

207 Another class of pathogenic splicing variants are cryptic splicing mutations that cause
208 full intron retention. We evaluated BigRNA on its ability to predict a set of reported

209 intron retention variants?’, using nearby common variants as the negative set. We

210 observed strong performance on classifying these mutations (AUC=0.9, Fig. 3d and

211 Supplementary Fig. S8), so we next investigated whether BigRNA could predict more
212 complex splicing aberrations. We focused our attention on a pathogenic non-canonical
213 splice site variant in the ABCA4 gene (c.5714+5G>A), which had been found to induce
214 Stargardt disease by causing skipping of ABCA4 exon 4028, This variant was strongly
215 predicted to cause both the skipping of exon 40, and retention of intron 40 (FPR=0.008
216 and <0.04, respectively, Fig. 3e), but the latter had not been reported, likely due to

217 technical limitations in the assay?®. To test this prediction, we edited a retinoblastoma
218 cell line (WERI-Rb-1) to be homozygous for ¢.5714+5G>A, and performed RNA

219 sequencing to capture the full suite of splicing events. This confirmed BigRNA's

220 predictions that this variant causes a complex set of aberrations that includes partial
221 skipping of exon 40, as well as retention of intron 40.

222

223

224 Designing splice-switching and expression-increase molecules

225 The ability of BigRNA to understand regulatory mechanisms affecting splicing and gene
226 expression may allow it to design therapeutic interventions that rescue pathogenic

227 variant effects. For this application, we evaluated whether BigRNA could reverse
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228 splicing defects by designing steric blocking oligonucleotides (SBOs) - short,

229 chemically-modified synthetic nucleic acid strands purposed to bind specific RNA

230 targets to modulate splicing and gene expression. For example, Nusinersen, an FDA

231 approved SBO, treats spinal muscular atrophy by reversing the skipping of exon 7 in

232 SMN2%, thus restoring SMN protein levels and mitigating motor neuron loss and

233 muscular atrophy. One way to predict the effect of an SBO is to hide the complementary
234 binding site from the model’s input (Methods). This approach is an instance of

235 ‘zero-shot learning’, because no additional task-specific SBO data is used when making
236 the prediction.

237

238 To evaluate the utility of zero-shot learning for virtual screening, we first evaluated the
239 ability of BigRNA to re-discover Nusinersen amongst the set of all possible SBOs within
240 200 base-pairs of SMN2 exon 7. Strikingly, BigRNA ranked Nusinersen within the top 3
241 of 437 compounds (Fig. 4a). To more systematically evaluate the effectiveness of this
242 approach, we treated 15 exons in 12 genes with a total of 620 SBOs, and observed a

243 strong and statistically significant correlation with the predicted and

244 experimentally-measured exon inclusion levels in all cases (r=0.41-0.77, p=7e-12 to 2e-2,
245 Fig. 4b). For comparison, SpliceAl correlated with experiments in 11/15 exons and the
246 correlation was lower than BigRNA for 13/15 exons.

247

248 We then used BigRNA to design a novel splice-switching SBO that rescues a pathogenic
249 splicing defect. Previously, we had reported that a missense variant in the ATP7B gene
250 (€.1934T>G, Met645Arg) leads to Wilson disease by promoting skipping of exon 6, thus
251 resulting in lowered levels of functional protein and subsequent copper accumulation in
252 liver cells®®. We created a disease model of the Met645Arg variant in HepG2 cells, and
253 used this system to test a set of SBOs targeting the skipped exon (Methods). We

254 observed a strong relationship between the predicted and measured splicing changes
255 (r=0.91, p=4.7e-22, Fig. 4c). The top compound from this assay was predicted to be in
256 the top 7 of 458 possible compounds by BigRNA. To summarize, BigRNA predicted both
257 the exon skipping caused by Met645Arg (FPR=0.007) and the restorative effect of the
258 top experimentally-validated compound (Fig. 4d).

