
Elevated genetic risk for multiple sclerosis
originated in Steppe Pastoralist

populations
Authors
William Barrie1§, Yaoling Yang2,3§, Evan K. Irving-Pease4§, Kathrine E. Attfield5§, Gabriele
Scorrano4§, Lise Torp Jensen5,6§, Angelos P. Armen5, Evangelos Antonios Dimopoulos7, Aaron Stern8,
Alba Refoyo-Martinez4, Abigail Ramsøe4, Charleen Gaunitz4, Fabrice Demeter4,9, Marie Louise S.
Jørkov10, Stig Bermann Møller11, Bente Springborg11, Lutz Klassen12, Inger Marie Hyldgård12, Niels
Wickmann13, Lasse Vinner4, Thorfinn Sand Korneliussen4, Morten E. Allentoft4,14, Martin Sikora4,
Kristian Kristiansen4,15, Santiago Rodriguez3, Rasmus Nielsen4,8, Astrid K. N. Iversen5@, Daniel J.
Lawson2,3*@, Lars Fugger5,6,16*@, Eske Willerslev1,4*@

Affiliations
1Department of Zoology, University of Cambridge, Cambridge, UK
2Department of Statistical Sciences, School of Mathematics, University of Bristol, Bristol, UK
3MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
4Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen,
Denmark
5Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John
Radcliffe Hospital, University of Oxford, Oxford, UK
6Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
7Pathogen Genomics and Evolution Group, Department of Veterinary Medicine, University of
Cambridge, Cambridge, UK
8Departments of Integrative Biology and Statistics, University of California, Berkeley
9Eco-anthropologie (EA), Muséum national d'Histoire naturelle, CNRS, Université de Paris, Musée de
l'Homme 17 place du Trocadéro 75016 Paris, France
10Laboratory of Biological Anthropology, Department of Forensic Medicine, University of
Copenhagen, Denmark
11Ålborg Historiske Museum, Nordjyske Museer, Vang Mark 25, 9380 Vestbjerg, Denmark
12Museum Østdanmark - Djursland og Randers. Stemannsgade 2, DK-8900 Randers C, Denmark
13Museum Vestsjælland, Forten 10, 4300 Holbæk, Denmark
14Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin
University, Perth, Australia
15Department of Historical Studies, University of Gothenburg, SE-41255, Gothenburg, Sweden
16MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK

* Corresponding authors; email: Dan.Lawson@bristol.ac.uk, lars.fugger@ndcn.ox.ac.uk,
ew482@cam.ac.uk
§ Joint first authors
@ Joint last authors

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 27, 2023. ; https://doi.org/10.1101/2022.09.23.509097doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.509097
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUMMARY
Multiple sclerosis (MS) is a modern neuro-inflammatory and -degenerative disease, which is most
prevalent in Northern Europe. Whilst it is known that inherited risk to MS is located within or within
close proximity to immune genes, it is unknown when, where and how this genetic risk originated 1.
By using the largest ancient genome dataset from the Stone Age 2, along with new Medieval and
post-Medieval genomes, we show that many of the genetic risk variants for MS rose to higher
frequency among pastoralists located on the Pontic Steppe, and were brought into Europe by the
Yamnaya-related migration approximately 5,000 years ago. We further show that these MS-associated
immunogenetic variants underwent positive selection both within the Steppe population, and later in
Europe, likely driven by pathogenic challenges coinciding with dietary, lifestyle, and population
density changes. This study highlights the critical importance of this period as a determinant of
modern immune responses and its subsequent impact on the risk of developing MS in a changing
environment.

INTRODUCTION
Multiple sclerosis (MS) is an autoimmune disease of the brain and spinal cord that currently affects
more than 2.5 million people worldwide 1. The prevalence varies markedly with ethnicity and
geographical location, with the highest prevalence observed in Europe (142.81 per 100,000 people),
and Northern Europeans being particularly susceptible to developing the disease 3. The origins and
reasons for the geographical variation are poorly understood, yet such biases may hold important
clues as to why the prevalence of autoimmune diseases, including MS, has continued to rise during
the last 50 years.

While still elusive, MS etiology is thought to involve gene-gene and gene-environmental interactions.
Accumulating evidence suggests that exogenous triggers initiate a cascade of events involving a
multitude of cells and immune pathways in genetically vulnerable individuals, which may ultimately
lead to MS neuropathology 1.

Genome-wide association studies have identified 233 commonly occurring genetic variants that are
associated with MS; 32 variants are located in the HLA region and 201 outside the HLA region 4. The
strongest MS associations are found in the HLA region with the most prominent of these,
HLA-DRB1*15:01, conferring an approximately three-fold increase in the risk of MS in individuals
carrying at least one copy of the allele. Collectively, genetic factors are estimated to explain
approximately 30% of the overall disease risk, while environmental and lifestyle factors are
considered the major contributors to MS. Such determinants may include geographically varying
exposures like infections and low sun exposure/vitamin D deficiency. For instance, while infection
with Epstein-Barr virus (EBV) frequently occurs in childhood and usually is symptomless, delayed
infection into early adulthood, as typically observed in countries with high standards of hygiene, is
associated with a 32-fold increased risk of MS 5,6. Lifestyle factors associated with increased MS risk
such as smoking, obesity during adolescence, and nutrition/gut health also vary geographically 7.
Dysregulations including autoimmunity in modern immune systems could also result from an altered
pressure of pathogens, creating a shift in the delicate balance of pro- and anti-inflammatory pathways
8.

European genetic ancestry (henceforth “ancestry”) has been postulated to explain part of the global
difference in MS prevalence in admixed populations 9. Specifically, MS cases in African Americans
exhibit increased European ancestry in the HLA region compared to controls, with European
haplotypes conferring more MS risk for most HLA alleles, including HLA-DRB1*15:01. Conversely,
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Asian American cases have decreased European ancestry in the HLA region compared to controls.
Although Ancient European ancestry and MS risk in Europe are known to be geographically
structured (Figure 1a-b), the effect of ancestry variation within Europe on MS prevalence is unknown.

Present-day ancestral variation can be modelled as a mixture of genetic ancestries derived from
ancient populations, who can be distinguished by their subsistence lifestyle: Western
Hunter-Gatherers (WHG), Eastern Hunter-Gatherers (EHG), Caucasus Hunter-Gatherers (CHG),
Farmers (ANA + Neolithic), and Steppe Pastoralists (Figure 1c-d). Using the largest ancient genome
dataset from the Stone Age, presented in the accompanying study “Population Genomics of Stone
Age Eurasia” 2, coupled with new Medieval and post-Medieval genomes, we quantified present-day
European genetic ancestry with respect to these ancestral populations to identify signals of
lifestyle-specific evolution. Then we determined whether the variants associated with an increased
risk for MS have undergone positive selection. We asked when selection occurred and whether the
targets of selection were specific to lifestyle. Finally, we examined the environmental conditions that
may have caused selection for risk variants, including human subsistence practice and exposure to
pathogens. An overview of the evidence provided by all methods used can be found in Extended Data
Figure 1.

Figure 1: Population history of Europe is associated with modern-day distribution of MS.
a) Modern-day geographical distribution of MS in Europe. Prevalence data for MS (cases per
100,000) was obtained from the Atlas of MS - 3rd edition3. b) Steppe ancestry in modern samples as
estimated by 10. c-d) A model of European prehistory 11 onto which our reference samples have been
projected using NNLS of the Population Painting (see Methods), and the same data represented
spatially (kya = thousand years before present). Samples are vertical bars representing their
“admixture estimate” estimated by NNLS (Methods) from six ancestries: Eastern Hunter-Gatherers
(EHG; green), Western Hunter-Gatherers (WHG; pink), Caucasus Hunter-Gatherers (CHG; yellow),
Farmer (ANA+Neolithic; blue), Steppe (cyan) or an Outgroup (represented by ancient Africans, red).
Important population expansions are shown as growing bars and “recent” (post-Bronze age)
non-reference admixed populations are shown for the Denmark time-transect (see Extended Data
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Figure 2 for details). Chronologically, WHG and EHG were largely replaced by Farmers amid
demographic changes during the “Neolithic transition” around 9,000 years ago. Later migrations
during the Bronze Age about 5,000 years ago brought a roughly equal Steppe ancestry component
from the Pontic-Caspian Steppe to Europe, an ancestry descended from the EHG from the Middle Don
River region and CHG 2. Steppe ancestry has been associated with the Yamnaya culture and then with
the expansion westwards of the Corded Ware Complex and Bell Beaker culture, and the eastwards
expansion in the form of the Afanasievo culture 10,12.

RESULTS
To examine the ancestry patterns within modern genomes, we estimated ancestry at specific loci
(“local ancestry” labels) for ~410,000 self-identified “white British” individuals in the UK Biobank 13,
using a reference panel of 318 ancient DNA (aDNA) samples (Figure 1; Extended Data Figure 2; 14)
from the Mesolithic and Neolithic, including Steppe pastoralists (Methods). Comparing the ancestry at
each labelled single nucleotide polymorphism (SNP, n = 549,323) to genome-wide ancestry in the UK
Biobank provided an “anomaly score”. Two regions stood out as having the most extreme ancestry
compositions (Figure 2a): the LCT/MCM6 region on chromosome 2, well-established as regulating
lactase persistence 14,15, and the HLA region on chromosome 6.

The HLA region is strongly associated with autoimmune diseases 16, of which we examined multiple
sclerosis (MS) and rheumatoid arthritis (RA), a common systemic inflammatory disease that
characteristically affects the joints, in detail, using the largest ancient genome dataset from the Stone
Age (full description in 2) coupled with 86 new Medieval and post-Medieval genomes from Denmark
(Extended Data Figure 2, Supplementary Note 1, ST1). This dataset totals 1,750 imputed diploid
shotgun-sequenced ancient genomes (ST13), of which 1,509 are from Eurasia; alongside modern data,
with our newly published genomes we have an almost complete transect from approximately 10,000
years ago to the present.

The frequencies of alleles conferring the highest risk for MS in our ancient groups, all of which are
within the HLA class II region, show striking patterns. In particular, the tag SNP (rs3135388-T) for
HLA-DRB1*15:01, the largest genetic risk factor for MS 1, is first observed in an Italian Neolithic
individual (sampleId R3 from Grotta Continenza, C14 dated to between 5,836-5,723 BCE, coverage
4.05 X) and rapidly increased in frequency around the time of the emergence of the Yamnaya culture
around 5,300 years ago in Steppe and Steppe-derived populations (Figure 2). From risk allele
frequencies of individuals in the UK Biobank born in, and of a “typical ancestral background” for,
each country 14, we found HLA-DRB1*15:01 frequency peaks in modern populations of Finland,
Sweden and Iceland, and in ancient populations with high Steppe ancestry (Figure 2b, inset).
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Figure 2. Areas of unusual local ancestry in the genome, and ancient and modern frequencies of
DRB1*15:01.
a): Local Ancestry Anomaly Score measuring the difference between the local ancestry and the
genome-wide average (capped at -log10(p) = 20; see Methods). Peaks are labelled with chromosome
position (build GRCh37/hg19). b) HLA-DRB1*15:01 frequencies (Y-axis) in ancient populations over
time (X-axis, yr BP = years before present); this is the highest effect variant for MS risk (calculated
using rs3135388 tag SNP). For each ancestry (CHG, EHG, WHG, ANA, Steppe), the five populations
with the highest amount of that ancestry are coloured and labelled; other populations are shown as
black points. DRB1*15:01 was present in one sample before the Steppe expansion, but rose to high
frequency during the Yamnaya formation (approximate time period shaded red). The geographical
distribution of DRB1*15:01 frequency in modern populations is also shown (inset).

