

1 **Enhancers associated with unstable RNAs are rare in plants**

2

3 Bayley R. McDonald¹, Colette Picard², Ian M. Brabb¹, Marina I. Savenkova¹, Robert J. Schmitz³,
4 Steven E. Jacobsen^{2,4} and Sascha H. Duttke^{1#}

5 ¹ School of Molecular Biosciences, College of Veterinary Medicine, Washington State
6 University, Pullman, WA 99164, USA.

7 ² Department of Molecular Cell and Developmental Biology, University of California at Los
8 Angeles, Los Angeles, CA, USA.

9 ³ Department of Genetics, University of Georgia, Athens, GA, USA,

10 ⁴ Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA,
11 USA

12

13 # Correspondence to Sascha H. Duttke (sascha.duttke@wsu.edu)

14 **Abstract**

15 Unstable transcripts have emerged as markers of active enhancers in vertebrates and shown to
16 be involved in many cellular processes and medical disorders. However, their prevalence and
17 role in plants is largely unexplored. Here, we comprehensively captured all actively initiating
18 (“nascent”) transcripts across diverse crops and other plants using capped small (cs)RNA-seq.
19 We discovered that unstable transcripts are rare, unlike in vertebrates, and often originate from
20 promoters. Additionally, many “distal” elements in plants initiate tissue-specific stable transcripts
21 and are likely *bone fide* promoters of yet-unannotated genes or non-coding RNAs, cautioning
22 against using genome annotations to infer “enhancers” or transcript stability. To investigate
23 enhancer function, we integrated STARR-seq data. We found that annotated promoters, and
24 other regions that initiate stable transcripts rather than unstable transcripts, function as stronger
25 enhancers in plants. Our findings underscore the blurred line between promoters and enhancers
26 and suggest that cis-regulatory elements encompass diverse structures and mechanisms in
27 eukaryotes.

28 **Introduction**

29 The discovery of rapidly degraded and often unprocessed RNAs, such as enhancer-associated
30 RNAs in mammals (De Santa et al. 2010; Kim et al. 2010), has sparked the ongoing endeavor to
31 demystify their role and potential functions. Methods that capture actively transcribed or “nascent”
32 RNA rather than steady-state transcript levels that are a result of many processes, including
33 initiation, elongation, maturation, and decay (Wissink et al. 2019; Yamada and Akimitsu 2019)
34 were instrumental to this research. These approaches have revealed that unstable RNAs are
35 highly prevalent in vertebrates and are involved in many cellular processes and medical disorders
36 (Palazzo and Lee 2015). Unstable transcripts have also been shown to impact gene expression
37 by interacting with transcription factors (TFs), co-factors, or chromatin (Flynn et al. 2011; Lam et
38 al. 2013; Mousavi et al. 2013; Schaukowitch et al. 2014; Benner et al. 2015; Oksuz et al. 2023),
39 and influence the three-dimensional structure of the genome (Lewis et al. 2019).

40

41 Distal, bidirectional unstable transcripts, often referred to as enhancer RNAs (eRNAs), have
42 emerged as preferred markers of active regulatory regions in vertebrates (Kim et al. 2010;
43 Azofeifa et al. 2018; Ding et al. 2018; Arnold et al. 2019). These eRNAs are commonly short, non-
44 polyadenylated, unstable, and generated from bidirectionally transcribed loci (Arnold et al. 2019)
45 although some eRNAs were shown to be spliced or polyadenylated eRNAs (Ørom et al. 2010; Gil
46 and Ulitsky 2018; Arnold et al. 2019). Plants no doubt leverage distal cis-regulatory regions,
47 including traditional enhancers (Timko et al. 1985; Oka et al. 2017; Lu et al. 2019; Ricci et al.
48 2019) but the prevalence and potential roles of unstable transcripts is largely unexplored (Hetzell
49 et al. 2016; Weber et al. 2016; Yan et al. 2019).

50

51 Given the importance of plants as the world's primary food source and their central role in
52 enlivening and sustaining the environment, it is critical to address this gap in our knowledge.

