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Abstract

In plants, de novo DNA methylation is guided by 24-nt short interfering (si)RNAs in a process
called RNA-directed DNA methylation (RdDM). Primarily targeted at transposons, RdDM
causes transcriptional silencing and can indirectly influence expression of neighboring genes.
During reproduction, a small number of siRNA loci are dramatically upregulation in the
maternally-derived seed coat, suggesting that RdADM might have a special function during
reproduction. However, the developmental consequence of RADM has been difficult to
dissect because disruption of RADM does not result in overt phenotypes in Arabidopsis
thaliana, where the pathway has been most thoroughly studied. In contrast, Brassica rapa
mutants lacking RADM have a severe seed production defect, which is determined by the
maternal sporophytic genotype. To explore the factors that underlie the different phenotypes
of these closely-related species, we produced RdDM mutations in three additional members
of the Brassicaceae family: Camelina sativa, Capsella rubella, and Capsella grandiflora.
Among these three species, only mutations in Capsella grandiflora displayed a seed
production defect similar to Brassica rapa mutants, suggesting that mating system is a key
determinant for reproductive phenotypes in RADM mutants.

Introduction

RNA-directed DNA methylation (RdDM) triggers de novo DNA methylation and maintains
non-symmetric methylation at euchromatic transposons (Matzke and Mosher, 2014; Erdmann
and Picard, 2020). This methylation causes transcriptional silencing to prevent the mobilization
of transposons and can indirectly influence expression of neighboring genes (Hollister and Gaut,
2009; Hollister et al., 2011; Forestan et al., 2017). RADM employs 24-nt small interfering
(si)RNAs, which are produced though the sequential activities of RNA Polymerase IV (Pol 1V),
RNA-DEPENDENT RNA POLYMERASE2 (RDR2), and DICER-LIKE3 (Singh et al., 2019;
Fukudome et al., 2021; Huang et al., 2021; Wang et al., 2021; Loffer et al., 2022). These
siRNAs are loaded into ARGONAUTE4 and direct the protein to nascent transcripts produced
by RNA Polymerase V (Wierzbicki et al., 2009; Liu et al., 2018; Singh et al., 2019; Wang et al.,
2023). Once assembled at the chromatin, ARGONAUTE4 recruits DOMAINS REARRANGED
METHYLTRANSFERASE to methylate DNA proximal to the Pol V transcript (Zemach et al.,
2013; Stroud et al., 2014; Zhong et al., 2014). Because non-symmetric DNA methylation is not
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maintained on both daughter strands during DNA replication, repeated de novo methylation is
necessary to maintain DNA methylation (Law and Jacobsen, 2010; Law et al., 2013).

Twenty-four nt siRNAs are particularly abundant in reproductive tissues, suggesting that
RdDM has a special role during reproduction (Chow and Mosher, 2023). Increased
accumulation of 24-nt siRNAs is due to expression of reproductive-specific loci, rather than
upregulation of all RADM sites (Mosher et al., 2009; Rodrigues et al., 2013; Grover et al., 2020;
Li et al., 2020; Long et al., 2021; Zhou et al., 2022). In particular, ovule- and endosperm-specific
siRNA loci have been described in rice (Rodrigues et al., 2013), Brassica rapa (Grover et al.,
2020), and Arabidopsis (Zhou et al., 2022). Known as siren loci, these siRNAs comprise
approximately 90% of the siRNA population in unfertilized ovules and trigger methylation of
protein-coding genes during seed development (Grover et al., 2020; Burgess et al., 2022). In
some cases, siren-induced trans-methylation impacts gene expression (Burgess et al., 2022).