To investigate the risk of a particular genetic ancestry at all MS-associated fine-mapped loci present in
the UK Biobank imputed dataset (n = 205/233, 4, see Methods), we used the local ancestry dataset to
calculate a risk ratio (see Methods: Weighted Average Prevalence) for each ancestry. For MS, Steppe
ancestry has the highest risk ratio in nearly all HLA SNPs, while Farmer and “Outgroup” ancestry
(represented by ancient Africans) are often the most protective (Figure 3a), meaning a Steppe-derived
haplotype at these positions confers MS risk.
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Figure 3: Associations between local ancestry at fine-mapped MS-associated SNPs and MS in a
modern population.
a) Risk ratio of SNPs for MS based on weighted average prevalence (WAP; see Methods), when
decomposed by inferred ancestry. A mean and standard deviation were calculated for each ancestry
based on bootstrap resampling, for each chromosome. The distribution of risk ratios at each ancestry
is shown as a raincloud plot. SNPs significant at the 1% level are shown individually, coloured by
chromosome or HLA region, and those with risk ratio >1.2 or <0.8 are annotated with rsID, HLA
region and position (build GRCh37/hg19). b-c) Ancestral Risk Scores (ARS, see Methods) for MS.
Confidence intervals are estimated by either bootstrapping over individuals (b, which can be
interpreted as testing power to reject a null hypothesis of no association between MS and ancestry)
and bootstrapping over SNPs (c, which can be interpreted as testing whether ancestry is associated
with MS genome-wide). We show results for all associated SNPs (red) and non-HLA SNPs only (blue)
when bootstrapping over individuals.

Having shown that some ancestries carry higher risk at particular SNPs, we wanted to calculate an
aggregate risk score for each ancestry. We used a statistic, the Ancestral Risk Score (ARS, introduced
in 14, which is equivalent to a polygenic risk score (PRS) for a modern individual consisting of entirely
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one ancestry. ARS offers an improvement on calculating PRS using ancient genotype calls directly, as
it mitigates the effects of low aDNA sample numbers and bias 17, while being robust to intervening
drift and selection. We used effect size estimates from previous association studies, under an additive
model, with confidence intervals obtained via an accelerated bootstrap 18 (Supplementary Note 4). In
the ARS for MS (Figure 3b), Steppe ancestry had the largest risk, followed by WHG, CHG and EHG;
Farmer and Outgroup ancestry had the lowest ARS. Therefore, Steppe ancestry is contributing the
most risk for MS across all associated SNPs. We tested for a genome-wide association by resampling
loci, and found that Steppe risk is much reduced but still clearly exceeds Farmer (Figure 3c).
Although most of the signal is driven by SNPs in the HLA region, this pattern persists even when
excluding these SNPs (Figure 3b).

The fact that Steppe ancestry confers risk at all but two MS-associated HLA SNPs (Supplementary
Information Figure S3.4b) implies that these alleles have a common evolutionary history. We
therefore investigated whether ancestry could be used for phenotype prediction. We conducted three
types of association analysis in the UK Biobank for disease-associated SNPs, controlling for age, sex
and the first 18 PCs. The first was a regular SNP-based association analysis, as in a GWAS. The
second tested for association with local ancestry probabilities instead of genotype values
(Supplementary Note 3). The third was based on Haplotype Trend Regression (HTR), which is used to
detect interactions between SNPs 19 by treating haplotypes as a set of features from which to predict a
trait, instead of using SNPs as in a regular GWAS. We developed a new method called Haplotype
Trend Regression with eXtra flexibility (HTRX, Supplementary Note 5, more details in 20 that
searches for haplotype patterns that include single SNPs and non-contiguous haplotypes. To evaluate
the performance of our models and prevent overfitting, we assessed its ability to predict out-of-sample
data, which measures how well the model can generalise to new data. We showed by simulation
(Supplementary Information Figure S5.1) that HTRX explains the same amount of variance as a
regular GWAS when interactions are absent and more variance as interaction strength increases.

Although our cohort of self-identified “white British” individuals is relatively underpowered with
respect to MS (cases = 1,949; controls = 398,049; prevalence = 0.487%), MS was associated with
Steppe and Farmer ancestry (p < 1e-10) in the HLA region (Supplementary Information Figure S3.2).
In 3 out of 4 main LD blocks within the HLA region (class I, two subregions of class II determined by
LD blocks at 32.41-32.68Mb and 33.04-33.08Mb, and class III), local ancestry explains significantly

more variation than genotypes (Figure 4; measured by average out-of-sample McFadden’s for𝑅2

logistic regression, see Methods). While the increased performance of local ancestry in some regions
over regular GWAS can be explained by tagging of SNPs outside the region, the increased HTRX
performance over GWAS quantifies the total effect of a haplotype, including rare SNPs and epistasis.
Across the entire HLA region, haplotypes explain more out-of-sample variation than GWAS (at least
2.90%, compared to 2.48%). Interaction signals are also observed within the HLA class I, within class
II, and between class I and III regions.
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Figure 4: MS association in the HLA.
Comparison of variance explained in MS within the UK Biobank, for all fine-mapped HLA SNPs with
an independent contribution 4. The plots compare GWAS (treating SNPs as having independent
effects), local ancestry at those SNPs, and HTRX (haplotypes), after accounting for covariates
(Methods). a) is for fine-mapped MS-associated SNPs in the HLA. b) is HLA class I and -III, c) is
HLA class II, d) is HLA class I, e) is HLA class III, f) and g) are subregions of HLA class II chosen
from LD. HTRX has small “up-arrows” where these are lower bounds (Methods). h) Genetic
correlations in the HLA region at our time-depth from Ancestry-based LD (LDA, see Methods) and
Supplementary Information Figure S7.5 for LD.

Multiple SNPs at the 32.41-32.68Mb region are Steppe-associated, have high MS odds ratios, and are
in LDA (Figure 4), which may explain the increased HTRX predictive performance. We further tested
whether co-occurring ancestries at each loci were associated with MS (Methods; Supplementary
Information Figure S3.3), but found no evidence that risk was associated with any ancestry other than
Steppe.

Having established that Steppe ancestry contributes most of the HLA-associated risk for MS, we
investigated whether MS risk evolved under selection. We tested for evidence of directional selection
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across all associated SNPs, decomposed by ancestry over time. This test uses a novel “pathway-based
chromosome painting” technique (Methods: Pathway painting) based on inference of a sample’s
nearest neighbours in the marginal trees of an ancestral recombination graph (ARG) that contains
labelled individuals 14,21. The resulting ancestral path labels, for haplotypes in both ancient and
modern individuals, allowed us to infer allele frequency trajectories for risk associated variants, while
controlling for changes in admixture proportions through time. These paths extend backwards from
the present day to approximately 15,000 years ago, and are labelled with the unique population that a
path travels through (ANA: Anatolian Farmers; CHG: Caucasus Hunter-Gatherers, EHG: Eastern
Hunter-Gatherers, WHG: Western Hunter-Gatherers). Because it uses distinct pathways, this approach
does not use the labels of the relatively recent Steppe admixture or outgroup populations, and the path
labels are not representative of a continuous population, but represent a path backwards in time that
encompasses that population. For example, the CHG path originates in Caucasus Hunter-Gatherers,
before merging with EHG to form the Steppe population, and then merges with other ancestries in
later European populations (Figure 1).

For our ancestry path analysis, a substantial fraction of the fine-mapped MS variants were not imputed
in our ancient dataset, due to quality control filtering and the difficulty of accurately inferring HLA
alleles in ancient samples 22. To address this, we LD-pruned genome-wide significant summary
statistics from the same study 4, for which we could reliably assign ancestry path labels (n = 62, see
Methods). This allowed us to test for polygenic selection across disease-associated variants using
CLUES 23 and PALM 24.

For MS, we found evidence that disease risk was selectively increased when considering all ancestries
collectively (p = 1.02e-5; ω = 0.017), between 5,000-2,000 years ago (Figure 5). Conditioning on each
of the four long-term ancestral paths (CHG, EHG, WHG, and ANA), we found a statistically
significant signal of selection in the WHG (p = 7.22e-5; ω = 0.021), EHG (p = 2.60e-3; ω = 0.016)
and CHG paths (p = 3.06e-2; ω = 0.009), but not in the ANA path (p = 0.64; ω = 0.004). Again, it is
likely that selection occurred in the pastoralist population of the Steppe, as that population consists of
approximately equal proportions of EHG and CHG ancestry 11 (Figure 1). The SNP driving the largest
change in genetic risk over time in the pan-ancestry analysis was was rs3129934 (p = 1.31e-11; s =
0.018), which tags the HLA-DRB1*15:01 haplotype 25. We also tested three other SNPs that tag the
HLA-DRB1*15:01 haplotype (rs3129889, rs3135388 and rs3135391) for evidence of selection, and
found that the ancestry stratified signal was consistently strongest in CHG (Figure 5b).
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Figure 5: Evidence for selection on MS-associated SNPs.
a) Stacked line plot of the pan-ancestry PALM analysis for MS, showing the contribution of SNPs to
disease risk over time. SNPs are shown as stacked lines, the width of each line being proportional to
the population frequency of the positive risk allele, weighted by its effect size. When a line widens over
time the positive risk allele has increased in frequency, and vice versa. SNPs are sorted by the
magnitude and direction of selection, with positively selected SNPs at the top, negatively selected
SNPs at the bottom, and neutral SNPs in the middle. SNPs are coloured by their corresponding
p-value in a single locus selection test. The asterisk marks the Bonferroni corrected significance
threshold, and nominally significant SNPs are shown in yellow and labelled by their rsIDs. SNPs
marked with the dagger symbol are located in the HLA locus. The Y-axis shows the scaled average
polygenic risk score (PRS) in the population, ranging from 0 to 1, with 1 corresponding to the
maximum possible average PRS (i.e. when all individuals in the population are homozygous for all
positive risk alleles) and the X-axis shows time in units of thousands of years before present (kyr BP).
b) Maximum likelihood trajectories for four SNPs tagging DRB1*15:01, for all ancestry paths
combined (ALL) and for each path separately (see Extended Data Figure 1, and Methods: Pathway
painting). Portions of the trajectories with high uncertainty (i.e., posterior density <0.08) have been
masked. The background is shaded for the approximate time period in which the ancestry existed as
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an actual population. The Y-axis shows the derived allele frequency (DAF), and the X-axis shows time
in units of thousands of years before present (kyr BP).

