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Structure, function and diversity of the
healthy human microbiome

The Human Microbiome Project Consortium*

Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that
occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet,
environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the
ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort
and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s
signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among
individuals. The project encountered an estimated 81-99% of the genera, enzyme families and community
configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was
stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of
the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range
of structural and functional configurations normal in the microbial communities of a healthy population, enabling future

characterization of the epidemiology, ecology and translational applications of the human microbiome.

A total of 4,788 specimens from 242 screened and phenotyped adults'
(129 males, 113 females) were available for this study, representing the
majority of the target Human Microbiome Project (HMP) cohort of
300 individuals. Adult subjects lacking evidence of disease were
recruited based on a lengthy list of exclusion criteria; we will refer
to them here as ‘healthy’, as defined by the consortium clinical
sampling criteria (K. Aagaard et al, manuscript submitted).
Women were sampled at 18 body habitats, men at 15 (excluding three
vaginal sites), distributed among five major body areas. Nine specimens
were collected from the oral cavity and oropharynx: saliva; buccal
mucosa (cheek), keratinized gingiva (gums), palate, tonsils, throat
and tongue soft tissues, and supra- and subgingival dental plaque (tooth
biofilm above and below the gum). Four skin specimens were collected
from the two retroauricular creases (behind each ear) and the two
antecubital fossae (inner elbows), and one specimen for the anterior
nares (nostrils). A self-collected stool specimen represented the micro-
biota of the lower gastrointestinal tract, and three vaginal specimens
were collected from the vaginal introitus, midpoint and posterior
fornix. To evaluate within-subject stability of the microbiome, 131
individuals in these data were sampled at an additional time point
(mean 219 days and s.d. 69 days after first sampling, range 35-404 days).
After quality control, these specimens were used for 16S rRNA gene
analysis via 454 pyrosequencing (abbreviated henceforth as 16S profil-
ing, mean 5,408 and s.d. 4,605 filtered sequences per sample); to assess
function, 681 samples were sequenced using paired-end Illumina
shotgun metagenomic reads (mean 2.9 gigabases (Gb) and s.d. 2.1 Gb
per sample)'. More details on data generation are provided in related
HMP publications' and in Supplementary Methods.

Microbial diversity of healthy humans

The diversity of microbes within a given body habitat can be defined as
the number and abundance distribution of distinct types of organisms,
which has been linked to several human diseases: low diversity in the
gut to obesity and inflammatory bowel disease™?, for example, and high
diversity in the vagina to bacterial vaginosis*. For this large study

involving microbiome samples collected from healthy volunteers at
two distinct geographic locations in the United States, we have defined
the microbial communities at each body habitat, encountering 81-99%
of predicted genera and saturating the range of overall community
configurations (Fig. 1, Supplementary Fig. 1 and Supplementary
Table 1; see also Fig. 4). Oral and stool communities were especially
diverse in terms of community membership, expanding prior observa-
tions’, and vaginal sites harboured particularly simple communities
(Fig. 1a). This study established that these patterns of alpha diversity
(within samples) differed markedly from comparisons between
samples from the same habitat among subjects (beta diversity,
Fig. 1b). For example, the saliva had among the highest median alpha
diversities of operational taxonomic units (OTUs, roughly species level
classification, see http://hmpdacc.org/HMQCP), but one of the lowest
beta diversities—so although each individual’s saliva was ecologically
rich, members of the population shared similar organisms. Conversely,
the antecubital fossae (skin) had the highest beta diversity but were
intermediate in alpha diversity. The vagina had the lowest alpha diversity,
with quite low beta diversity at the genus level but very high among
OTUs due to the presence of distinct Lactobacillus spp. (Fig. 1b). The
primary patterns of variation in community structure followed the
major body habitat groups (oral, skin, gut and vaginal), defining as a
result the complete range of population-wide between-subject variation
in human microbiome habitats (Fig. 1c). Within-subject variation over
time was consistently lower than between-subject variation, both in
organismal composition and in metabolic function (Fig. 1d). The
uniqueness of each individual’s microbial community thus seems to
be stable over time (relative to the population as a whole), which may be
another feature of the human microbiome specifically associated with
health.