259

260 BigRNA's ability to score SBOs has utility in developing therapeutic candidates targeting
261 extremely rare variants within a constrained budget. First, we evaluated BigRNA's ability
262 to score SBOs that target a pseudo-exon in the ATM gene caused by the rare

263 €.5763-1050A>G mutation, leading to ataxia-telangiectasia®®. We observed significant
264 correlation between the predictions and experimentally observed splicing efficiencies
265 (r=0.64, p=3.3e-04, Supplementary Fig. S9), and ranked the lead therapeutic candidate
266 in the top 7 of 516 possible compounds. We sought to explore whether similar
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267 therapeutic candidates could be developed for other rare splicing diseases. After

268 curating a set of extremely rare, so-called “N=1", pathogenic variants from ClinVar

269 (Methods), we used BigRNA to predict which ones are likely to act through exon

270 skipping while not affecting the core splice donor or acceptor site (Fig. 4e), thus

271 potentially being eligible for SBO remediation. This included synonymous variants,

272 non-synonymous variants predicted to be tolerated®', and variants near splice sites.

273 One such variant was in intron 22 of MYOTE, which is associated with

274 glomerulosclerosis®2. While no published mechanism exists for this variant, it was

275 predicted to cause skipping of exon 23, and the top SBO was predicted to completely
276 rescue this skipping defect, suggesting that this variant is amenable to personalized

277 SBO treatment (Fig. 4f).

278

279 Owing to BigRNA's striking ability to help design splice-switching SBOs, we turned to the
280 more challenging problem of designing SBOs that amplify gene expression. This

281 requires the model to rank all possible compounds targeting any part of the transcript,
282 again without any additional training and additionally with no prior knowledge of

283 inhibitory regions. Due to the greatly increased search space, we first developed a

284 method to score a large number of compounds in a computationally efficient manner.
285 For this, we applied a combination of established saliency mapping techniques®*?* to
286 evaluate the contribution of each base pair in a transcript on its expression in a given
287 tissue, and took the minimum contribution score at the SBO binding region as the

288 ‘inhibitory score’ of each compound (Methods). We again benchmarked this scoring on
289 Nusinersen, reasoning that the skipping of exon 7 and subsequent nonsense-mediated
299 mMRNA decay is a major expression bottleneck. Considering all 26,901 SBOs of length
291 18, Nusinersen ranked in the top 2.28% (Supplementary Fig. S10), suggesting that

292 BigRNA's inhibitory scores can be used to identify inhibitory regions, and that this

293 strategy could have recovered Nusinersen within a tractable screening budget.

294

295 We then sought to systematically assess how well BigRNA could be used to discover
296 novel therapeutically beneficial expression-increasing SBOs. An example is

297 Paraoxonase 1 (PONT), where variants that decrease expression of the gene or catalytic
298 activity of the protein have been associated with an increased risk of atherosclerotic

299 cardiovascular disease®* (ASCVD). In murine models, modulation of PON7 expression
300 has been shown to directionally influence the risk of ASCVD and related phenotypes®~4°,
301 thus presenting a compelling opportunity for expression-increasing therapeutics. We
302 used BigRNA to perform large-scale SBO design, experimentally tested the predicted
303 SBOs in primary human hepatocytes, and identified 10 compounds that showed activity
304 for increasing PON1 expression (Methods). By using a liver-specific score to rank all
305 positive compounds, BigRNA showed a strong ability to prioritize expression increase
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306 compounds (AUC=0.818, Fig. 4h). To expand this study, we screened

307 expression-increasing compounds for ATP7B (to benefit a broader population beyond
308 Met645Arg), as well as PRRT2 and SERPING1, which may confer therapeutic benefits for
309 benign familial infantile epilepsy*' and hereditary angioedema*. For all three genes,

310 BigRNA's predictions successfully prioritized expression-increasing SBOs without

311 requiring any additional training (AUC=0.72-0.85, Fig. 4h).

312 Discussion

313 The rapid evolution of computational models in genomics has enabled the use of

314 methods that can learn from large-scale genomics data to predict RNA expression from
315 DNA sequence. Using deep learning to model RNA-seq data and take into account

316 individual genomic sequence variation, we can enable novel and accelerated discovery
317 on several drug discovery tasks.