The developmental consequence of RADM action during reproduction has been difficult to
dissect because in Arabidopsis thaliana, where the pathway has been most thoroughly studied,
disruption of RADM does not result in overt phenotypes. There is a slight reduction in seed
weight for homozygous mutant seed (Grover et al., 2018) and an increase in the success of
paternal-excess crosses when RADM is eliminated from the maternal parent (Erdmann et al.,
2017; Martinez et al., 2018; Satyaki and Gehring, 2019). In contrast, Brassica rapa RdDM
mutants are almost completely sterile and produce seeds that are smaller than wild type (Grover
et al., 2018). The different phenotypes for these relatively closely-related species raises the
question: what underlies the phenotypic differences upon loss of RADM? It has been proposed
that RADM might play a larger developmental role in species with a higher proportion of
transposons, or in genomes where transposons are in closer proximity to protein-coding genes,
as these factors increase the possibility that transcriptional silencing of a transposon will have
an indirect impact on a protein-coding gene (Wei et al., 2014; Gouil and Baulcombe, 2016;
Wang et al., 2020). We propose two additional hypotheses to explain the different phenotypes
of A. thaliana and B. rapa RdDM mutants.

Firstly, RdADM might play a role in mediating conflicts among the subgenomes of polyploids
since A. thaliana is diploid while B. rapa is a recent allohexaploid (Wang et al., 2011). A
common result of allopolyploidization is genome dominance, where the non-dominant
subgenome experiences reduced expression and increased fractionation (Grover et al., 2012;
Garsmeur et al., 2014). In B. rapa, the homeolog with more transposons within 500 bp of the
transcription start or stop site was more likely to have lower expression and be present in the
non-dominant subgenome (Woodhouse et al., 2014), suggesting that RADM is associated with
reduced expression from the non-dominant genome. This idea is supported by the higher
proportion of transposon-derived 24-nt siRNAs mapping to regions surrounding genes of the
non-dominant genome in B. rapa, cotton, and maize (Woodhouse et al., 2014; Renny-Byfield et
al., 2015; Cheng et al., 2016; Forestan et al., 2017). Consequently, RdADM might be required to
maintain the balance among subgenomes during reproduction, and increased expression of
genes on the non-dominant subgenome in RADM mutants might cause dosage imbalances that
result in detrimental phenotypes (Alger and Edger, 2020). Species without a recent history of
genome duplication have fewer homeologous gene pairs and less need for subgenome balance
and thus might have fewer phenotypes when RdDM is eliminated.
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Alternatively, RADM’s role during reproduction might relate to balancing parental genomes
in the endosperm, a process linked to RADM (reviewed in (Chow and Mosher, 2023)). The
triploid endosperm develops following the fertilization of the diploid central cell by a haploid
sperm cell and therefore has a 2:1 maternal:paternal genome ratio. Distortion of this ratio results
in failure during endosperm development, likely due to an imbalance in parental conflict over
resource allocation to seeds (Scott et al., 1998; Haig, 2013). Similar imbalances are seen in
interspecific crosses of the same ploidy, leading to the conclusion that it is not the absolute
ploidy from each parent that determines balance, but rather the effective ploidy — a combination
of ploidy and the strength of parental conflict (Johnston et al., 1980). The WISO hypothesis
(Weak Inbreeder, Strong Outbreeder) proposes that parental conflict is proportional to the
extent of outbreeding in a species (Brandvain and Haig, 2005; Brandvain and Haig, 2018). Until
recent domestication, B. rapa is an outbreeding species, implying it will have strong conflict,
while A. thaliana evolved inbreeding ~ 500 thousand years ago (KYA) and should have weak
conflict (de la Chaux et al., 2012). RADM may be a necessary referee to mediate conflict
between strong maternal and paternal interests in outbreeders, but loss of that balance is less
important in inbreeders who have only weak conflict.