No taxa were observed to be universally present among all body
habitats and individuals at the sequencing depth employed here,
unlike several pathways (Fig. 2 and Supplementary Fig. 2, see below),
although several clades demonstrated broad prevalence and relatively
abundant carriage patterns®”. Instead, as suggested by individually

*Lists of participants and their affiliations appear at the end of the paper.
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Figure 1 | Diversity of the human microbiome is concordant among
measures, unique to each individual, and strongly determined by microbial
habitat. a, Alpha diversity within subjects by body habitat, grouped by area, as
measured using the relative inverse Simpson index of genus-level phylotypes
(cyan), 16S rRNA gene OTUs (blue), shotgun metagenomic reads matched to
reference genomes (orange), functional modules (dark orange), and enzyme
families (yellow). The mouth generally shows high within-subject diversity and
the vagina low diversity, with other habitats intermediate; variation among
individuals often exceeds variation among body habitats. b, Bray-Curtis beta
diversity among subjects by body habitat, colours as for a. Skin differs most
between subjects, with oral habitats and vaginal genera more stable. Although
focused studies>*>*’, each body habitat in almost every subject was
characterized by one or a few signature taxa making up the plurality of
the community (Fig. 3). Signature clades at the genus level formed on
average anywhere from 17% to 84% of their respective body habitats,
completely absent in some communities (0% at this level of detection)
and representing the entire population (100%) in others. Notably, less
dominant taxa were also highly personalized, both among individuals
and body habitats; in the oral cavity, for example, most habitats are
dominated by Streptococcus, but these are followed in abundance by
Haemophilus in the buccal mucosa, Actinomyces in the supragingival
plaque, and Prevotella in the immediately adjacent (but low oxygen)
subgingival plaque'’.

Additional taxonomic detail of the human microbiome was pro-
vided by identifying unique marker sequences in metagenomic data''
(Fig. 3a) to complement 16S profiling (Fig. 3b). These two profiles
were typically in close agreement (Supplementary Fig. 3), with the
former in some cases offering more specific information on members
of signature genera differentially present within habitats (for example,
vaginal Prevotella amnii and gut Prevotella copri) or among indivi-
duals (for example, vaginal Lactobacillus spp.) One application of this
specificity was to confirm the absence of NIAID (National Institute of
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alpha- and beta-diversity are not directly comparable, changes in structure
among communities (a) occupy a wider dynamic range than do changes within
communities among individuals (b). ¢, Principal coordinates plot showing
variation among samples demonstrates that primary clustering is by body area,
with the oral, gastrointestinal, skin and urogenital habitats separate; the nares
habitat bridges oral and skin habitats. d, Repeated samples from the same
subject (blue) are more similar than microbiomes from different subjects (red).
Technical replicates (grey) are in turn more similar; these patterns are
consistent for all body habitats and for both phylogenetic and metabolic
community composition. See previously described sample counts' for all
comparisons.

Allergy and Infectious Diseases) class A-C pathogens above 0.1%
abundance (aside from Staphylococcus aureus and Escherichia coli)
from the healthy microbiome, but the near-ubiquity and broad dis-
tribution of opportunistic ‘pathogens’ as defined by PATRIC'.
Canonical pathogens including Vibrio cholerae, Mycobacterium
avium, Campylobacter jejuni and Salmonella enterica were not
detected at this level of sensitivity. Helicobacter pylori was found in
only two stool samples, both at <0.01%, and E. coli was present at
>0.1% abundance in 15% of stool microbiomes (>0% abundance in
61%). Similar species-level observations were obtained for a small
subset of stool samples with 454 pyrosequencing metagenomics data
using PhylOTU™™. In total 56 of 327 PATRIC pathogens were
detected in the healthy microbiome (at >1% prevalence of >0.1%
abundance, Supplementary Table 2), all opportunistic and, strikingly,
typically prevalent both among hosts and habitats. The latter is in
contrast to many of the most abundant signature taxa, which were
usually more habitat-specific and variable among hosts (Fig. 3a, b).
This overall absence of particularly detrimental microbes supports the
hypothesis that even given this cohort’s high diversity, the microbiota
tend to occupy a range of configurations in health distinct from many
of the disease perturbations studied to date®".
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Figure 3 | Abundant taxa in the human microbiome that have been and sequencing depths of the HMP have well defined the microbiome at all
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present (size) of clades in the healthy microbiome. The most abundant metagenomic enzyme class abundances to nearest neighbour, inter-quartile
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Carriage of specific microbes