318

319 When we adapted previously published deep learning systems to the drug discovery

320 tasks that we evaluated, we found that BigRNA performed substantially better overall. It
321 improved significantly over specialized models like TargetScan® and DeepRiPe’ for

322 predicting microRNA and RBP binding sites, and was more accurate than SpliceAl*? at
323 identifying exon skipping variants as well as designing splice-switching SBOs. BigRNA
324 could accurately predict pathogenic variants in untranslated regions, matching

325 specialized models for the 5’ and 3’ UTRs''¢, and improved upon the general-purpose
326 Enformer model®. In cases where BigRNA's performance matched an existing model,
327 direct modeling of RNA-seq data had distinct advantages. For example, unlike a

328 previously described ribosomal loading model'®, BigRNA could predict all classes of

329 pathogenic mutations in the 5’ UTR, and unlike a model of RNA half life'®, it could predict
330 that a pathogenic variant acts by changing the polyadenylation site, which reduces the
331 half-life. Existing methods for predicting splice donor and acceptor strength?? are

332 unable to identify correlated splicing events, such as intron retention, but we found that
333 BigRNA is able to do so. For complex traits, in contrast to traditional fine-mapping

334 methods that do not provide insight into the mechanistic impact of causal mutations®,
335 BIgRNA can make predictions for complex trait heritability contributions from many

336 different mechanisms that do not exert their effect through a change in protein

337 structure.

338

339 The ability of BigRNA to learn mechanisms of RNA regulation is reflected by the fact
340 that it was able to accurately design SBOs that counteract the effects of pathogenic

341 variants or that increase gene expression, without being provided with a single training
342 case of an SBO and its effect. Nonetheless, a further avenue of work would include


https://doi.org/10.1101/2023.09.20.558508
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.20.558508; this version posted September 26, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

343 fine-tuning BigRNA by learning from SBO treatment data, such as from the rich

344 information encoded by SBO-treated RNA-seq samples*. Similar approaches can be
345 used for other therapeutic modalities such as predicting the phenotypic effects of

346 induced ADAR (adenosine deaminase acting on RNA) editing so that they confer a

347 similar compensatory effect on splicing or expression®, or designing mRNAs that have
348 increased half-life and translation efficiency.

349

350 Several avenues exist to improve the predictive abilities of BigRNA. The 128bp

351 resolution of the model can be improved with additional training resources?.

352 Improvements in the speed and scalability of the transformer architecture*, coupled
353 with the use of parameterized upsampling*” may allow the model to retain a high

354 context size while producing predictions at single base-pair resolution. Training on

355 more individuals could improve generalization across genotypes. While the training

356 procedure takes into account variation from 70 individuals, WGS-paired RNA-seq data is
357 available for many more GTEx samples, and can be supplemented with additional

358 datasets*®. To take into account such a large amount of data, methods have been

359 developed to prioritize the most informative training points*®, allowing the training

360 procedure to scale and effectively learn from extremely large datasets. To explore

361 improved prediction of differences between individuals, a contrastive training objective
362 can be used®*'%2 and predictions can be made for the difference in expression between
363 two haplotypes®:.

364

365 Our results show that different drug discovery tasks can be assisted by deep learning.
366 We believe that BigRNA and deep learning systems like it have the potential to

367 transform the field of RNA therapeutics.

10


https://doi.org/10.1101/2023.09.20.558508
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.20.558508; this version posted September 26, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

365 Methods

369
370 RNA-seq model training

371 We downloaded and aligned RNA-seq data from the GTEx consortium® V6 release,

372 processing all available data from the set of 70 individuals with the most tissue

373 availability (data from a total of 51 tissues are available, but data availability varies

374 between individuals). Data was processed using an in-house pipeline (Supplementary
375 Information 1.2). Each RNA-seq sample was processed into two data tracks: coverage
376 and junction, where the junction track contains a subset of read counts at splice

377 junctions. To make the data compatible with the 128bp resolution of the model’s

378 architecture?, we applied 128bp-window average-pooling on coverage tracks, and

379 128bp-window sum-pooling on junction tracks. To incorporate genomic variants from
380 each individual, we re-aligned the RNA-seq data to match the insertions and deletions
381 introduced by each individual’s haplotype (Supplementary Information 1.2). BigRNA was
382 trained with a separate output for each sample, so that each output can be