To test these hypotheses, we used a CRISPR/Cas9 DNA editing system to introduce
mutations into two essential genes in the RADM pathway in three Brassicaceae species that
differed from each other in ploidy or breeding system. Our target species were: 1) Camelina
sativa, a self-compatible recent allopolyploid; 2) the diploid obligate outcrosser Capsella
grandiflora; and 3) Capsella rubella, a diploid inbreeder (Supplementary Figure 1). C. sativa
underwent a polyploidization event ~ 5.5 million years ago (MYA), retains three distinct
subgenomes, and has a clear subgenomic expression bias (Kagale et al., 2014; Brock et al.,
2018; Mandakova et al., 2019). We reasoned that if RADM is critical in mediating conflict among
subgenomes, C. sativa RdADM mutants would have severely reduced seed set similar to B. rapa.
C. rubella split from its congener, C. grandiflora, < 50-200 KYA, soon after its founders lost self-
incompatibility (Foxe et al., 2009; Guo et al., 2009; Slotte et al., 2013) yielding a fully self-
compatible C. rubella. The sister relationship between C. grandiflora and C. rubella allowed us
to test whether outcrossers exhibit a stronger requirement for RdADM during reproduction than
do inbreeders. Here, we show that RdADM is not critical for seed production in C. sativa,
suggesting that a recent history of polyploidy is not an important factor for RdADM mutant
phenotypes. Instead, we observed a significant and striking reduction in seed set in C.
grandiflora, suggesting that breeding system is a major factor determining reproductive impacts
upon loss of RADM.

Results

Creation of RdADM mutants in Brassicaceae species

To explore the role of RADM during reproduction, we used CRISPR/Cas9-nickase (Fauser
et al., 2014) to generate loss of function mutations in RDR2 and NRPET in three Brassicaceae
species that vary in breeding system and history of genome duplication. NRPE1 encodes the
largest subunit of RNA Pol V (Ream et al., 2009). C. rubella and C. grandiflora encode single
copies of RDR2 and NRPE1, while C. sativa retains three copies of these genes due to its
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Figure 1: Creation and characterization of RADM mutants in Brassicaceae species

(A) Schematic diagrams of Capsella NRPE1 and RDR2. Camelina sativa has the same number
and size of exons, but intron length varies. Cas9 guide RNAs are depicted as orange arrows. (B)
Camelina and Capsella RdADM mutants have no or mild vegetative growth phenotypes. (C) Size
profiles of genome-mapping small RNAs from wild-type and RdDM mutant leaves of each
species. Each biological replicate is shown as a separate bar. (D) The largest class of leaf
siRNA loci in each species are 24-nt dominant loci. (E) In each species, rdr2 mutations
dramatically reduce expression from 80-90% of siRNA loci, while nrpe1 mutations have a less
pronounced effect on siRNA expression.
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recent whole genome triplication. We identified guide RNAs that flank functionally important
regions of the proteins and target all five versions of each gene (Figure 1A). Following floral-dip
transformation of the genome editing constructs, T1 individuals were genotyped to identify
strong mutations in target genes and these mutations were bred to homozygosity
(Supplementary Table 1, Figure S2). For C. sativa, mutations in all three gene copies were
combined and the resulting triple mutants are hereafter designated Cs rdr2-1, Cs rdr2-2, Cs
nrpel-1, and Cs nrpe1-2. Similar to rdr2 and nrpe1 mutations in A. thaliana and B. rapa, the C.
sativa and C. grandiflora mutants did not exhibit consistent vegetative growth defects, however
all RdDM mutants in C. rubella were moderately smaller than wild type (Figure 1B) (Grover et
al., 2018).

To confirm whether these mutations impact RdDM, we sequenced small RNAs from leaf
tissue of each allele and mapped them to their respective genomes (Supplementary Table 2).
To increase the proportion of mapped C. grandiflora sSRNA reads, we used Oxford Nanopore
Technology to sequence the genome of C. grandiflora accession 83.17, and then de novo
assembled the reads, polished the assembly with publicly-available lllumina reads (Williamson
et al., 2014), and annotated it. Our resequencing efforts yielded a C. grandiflora genome that is
less fragmented compared to the previously published genome, with an increase in linearity to
L/N50 of 17/2.3 Mb from 256/29.1 kb (Supplementary Table 3). The size profile of mapped
sRNA reads demonstrates that there is strong loss of 23-24-nt siRNA in the rdr2 lines of all
three species, and a smaller reduction in 23-24-nt accumulation in nrpe1 plants (Figure 1C). A
partial loss of siRNA accumulation in nrpe1 is expected, as Pol V is not required for siRNA
biosynthesis, but the failure to target methylation in nrpe1 mutants results in reduced production
of siRNAs via Pol IV (Kanno et al., 2005; Pontier et al., 2005; Mosher et al., 2008; Gouil and
Baulcombe, 2016; Grover et al., 2018; Zheng et al., 2021). There is also an observable increase
in all other size classes in the rdr2 mutants, likely due to over-sampling these species following
loss of the major size class.