To further examine the nature of selection, we developed a new summary statistic, Linkage
Disequilibrium of Ancestry (LDA). LDA is the correlation between local ancestries at two SNPs,
measuring whether recombination events between ancestries are high compared to recombination
events within ancestries. We subsequently defined the “LDA score” of a SNP as the total LDA of the
SNP with the rest of the genome. A high LDA score indicates that the haplotype inherited from the
reference population is longer than expected, while a low score indicates that the haplotype is shorter
than expected (i.e. underwent more recombination). For example, the LCT/MCM6 region exhibits a
high LDA score (Extended Data Figure 5), as expected from a relatively recent selective sweep 26.

The HLA has significantly lower LDA scores than the rest of chromosome 6 (Extended Data Figure
5). We simulated the LDA score under selection (Supplementary Information Figure S7.1; Methods),
and found that single locus selection cannot explain this signal (Supplementary Information Figure
S7.2-3). Instead, different loci in LD must have independently reached high frequency in different
ancestral populations that admixed, with selection favouring haplotypes of mixed ancestry over
single-ancestry haplotypes. Extending multi-SNP selection models 27, our explanation (Supplementary
Information Figure S7.1) is that at least two separate loci rose selectively in separate populations that
later admixed and remained selected in the HLA, justifying a new term, "recombinant favouring
selection". This means that there was selection for diverse ancestry in the HLA region, driven by
recombination.

The HLA region contains the highest “Outgroup” ancestry anywhere on the genome (Figure 6),
reflecting high nucleotide diversity. Unlike other measures of balancing selection such as Fst (Figure
6), LDA describes excess ancestry LD from specific, dated populations and therefore is an
independent signal. For the HLA class II region, the selection measures all line up (LDA score, Fst,
pi), but for class I, the LDA score has an additional non-diverse minimum at 30.8Mb, implying that
here the genome is ancestrally diverse but genetically strongly constrained. The LDA score is thus
informative about the type of selection being detected, and whether it has been subject to change.
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Figure 6: Signatures of selection at the HLA locus showing different regions of the HLA
(horizontal coloured bar) and locations of MS-associated SNPs (vertical lines, coloured by the
variance explained by 6 ancestries). a): Whole Chromosome 6 “local ancestry” decomposition by
genetic position. b). HLA “local ancestry” decomposition by genetic position. c): LDA score; low
values are indicative of selection for multiple linked loci, while high values indicate positive selection.
d): pi scores (nucleotide diversity) for CEU (Northern and Western European ancestry).
MS-associated SNPs fall in highly diverse regions of the HLA. e): Fst scores (divergence between two
populations) for CEU vs YRI(Yoruba); locally higher scores indicate regions that have undergone
differential selection between the two populations.

Because MS would not have conferred a fitness advantage on ancient individuals, it is likely that this
selection was driven by traits with shared genetic architecture, of which increased risk for MS in the
present is a pleiotropic by-product. We therefore looked at LD-pruned MS-associated SNPs that
showed statistically significant evidence for selection using CLUES (n = 32), in one or more
ancestries, and which also had a genome-wide significant trait association (p < 5e-8) in any of the
4,359 traits from the UK Biobank (13; UK Biobank Neale Lab, Round 2:
http://www.nealelab.is/uk-biobank/) and any of the 2,202 traits in the FinnGen study 28. We observed
that all selected SNPs were also associated with multiple other traits (Supplementary Information
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Figures S6.8 - S6.16). To determine if the observed signal of polygenic selection favouring MS risk
could be better explained by selection acting on a genetically correlated trait, we performed a
systematic analysis of traits in UK Biobank and FinnGen with at least 20% overlap among the
MS-associated selected SNPs (n = 115 traits). Using a joint test in PALM, specifically designed for
disentangling polygenic selection on correlated traits, we found no UK Biobank or FinnGen traits
where the selection signal favouring MS risk was significantly attenuated by selection acting on a
genetically correlated trait, when accounting for the number of tests (Supplementary Note 6). This
demonstrates that the selection signal for MS could not be explained by selection acting on any
genetically correlated trait that we tested.

Because both the UK Biobank and FinnGen are underpowered with respect to many traits and
diseases, we also undertook a manual literature search (see Methods) for all LD-pruned
MS-associated SNPs which showed statistically significant evidence for selection using CLUES (n =
32, of which 25 (78%) are in the HLA region). We found that most of the alleles under positive
selection are associated with protective effects against specific pathogens (virus, bacteria, fungi and
parasites) and/or infectious diseases within one or several ancestral paths (disease or pathogen
associated/total selected in ancestry path: pan-ancestry 11/14; ANA 8/9; CHG 6/9; EHG 6/7; WHG
17/18, Supplementary Note 8, ST11, Extended Data Figure 6), although we note that GWAS data for
many infectious diseases are not available. We observed that the selected alleles had protective
associations with several chronic viruses (EBV, varicella-zoster virus (VZV), herpes simplex virus
(HSV), and cytomegalovirus (CMV)) and to viruses or diseases not associated with transmission in
small hunter-gatherer groups (e.g., mumps and influenza). Moreover, many selected alleles conferred
a reduction of risk of parasites, of skin and subcutaneous tissue, gastrointestinal, respiratory, urinary
tract, and sexually transmitted infections, or of pathogens associated with these or other infections
(e.g. Clostridium difficile, Streptococcus pyogenes, Mycobacterium tuberculosis, and coronavirus)
(Supplementary Note 8, ST11, Extended Data Figure 6). We emphasise that although this evidence is
strongly suggestive, many of these putative associations may not be statistically robust due to
underpowered GWASs and the bias in candidate gene studies.

We compared these findings for MS with results for RA, which in contrast to MS is a systemic
inflammatory disease, though it is mostly known for its characteristic joint lesions 16. Our findings
show a strikingly different ancestry risk profile. HLA-DRB1*04:01 is the largest genetic risk factor
for RA; in the CLUES analysis, the tag SNP for this allele (rs660895) displayed evidence of
continuous negative selection until approximately 3,000 years ago (p = 7.95e-7, Extended Data Figure
4). We found that WHG and EHG ancestries often confer the most risk at SNPs associated with RA
(Relative Risk ratio of RA-associated SNPs based on WAP, see Methods); and these ancestries have
contributed the greatest risk for RA on aggregate, reflected in a higher ARS for these ancestries
(Supplementary Note 4), while Steppe and Outgroup ancestry have the lowest scores (Extended Data
Figure 3). These results were recapitulated in the local ancestry GWAS (Supplementary Note 3).

We found that RA-associated SNPs have undergone negative polygenic selection (p = 3.26e-3,
Extended Data Figure 4) over the last approximately 15,000 years. When decomposed by ancestry
path, we found that all paths exhibited a negative selection gradient, but none achieved nominal
significance; although the CHG (p = 6.33e-2; ω = -0.014) path came close.

These results demonstrate that genetic risk for RA was higher in the distant past, in contrast to MS,
with RA-associated risk variants present at higher frequencies in European hunter-gatherer
populations before the arrival of agriculture. In order to understand what caused the high risk in
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hunter-gatherer populations and subsequent negative selection, we again undertook a manual literature
search for pleiotropic effects of LD-pruned SNPs which showed statistically significant evidence for
selection (n = 55 of which 36 (65%) are in the HLA region). We found that the majority of selected
SNPs were associated with protection against distinct pathogens and/or infectious diseases across all
paths (disease or pathogen associated/total selected in ancestry path: pan-ancestry 16/20; ANA 12/16;
CHG 8/13; EHG 14/20; WHG 16/21​​). We found that selected RA-risk alleles were typically linked to
the same pathogens or diseases as in the MS analysis, although some SNPs were protective against
pathogens or diseases not observed in the MS-risk analysis (e.g., Entamoeba histolytica, measles,
viral hepatitis, arthropod-borne viral fevers and viral haemorrhagic fevers, and pneumococcal
pneumonia) (Supplementary Note 8, ST12, Extended Data Figure 6).

DISCUSSION
The last 10,000 years have seen some of the most extreme global changes in lifestyle, with the
emergence of farming in some regions and pastoralism in others. While 5,000 years ago Farmer
ancestry predominated across Europe, a relatively diverged genetic ancestry arrived with the Steppe
migrations around this time 10,12. We have shown that this genetic ancestry contributes the most
genetic risk for MS today, and that these variants were the result of positive selection coinciding with
the emergence of a pastoralist lifestyle on the Pontic-Caspian Steppe, and continued selection in the
subsequent admixed populations in Europe. These results address the long-standing debate around the
north-south gradient in MS prevalence in Europe, and suggest that the Steppe ancestry gradient in
modern populations - specifically at the HLA region - across the continent causes this phenomenon, in
combination with environmental factors. Furthermore, while epistasis between MS-associated variants
in the HLA region has been demonstrated before 29,30,31,32, we have shown that accounting for this
explains more variance than independent SNPs effects alone. Many of the haplotypes carrying these
risk alleles have ancestry-specific origins, which could be exploited for individual risk prediction and
may offer a pathway from genetic ancestry associations into a mechanistic understanding of MS risk.
We have compared these findings with results for RA, another HLA class II associated chronic
inflammatory disease, and found that the genetic risk for RA exhibits a contrasting pattern; genetic
risk was highest in Stone Age hunter-gatherer ancestry and decreased over time.

Our interpretation of this history is that co-evolution between pathogens and their human hosts has
resulted in massive and divergent genetic ancestry-specific selection on immune response genes
according to lifestyle and environment, driven by a range of pathogenic drivers, and “recombinant
favouring selection” after these populations merged. Similar examples of pathogen-driven evolution
have recently been published 33,34. The Late Neolithic and Bronze Age was a time of massively
increased infectious diseases in human populations, due to increased population density as well as
contact with, and consumption of, domesticated animals and their products. The most recent common
ancestor of many disease-associated pathogens existed in this period, such as Mycobacterium
tuberculosis (tuberculosis (TB)) 35,36, Yersinia pestis (plague) 37,38,39, measles-morbillivirus (MeV)
(measles) 40, HSV (herpes) 41, and VZV (chickenpox, zoster) 42,43. While these diseases are common
today, it is difficult to infer their geographic ranges in the past, which may have been more limited: for
example, in the fifth century BC, Hippocrates provided the first description of an outbreak of mumps
caused by the mumps virus (MuV) 44, and populations were not large enough to sustain continuous
measles transmission 40, which suggests that these viruses were not necessarily endemic at this time.
We have shown that many of the MS- and RA-associated variants under selection confer some
resistance to a range of infectious diseases and pathogens (Supplementary Note 8) (for example,
HLA-DRB1*15:01 is associated with protection against TB 45 and increased risk for lepromatous
leprosy 46). We are, however, underpowered to detect specific associations beyond this hypothesis due
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to poor knowledge of the distribution and diversity of past diseases, poor preservation of endogenous
pathogens in the archaeological record, and a lack of well-powered GWASs for many infectious
diseases, partly due to widespread vaccination programs. Together, this evidence suggests that
population dispersals, changing lifestyles and increased population density resulted in high and
sustained transmission of both new and old pathogens, driving selection in immune response genes
which are now associated with autoimmune diseases.