383 independently learned. We trained BigRNA by minimizing differences between

384 prediction from both haplotypes and the observed coverage and junction tracks from
385 RNA-seq (Supplementary Information 1.3, Supplementary Equation S2). In addition to
386 the individual-specific outputs, we also added individual-agnostic per-tissue outputs to
387 encourage the model to learn a mapping from genotype to expected expression (where
388 the expectation is taken across all individuals). Description of all output heads can be
389 found in Supplementary Data 1. Fig. 1a shows the training pipeline. The same

390 procedure was used to train an ensemble of 7 models, varying learning rate, degree of
391 gradient clipping, and the pre-training strategy for each model in the ensemble

392 (Supplementary Information 1.3, Supplementary Table S1). At inference time, to predict
393 on a genomic interval, we used shifted intervals to increase the prediction resolution to
394 64 base pairs, and averaged predictions from both strands (Supplementary Information
395 1.4, Supplementary Fig. S1, Supplementary Fig. S2).

396

397 Fine-tuning on RBP and microRNA datfasets

398 After training models on RNA-seq dataset, we further fine-tuned models on RBP and

399 microRNA datasets. The RBP dataset was constructed by downloading eCLIP data®

400 from ENCODE** (Supplementary Information 1.2.2). The microRNA dataset was

401 generated by processing CLIP-Seq data from 12 cell lines (Supplementary Information
402 1.2.3). We fine-tuned the model by first updating weights of the last layer for 10 epochs,
403 then updating weights of the entire model for another 30 epochs (Supplementary

404 Information 1.3). Description of all output heads can be found in Supplementary Data 2.
405
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406 Held-out performance on gene expression and differential gene expression

407 We selected protein coding genes that are completely outside the training and validation
408 set, and which overlap at least one interval in the test set. Predictions and targets were
409 mean-aggregated over all exons for each gene to yield one value per gene

410 (Supplementary Information 2.1). For each tissue, we compute the correlation between
411 prediction and target across all genes. To evaluate performance on differential gene
412 expression, we constructed all pairwise comparisons between tissues, and computed
413 the log, fold-change using the predicted and target coverage data (Supplementary

414 Information 2.2). For each tissue pair we computed the correlation between the

415 predicted and target log, fold-changes across all genes.

416

417 Visualizing prediction on SLC7A8

418 Sequence of SLC7A8 gene was obtained from hg38 genome build with Gencode v29
419 annotation. We averaged output heads that correspond to coverage in the “Brain -

420 Hypothalamus” tissue to obtain BigRNA prediction for visualization (Supplementary

421 Information 2.3).

422

423 Held-out performance on RBP

424 Processed RBP peaks were obtained from ENCODE®, and processed into low

425 resolution binary labels by taking into account noise in the data [Supplementary

426 Information 1.2.2, Supplementary Equation S8]. We selected protein coding genes that
427 are completely outside the training and validation set, and made predictions using

428 BigRNA and DeepRiPe’. Both BigRNA and DeepRiPe predictions were averaged within
429 each 128-bp window (Supplementary Information 2.4). Fig. 1g shows the average

430 precision performance of BigRNA and DeepRiPe.

431

432 Held-out performance on microRNA

433 The microRNA dataset was generated by processing CLIP-Seq data from 12 cell lines
434 (Supplementary Information 1.2.3). The called peaks were further processed into low
435 resolution binary labels by taking into account noise in the data (Supplementary

436 Equation S9). We selected protein coding genes that are completely outside the training
437 and validation set, and made predictions using BigRNA and TargetScan®. Both BigRNA
438 and TargetScan predictions were averaged within each 128-bp window (Supplementary
439 Information 2.5). Fig Th shows the au-ROC performance of BigRNA and TargetScan.
440

441 Benchmarking variant effect predictions on pathogenic variants

442 Pathogenic or likely pathogenic (P/LP) UTR SNVs were obtained from Bohn et al'.

443 Putative benign SNVs located in the same UTR were obtained from ClinVar, if they were
444 classified as benign or likely benign (B/LB), and gnomAD v3 if their global allele
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445 frequency was greater than 0.001°° (Supplementary Information 3.1.1). For the 5’ UTR
446 benchmark, we predicted the effect of the variant using BigRNA, Enformer, and