Next, we used ShortStack to define small (s)RNA-producing loci in each genome. The
Capsella species have 30-40,000 sRNA loci, while C. sativa has approximately 3 times that
number, perhaps due to its recent whole genome triplication (Figure 1D). Categorizing these
loci by the dominant size of SRNA demonstrates that 24-nt sSRNA loci form the largest group
(61-68%). We then assessed the accumulation of SRNA from each locus in the mutants. In each
species, rdr2 mutant exhibit a strong reduction in sRNA from 80-90% of sRNA loci and
increased sRNA accumulation from a small proportion of loci (Figure 1E). In contrast, fewer
sRNA loci were strongly reduced in nrpe1 mutants, and many loci displayed only a moderate
reduction in sSRNA accumulation. This pattern is consistent with sSRNA size profiles and sRNA
locus analysis of similar mutations in A. thaliana, tomato, B. rapa, and rice (Mosher et al., 2008;
Gouil and Baulcombe, 2016; Grover et al., 2018; Zheng et al., 2021), indicating that the
mutations generated here disrupt the RdDM pathway.

Mating system determines seed production phenotype upon loss of RdDM

To investigate reproductive phenotypes upon loss of RADM, we first assessed seed set,
defined here as the number of healthy seeds per fruit. Because C. sativa fruits do not lose their
valves (shatter) at maturity, we counted the number of healthy seeds in mature fruits. Seeds
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that were shriveled or darkly pigmented were considered inviable (Supplementary Figure 3A).
Fruits in both Capsella species shatter, particularly when they contain many mature seeds. For
these species we therefore counted developing seeds at 7 days after pollination (7 DAP), a
timepoint that allows us to measure seed development before shattering. Seeds in these fruits
were considered healthy if they were plump and green; white, brown, and/or unexpanded seeds
were counted as aborted or unfertilized (Supplementary Figure 3B, C).

RdDM mutant lines in all three species exhibited reduced seed set (Figure 2A), however the
scale of reduction varied. Cs rdr2 plants had 25-32% reduction in seed set compared with wild
type, while Cs nrpe1-1 showed no change in seed set. RADM mutations in C. rubella reduced
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Figure 2. Seed production in Brassicaceae RADM mutants
(A) Histograms of the number of mature seeds per fruit in Camelina or healthy seeds at 7 DAP
in Capsella. The average seed count is shown with a black dot; black bars represent the
standard deviation around the mean. (B) Seed weight of mature seeds. Pools of 20 seeds were
weighed three times and the average of each pool was divided by the number of seeds to
obtain an average seed weight. The average and standard deviation of these seed weights for
n pools are shown. * = p<0.01 after Bonferroni FDR correction; n.s. = not significant.
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healthy seeds at 7 DAP by approximately half. In comparison, C. grandiflora rdr2 alleles had 97-
99% fewer healthy seeds in the RADM mutant fruits compared to wild type, while Cg nrpe1
mutants showed approximately 70% reduction. We also measured the weight of mature seeds
collected in bulk, which demonstrated that even seeds scored as healthy are slightly smaller for
RdDM mutants (Figure 2B). Taken together with observations in A. thaliana and B. rapa, these
results indicate that the RdDM pathway plays a role during seed development in each of the
species tested, with the strongest effect in outbreeding C. grandiflora.

Maternal factors are responsible for seed set reductions in C. rubella and C. grandiflora

To better understand the role of RdDM in species with different mating systems, we further
compared the reproductive phenotypes of RADM mutants in the two Capsella species. Wang et
al. (2020) reported defective pollen in C. rubella nrpd1 mutants, with approximately 80% of the
pollen arresting prior to maturity (Wang et al., 2020). We therefore imaged mature pollen grains
from each C. rubella and C. grandiflora RADM mutant line to determine if reduction in seed set
resulted from defects in pollen maturation. We observed no difference in the proportion of
mature pollen compared to wild type (Figure 3A, B). Consistent with this observation,
pollination with wild-type pollen was unable to rescue the seed production defect in any of the
Capsella RADM mutant lines (Figure 4A). These observations indicate that decreased seed
production in Capsella RADM mutants is primarily due to maternal factors, a feature that is
shared with seed production phenotypes of B. rapa RdADM mutants (Grover et al., 2018).