A pattern that repeatedly appears is that of lifestyle change driving changes in risk and phenotypic
outcomes. We have shown that in the past environmental changes driven by lifestyle innovation
inadvertently drove an increase in genetic risk for MS. Today, with increasing prevalence of MS cases
observed over the last five decades 47,48, we again observe a striking correlation with changes in our
environment, including lifestyle choices and improved hygiene, which no longer favours the previous
genetic architecture. Instead, the fine balance of genetically-driven cells within the immune system,
which are needed to combat a broad repertoire of pathogens and parasites without harming self-tissue,
has been met with new challenges, including a potential absence of requirement. For example, while a
population of immune cells, CD4+ T helper 1 (Th1), direct strong cellular immune responses against
intracellular pathogens, T helper 2 (Th2) cells mediate humoral immune responses against
extracellular bacteria and parasites and further have the capacity to guide the restoring of homeostasis,
thus preventing damage of the infected tissue via immune-regulatory cytokines. We have shown that
the majority of selected MS-associated SNPs are associated with protection against a wide range of
infectious challenges, consistent with selection for strong but balanced Th1/Th2 immunity in the
Bronze Age, when an increase in exposure to viral and bacterial pathogens and parasites likely took
place. Although MS pathogenesis is complex and multicellular in nature, CD4+ Th cells, in particular
IFN-ɣ producing Th1 cells and IL-17-producing Th17 cells, play a key role in disease development 1.
The skewed Th1/Th2 balance observed in MS may partly result from the developed world’s increased
sanitation, which has led to a drastically reduced burden of parasites, which the immune system had
evolved to efficiently combat 49.

Similarly, the new pathogenic challenges associated with agriculture, animal domestication,
pastoralism, and higher population densities might have substantially increased the risk of triggering a
systemic RA-associated inflammatory state in genetically predisposed individuals. This could lead to
an increased risk of a serious outcome following subsequent infections 50, years before any potential
joint lesions 51, resulting in negative selection and thus, might present a parallel between
RA-associated inflammation in the Bronze Age and MS today, in which lifestyle changes have
exposed previously favourable genetic variants as autoimmune disease risks.

More broadly, it is clear that the late Neolithic and Bronze Age was a critical period in human history
during which highly genetically and culturally divergent populations evolved and mixed 2. These
separate histories dictate the genetic risk and prevalence of several autoimmune diseases today.
Surprisingly, the emergence of the pastoralist Steppe lifestyle may have had an impact on immune
responses as great as or greater than the emergence of farming during the Neolithic transition,
commonly held to be the greatest lifestyle change in human history.

DATA AVAILABILITY
All collapsed and paired-end sequence data for novel samples sequenced in this study will be made
publicly available on the European Nucleotide Archive, together with trimmed sequence alignment
map files, aligned using human build GRCh37. Previously published ancient genomic data used in
this study are detailed in ST13, and are all already publicly available.
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CODE AVAILABILITY
The modified version of CLUES used in this study is available from
https://github.com/standard-aaron/clues. The pipeline and conda environment necessary to replicate
the analysis of allele frequency trajectories and polygenic selection in Supplementary Note 6 are
available on Github at https://github.com/ekirving/ms_paper. The code to create Ancestry Anomaly
scores based on Chromosome painting is on Github at https://github.com/danjlawson/ms_paper. The
code to compute LDA and LDA score is available on Github at
https://github.com/YaolingYang/LDAandLDAscore. The code for HTRX is on Github at
https://github.com/YaolingYang/HTRX. The code for ARS calculation is on Github at
https://github.com/will-camb/ms_paper.
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Extended Data

Extended Data Figure 1. Methods map detailing datasets used, methods, and statistics.
A narrative of the evidence used is provided in the centre, with boxes on each side detailing the
methods used. Boxes are coloured by the dataset used.
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Extended Data Figure 2. Ancient sample PCA, map, ancestry proportions through time for
samples in Denmark.
(1) PC1 vs PC2 of the filtered Western Eurasian ancient samples included in this study. Black circled
points are Danish Medieval and post-Medieval samples published here for the first time. Major
component ancestry locations are labelled. (2) Map of ancient filtered Western Eurasian ancient
samples included in this study (3a) Map of reference data and time transect of Denmark as in Figure
1. (3b) More recent ancient data (samples < 4,200 years ago) not used as reference, showing the clines
of the main ancestry components from (3a).

Extended Data Figure 3. Associations between local ancestry at fine-mapped RA SNPs and RA
in a modern population.
a) Risk ratio of SNPs for RA based on weighted average prevalence (WAP; see Methods), when
decomposed by inferred ancestry. A mean and standard deviation are calculated for each ancestry
based on bootstrap resampling, for each chromosome. The distribution of risk ratios at each ancestry
is shown as a raincloud plot. SNPs significant at the 1% level are shown individually, coloured by
chromosome or HLA region, and those with risk ratio >1.1 or <0.9 are annotated with rsID, HLA
region and position (build GRCh37/hg19). b-c) Genome-wide Ancestral Risk Scores (ARS, see
Methods) for RA. Confidence intervals are estimated by either bootstrapping over individuals (b,
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which can be interpreted as testing power to reject a null hypothesis of no association between RA
and ancestry) and bootstrapping over SNPs (c, which can be interpreted as testing whether ancestry is
associated with RA genome-wide). We show results for all associated SNPs (red) and non-HLA SNPs
only (blue) when bootstrapping over individuals.
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Extended Data Figure 4. Evidence for selection on RA-associated SNPs.
a) Stacked line plot of the pan-ancestry PALM analysis for RA, showing the contribution of SNPs to
disease risk over time. SNPs are shown as stacked lines, the width of each line being proportional to
the population frequency of the positive risk allele, weighted by its effect size. When a line widens
over time the positive risk allele has increased in frequency, and vice versa. SNPs are sorted by the
magnitude and direction of selection, with positively selected SNPs at the top, negatively selected
SNPs at the bottom, and neutral SNPs in the middle. SNPs are coloured by their corresponding
p-value in a single locus selection test. The asterisk marks the Bonferroni corrected significance
threshold, and nominally significant SNPs are shown in yellow and labelled by their rsIDs. SNPs
marked with the dagger symbol are located in the HLA locus. The Y-axis shows the scaled average
polygenic risk score (PRS) in the population, ranging from 0 to 1, with 1 corresponding to the
maximum possible average PRS (i.e. when all individuals in the population are homozygous for all
positive risk alleles) and the X-axis shows time in units of thousands of years before present (kyr BP).
b) Posterior likelihood trajectory for rs660895, tagging HLA-DRB1*04:01, inferred by CLUES.

Extended Data Figure 5. LDAS on chromosome 6 and 2.
LDA score is a) high in the LCT/MCM6 region while is b) low in the HLA region.
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Extended Data Figure 6. The number of protective associations with pathogens or infectious
diseases for the MS- and RA-associated selected SNPs.
The number of protective associations to specific pathogens and/or diseases associated with the MS-
and RA-SNPs that showed statistically significant evidence for selection using CLUES. One SNP can
have a link to more than one pathogen and/or disease (see ST11 and ST12 for details on each SNP).
Eight and twenty SNPs had no detectable links to any pathogen or infectious disease in the MS and
RA SNP sets, respectively.

METHODS
Data Generation
Overview
In order to examine variants associated with phenotypes backwards in time, we assembled a large
ancient DNA dataset. Here we present new genomic data from 86 ancient individuals from Medieval
and post-Medieval periods from Denmark (Extended Data Figure 2, Supplementary Note 1, ST1). The
samples range in age from around the 11th to the 18th century. We extracted ancient DNA from tooth
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cementum or petrous bone and shotgun sequenced the 86 genomes to a depth of genomic coverage
ranging from 0.02 X to 1.6 X (mean = 0.39 X and median = 0.27 X). The genomes of the new 86
individuals were imputed using the 1,000 Genomes phased data as a reference panel by an imputation
method designed for low coverage genomes (GLIMPSE, 53), and we also imputed 1,664 ancient
genomes presented in the accompanying study “Population Genomics of Stone Age Eurasia” 2.
Depending on the specific data quality requirements for the downstream analyses, we filtered out
samples with poor coverage, variant sites with low minor allele frequency (MAF) and with low
imputation quality (average genotype probability < 0.98). Our dataset of ancient individuals spans
approximately 15,000 years across Eurasia (Extended Data Figure 2).

Ancient data DNA extraction and library preparation
Laboratory work was conducted in the dedicated ancient DNA clean-room facilities at the Lundbeck
Foundation GeoGenetics Centre (Globe Institute, University of Copenhagen). A total of 86 Medieval
and post-Medieval human samples from Denmark (ST2) were processed using semi-automated
procedures. Each sample was processed in parallel. For each extract non USER-treated and
USER-treated (NEB) libraries were built 54. All libraries were sequenced on the NovaSeq6000
instrument at the GeoGenetics Sequencing Core, Copenhagen, using S4 200 cycles kits version 1.5. A
more detailed description of DNA extraction and library preparation can be found in Supplementary
Note 1.

Basic bioinformatics
The sequencing data was demultiplexed using the Illumina software BCL Convert
(https://emea.support.illumina.com/sequencing/sequencing_software/bcl-convert.html, Illumina Inc.) .
Adapter sequences were trimmed and overlapping reads were collapsed using AdapterRemoval (2.2.4
55). Single-end collapsed reads of at least 30bp and paired-end reads were mapped to the human
reference genome build 37 using BWA (0.7.17 56) with seeding disabled to allow for higher sensitivity.
Paired- and single-end reads for each library and lane were merged, and duplicates were marked using
Picard MarkDuplicates (2.18.26, http://picard.sourceforge.net) with a pixel distance of 12000. Read
depth and coverage were determined using samtools (1.10 57) with the all sites used in the calculation
(-a). Data was then merged to sample level and duplicates were marked again.

DNA authentication
In order to determine the authenticity of the ancient reads, post-mortem DNA damage patterns were
quantified using mapDamage2.0 58. Next, two different methods were used to estimate the levels of
contamination. Firstly, we applied ContamMix in order to quantify the fraction of exogenous reads in
the mitochondrial reads by comparing the mtDNA consensus genome to possible contaminant
genomes 59. The consensus was constructed using an in-house perl script that used sites with at least 5
X coverage, and bases were only called if observed in at least 70% of reads covering the site. Lastly,
we applied ANGSD (0.931 60) to estimate nuclear contamination by quantifying heterozygosity on the
X chromosome in males. Both contamination estimates only used filtered reads with a base quality of
≥20 and mapping quality of ≥30.