447 FramePool and took the absolute value of the variant effect scores. For the 3' UTR

448 benchmark, we evaluated BigRNA, Enformer, and Saluki and again, took the absolute
449 values of the variant effect scores (Supplementary Information 3.1.2, Supplementary
450 Equation S10-12). In addition to Fig. 2d, Supplementary Fig. S3 shows the ROC curve
451 and PRC of classification performance of all models. To compare models, we

452 performed permutation tests with 10000 permutations (Supplementary Information

453 3.1.3). Variants of uncertain significance (VUS) in the UTRs of the genes that were in the
454 benchmark were extracted as described in Supplementary Information 3.1.4.

455

456 Predicting the impact of disrupting polyadenylation sites

457 To evaluate BigRNA's ability to predict poly(A) sites, we conducted an in-silico 11 bp

458 N-mask tiling analysis across each poly(A) region. Poly(A) sites (PAS) from 200 genes
459 were obtained from PolyASite 2.0°® (Supplementary Information 3.3). For each PAS, we
460 expanded the site by +100 bp to cover proximal regulatory elements, resulting in 206 bp
461 regions. We subsequently N-masked 11 bp tiles across the region and compared

462 BIgRNA predictions for the N-masked sequences (mutant) and the poly(A) signal

463 sequence (wildtype). The BigRNA predictions were based on the mean of the individual
464 sample RNA-seq coverage heads across all tissue types (Supplementary Information
465 3.3). For the NAA10 PAS and its surrounding 100 bp context, we performed saturation
466 mutagenesis by point-mutating every reference nucleic acid base to every other nucleic
467 acid base. Similar to the poly(A) site analysis, we carried out predictions using the

468 BigRNA model to assess the impact of these mutations on gene expression.

469

470 Expression quantitative trait loci (eQTLs) and linkage disequilibrium (LD) estimation for
471 PONT1 variants

472 The four variants with known expression effect were rs705379 (chr7:95324583:G:A),
473 rs854571 (chr7:95325307:T:C), rs854572 (chr7:95325384:C:G) and rs3735590

474 (chr7:95298183:G:A). The eQTL and normalized effect size of these variants on PON1
475 liver tissue expression were obtained from the GTEx eQTL Calculator . The LD R? values
476 between variants was calculated using the NIH LDmatrix tool with the GBR population
477 selected.

478

479 Classifying expression quantitative trait loci (eQTLs) versus matched controls

480 To construct a benchmark dataset from confidently fine-mapped eQTLs, variants with a
481 posterior inclusion probability of 0.5 or greater (indicating that they are the most likely
482 causal variant in the credible set) were selected from eQTLGen statistical fine-mapping
483 of expression modulating variants in GTEx v8'°. eQTLs within 50kbp of the transcription
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484 start site of the primary or most highly expressed transcript for the reported eGene were
485 selected to ensure that deep learning models would have sufficient genomic context to
486 accurately predict changes in expression. For each eQTL we selected a matched

487 negative control variant from the same effector gene (eGene) which was not associated
488 with its expression (P > 0.05) in any tissue and within 10% of the eQTLs minor allele

489 frequency and 10kbp of the eQTLs genomic position. This resulted in a dataset of 1374
490 eQTL variants and 1162 matched negative controls.

491

492 Classifying variants that cause intron retention

493 Variants that cause full intron retention were manually curated from splicing variants
494 downloaded from the SPCards database®’. A matching set of variants that do not cause
495 intron retention were processed from gnomAD® (Supplementary Information 4.1.1). For
496 each variant, we use BigRNA to predict the relative coverage between intron and the two
497 flanking exons, and compute the score as the ratio between wild-type and mutant-type,
498 aggregated across models in ensemble (Supplementary Information 4.1.2,

499 Supplementary Equation S14-16).

500

501 Classifying variants that cause exon skipping

502 For each mutation in the MaPSy dataset?’, we computed the splicing odds ratio and

503 confidence interval using the reported readout from both in-vitro and in-vivo assays, to
504 create a high confidence binary label on skipping versus non-skipping at splicing levels
505 ranging from 50% to 10% (Supplementary Information 4.2.1, Supplementary Equation
506 S17-18). For each mutation, we used BigRNA to predict the difference in junction counts
507 between wild-type and mutant-type, normalized by exon, and aggregate across models
508 in ensemble (Supplementary Information 4.2.2, Supplementary Equation S19). Fig 3a
509 shows ROC curve of classification performance on skipping versus non-skipping at 50%
510 splicing level. For model comparison (Supplementary Fig. S7), we performed

511 permutation tests with 100,000 permutations.