A wild type rdr2-1 rdr2-2 nrpei-1 nrpe1-2

Capsella rubella

f SO & gb

wild type rdr2-1 rdr2-2 nrpet-1 nrpe1-2 E

YT Y Bz
g
< c
54 69 53 54 232 55 59
C rubella C. grandiflora

Figure 3: Normal pollen development in Capsella RdADM mutants

(A) Representative images of pollen from Capsella RADM mutants demonstrates that most
pollen is mature and trinucleate, with a single diffuse vegetative nucleus and two condensed
sperm cells (top, DAPI; bottom, brightfield). (B) Quantification of mature (trinucleate) pollen and
the number of assessed pollen grains.
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Reduction in seed set might result from fewer ovules, decreased fertilization, or increased
seed abortion. To distinguish among these possibilities, we analyzed the number of ovules in
unfertilized pistils from each mutant (Figure 4B). In C. grandiflora, there is no statistically
significant difference in ovule number between wild type and RdDM mutants, however C. rubella
RdDM mutants exhibit approximately 25% fewer ovules than wild type (p < 0.01, Bonferonni
corrected Student’s T test), a reduction that accounts for most of the reduced seed set in these
mutants. The higher number of ovules in C. rubella wild type relative to C. grandiflora wild type
is consistent with the decrease in pollen:ovule ratio commonly observed following the transition
to self-fertilization (Sicard and Lenhard, 2011). To further explore the seed set reduction in
Capsella RADM mutants, we counted the number of inviable seeds in 7 DAP fruits and
expressed this as a fraction of all objects in a fruit to account for differences in ovule number
(Figure 4C). Inviable seeds included those that had clearly begun development before aborting
as well as small white seeds that might be unfertilized ovules or result from abortion shortly after
fertilization (Supplemental Figure 3). While C. rubella plants displayed relatively high levels of
seed failure, this was independent of genotype. In contrast, C. grandiflora rdr2 and nrpe1 fruits
exhibited substantially higher levels of seed failure than wild type (Figure 4C), including 14-56%
clearly resulting from seed abortion. From this we conclude that reduction in seed set in C.
rubella RADM mutants is primarily due to the production of fewer ovules before fertilization,
while abortion after fertilization is the major contributor to reduced seed set observed in C.
grandiflora mutants.

B. rapa RADM mutants also exhibit extensive seed abortion after fertilization, a trait that is
controlled by the maternal sporophytic genotype (Grover et al., 2018). To test whether seed
abortion is sporophytically determined in C. grandiflora, we crossed heterozygous plants with
wild-type or homozygous mutant pollen and scored seed development at 7 DAP. Seed
production in such crosses is indistinguishable from wild type (Figure 4D), indicating that
mutant embryo sacs develop normally even when fertilized by mutant pollen, as long as they
are supported by a maternal sporophyte capable of RADM.

Discussion

We sought to test two hypotheses to explain the different seed production phenotypes of
RdDM mutants in Brassicaceae. First, that failure of seed development in RADM mutants was
associated with recent polyploidy and ongoing balance between subgenomes, and secondly,
that breeding system and the increased parental conflict expected in outbreeding species
results in a requirement for RADM. Here, we show that RADM is critical for seed development in
outbreeding species while its role is less important in inbreeding species, including inbreeding
polyploids.