Inter-individual variation in the microbiome proved to be specific,
functionally relevant and personalized. One example of this is illu-
strated by the Streptococcus spp. of the oral cavity. The genus dominates
the oropharynx'®, with different species abundant within each sampled
body habitat (see http://hmpdacc.org/HMSMCP) and, even at the
species level, marked differences in carriage within each habitat among
individuals (Fig. 4a). As the ratio of pan- to core-genomes is high in
many human-associated microbes'’, this variation in abundance could
be due to selective pressures acting on pathways differentially present
among Streptococcus species or strains (Fig. 4b). Indeed, we observed
extensive strain-level genomic variation within microbial species in
this population, enriched for host-specific structural variants around
genomic islands (Fig. 4c). Even with respect to the single Streptococcus
mitis strain B6, gene losses associated with these events were common,

for example differentially eliminating S. mitis carriage of the V-type
ATPase or choline binding proteins cbp6 and cbp12 among subsets of
the host population (Fig. 4d). These losses were easily observable by
comparison to reference isolate genomes, and these initial findings
indicate that microbial strain- and host-specific gene gains and
polymorphisms may be similarly ubiquitous.

Other examples of functionally relevant inter-individual variation
at the species and strain levels occurred throughout the microbiome.
In the gut, Bacteroides fragilis has been shown to prime T-cell
responses in animal models via the capsular polysaccharide A'®,
and in the HMP stool samples this taxon was carried at a level of at
least 0.1% in 16% of samples (over 1% abundance in 3%). Bacteroides
thetaiotaomicron has been studied for its effect on host gastrointestinal
metabolism'® and was likewise common at 46% prevalence. On the skin,
S. aureus, of particular interest as the cause of methicillin-resistant
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¢, Comparative genomic coverage for the single Streptococcus mitis B6 strain.
Grey dots are median reads per kilobase per million reads (RPKM) for 1-kb
windows, grey bars are the 25th to 75th percentiles across all samples, red line
the LOWESS-smoothed average. Red bars at the bottom highlight predicted
genomic islands”. Large, discrete, and highly variable islands are commonly
under-represented. d, Two islands are highlighted, V (V-type H™ ATPase
subunits I, K, E, C, F, A and B) and CH (choline-binding proteins cbp6 and
cbp12), indicating functional cohesion of strain-specific gene loss within
individual human hosts.
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S. aureus (MRSA) infections, had 29% nasal and 4% skin carriage
rates, roughly as expected®. Close phylogenetic relatives such as
Staphylococcus epidermidis (itself considered commensal) were, in
contrast, universal on the skin and present in 93% of nares samples,
and at the opposite extreme Pseudomonas aeruginosa (a representative
Gram-negative skin pathogen) was completely absent from both body
habitats (0% at this level of detection). These and the data above suggest
that the carriage pattern of some species in the human microbiome
may be analogous to genetic traits, where recessive alleles of modest
risk are maintained in a population. In the case of the human micro-
biome, high-risk pathogens remain absent, whereas species that pose a
modest degree of risk also seem to be stably maintained in this
ecological niche.

Finally, microorganisms within and among body habitats exhibited
relationships suggestive of driving physical factors such as oxygen,
moisture and pH, host immunological factors, and microbial inter-
actions such as mutualism or competition*' (Supplementary Fig. 4).
Both overall community similarity and microbial co-occurrence and
co-exclusion across the human microbiome grouped the 18 body
habitats together into four clusters corresponding to the five target
body areas (Supplementary Fig. 4a, b). There was little distinction
among different vaginal sites, with Lactobacillus spp. dominating all
three and correlating in abundance. However, Lactobacillus varied
inversely with the Actinobacteria and Bacteroidetes (see Supplemen-
tary Fig. 4c and Figs 2 and 3), as also observed in a previous cohort’.
Gut microbiota relationships primarily comprised inverse associa-
tions with the Bacteroides, which ranged from dominant in some
subjects to a minority in others who carried a greater diversity of
Firmicutes. A similar progression was evident in the skin communities,
dominated by one of Staphylococcus (phylum Firmicutes),
Propionibacterium, or Corynebacterium (both phylum Actinobacteria),
with a continuum of oral organisms (for example, Streptococcus) appear-
ing in nares communities (Supplementary Fig. 4c). These observations
suggest that microbial community structure in these individuals
may sometimes occupy discrete configurations and under other
circumstances vary continuously, a topic addressed in more detail by
several HMP investigations (ref. 6 and unpublished results). An
individual’s location within such configurations is indicative of current
microbial carriage (including pathogens) and of the community’s
ability to resist future pathogen acquisition or dysbiosis; it may thus
prove to be associated with disease susceptibility or other phenotypic
characteristics.