Imputation
We combined the 86 newly sequenced Medieval and post-Medieval Danish individuals with 1,664
previously published ancient genomes 2. We then excluded individuals showing: contamination (more
than 5%); low autosomal coverage (less than 0.1 X); low genome-wide average imputation genotype
probability (less than 0.98), and we chose the best quality sample in a close relative pair (first or

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 27, 2023. ; https://doi.org/10.1101/2022.09.23.509097doi: bioRxiv preprint 

https://emea.support.illumina.com/sequencing/sequencing_software/bcl-convert.html
http://picard.sourceforge.net/
https://doi.org/10.1101/2022.09.23.509097
http://creativecommons.org/licenses/by-nc-nd/4.0/


second degree relative). A total of 1,557 individuals passed all filters, and were used in downstream
analyses. We restricted the analysis to SNPs with imputation INFO score ≥ 0.5 and MAF ≥ 0.05.

Kinship analysis and uniparental haplogroup inferences
READ 61 was used to detect the degree of relatedness between pairs of individuals.
The mtDNA haplogroups of the Medieval and post-Medieval individuals were assigned using
HaploGrep2 62. Y chromosome haplogroup assignment was inferred following the workflow already
published 63. More details can be found in Supplementary Note 2.

Standard Population genetic analyses
The main population-genetics approach we base our inference on is Population-based painting
(detailed below). However, to robustly understand population structure, we applied other standard
techniques. Firstly, we used principal component analysis (PCA) (Extended Data Figure 2) to
investigate the overall population structure of the dataset. We used PLINK 64, excluding SNPs with
MAF < 0.05 in the imputed panel. Based on 1,210 ancient western Eurasia imputed genomes, the
Medieval and post-Medieval samples cluster very close to each other, displaying a relatively low
genetic variability and situated within the genetic variability observed in the post-Bronze Age western
Eurasian populations.

We then used two additional standard methods to estimate ancestry components in our ancient
samples. Firstly, we used model-based clustering (ADMIXTURE) 65 (Supplementary Note 1, Figure
S1.1) on a subset of 826,248 SNPs. Secondly, we used qpAdm 66 (Supplementary Note 1 Figure S1.2
and Table S1.1) with a reference panel of three genetic ancestries (WHG, ANA, and Steppe) on the
same 826,248 SNPs. We performed qpAdm applying the option “allsnps: YES” and a set of 7
outgroups was used as "right populations": Siberia_UpperPaleolithic_UstIshim,
Siberia_UpperPaleolithic_Yana, Russia_UpperPaleolithic_Sunghir, Switzerland_Mesolithic,
Iran_Neolithic, Siberia_Neolithic, USA_Beringia. We set a minimum threshold of 100,000 SNPs and
only results with p > 0.05 only have been considered.

Population painting
Our main analysis uses chromosome painting 67 with a panel of 6 ancient ancestries (as on the UK
Biobank, see below). This allows fine-scale estimation of ancestry as a function of those populations.
We ran chromosome painting on all ancient individuals not in the reference panel, using a reference
panel of ancient donors grouped into populations to represent specific ancestries: Western
Hunter-Gatherer (WHG), Eastern Hunter-Gatherer (EHG), Caucasus Hunter-Gatherer (CHG), Farmer
(ANA+Neolithic), Steppe, and African (method described in 14). Painting followed the pipeline of 68

based on GLOBETROTTER 69, with admixture proportions estimated using Non-Negative Least
squares (NNLS). NNLS explains the genome-wide haplotype matches of an individual as a mixture of
the genome-wide haplotype-matches of the reference populations. This setup allows both the
reference panel and any additional samples (i.e. modern) to be described using these 6 ancestries
(Figure 1).

We then painted individuals born in Denmark of a typical ancestry (typical based on density-based
clustering of the first 18 PCs, 2). The reference panel used for chromosome painting was designed to
capture the various components of European ancestry only, and so we urge caution in interpreting
these results for non-European samples.
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This dataset provides the opportunity to study the population history of Denmark from the Mesolithic
to the post-Medieval period, covering around 10,000 years, which can be considered a typical
Northern European population. Our results clearly demonstrate the impact of previously described
demographic events, including the influx of Neolithic Farmer ancestry ~9,000 years ago and Steppe
ancestry ~5,000 years ago 10,12. We highlight genetic continuity from the Bronze Age to the
post-Medieval period (Supplementary Note 1 Figure S1.1), although qpAdm detected a small increase
in the Farmer component during the Viking Age (Supplementary Note 1 Figure S1.2 and Table S1.1),
while the Medieval period marked a time of increased genetic diversity, likely reflecting increased
mobility across Europe. This genetic continuity is further confirmed by the haplogroups identified in
the uniparental genetic makers (Supplementary Note 2). Together, these results suggest that after the
Bronze Age Steppe migration there was no other major gene flow into Denmark from populations
with significantly different Neolithic and Bronze Age ancestry compositions, and therefore no
changes in these ancestry components in the Danish population.

Local ancestry from Population painting
Chromosome Painting provides an estimate of the probability that an individual from each reference
population is the closest match to the target individual at every position in the genome. This provides
our first estimate of local ancestry from 2: the population of the first reference individual to coalesce
with the target individual, as estimated by Chromopainter 67. This was estimated for all “White
British” individuals in the UK Biobank, using the population painting reference panel described
above. We refer to this henceforth as “local ancestry”, though note that the closest relative in the
sample may not represent ancestry in the conventional sense.

Pathway painting
An alternative approach is to identify which of the four major ancestry pathways (ANA Farmer, CHG,
EHG, WHG) each position in the genome best matches to. This has the advantage of not forcing
haplotypes to choose between “Steppe” ancestry and its ancestors, but the disadvantage of being more
complex to interpret. To do this, we modelled ancestry path labels in GBR, FIN and TSI 1000G
populations 70 and 1015 ancient genomes generated using a neural network to assign ancestry paths
based on a sample’s nearest neighbours at the first five informative nodes of a marginal tree sequence,
where an informative node is defined as one which has at least one leaf from the reference set of
ancient samples described above (14 Supplementary Note S1c). We refer to this henceforth as
“ancestry path labels”.

SNP associations
We aimed to generate SNP associations from previous studies for each phenotype in a consistent
approach. To generate a list of SNPs associated with multiple sclerosis (MS) and rheumatoid arthritis
(RA), we used two approaches: in the first, we downloaded fine-mapped SNPs from previous
association studies. For each fine-mapped SNP, if the SNP did not have an ancestry path label, we

found the SNP in highest LD that did, with a minimum threshold of in the GBR, FIN and𝑟2 ≥ 0. 7
TSI 1000G populations using LDLinkR 71. The final SNPs used for each phenotype can be found in
ST4 (MS), and ST5 (RA).

For MS, we used data from 4. For non-MHC SNPs, we used the “discovery” SNPs with P(joined) and
OR(joined) generated in the replication phase. For MHC variants, we searched the literature for the
reported HLA alleles and amino-acid polymorphisms (ST3). In total, we generated 205 SNPs which
were either fine-mapped or in high LD with a fine-mapped SNP (15 MHC, 190 non-MHC).
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For RA, we downloaded 57 genome-wide significant non-MHC SNPs for seropositive RA in
Europeans 72. We retrieved MHC associations separately (73, with associated ORs and p-values from
74). In total, we generated 51 SNPs which were either fine-mapped or in high LD with a fine-mapped
SNP (3 MHC, 48 non-MHC).

Secondly, because we could not always find LD proxies for fine-mapped SNPs that were present in
our ancestry path labels dataset, we found that we were losing significant signal from the HLA,
therefore we generated a second set of SNP associations. We downloaded full summary statistics for
each disease (MS: 4; RA: 75), restricted to sites present in the ancestry path labels dataset, and ran
PLINK’s (v1.90b4.4 76) clump method (parameters: --clump-p1 5e-8 --clump-r2 0.05 --clump-kb 250
as in 77) using LD in the GBR, FIN and TSI 1000G populations 70 to extract genome-wide significant
independent SNPs.

In the main text we report results for the first set of SNPs (“fine-mapped”) for analyses involving
local ancestry in modern data, and the second set of SNPs (“pruned”) for analyses involving polygenic
measures of selection (CLUES/PALM).

Anomaly Score: Regions of Unusual Ancestry
To assess which regions of ancestry were unusual, we converted the ancestry estimates to Z-scores by
standardizing to the genome-wide mean and standard deviation. Specifically, let denote the𝐴(𝑖, 𝑗, 𝑗)
probability of the th ancestry ( ) at the th SNP ( ) of a chromosome for the th𝑘 𝑘 = 1,..., 𝐾 𝑗 𝑗 = 1,..., 𝐽 𝑖

individual ( ). We first computed the mean painting for each SNP, .𝑖 = 1,..., 𝑁 𝐴(𝑗, 𝑘) = 1
𝑁

𝑖=1

𝑁

∑ 𝐴(𝑖, 𝑗, 𝑘)

From this, we estimated a location parameter and scale parameter using a block-medianµ
𝑘

σ
𝑘

approach. Specifically, we partitioned the genome into 0.5Mb regions, and within each, computed the
mean and standard deviation of the ancestry. The parameter estimates are then the median values over
the whole genome. We then computed an anomaly score for each SNP for each ancestry

)/ . This is the normal-distribution approximation to the Poisson-binomial𝑍(𝑗, 𝑘) = (𝐴(𝑗, 𝑘) −µ
𝑘

σ
𝑘

score for excess ancestry, for which a detailed simulation study is presented in 78.

To arrive at an anomaly score for each SNP aggregated over all ancestries, we also had to account for
correlations in the ancestry paintings. Instead of scaling each ancestry deviation

by its standard deviation, we instead “whitened” them, i.e. rotated the data to𝐴*(𝑗, 𝑘) = 𝐴(𝑗, 𝑘) − µ
𝑘

have an independent signal. Let be a covariance matrix, and let be𝐶 = 𝐴*𝑇
𝐴* 𝐾 × 𝐾 𝐶−1 = 𝑈𝐷𝑉𝑇

its Singular Value Decomposition. Then is the whitening matrix from which𝑊 = 𝑈𝐷1/2 𝑍 = 𝐴*𝑊

are normally distributed with covariance matrix diag(1) under the null hypothesis that is normally𝐴*

distributed with mean 0 and unknown covariance . The “ancestry anomaly score” test statistic forΣ

each SNP is , which is chi-squared distributed with degrees of freedom under the𝑡(𝑗) =
𝑘=1

𝐾

∑ 𝑍(𝑗, 𝑘)2 𝐾

null, and we reported p-values from this.
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To test for gene enrichment, we formed a list of all SNPs reaching genome-wide significance (

) and using the R package gprofiler2 79 converted these to a unique list of genes. We then𝑝 < 5−8

used gost to perform an enrichment test for each GO term, for which we used default p-value
correction via the g:Profiler SCS method. This is an empirical correction based on performing random
lookups of the same number of genes under the null, to control the error rate and ensure that 95% of
reported categories (at p = 0.05) are correct.