Seed production was disrupted when RdDM was eliminated in the three Brassicaceae
species, but to a different extent in each (Figure 2). RdADM mutants in polyploid C. sativa had
only a very slight decrease in seed set. RADM might be important for maintaining balance
among its three subgenomes, however loss of this balance does not confer a reproductive
phenotype. Similarly, although loss of RADM causes a reduced size of rosette and fewer ovules
in the diploid inbreeder C. rubella (Figure 1B, 4B), upon fertilization, those ovules produce
healthy seeds at the same frequency as wild type plants (Figure 4C). In contrast, C. grandiflora
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RdDM mutants had a strong post-fertilization defect that was dependent on the maternal
sporophytic genotype; this defect showed similar characteristics and genetic control as RdDM
mutants in the recently outbreeding B. rapa (Grover et al., 2018).
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Figure 4: Seed set reduction in Capsella RADM mutants is controlled maternally

(A) Number of “healthy” seeds per fruit at 7 DAP in Capsella RADM mutants crossed with wild-
type pollen. WT x WT are the same data presented in Figure 2A. (B) Number of ovules in
unfertilized pistils (n > 20). Colored bars represent the average; black dots are individual
datapoints. All C. rubella RADM mutants are significantly different from wild type (WT) at p <
0.01 after Bonferroni correction (Student’s T test). C. grandiflora mutants are not significantly
different at this threshold. (C) Fraction of things inside a fruit at 7 DAP that are not scored as
“healthy”, representing either failure to fertilize or seed abortion. (D) Number of “healthy” seeds
per fruit at 7 DAP in C. grandiflora rdr2 heterozygotes crossed with homozygous mutant or wild-
type pollen. Cg rdr2-1 x Cg rdr2-1 are the same data presented in Figure 2A.
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A maternal sporophytic defect impacting seed number and size in C. rubella nrpd1 mutants
has also been reported (Wang et al., 2020), however it is not clear whether this results from a
decreased number of ovules (as we detect for Cr rdr2 and Cr nrpe) or another mechanism.
Instead, the authors focused on a reported defect in pollen development. We do not detect a
pollen defect in either C. rubella or C. grandiflora RADM mutants (Figure 3), consistent with the
fact that wild-type pollen is unable to rescue seed production from Cg rdr2 or Cg nrpe1 mutants
(Figure 4). This discrepancy in pollen phenotype might be due to the mutation of different
siRNA biosynthesis genes (NRPD1 versus RDRZ2), however these proteins function together to
generate dsRNA and would be expected to yield highly similar, if not identical, phenotypes
(Singh et al., 2019; Fukudome et al., 2021; Huang et al., 2021). Variation in pollen phenotypes
might also result from the use of different C. rubella accessions or different growth conditions.

The requirement for maternal sporophytic RADM for successful seed production in C.
grandiflora implicates maternally-derived siRNAs. The most abundant of these are siren
siRNAs, which are expressed in the developing seed coat and might be trafficked into the
developing endosperm (Grover et al., 2020). Siren siRNAs trigger non-CG methylation of
protein-coding genes, which can result in altered gene expression (Burgess et al., 2022).
Further research is needed to determine whether ovule siRNA populations and levels of
methylation differ between C. rubella and C. grandiflora, or whether specific SRNA loci are
required for seed development in outbreeding species.

Loss of RADM has been linked to reduction of effective ploidy in diploid by tetraploid crosses
in A. thaliana (Erdmann et al., 2017; Martinez et al., 2018; Satyaki and Gehring, 2019).
Interspecific crosses indicate that C. grandiflora has a higher effective ploidy than C. rubella,
which is consistent with the WISO hypothesis and indicative of stronger parental conflict in C.
grandiflora (Brandvain and Haig, 2005; Rebernig et al., 2015; Brandvain and Haig, 2018; Lafon-
Placette et al., 2018). We therefore hypothesize that loss of RADM reduces effective ploidy and
disrupts the balance between parental genomes after fertilization. For outbreeding species with
high effective ploidy, this disruption results in a greater developmental defect because parental
conflict is high. Inbreeding species have limited parental conflict and therefore disruption of the
maternal:paternal ratio has less impact.