53 However, high quality nascent RNA sequencing datasets, and especially nascent transcription
54 start site (TSS) data, from plants are currently rare. Although some groups, including ours, have
55 demonstrated nascent RNA sequencing methods are feasible in plants, including GRO-seq
56 (Hetzel et al. 2016; Liu et al. 2018; Zhu et al. 2018), PRO-seq (Lozano et al. 2021) and pNET-seq
57 (Zhu et al. 2018; Kindgren et al. 2020), their application is challenging. Plant cell walls, abundant
58 plastids, and secondary metabolites hinder the necessary isolation of pure nuclei and complicate
59 immunoprecipitation steps. Additionally, plants have five or more eukaryotic RNA polymerases,
60 as well as multiple phage-like and plastid-encoded prokaryotic RNA polymerases (Zhou and Law
61 2015), and traditional GRO-seq (Core et al. 2008) and PRO-seq (Kwak et al. 2013) methods
62 capture nascent transcripts from all of these RNA polymerases nonspecifically, complicating data
63 interpretation (Liu et al. 2018). Thus, nascent RNA sequencing methods drastically advanced our
64 understanding of unstable transcripts in animals and fungi (Core et al. 2008; Core et al. 2014;
65 Mikhaylichenko et al. 2018; Core and Adelman 2019; Wissink et al. 2019), but less in plants.

66

67 Some of the technical limitations described above can be alleviated by exploiting the 5' cap and
68 specifically enriching for nascent RNA polymerase II transcripts and their transcription start sites
69 (TSSs) (5'GRO, (Lam et al. 2013), also known as GRO-cap (Core et al. 2014). Selective
70 sequencing of 5' capped ends also increases the sensitivity of these methods to detect short,
71 rare, and unstable transcripts (Duttke et al. 2019; Yao et al. 2022) such as eRNAs (De Santa et
72 al. 2010; Kim et al. 2010; Lam et al. 2013) and promoter-divergent unstable transcripts (Seila et
73 al. 2008). We recently developed capped small (cs)RNA-seq, which leverages these advances
74 and directly enriches for nascent RNA polymerase II TSSs without the need for nuclei isolation,
75 run-on, or immunoprecipitation (Fig. 1a, (Duttke et al. 2019). csRNA-seq is a simple, scalable and
76 cost-efficient protocol that uses 1-3 ug of total RNA, rather than purified nuclei, as input, and is
77 compatible with any fresh, frozen, fixed, or pathogenic species or tissues (Lim et al. 2021; Branche

78 E 2022; Duttke et al. 2022b; Lam et al. 2023). Recently, csRNA-seq was shown to effectively
79 detect eRNAs in human lymphoblast cells (Yao et al. 2022).

80

81 Here, we used csRNA-seq to decipher the prevalence, location, and traits of stable and unstable
82 transcripts across different plant tissues, cells, and species. Our data suggest that vertebrate-like
83 eRNAs are effectively absent in plants. Instead, promoters were the major source of unstable
84 transcripts and intriguingly, promoters and open chromatin regions rather than sites initiating
85 unstable transcription, showed the strongest enhancer activity in the STARR-seq assay.

86

87 **Results**

88

89 **A comprehensive atlas of nascent transcripts in plants**

90

91 To comprehensively capture nascent transcripts in plants, we performed csRNA-seq on 12
92 samples from eight plant species chosen for their agricultural and scientific importance (Fig. 1b,
93 Table S1). For comparison, we also performed csRNA-seq on S2 cells from fruit fly (*Drosophila*
94 *melanogaster*) and integrated published data from fly embryos (Delos Santos et al. 2022), rice
95 (*Oryza sativa*, adult leaves) (Duttke et al. 2019), human white blood cells (WBCs) (Lam et al.
96 2023), human lymphocytes (Duttke et al. 2019), and fungi (common mushroom, *Agaricus*
97 *bisporus*; yeast, *Saccharomyces cerevisiae*) (Duttke et al. 2022a) (Fig. 1b).