Allele Frequency over Time
To investigate how effect allele frequencies have changed over time, we extracted high effect alleles
for each phenotype from the ancient data. We excluded all non-Eurasian samples, grouped them by
“groupLabel”, excluded any group with fewer than 4 samples, and coloured points by ancestry
proportion according to genome-wide NNLS based on chromosome painting (above).

Weighted Average Prevalence (WAP)
In order to understand whether risk-conferring haplotypes evolved in the Steppe population, or in a
pre- or post-dating population, we developed a statistic that could account for the origin of risk to be
identified with multiple ancestry groups, which do not have to be the same set for each SNP.

We first applied k-means clustering to the dosage of each ancestry for each associated SNP and
investigated the dosage distribution of clusters with significantly higher MS prevalence. For the target
SNPs, the elbow method 80 suggested selecting around 5-7 clusters, of which we chose 6. After
performing the k-means cluster analysis, we calculated the average probability for each ancestry for
case individuals. Furthermore, we calculated the prevalence of MS in each cluster, and performed a
one-sample t-test to investigate whether it differs from the overall MS prevalence (0.487%). This tests
whether any particular combinations of ancestry are associated with the phenotype at a SNP. Clusters
with high MS risk ratios have high Steppe components (Supplementary Information Figure S3.3),
leading to the conclusion that Steppe ancestry alone is driving this signal.

We can then compute the Weighted Average Prevalence (WAP), which summarises these results into
the ancestries. For the th SNP, let denote the sum of the th ancestry probabilities of𝑗 𝑃

𝑗𝑘𝑚
= 𝑛

𝑗𝑚
𝑃

𝑗𝑘𝑚
𝑘

all the individuals in the th cluster ( ), where is the cluster size of the th cluster.𝑚 𝑘, 𝑚 = 1,..., 6 𝑛
𝑗𝑚

𝑚

Let denote the prevalence of MS in the th cluster, the weighted average prevalence for the thπ
𝑗𝑚

𝑚 𝑘

ancestry is defined as:

,π
𝑗𝑘

=
𝑃

𝑗𝑘𝑚
π

𝑗𝑚

𝑚=1

6

∑ 𝑃
𝑗𝑘𝑚

where is defined as the weight for each cluster.𝑃
𝑗𝑘𝑚

The standard deviation of is computed as , where ,π
𝑗𝑘

𝑠𝑑(π
𝑗𝑘

) =
𝑚=1

6

∑ 𝑤
𝑗𝑘𝑚

2σ
𝑚

2 𝑤
𝑗𝑘𝑚

=
𝑃

𝑗𝑘𝑚

𝑚=1

6

∑ 𝑃
𝑗𝑘𝑚

and is the standard deviation of the outcome for the individuals in the thσ
𝑚

=
𝑠(𝑦

𝑗𝑚
)

𝑛
𝑗𝑚

𝑠(𝑦
𝑗𝑚

) 𝑚

cluster. We also test the hypothesis that against , and compute the p-value𝐻
0
:  π

𝑗𝑘
= π 𝐻

1
:  π

𝑗𝑘
≠ π

as .𝑝
𝑗𝑘

= 2(1 − ϕ(
π − π

𝑗𝑘
|||

|||
𝑠𝑑(π

𝑗𝑘
)

))
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For each ancestry, WAP measures the association of that ancestry with MS risk across all clusters. To
make a clear comparison, we calculated the risk ratio (compared to the overall MS prevalence) for
each ancestry at each SNP, and assigned a mean and confidence interval for the risk ratios of each
ancestry at each chromosome (Figure 3, Extended Data Figure 3).

PCA/UMAP of WAP/Average Dosage
To sort risk-associated SNPs into ancestry patterns according to that risk, we performed PCA on the
average ancestry probability and WAP at each MS-associated SNP (Supplementary Information
Figure S3.4). The former shows that all of the HLA SNPs except three from HLA class II and III have
much larger Outgroup components compared with the others. The latter analysis indicates a strong
association between Steppe and MS risk. Also, Outgroup ancestry at rs10914539 from chromosome 1
exceptionally reduces the incidence of MS, while Outgroup ancestry at rs771767 (chromosome 3) and
rs137956 (chromosome 22) significantly boosts MS risk.

Ancestral Risk Score (ARS)
To assign risk to ancient ancestries by computing the equivalent of a polygenic score for each, we
followed methods developed in 14. We calculated the effect allele painting frequency for a given
ancestry for SNP using the formula:𝑓

{𝑎𝑛𝑐,𝑖}
𝑖

𝑓
{𝑎𝑛𝑐,𝑖}

= 𝑗

𝑀
𝑒𝑓𝑓𝑒𝑐𝑡

∑ 𝑃𝑎𝑖𝑛𝑡𝑖𝑛𝑔 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
{𝑗,𝑖,𝑎𝑛𝑐}

𝑗

𝑀
𝑎𝑙𝑡

∑ 𝑃𝑎𝑖𝑛𝑡𝑖𝑛𝑔 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
{𝑗,𝑖, 𝑎𝑛𝑐}

 + 
𝑗

𝑀
𝑒𝑓𝑓𝑒𝑐𝑡

∑ 𝑃𝑎𝑖𝑛𝑡𝑖𝑛𝑔 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
{𝑗,𝑖, 𝑎𝑛𝑐}

,

where there are individuals homozygous for the effect allele, individuals homozygous𝑀
𝑒𝑓𝑓𝑒𝑐𝑡

𝑀
𝑎𝑙𝑡

for the other allele, and is the sum of the painting probabilities for
𝑗

𝑀
𝑒𝑓𝑓𝑒𝑐𝑡

∑ 𝑃𝑎𝑖𝑛𝑡𝑖𝑛𝑔 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
{𝑗,𝑖,𝑎𝑛𝑐}

that ancestry in individuals homozygous for the effect allele at SNP . This can be interpreted as𝑎𝑛𝑐 𝑖
an estimate of an ancestral contribution to effect allele frequency in a modern population. The
per-SNP painting frequencies can be found in ST4, ST5, and ST6.

To calculate the ancestral risk score (ARS) we summed over all pruned SNPs in an additive model:𝐼

𝐴𝑅𝑆
𝑎𝑛𝑐

=
𝑖

𝐼

∑ 𝑓
{𝑎𝑛𝑐,𝑖}

* β
𝑖
 .

We then ran a transformation step as in 81, centering results around the ancestral mean (i.e. all
ancestries) and reporting as a Z-score. To obtain 95% confidence intervals, we ran an accelerated
bootstrap over loci, which accounts for the skew of data to better estimate confidence intervals 82.

GWAS of Ancestry and Genotypes
The total variance of a trait explained by genotypes (SNP values), ancestry, and haplotypes (described
below) is a measure of how well each captures the causal factors driving that trait. We therefore
computed the variance explained for each data type in a “head-to-head” comparison, either at specific
SNPs or SNP sets. In this section, we describe the model and covariates accounted for.

We used the UK Biobank to fit GWAS models for local ancestry values and genotype values
separately, using only SNPs known to be associated with the phenotype (“fine-mapped” SNPs). We
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used the following phenotype codes for each phenotype: MS: Data-Field 131043; RA: Data-Field
131849 (seropositive).

Let Yi denote the phenotype status for the ith individual ( ), which takes value 1 for a𝑖 = 1,..., 399998
case and 0 for control, and let denote the probability that this individual is a case.π

𝑖
= 𝑃𝑟(𝑌

𝑖
= 1)

Let denote the th ancestry probability ( ) for the th SNP ( ) of the th𝑋
𝑖𝑗𝑘

𝑘 𝑘 = 1,..., 𝐾 𝑗 𝑗 = 1,..., 205 𝑖

individual. is the th predictor ( ) for the th individual. We used the following logistic𝐶
𝑖𝑐

𝑐 𝑐 = 1,..., 𝑁
𝑐

𝑖

regression model for GWAS, which assumes the effects of alleles are additive:

𝑌
𝑖
~𝐵𝑖𝑛(1, π

𝑖
);  𝑙𝑜𝑔(

π
𝑖

1−π
𝑖
) =

𝑘=1

𝐾

∑ β
𝑗𝑘

𝑋
𝑖𝑗𝑘

+
𝑐=1

𝑁
𝑐

∑ γ
𝑐 

𝐶
𝑖𝑐

.

We used Nc= 20 predictors in the GWAS models, including sex, age and the first 18 PCs, which are
sufficient to capture most of the population structure in the UK Biobank 83.

First, we built the model with . By using only one ancestry probability in each model, we𝐾 = 1
aimed to find the statistical significance of each SNP under each ancestry. Then, we built the model
with , i.e. using all 6 local ancestry probabilities which sum to 1. We calculated the variance𝐾 = 5
explained by each SNP by summing up the variance explained by (k = 1,...,5).𝑋

𝑖𝑗𝑘

We considered fitting the multivariate models by using all the SNPs as covariates. However, the
dataset only contains 1,982 cases. Even though only one ancestry is included, the multivariate model
contains 191 predictors, which could result in overfitting problems. Therefore, the GWAS models are
preferred over multivariate models.

We also fitted a logistic regression model for GWAS using the genotype data as follows:

𝑌
𝑖
~𝐵𝑖𝑛(1, π

𝑖
);  𝑙𝑜𝑔(

π
𝑖

1−π
𝑖
) = β

𝑗
𝑋

𝑖𝑗
+

𝑐=1

𝑁
𝑐

∑ γ
𝑐 

𝐶
𝑖𝑐

,

where denotes the number of copies of the reference allele of the jth SNP (𝑋
𝑖𝑗

∈ {0, 1, 2}

) that the th individual has, and ( ) denotes the covariates including age,𝑗 = 1,..., 205 𝑖 𝐶
𝑖𝑐

𝑐 = 1,..., 𝑁
𝑐

sex and first 18 PCs for the ith individual, where Nc= 20. Due to the UK Biobank being underpowered
compared to the case-control study from which these SNPs were found, the only statistically

significant ( ) association is for the HLA class II SNP tagging HLA-DRB1*15:01.𝑝 < 10−5

GWAS comparison for trait-associated SNPs
In this section, we describe how we moved from associations between SNPs (either genotype values
or ancestry) and a trait, to total variance explained.

We compared the variance explained by SNPs from the GWAS model using the painting data (all 6
local ancestry probabilities; the 7th is a linear combination of the first 6) with that from the GWAS
model using the genotype data. McFadden’s pseudo-R-squared measure 84 is widely used for
estimating the variance explained by the logistic regression models. McFadden’s pseudo-R-squared is
defined as

𝑅2 = 1 −
𝑙𝑛(𝐿

𝑀
)

𝑙𝑚(𝐿
0
) ,
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where and are the likelihoods for the fitted and the null model, respectively. Taking overfitting𝐿
𝑀

𝐿
0

into account, we use the adjusted McFadden’s pseudo-R-squared by penalizing the number of
predictors:

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −
𝑙𝑛(𝐿

𝑀
)/(𝑁−𝑘)

𝑙𝑛(𝐿
0
)/(𝑁−1) ,

where N is the sample size and k is the number of predictors.