Microbiome metabolism and function

As the first study to include both marker gene and metagenomic data
across body habitats from a large human population, we additionally
assessed the ecology of microbial metabolic and functional pathways
in these communities. We reconstructed the relative abundances of
pathways in community metagenomes®’, which were much more
constant and evenly diverse than were organismal abundances
(Fig. 2b, see also Fig. 1), confirming this as an ecological property of
the entire human microbiome®. We were likewise able to determine
for the first time that taxonomic and functional alpha diversity across
microbial communities significantly correlate (Spearman of inverse
Simpson’s = 0.60, P=3.6 X 10~ %, n=661), the latter within a
more proscribed range of community configurations (Supplemen-
tary Fig. 5).

Unlike microbial taxa, several pathways were ubiquitous among
individuals and body habitats. The most abundant of these ‘core’
pathways include the ribosome and translational machinery, nucleo-
tide charging and ATP synthesis, and glycolysis, and reflect the basics
of host-associated microbial life. Also in contrast to taxa, few path-
ways were highly variable among subjects within any body habitat;
exceptions included the Sec (orally, pathway relative abundance
s.d. = 0.0052; total mean of oral standard deviations = 0.0011 with
s.d. =0.0016) and Tat (globally, pathway s.d. =0.0055; mean of
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global standard deviations = 0.0023 with s.d. = 0.0033) secretion sys-
tems, indicating a high degree of host-microbe and microbe-microbe
interactions in the healthy human microbiota. This high variability
was particularly present in the oral cavity; for phosphate, mono- and
di-saccharide, and amino acid transport in the mucosa; and also for
lipopolysaccharide biosynthesis and spermidine/putrescine synthesis
and transport on the plaque and tongue (http://hmpdacc.org/
HMMRC). The stability and high metagenomic abundance of this
housekeeping ‘core’ contrasts with the greater variability and lower
abundance of niche-specific functionality in rare but consistently
present pathways; for example, spermidine biosynthesis, methionine
degradation and hydrogen sulphide production, all examples highly
prevalent in gastrointestinal body sites (non-zero in >92% of
samples) but at very low abundance (median relative abundance
< 0.0052). This ‘long tail’ of low-abundance genes and pathways also
probably encodes much of the uncharacterized biomolecular function
and metabolism of these metagenomes, the expression levels of which
remain to be explored in future metatranscriptomic studies.

Protein families showed diversity and prevalence trends similar to
those of full pathways, ranging from maxima of only ~16,000 unique
families per community in the vagina to almost 400,000 in the oral
cavity (Fig. 1a, b; http://hmpdacc.org/HMGI). A remarkable fraction
of these families were indeed functionally uncharacterized, including
those detected by read mapping, with a minimum in the oral cavity
(mean 58% s.d. 6.8%) and maximum in the nares (mean 77% s.d.
11%). Likewise, many genes annotated from assemblies could not
be assigned a metabolic function, with a minimum in the vagina
(mean 78% s.d. 3.4%) and maximum in the gut (mean 86% s.d.
0.9%). The latter range did not differ substantially by body habitat
and is in close agreement with previous comprehensive gene catalogues
of the gut metagenome’. Taken together with the microbial variation
observed above throughout the human microbiome, functional vari-
ation among individuals might indicate pathways of particular import-
ance in maintaining community structure in the face of personalized
immune, environmental or dietary exposures among these subjects.
Determining the functions of uncharacterized core and variable protein
families will be especially essential in understanding role of the micro-
biota in health and disease.