98

99 csRNA-seq accurately captured actively transcribed stable and unstable RNAs and their
100 transcription start sites (TSSs) genome-wide and at single nucleotide resolution, as exemplified
101 by the *A. thaliana* ER-type Ca²⁺ ATPase 3 (ECA3) locus (Fig. 1c) or unstable pri-miRNA 161 (Fig.
102 1d), similar to other nascent methods but, on average, with less background noise (Fig. 1c,d, Fig.

103 S1a). As expected, csRNA-seq-captured TSSs were enriched in proximity to annotated TSSs
104 genome wide (Fig. 1e, Fig. S1b-e). About one third of the csRNA-seq TSSs mapped in *A. thaliana*
105 leaves were identical to those mapped by 5' GRO-seq in 7-day old seedlings, and nearly all were
106 within 200 bp (Fig. 1f (Hetzl et al. 2016)). TSSs identified by csRNA-seq were also similar to
107 those we identified by 5' GRO-seq in *Physcomitrium patens*, *Chlamydomonas reinhardtii* and
108 *Selaginella moellendorffii* (Fig. S1f-h). Thus, csRNA-seq accurately captures actively initiated
109 transcripts and their TSSs in diverse plant species and tissues.

110

111 To validate our csRNA-seq TSSs further, we examined their association with the chromatin and
112 epigenomic landscape (Ricci et al. 2019; Zhao et al. 2022; Wang et al. 2023). As expected for
113 active TSSs, chromatin accessibility (ATAC-seq) peaked just upstream of csRNA-seq-captured
114 TSSs in both *A. thaliana* (Fig. 1g) and maize (Fig. S1i). Histone modifications associated with
115 transcription initiation, such as H3K27ac and H3K4me3 (Creighton et al. 2010; Lauberth et al.
116 2013), were found downstream of csRNA-seq TSSs (Fig. 1g, Fig. S1i). Regions of transcription
117 initiation were also enriched in genomic regions annotated as associated with transcription and
118 were mainly found at promoter regions (Fig. 1h). Sites of transcription initiation across plant
119 species revealed a similar pattern to *A. thaliana*, with the majority of TSSs located within
120 annotated promoter regions (Fig. S2, Table S2). Additionally, csRNA-seq exhibited efficient and
121 specific enrichment of 5' capped RNA polymerase II transcripts, with only a small percentage of
122 reads mapping to non-chromosomal regions like plastids or mitochondria (Fig. 1i). These data
123 further support that csRNA-seq accurately identifies nascent transcripts and their TSSs from total
124 RNA across diverse plant species.

125

126 In eukaryotes, most genes display dispersed transcription initiation from multiple TSSs within 20-
127 100 bp in the same promoter or enhancer region (Haberle and Stark 2018; Murray et al. 2022).
128 Therefore, we will hereafter jointly refer to all strand-specific individual or clusters of TSSs as

129 transcription start regions (TSRs, Fig. 2a (Luse et al. 2020)). This approach also avoids implying
130 functionality of identified regions beyond initiating transcription (Halfon 2019), and definition of
131 “enhancers” based on annotations, whose quality varies strongly across the species or even for
132 different cell types within a species (Shamie et al. 2021).

133

134 The number of detected TSRs and TSSs varied from about 6.5k TSRs with 60k TSSs in yeast, to
135 about 60k TSRs and 165k TSSs in human H9 lymphocytes (Fig. 1b, Table S1). Among plant
136 species, we observed a range of TSRs and TSSs, from 12.6k TSRs with 48k TSSs in *C. reinhardtii*
137 to 30k TSRs and up to 88k TSSs in some monocots (e.g. barley). In total, we identified >380,000
138 TSRs with over 1.25 million TSSs. This comprehensive atlas provides a valuable resource for
139 studying transcription and gene regulation in plants and spans over 1.5 billion years of evolution.