Specifically, is calculated as the extra variance in addition to sex, age and 18 PCs that can𝑅2(𝑆𝑁𝑃𝑠)
be explained by SNPs:

𝑅2(𝑆𝑁𝑃𝑠) = 𝑅2(𝑠𝑒𝑥 + 𝑎𝑔𝑒 + 18 𝑃𝐶𝑠 + 𝑆𝑁𝑃𝑠) − 𝑅2(𝑠𝑒𝑥 + 𝑎𝑔𝑒 + 18 𝑃𝐶𝑠).

Notably, two SNPs stand out for explaining much larger variance than others when fitting the GWAS
model using the genotype data, but overall more SNPs from GWAS painting explain more than 0.1%
variance, which indicates the painting data are probably more efficient for estimating the effect sizes
of SNPs and detecting significant SNPs. Also, some SNPs from GWAS models using painting data
explain almost the same amount of variance, suggesting that these SNPs consist of very similar
ancestries.

Haplotype Trend Regression with eXtra flexibility (HTRX)
Ancestry is a strong predictor of MS, but we wanted to understand whether it was tagging some causal
factor that was not in our genetic data, or whether it was tagging either interactions or rare SNPs. To
address this, we propose Haplotype Trend Regression with eXtra flexibility (HTRX), which searches
for haplotype patterns that include single SNPs and non-contiguous haplotypes. HTRX is an
association between a template of n SNPs and a phenotype. A template gives a value for each SNP
taking values of “0” or “1”, reflecting whether the reference allele of each SNP is present or absent, or
an “X” meaning either value is allowed. For example, haplotype “1X0” corresponds to a 3-SNP
haplotype where the first SNP is the alternative allele and the third SNP is the reference allele, while
the second SNP can be either the reference or the alternative allele. Therefore, haplotype “1X0” is
essentially only a 2-SNP haplotype.

To examine the association between a haplotype and a binary phenotype, we replace the genotype
term with a haplotype from the standard GWAS model:

,𝑌
𝑖
~𝐵𝑖𝑛(1, π

𝑖
);  𝑙𝑜𝑔(

π
𝑖

1−π
𝑖
) = β

𝑗
𝐻

𝑖𝑗
+

𝑐=1

𝑁
𝑐

∑ γ
𝑐 

𝐶
𝑖𝑐

where denotes the th haplotype probability for the ith individual:𝐻
𝑖𝑗

𝑗

HTRX can identify gene-gene interactions, and is superior to HTR not only because it can extract
combinations of significant SNPs within a region, leading to improved predictive performance, but
the haplotypes are more interpretable as multi-SNP haplotypes are only reported when they lead to
increased predictive performance.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 27, 2023. ; https://doi.org/10.1101/2022.09.23.509097doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.509097
http://creativecommons.org/licenses/by-nc-nd/4.0/


HTRXModel selection procedure for shorter haplotypes
Fitting HTRX models directly on the whole dataset can lead to significant overfitting, especially when
the number of SNPs increases. When overfitting occurs, the models experience poorer predictive
accuracy against unseen data. Further, HTRX introduces an enormous model space which must be
searched.

To address these problems, we implemented a two-step procedure:

Step 1: Select candidate models. This step aims at addressing the model search problem by obtaining
a set of models more diverse than traditional bootstrap resampling 85.

(1) Randomly sample a subset (50%) of data. Specifically, when the outcome is binary, stratified
sampling is used to ensure the subset has approximately the same proportion of cases and controls as
the whole data.

(2) Start from a model with fixed covariates (18 PCs, sex and age), and perform forward regression on
the subset, i.e. iteratively choose a feature (in addition to the fixed covariates) to add whose inclusion
enables the model to explain the largest variance, and select models with the lowest Bayesian𝑠
Information Criterion (BIC) 86 to enter the candidate model pool.

(3) Repeat (1)-(2) times, and select all the different models in the candidate model pool as the𝐵
candidate models.

Step 2: Select the best model using 10-fold cross-validation.

(1) Randomly split the whole data into 10 groups with approximately equal sizes, using stratified
sampling when the outcome is binary.

(2) In each of the 10 folds, use a different group as the test dataset, and take the remaining groups as
the training dataset. Then, fit all the candidate models on the training dataset, and use these fitted

models to compute the additional variance explained by features (out-of-sample ) in the test dataset.𝑅2

Finally, select the candidate model with the biggest average out-of-sample as the best model.𝑅2

HTRXModel selection procedure for longer haplotypes (Cumulative HTRX)

Longer haplotypes are important for discovering interactions. However, there are haplotypes3𝑘 − 1
in HTRX if the region contains SNPs, making it unrealistic for regions with large numbers of SNPs.𝑘
To address this issue, we proposed cumulative HTRX to control the number of haplotypes, which is
also a two-step procedure.

Step 1: Extend haplotypes and select candidate models.

(1) Randomly sample a subset (50%) of data, using stratified sampling when the outcome is binary.
This subset is used for all the analysis in (2) and (3).

(2) Start with randomly chosen SNPs from the entire SNPs, and keep the top haplotypes that𝐿 𝑘 𝑀
are chosen from the forward regression. Then add another SNP to the haplotypes to create𝑀 3𝑀 + 2
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haplotypes. There are haplotypes obtained by adding “0”, “1” or “X” to the previous3𝑀 𝑀
haplotypes, as well as 2 bases of the added SNP, i.e. “XX...X0” and “XX...X1” (as “X” was implicitly
used in the previous step). The top haplotypes from them are then selected using forward𝑀
regression. Repeat this process until obtaining haplotypes which include SNPs.𝑀 𝑘 − 1

(3) Add the last SNP to create haplotypes. Afterwards, start from a model with fixed3𝑀 + 2
covariates (18 PCs, sex and age), perform forward regression on the training set, and select models𝑠
with the lowest BIC to enter the candidate model pool.

(4) Repeat (1)-(3) times, and select all the different models in the candidate model pool as the𝐵
candidate models.

Step 2: Select the best model using 10-fold cross-validation, as described in “HTRX Model selection
procedure for shorter haplotypes”.

We note that because the search procedure in Step 1(2) may miss some highly predictive haplotypes,
cumulative HTRX acts as a lower bound on the variance explainable by HTRX.

As a model criticism, only common and highly predictive haplotypes (i.e. those with the greatest

adjusted ) are correctly identified, but the increased complexity of the search space of HTRX leads𝑅2

to haplotype subsets that are not significant on their own but are significant when interacting with
other haplotype subsets being missed. This issue would be eased if we increase all the parameters , ,𝑠 𝑙

and but with higher computational cost, or improve the search by optimizing the order of adding𝑀 𝐵
SNPs. This leads to a decreased certainty that the exact haplotypes proposed are “correct”, but
together reinforces the inference that interaction is extremely important.

Simulation Study for HTRX
To investigate how the total variance explained by HTRX compare to GWAS and HTR, we used a
simulation study comparing:
(1) linear models (denoted by "lm") and generalized linear models with a logit link-function (denoted
by "glm");
(2) models with or without actual interaction effects;
(3) models with or without rare SNPs (frequency smaller than 5%);
(4) remove or retain rare haplotypes when rare SNPs exist.

We started from creating the genotypes for 4 different SNPs ( denotes the index𝐺
𝑖𝑗𝑞

𝑖 = 1,..., 100000

of individuals, represents the index of𝑗 = 1 ("1𝑋𝑋𝑋"),  2 ("𝑋1𝑋𝑋"),  3 ("𝑋𝑋1𝑋") 𝑎𝑛𝑑 4 ("𝑋𝑋𝑋1")
SNPs, and for two genomes as individuals are diploid). If no rare SNPs were included, we𝑞 = 1, 2
sampled the frequency of these 4 SNPs from 5% to 95%; otherwise, we sampled the frequency of𝐹

𝑗
 

the first 2 SNPs from 2% to 5% (in practice, we obtained and under our𝐹
1

= 2. 8% 𝐹
2

= 3. 1%

seed) while the last 2 SNPs from 5% to 95%. For the th individual, we sampled for𝑖 𝐺
𝑖𝑗𝑞

~𝐵𝑖𝑛(1, 𝐹
𝑗
)

the th genome of the th SNP, and took the average value of two genomes as the genotype for the th𝑞 𝑗 𝑗

SNP of the th individual: . Based on the genotype data, we obtained the haplotype data𝑖 𝐺
𝑖𝑗

=
𝐺

𝑖𝑗1
+𝐺

𝑖𝑗2

2

for each individual, and we considered removing haplotypes rarer than 0.1% or not when rare SNPs
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were generated. In addition, we sampled 20 fixed covariates (including sex, age and 18 PCs) ,𝐶
𝑖𝑐

where from UK Biobank for 100000 individuals.𝑐 = 1,..., 20

Next, we sampled the effect sizes of SNPs and covariates , and normalized them by theirβ
𝐺

𝑗

β
𝐶

𝑐

standard deviations: and for each fixed and , respectively. When anβ
𝐺

𝑖

~ 𝑈(−1,1)
𝑠𝑑(𝐺

𝑗
) β

𝐶
𝑐

~ 𝑈(−1,1)
𝑠𝑑(𝐶

𝑐
) 𝑗 𝑐

interaction exists, we created a fixed effect size for haplotype "11XX" as twice the average absolute

SNP effects: where refers to "11XX"; otherwise, . Note thatβ
𝐻

1

= 1
2

𝑗=1

4

∑ |β
𝐺

𝑗

| 𝐻
1

𝐻
1

= 0

when rare SNPs are included.𝐹
𝐻

1

= 0. 09%

Finally, we sampled the outcome based on the outcome score (for the th individual)𝑖

,𝑂
𝑖

=
𝑐=1

20

∑ β
𝑐
𝐶

𝑖𝑐
+ γ(

𝑗=1

4

∑ β
𝐺

𝑗

𝐺
𝑖𝑗

+ β
𝐻

1

𝐻
1
) + 𝑒

𝑖
+ 𝑤

where is a scale factor for the effect sizes of SNPs and haplotype "11XX", is theγ 𝑒
𝑖
~𝑁(0, 0. 1)

random error, and is a fixed intercept term. For linear models, the outcome ; for generalized𝑤 𝑌
𝑖

= 𝑂
𝑖

linear models, we sampled the outcome from the binomial distribution: , where𝑌
𝑖
~𝐵𝑖𝑛(1, π

𝑖
)

is the probability that the th individual is a case.π
𝑖 

= 𝑒
𝑂

𝑖

1+𝑒
𝑂

𝑖
𝑖

As the simulation is intended to compare the variance explained by HTRX, HTR and SNPs (GWAS)
in addition to fixed covariates, we tripled the effect sizes of SNPs and haplotype "11XX" (if an
interaction exists) by setting . In "glm", to ensure a reasonable case prevalence (e.g. below 5%),γ = 3
we set , which was also applied in "lm".𝑤 =− 7

We applied the procedure described in “HTRX Model selection procedure for shorter haplotypes” for

HTRX, HTR and GWAS, and visualized the distribution of the out-of-sample for each of the best𝑅2 
models selected by each method in Supplementary Information Figure S5.1. In both "lm" and "glm",
HTRX has equal predictive performance to the true model. It performs as well as GWAS when the
interaction effects are absent, explains more variance when an interaction is present, and is
significantly more explanatory than HTR. When rare SNPs are included, the only effective interaction
term is rare. In this case the difference between GWAS and HTRX becomes smaller as expected, and
removing the rare haplotypes hardly reduces the performance of HTRX.