512

513 Predicting the effect of splice-switching SBOs

514 To obtain the relative ranking of Nusinersen, we ranked all possible SBOs of length 18
515 within 200 base pairs of exon 7 of SMN2 (Supplementary Information 5.1). We used

516 RT-PCR to measure the Percentage Spliced In (PSI) values for 15 exons in the HEK293T
517 cell line, and compared the measured PSI with the predicted SBO effect of SpliceAl and
518 BigRNA using the Spearman Correlation metric (Supplementary Information 5.2). We
519 repeated the above evaluation for SBOs targeting Met645Arg; here we edited HepG2

520 cells to introduce the ¢.1934T>G Met645Arg variant, and screened a library of 55 SBOs
521 by qPCR. Spearman correlation was computed between BigRNA predictions and the

522 experimentally observed ATP7B expression levels (Supplementary Information 5.3). The
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523 same evaluation was carried out on published data of SBOs designed to skip a

524 pseudo-exon created by the ¢.5763-1050A>G variant in ATM*C.

525

526 The set of “N=1" variants was created by selecting pathogenic or likely pathogenic

527 variants (ClinVar) from genes that are exclusively associated with autosomal recessive
528 disorders (OMIM). BigRNA predictions were made for SNVs with very low estimated
529 worldwide prevalence (n=1582, GhomAD) and we curated synonymous, tolerated

530 missense (SIFT) and intronic variants (excluding the core dinucleotides) for their

531 mechanisms of pathogenicity (Supplementary Information 5.5). All possible 20-mers
532 within 200 bp of MYOTE exon 23 were scored for their ability to remedy the effect of the
533 €.2481-12A>G variant, and we visualized the predictions for the highest ranked SBO.
534

535 Predicting the effect of expression increase SBOs

536 Expression increase can occur through a variety of mechanisms, and SBOs can be

537 designed anywhere in the gene. By applying a combination of established saliency

538 mapping techniques®**4, we evaluated the contribution of each base pair in a transcript
539 to the expression of the related gene in the relevant tissue, yielding a sensitivity score
540 for each base pair's impact on gene expression levels, called the Inhibitory Score

541 (Supplementary Information 1.5). This per-base-pair score was then used to rank SBOs
542 by taking the minimum score of any overlapping base-pair (Supplementary Information
543 5.6.2). For the Nusinersen ranking evaluation, we used the BigRNA Inhibitory Score to
544 score all candidate SBOs of length 18 targeting the entirety of the gene body of SMN2.
545 The same process was applied to expression increase SBOs identified from screens of
546 PON1, ATPB, PRRT2, and SERPING1. Scores between hit SBOs and the background of all
547 candidate SBOs were compared with a Mann-Whitney U-Test.

548

s49 Data Availability
550 Data and code to be made available upon peer review.
551
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713 Figure 1. BigRNA accurately predicts tissue-specific RNA expression of unseen sequences.
714 a. A schematic of BigRNA's training. BigRNA was trained on the genomes of 70 individuals, to
715 predict a total of 2,956 RNA-seq datasets over 51 tissues, plus 693 datasets corresponding to
716 RNA binding protein and microRNA sites. b. Distribution of correlations between predicted and
717 measured RNA-seq coverage in exonic regions for genes held-out during training (averaged

718 across individuals). c. Correlation between predicted and measured RNA-seq coverage for the
719 hypothalamus samples. d. Predicted versus measured coverage for SLC7A8, averaged across
720 hypothalamus samples for all individuals. e. Distribution of correlations between predicted and
721 measured fold-change (pearson r) for all pairwise comparisons across 51 tissues. f.