Transposable element content, and the proximity of transposons to protein-coding genes,
has also been proposed to explain variation in phenotypes upon loss of RADM in different
species (Wei et al., 2014; Gouil and Baulcombe, 2016; Wang et al., 2020). However, C. rubella
and C. grandiflora genomes have similar transposon number, expression, and proximity to
genes (Slotte et al., 2013; Agren et al., 2014), and both Capsella genomes have a much lower
transposon content than B. rapa (Wang et al., 2011). Therefore, transposon density cannot
account for the dramatic difference in reproductive phenotype when RADM is eliminated,
although we cannot eliminate the possibility that it is linked to the likelihood of vegetative
phenotypes.

There are a suite of floral development changes that commonly occur following the transition
to self-compatibility, together referred to as the selfing syndrome (Sicard and Lenhard, 2011).
Reduction in parental conflict, effective ploidy, and the requirement for RADM could therefore be
considered an epigenomic selfing syndrome — a suite of epigenomic changes that commonly
develop over evolutionary time following the transition to self-fertilization. Our work provides the
foundation for further study of this phenomenon.
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Methods

Plant material and growth conditions

C. sativa cultivar Ames (a gift of John McKay, Colorado State University), C. rubella Monte
Gargano, and C. grandiflora accession 83.17 (both donated by Stephen Wright, University of
Toronto) were grown at 20°C under 16h:8h light:dark conditions. C. sativa seeds were stratified
for one day at 4°C prior to germination; C. rubella and C. grandiflora were both stratified for two
weeks at 4°C. C. rubella also required three weeks of vernalization at 4°C to induce flowering.
For the collection of unfertilized ovules, C. rubella flowers were emasculated approximately 24
hours before anthesis; pistils were manually dissected 2 days later. C. grandiflora ovules were
collected identically to C. rubella except emasculation was not performed.

CRISPR design and plasmid construction

The T-DNA cassette used for transformation contained Cas9 nickase under a ribosomal
protein promoter (AtRPS5A::Cas9-D10A), two guide RNAs, EGFP-tagged oleosin under its
native promoter (AtOLE::OLE-GFP), and a BASTA resistance gene. The vector was constructed
using traditional cloning techniques in E. colito combine desired promoters, reporters, and
proteins into a single vector with a variety of source materials. Assembled T-DNA plasmids were
purified and transformed into Agrobacterium tumefaciens GV3101.

Two protospacers for both RDR2 and NRPE1 were selected manually from regions
conserved in all three species with target specificity verified using CRISPOR (Haeussler et al.,
2016) and CRISPRdirect (Naito et al., 2015). The protospacers for RDR2 were 5’-
ccrTACCTCTCAATGATGCTTCG - 3’ and 5’ - GATCGGTTGCATGGATGAAAtgg - 3' (PAM
sequences in lowercase). The protospacers for NRPE1 were 5’ -
ccaGTGCCAATATACCATCCTGC - 3'and 5 - GAAATGTCTGAAGATAAAGAagg - 3'.

Plant transformation, genotyping, and phenotyping

C. grandiflora plants were transformed using Agrobacterium-mediated floral dip as
described in (Dew-Budd et al., 2019). Briefly, developing fruits and opened flowers were
removed prior to the first Agrobacterium dipping. Plants were dipped 3-4 times at an interval of
4-7 days, and were hand pollinated daily following the dipping. C. rubella and C. sativa were
transformed via standard floral dip (Clough and Bent, 1998). Positive transformants were
selected through EGFP visualization in mature seeds using a Zeiss Axiozoom 16 fluorescent
stereo microscope with a 488 nm filter.

RdDM mutants were genotyped with PCR primers flanking the protospacers
(Supplementary Table 4). Size differences between wild-type and mutant amplicons were
visualized on an agarose gel and bands were sequenced to identify the exact mutation.

For C. sativa, dried fruits were collected from five individuals of each genotype to measure
seed set. To prevent bias due to preferential dehiscence of the largest fruits, C. rubella and C.
grandiflora seed set was measured 7 days after manual pollination (DAP), which is
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approximately torpedo stage in wild type. For C. grandiflora all plants were genotyped and only
crossed if they shared no more than one S allele to avoid confounding effects from S-locus
incompatibility. Upon maturation, seeds were dried for at least two weeks under vacuum before
measuring in batches of twenty on an ultra-microbalance (Sartorius Cubis MSE3.6P-000-DM).