Correlations with host phenotype

We finally examined relationships associating both clades and
metabolism in the microbiota with host properties such as age,
gender, body mass index (BMI), and other available clinical metadata
(Fig. 5 and Supplementary Table 3). Using a sparse multivariate
model, 960 microbial, enzymatic or pathway abundances were sig-
nificantly associated with one or more of 15 subject phenotype and
sample metadata features. A wide variety of taxa, gene families and
metabolic pathways were differentially distributed with subject
ethnicity at every body habitat (Fig. 5a), representing the phenotype
with the greatest number (266 at false discovery rate (FDR) g < 0.2) of
total associations with the microbiome. Vaginal pH has also been
observed to correlate with microbiome composition’, and we detected
in this population both the expected reduction in Lactobacillus at high
pH and a corresponding increase in metabolic diversity (Fig. 5b).
Intriguingly, and not previously observed, subject age was most asso-
ciated with a collection of highly differential metagenomically
encoded pathways on the skin (Fig. 5¢), as well as shifts in skin clades
including retroauricular Firmicutes (P = 1.0 X 10~ %, g = 0.033). The
examples of associations with ethnicity and vaginal pH are among the
strongest associations with the microbiome, however, and most cor-
relates (for example, with subject BMI, Fig. 5d) are more representa-
tively modest. This lower degree of correlation held for most available
biometrics (gender, temperature, blood pressure, etc.), with even the
most significant associations possessing generally low effect sizes and
considerable unexplained variance. We conclude that most variation
in the human microbiome is not well explained by these phenotypic
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Figure 5 | Microbial community membership and function correlates with
host phenotype and sample metadata. a-d, The pathway and clade
abundances most significantly associated (all FDR g < 0.2) using a multivariate
linear model with subject race or ethnicity (a), vaginal posterior fornix pH
(b), subject age (c) and BMI (d). Scatter plots of samples are shown with lines

metadata, and other potentially important factors such as short- and
long-term diet, daily cycles, founder effects such as mode of delivery,
and host genetics should be considered in future analyses.

Conclusions

This extensive sampling of the human microbiome across many sub-
jects and body habitats provides an initial characterization of the
normal microbiota of healthy adults in a Western population. The
large sample size and consistent sampling of many sites from the same
individuals allows for the first time an understanding of the relationships
among microbes, and between the microbiome and clinical parameters,
that underpin the basis for individual variation—variation that may
ultimately be critical for understanding microbiome-based disorders.
Clinical studies of the microbiome will be able to leverage the resulting
extensive catalogues of taxa, pathways and genes', although they must
also still include carefully matched internal controls. The uniqueness of
each individual’s microbiome even in this reference population argues
for future studies to consider prospective within-subjects designs where
possible. The HMP’s unique combination of organismal and functional
data across body habitats, encompassing both 16S and metagenomic
profiling, together with detailed characterization of each subject, has
allowed us and subsequent studies to move beyond the observation of
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BMI

indicating best simple linear fit. Race/ethnicity and vaginal pH are particularly
strong associations; age and BMI are more representative of typically modest
phenotypic associations (Supplementary Table 3), suggesting that variation in
the healthy microbiota may correspond to other host or environmental factors.

variability in the human microbiome to ask how and why these microbial
communities vary so extensively.

Many details remain for further work to fill in, building on this
reference study. How do early colonization and lifelong change vary
among body habitats? Do epidemiological patterns of transmission of
beneficial or harmless microbes mirror patterns of transmission of
pathogens? Which co-occurrences among microbes reflect shared
response to the environment, as opposed to competitive or mutualistic
interactions? How large a role does host immunity or genetics play in
shaping patterns of diversity, and how do the patterns observed in this
North American population compare to those around the world? Future
studies building on the gene and organism catalogues established by the
Human Microbiome Project, including increasingly detailed investi-
gations of metatranscriptomes and metaproteomes, will help to unravel
these open questions and allow us to more fully understand the links
between the human microbiome, health and disease.

METHODS SUMMARY

Microbiome samples were collected from up to 18 body sites at one or two time
points from 242 individuals clinically screened for absence of disease (K. Aagaard
et al., manuscript submitted). Samples were subjected to 16S ribosomal RNA gene
pyrosequencing (454 Life Sciences), and a subset were shotgun-sequenced for
metagenomics using the Illumina GAIIx platform'. 16S data processing and

©2012 Macmillan Publishers Limited. All rights reserved



diversity estimates were performed using QIIME*, and metagenomic data were
taxonomically profiled using MetaPhlAn'', metabolically profiled by HUMAnN?,
and assembled for gene annotation and clustering into a unique catalogue'.
Potential pathogens were identified using the PATRIC database'?, isolate reference
genome annotations drawn from KEGG*, and reference genome mapping per-
formed by BWA® to a reduced set of genomes to which short reads could be
matched”. Microbial associations were assessed by similarity measures accounting
for compositionality*', and phenotypic association testing was performed in R. All
data and additional protocol details are available at http://hmpdacc.org. Full
methods accompany this paper in the Supplementary Information.
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