722 Fold-change in gene coverage between liver and hypothalamus. g. Comparison of BigRNA and
723 a previously published method, DeepRiPe, for predicting the binding sites of 98 RNA binding
724 proteins across 2 cell lines (142 total experiments). h. Comparison of BigRNA and a previously
725 published method, TargetScan, for predicting microRNA binding sites for 12 cell lines.

22


https://doi.org/10.1101/2023.09.20.558508
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.20.558508; this version posted September 26, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

?Zlinvar P?ll.glijsilaﬂr(i:::?snvzergﬁs"gzzicger; Sogtants b o BigRNA Predictions on a pathogenic variant in NAA10
1.0 _— T Wildtype ‘_“
I o © 40 Variant | |
0.8 /_FH ‘ L7 Poly-A site shift
: 5 g
! B 3 304 n i
sy f ag k= .
e <
= Z % 204 \ ] ‘\ |
0.4 [ H L
poubd " |
oy " ‘ | r ) I i
0.2 / 10+ Il B i 1 |
—— 3'UTR, AUC = 0.94 - b
0.0 —— 5'UTR, AUC = 0.78 b =t
0.0 0.2 0.4 0.6 0.8 1.0 - }}
c*43A>G
FPR NAA10
c ¢ 38A>G ©*4DA>G d

~~__ NAA10 variant effects near PAS _ -~ BigRNA predictions across ClinVar categories

15 ~.
S T =2 / 3'UTR 5'UTR
o5, =
0.5 : .
% E o = | I //
B B, C ™ cr43A>G o = . 04
22 .
o i A- ‘ 0.4
-50 25 0 2 50 E g
z Distance from PAS (bp) = =1
203 &
@ Upstream element PDEXA slinal Downstream element ] H o2
@ UGUA AAUAA, UGUGU : :
T
3 g 202 ]
S > =) )
5 E @ @01
o 0.1
s E i . ; el . y
05 g o Erei e
o A L] — Sns  [ae
=
q>: % P/LP Putative vus P/LP Putative vus
2 Benign Benign
° Distance from PAS (bp) Clinical significance
e HBB 3’ UTR Variant Effects f PON1 variant prioritization g Classification performance: eQTL
0.100 <
3
S | = BigRNA Prediotion . 107
& = Luciferase Reporter Effect Size =
€ o015 c."112A>T c & | = GTExeQTL Effect Size
. =]
=l f c*47C>G . » 2o o 08
° / / Clinical significance 2 S o
=] s / P B3 g
8 . s PILP &g q O
i 0.050 — PAS P/LP (uncertain) £ ° é 06
< . + Putative benign T . g £
14 - @ o | T =
2 s VUS = 04
M 5025 s it
L) + !
S
e : ] 0.2 -
1s705379  rs854572  rs854571  rs3735590
5225480 5225520 5225560 r& oo | BlgRNA, AUC =074
Position along chr11 a “1. . . . .
2 0.0 0.2 0.4 0.6 0.8 1.0
E FPR
&

726

727 Figure 2. BigRNA predicts the effects of pathogenic expression-modulating variants

728 a. Performance of BigRNA on classifying P/LP variants from putative benign variants in the 3’
729 UTR and 5’ UTR. b. RNA-seq coverage predictions for the effects of a pathogenic variant in the 3’
730 UTR of NAA10 (NM_003491.4), averaged across all individuals and all tissue types. ¢. Top:
731 BigRNA predictions showing the change in expression for all possible point mutations around
732 the polyadenylation site (PAS) of NAA70. Three variants previously identified as impacting the
733 PAS are labeled. Bottom: Relationship between the change in expression predicted by BigRNA
734 from ablating regions around the PAS relative to the distance from the PAS for 200 human

735 poly(A) signal sequences selected from PolyASite 2.0. d. The distribution of BigRNA scores for
736 P/LP variants, putative benign variants. and VUS variants from ClinVar for genes included in the
737 UTR benchmarks. The dashed line in both plots (left, y = 0.0341; right, y = 0.0494) represents
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738 the threshold of classifying P/LP from putative benign variants at an FPR of 5% in each of the
739 benchmark datasets. e. BigRNA predictions for variants of varying clinical significance in HBB.
740 The dashed line represents the threshold of classifying P/LP from putative benign variants at a
741 5% FPRin the 3' UTR (y = 0.0341). The two highest scoring VUS variants in this gene are