Pollen grains were harvested by vortexing and centrifuging flowers in pollen isolation buffer
(100 mM NaPOs, pH 7.5; 1 mM EDTA; 0.1% (v/v) Triton X-100. The flowers and the fixing
solution were removed and replaced with 1 ug/mL DAPI (4',6-diamidino-2-phenylindole, BD
Biosciences) diluted in pollen isolation buffer before visualizing under a fluorescence
microscope using a 420 nm filter (Zeiss LSM880 Inverted Confocal Microscope). Pollen was
considered normal if two sperm cell nuclei were distinguishable from the vegetative nucleus.
The majority of abnormal pollen were small and did not fluoresce.

Capsella grandiflora genome sequencing, assembly, and annotation

Genomic DNA was isolated using a modified protocol of the Circulomics Nanobind Plant
Nuclei Big DNA Kit to account for C. grandiflora’s small genome. The modified extraction
replaced the nuclei isolation with Circulomics’ supplementary direct tissue lysis protocol.
Approximately 1 ug of genomic DNA was prepared using the Oxford Nanopore LSK-109 kit
without shearing and sequenced on a MinlON system using a R9.4 flow cell. Reads were called
during sequencing using Guppy (v3.2.6) with a MinIT device (ont-minit-release 19.10.3) used for
processing.

Adaptors were trimmed from the reads with Porechop (v0.2.3,
https://github.com/rrwick/Porechop) using default parameters, and then filtered for reads > 500
bp in length with an average quality > 9 using Nanofilt (v2.6.0) (De Coster et al., 2018). Reads
matching either the C. grandiflora chloroplast genome or the C. rubella mitochondrial genome
were removed using minimap2 (v2.17) (Li, 2018) and SAMtools (v1.4) (Li et al., 2009). The
remaining reads were de novo assembled using Canu (v1.9) (Koren et al., 2017) with default
parameters and an estimated genome size of 120 Mb. The resulting genome was polished
using the filtered long read data with Racon (v.1.4.3, non-default parameters: -m 8 -x 6 -g 8)
(Vaser et al., 2017) and Medaka (v0.12.1, https://github.com/nanoporetech/medaka).
Accession-specific publicly available short-read data from Williamson (2014, SRR1508428) was
used to reiteratively polish three times with Pilon (v1.23) (Walker et al., 2014; Williamson et al.,
2014). Due to the heterozygosity of C. grandiflora, the polished genome was further processed
with Purge Haplotigs to separate the main genome and the haplotigs (Roach et al., 2018).
Thirty-seven contigs less than 1 kb were removed from the main assembly and seven contigs
less than 1 kb were removed from the haplotig assembly. The assembly is available at NCBI
(BioProject PRUNA988139).

Small RNA-seq generation and analysis

Small RNA sequencing libraries were prepared using a standard protocol (Grover et al.,
2018). Briefly, after RNA precipitation, small RNA was enriched with a mirVana miRNA isolation
kit (Thermo Fisher Scientific) followed by NEBNext small RNA library preparation (New England
Biolabs). Three independent biological replicates were prepared for each genotype then
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sequenced at the University of Arizona Genomics Core on a NextSeg500. Raw reads are
available at NCBI SRA (BioProject number PRINA986946).

Small RNA reads were processed and aligned to the appropriate genome using the sRNA
snakemake workflow (v1.0) (Bose and Grover, 2019). Briefly, raw reads were trimmed for size
and quality using Trim Galore! (v0.6.2) (Krueger, 2012), contaminating non-coding RNAs were
removed using bowtie (v1.2.2) (Langmead et al., 2009) with the Rfam database entries for A.
thaliana and C. rubella (Kalvari et al., 2018), then reads aligning to the species-specific
chloroplast and C. rubella mitochondrial genomes were removed with bowtie. The remaining
reads were aligned to the reference genome using ShortStack (v3.8.5) (Axtell, 2013) with the
snakemake workflow’s default parameters except one mismatch was allowed during ShortStack
alignment. Biological replicates were pooled for locus-level analyses.
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