In conclusion, we demonstrated through simulation that our HTRX implementation a) searches the
haplotype space effectively and b) protects against overfitting. This makes it a superior approach
compared to HTR and GWAS to integrate SNP effects with gene-gene interactions. Its robustness is
also retained when there are rare effective SNPs and haplotypes.

Quantifying selection via historical allele frequencies from Pathway Painting
The historical trajectory of SNP frequencies is a strong signal of selection when ancient DNA data are
available. This is the main purpose of our Pathway Painting method, and can be used to infer selection
at individual loci and combined into a polygenic score by analysing sets of SNPs associated with a
trait.
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Firstly, we inferred allele frequency trajectories and selection coefficients for a set of LD-pruned
genome-wide significant trait associated variants using a modified version of CLUES (Coalescent
Likelihood Under Effects of Selection) 23. To account for population structure in our samples, we
applied a novel chromosome painting technique based on inference of a sample’s nearest neighbours
in the marginal trees of an ARG that contains labelled individuals 14. We ran CLUES using a
time-series of imputed aDNA genotype probabilities obtained from 1,015 ancient West Eurasian
samples that passed all quality control filters. We produced four additional models for each trait
associated variant by conditioning the analysis on one of the four ancestral path labels from our
chromosome painting model: either Western Hunter-Gatherers (WHG), Eastern Hunter-Gatherers
(EHG), Caucasus Hunter-Gatherers (CHG), or Anatolian farmers (ANA).

Secondly, we were able to infer polygenic selection gradients (ω) and p-values for each trait, i.e. of
MS and RA, in all ancestral paths, using PALM (Polygenic Adaptation Likelihood Method) 24. Full
methods and results can be found in Supplementary Note 6.

Linkage Disequilibrium of Ancestry (LDA) and LDA Score (LDAS)
In population genetics, linkage disequilibrium (LD) is defined as the non-random association of
alleles at different loci in a given population 87. Just like the values of the genotype, ancestries can be
correlated along the genome, and further, deviations from the expected length distribution for a
particular ancestry is a signal of selection, dated by the affected ancestry. We propose an ancestry
linkage disequilibrium (LDA) approach to measure the association of ancestries between SNPs, and
an LDA Score (LDAS) to quantify deviations from the null hypothesis that ancestry is inherited at
random across loci.

LDA is defined in terms of local ancestry. Let denote the probability of the th ancestry (𝐴(𝑖, 𝑗, 𝑘) 𝑘
) at the th SNP ( ) of a chromosome for the th individual ( ).𝑘 = 1,..., 𝐾 𝑗 𝑗 = 1,..., 𝐽 𝑖 𝑖 = 1,..., 𝑁

We define the distance between SNP and as the average norm between ancestries at those𝑙 𝑚 𝐿
2

SNPs. Specifically, we compute the norm for the th genome as𝐿
2

𝑖

.𝐷
𝑖
(𝑙, 𝑚) = ||𝐴(𝑖, 𝑙, ·) − 𝐴(𝑖, 𝑚, ·)||

2
= 1

𝐾
𝑘=1

𝐾

∑ (𝐴(𝑖, 𝑙, 𝑘) − 𝐴(𝑖, 𝑚, 𝑘))2

Then we compute the distance between SNP and by averaging :𝑙 𝑚 𝐷
𝑖
(𝑙, 𝑚)

.𝐷(𝑙, 𝑚) = 1
𝑁

𝑖=1

𝑁

∑ 𝐷
𝑖
(𝑙, 𝑚)

We define as the theoretical distance between SNP and if there were no linkage𝐷*(𝑙, 𝑚) 𝑙 𝑚

disequilibrium of ancestry (LDA) between them. is estimated by𝐷*(𝑙, 𝑚)

,𝐷*(𝑙, 𝑚) ≈ 1
𝑁

𝑖=1

𝑁

∑ ||𝐴(𝑖*, 𝑙, ·) − 𝐴(𝑖, 𝑚, ·)||
2

where are resampled without replacement at SNP . Using the empirical distribution of𝑖* ∈ {1,..., 𝑁} 𝑙
ancestry probabilities accounts for variability in both the average ancestry and its distribution across
SNPs. Ancestry assignment can be very precise in regions of the genome where our reference panel
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matches our data, and uncertain in others where we only have distant relatives of the underlying
populations.

The LDA between SNP and is a similarity, defined in terms of the negative distance𝑙 𝑚 − 𝐷(𝑙, 𝑚)

normalized by the expected value under no LD, as:𝐷*(𝑙, 𝑚)

.𝐿𝐷𝐴(𝑙, 𝑚) = 𝐷*(𝑙,𝑚)−𝐷(𝑙,𝑚)

𝐷*(𝑙,𝑚)

LDA therefore takes an expected value 0 when haplotypes are randomly assigned at different SNPs,
and positive values when the ancestries of haplotypes are correlated.

LDA is a pairwise quantity. To arrive at a per-SNP property, we define the LDA score (LDAS) of SNP
as the total LDA of this SNP with the rest of the genome, i.e. the integral of the LDA for that SNP.𝑗

Because this quantity decreases to zero as we move away from the target SNP, this is in practice
computed within an cM-window (we use as LDA is approximately zero outside this region in𝑋 𝑋 = 5
our data) on both sides of the SNP. Note that we measure this quantity in terms of the genetic distance,
and therefore LDAS is measuring the length of ancestry-specific haplotypes compared to
individual-level recombination rates.

As a technical note, when the SNPs approach either end of the chromosome, they no longer have a
complete window, which results in a smaller LDAS. This would be appropriate for measuring total
ancestry correlations, but to make LDAS useful for detecting anomalous SNPs, we use the LDAS of
the symmetric side of the SNP to estimate the LDAS within the non-existent window.

where is the genetic distance (i.e. position in cM) of SNP , and is the total genetic distance𝑔𝑑(𝑙) 𝑙 𝑡𝑔
of a chromosome. We also assume the LDA on either end of the chromosome equals the LDA of the
SNP closest to the end: and𝐿𝐷𝐴(𝑗, 𝑔𝑑 = 0) = 𝐿𝐷𝐴(𝑗, 𝑙

𝑚𝑖𝑛(𝑔𝑑)
)

, where is the genetic distance, and are the𝐿𝐷𝐴(𝑗, 𝑔𝑑 = 𝑡𝑑) = 𝐿𝐷𝐴(𝑗, 𝑙
𝑚𝑎𝑥(𝑔𝑑)

) 𝑔𝑑 𝑙
𝑚𝑖𝑛(𝑔𝑑)

𝑙
𝑚𝑎𝑥(𝑔𝑑)

indexes of the SNP with the smallest and largest genetic distance, respectively.

The integral is computed assuming linear interpolation of the LDA score
𝑔𝑑(𝑗)−𝑋

𝑔𝑑(𝑗)+𝑋

∫ 𝐿𝐷𝐴(𝑗, 𝑙)𝑑𝑔𝑑

between adjacent SNPs.

LDA thus quantifies the correlations between the ancestry of two SNPs, measuring the proportion of
individuals who have experienced a recombination leading to a change in ancestry, relative to the
genome-wide baseline. The LDA score is the total amount of genome in LDA with each SNP
(measured in recombination map distance).
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Simulation study for LDA and LDAS
An ancient population evolved for 2200 generations before splitting into two sub-populations𝑃

0
𝑃

1

(Steppe) and (Farmer). After evolving for 400 generations, we added mutations “ ” and “ ” at𝑃
2

𝑚
1

𝑚
2

different loci in and . Both added mutations were then positively selected in the following 300𝑃
1

𝑃
2

generations, after which they merged to , where both added mutations experienced strong positive𝑃
3

selection for 20 generations. Finally, we sampled 1000 individuals from to compute their ancestry𝑃
3

proportions of and using the "chromosome painting" technique, and calculated the LDA score𝑃
1

𝑃
2

of the simulated chromosome positions.

The above describes the simulation in Supplementary Information Figure S7.1.

We investigated balancing selection at 2 loci as well. The balancing selection in and ensured the𝑃
1

𝑃
2

mutated allele reaches around 50% frequency, while positive selection made the mutated allele
become almost the only allele. In , if or was positively selected, its frequency reached more𝑃

3
𝑚

1
𝑚

2

than 80% regardless of whether the allele experienced balancing or positive selection in or ,𝑃
1

𝑃
2

because we set a strong positive selection. If or was balancing selected in , its frequency𝑚
1

𝑚
2

𝑃
3

slightly increased, e.g. if underwent balancing selection in , it had 25% frequency when was𝑚
1

𝑃
1

𝑃
3

created, and the frequency reached around 37.5% after 20 generations of balancing selection in .𝑃
3

The results (Supplementary Information Figure S7.2) show that positive selection in resulted in𝑃
3

low LDA scores around the selected locus, if this allele was not uncommon (i.e. had 50% (balancing
selection) or 100% frequency (positive selection) in subpopulation or ). Note that the balancing𝑃

1
𝑃

2

selection in or worked the same as “weak positive selection”, because and were rare𝑃
1

𝑃
2

𝑚
1

𝑚
2

when they first occurred, which were positively selected until 50% frequency.

We also performed simulations for selection at a single locus (Supplementary Information Figure S7.2
and S7.3).

Stage 1: We added a mutation in the 1600 generation in , which then underwent balancing𝑚
1

𝑃
0

selection until generation 2200, when split into and , where the frequency of was around𝑃
0

𝑃
1

𝑃
2

𝑚
1

50%.

Stage 2: Then we explored different combinations of positive, balancing and negative selection of 𝑚
1

in and . the frequency of reached 80%, 50% and 20% when it was positively, balancing or𝑃
1

𝑃
2

𝑚
1

negatively selected, respectively, until generation 2899. Here we sampled 20 individuals each in 𝑃
1

and as the ancient samples.𝑃
2
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Stage 3: Then and merged into in generation 2900. In , for each combination of selection𝑃
1

𝑃
2

𝑃
3

𝑃
3

in Stage 2, we simulated positive, balancing and negative selection for . The selection lasted for 20𝑚
1

generations, and then we sampled 4000 individuals from as the modern population.𝑃
3

Results: when was positively selected in only one of and , and it experienced negative𝑚
1

𝑃
1

𝑃
2

selection in , the LDA scores around the locus of were low. Otherwise, no abnormal LDA𝑃
3

𝑚
1

scores were found at .𝑚
1
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