742 annotated. f. Top: Comparing BigRNA predicted effects to GTEx eQTL effect size and results of
743 a luciferase reporter assay for four variants suspected to impact PON1 expression. Bottom:
744 Estimated linkage disequilibrium between variants. g. Performance of BigRNA at distinguishing
745 fine-mapped expression quantitative trait loci (eQTLs) from controls matched by effector gene
746 (eGene), distance to the transcription start site of the eGene, and minor allele frequency.
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748 Figure 3. BigRNA captures the effect of variants on splicing.

749 a. BigRNA performance on classifying exonic variants that result in exon skipping by at least

750 50%, from exonic variants that do not cause skipping, both obtained from MaPSy. b. BigRNA

751 predicts that the ¢.468+7A>G variant will result in increased TDP-43 binding and skipping of

752 ACADM exon 6. c¢. The ATP7B VUS ¢.3243+5G>A is predicted by BigRNA to cause in-frame

753 skipping of exon 14. This results in reduced levels of functional ATP7B protein, leading to

754 copper buildup in the cell. Right: An RT-PCR in HepG2 cells edited to be homozygous for

755 €.3243+5G>A confirms the expected fragment from exon skipping. d. BigRNA performance on
756 classifying variants that cause intron retention (n = 25) from a set of matched variants that do
757 not impact splicing (n = 63). e. Top: BigRNA coverage predictions of the ¢.5714+5G>A variant in
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758 ABCA4. Bottom: RNA-seq of wildtype WERI cells and WERI cells edited to be homozygous for
759 the variant confirm both exon skipping and intron retention effects.
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762 Figure 4. BigRNA predicts the effects of steric blocking oligonucleotides. a. Mechanism of

763 action of the splice-switching oligonucleotide Nusinersen, an approved treatment for spinal

764 muscular atrophy (SMA). BigRNA predictions are shown for the exon-restoring effects of all

765 18-mer SBOs within 200 bp of SMN2 exon 7. The blue bar shows the position of Nusinersen.
766 Predictions were truncated at zero for the plot. b. Spearman correlation between experimentally
767 observed exon-inclusion levels and predictions generated by BigRNA and SpliceAl. A negative
768 correlation for NFIX exon 7 versus SpliceAl (r=-0.13) was truncated to zero. c. BigRNA

769 predictions of SBO effects on ATP7B exon 6 inclusion. 55 SBOs were screened by gPCR to

770 measure total ATP7B expression relative to control (fold change), and the Spearman correlation
771 was computed between the BigRNA predictions and observed fold changes. d. BigRNA
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772 predictions for wildtype, Met645Arg (c.1934T>G) variant, and Met645Arg variant with treatment
773 (lead SBO targeting ATP7B exon 6). The junction count tracks pertaining to individual samples
774 of the liver tissue are averaged for plotting. e. Proportion of ultra-rare pathogenic variants

775 associated with AR disorders with BigRNA exon skipping predictions above the 1% and 5% FPR
776 thresholds. Intronic (>8bp from splice site), splice region (<8bp from splice site excluding the
777 core dinucleotides), tolerated missense (SIFT score > 0.05) and synonymous variants are

778 shown. f. BigRNA predictions for wildtype, c.2481-12A>G variant and the variant with treatment
779 (lead SBO targeting MYOTE exon 23). g. BigRNA predicts expression increase SBOs in PON1.
780 BigRNA inhibitory scores are plotted by region of the gene. The transcript structure is shown
781 under the scores, and the locations of the 10 dose-response hits are shown with blue bars. The
782 distribution of BigRNA inhibitory scores for the 10 dose-response hits is significantly different
783 from the distribution for other length-matched SBOs targeting PONT h. BigRNA scores of

784 screening hits compared to background of all possible SBOs of same length for PON1, ATP7B,
785 PRRT2, and SERPINGT.
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