140

141

142 **Unstable RNAs are infrequent in plants**

143

144 CsRNA-seq captures active transcription initiation and thus both stable and unstable RNAs. To
145 infer transcript stability, we took advantage of total RNA-seq, which reports stable, steady-state
146 RNAs. Specifically, we estimated transcript stability by quantifying total RNA-seq reads near
147 csRNA-seq TSSs (Fig. 2 a)(Blumberg et al. 2021). This approach is independent of genome
148 annotations, which vary drastically in quality among the studied samples. TSSs of unstable RNAs
149 have few-to-no strand-specific RNA-seq reads downstream (e.g., Fig. 1d), whereas stable RNAs
150 are readily detected by RNA-seq (e.g., Fig. 1c, (Duttke et al. 2019). The number and percentage
151 of TSRs and TSSs that give rise to unstable transcripts (uTSRs and uTSSs, respectively) is
152 dependent on peak csRNA-seq calling cutoff and total RNA-seq coverage (Fig. S3a). We required
153 unstable RNAs to have less than 2 per 10 million RNA-seq reads within -100 bp to +500 bp of the

154 major TSSs within the TSR, in line with the observed bimodal distribution of TSR stability (Fig.2
155 b).

156

157 The number of stable TSRs was with ~7-21k comparatively similar across kingdoms. However,
158 the number and percentage of uTSRs and uTSSs varied up to 100-fold (Fig. 2e, Table S1). In
159 humans, up to 75% of all TSRs were uTSRs, whereas in fruit flies, this frequency was about 20%,
160 and in the fungi yeast and *A. bisporus*, it was less than 2% (Fig. 2e, Table S1). In plants, the
161 percentage of uTSRs ranged from 6% to 40%, with uTSRs being more common in monocots (e.g.
162 rice, maize, barley) compared to dicots (e.g. *A. thaliana*, papaya) or nonvascular plants (e.g.
163 *Selaginella*, *P. patens*). There was also variability in the proportion of uTSRs among different
164 tissues within the same organism, for example in different maize tissues (Fig.2e, Fig. S3c).
165 Importantly, these numbers likely present the upper limit of unstable transcripts. CsRNA-seq is
166 orders of magnitude more sensitive than RNA-seq (Duttke et al. 2019); as a result, recently
167 activated or tissue-specific TSRs might be readily detected by csRNA-seq, but not total RNA-seq.
168 Thus, these TSRs that are in fact stable could be misclassified as unstable RNAs. To minimize
169 resulting bias, we therefore focused our analysis where possible on tissues in near-quiescent
170 states, like mature leaves and cultured cells. However, it is likely that the true number of uTSRs
171 is even lower than what we are reporting.

172

173 Unstable transcripts could also result from premature termination prior to RNA polymerase II
174 pause release (Core and Adelman 2019). Because csRNA-seq alone cannot discern between this
175 scenario and rapid degradation post RNA processing (canonical “instability”), we integrated
176 published GRO-seq data from *A. thaliana* leaves and seedlings (Zhu et al. 2018; Hetzel et al.
177 2016) and estimated pausing. Plotting read density within 1kb of TSSs and calculating the pausing
178 index (reads -100, +300 / reads +301, +3000, relative to TSSs (Chen et al. 2015)) showed only a
179 modest increase in proximal RNA polymerase II occupancy near the TSSs of unstable transcripts

180 compared to stable ones (Fig. 2c). Thus, consistent with the absence of canonical promoter-
181 proximal pausing in plants (L. Core and Adelman 2019), pausing-dependent termination is unlikely
182 to explain most of the unstable transcripts identified in this study.

183

184 Importantly, although unstable transcripts were on average more weakly initiated than stable ones
185 (Fig. S3b), the DNA sequence composition surrounding TSRs initiating stable and unstable
186 transcription was highly similar (Fig. 2d). TSRs of both groups had hallmarks of canonical cis-
187 regulatory elements including a TATA-box and Initiator core promoter signature, emphasizing that
188 these unstable TSRs are not just transcriptional noise. Furthermore, *de novo* motif analysis of
189 sequence motifs in proximity to TSSs (-150, +50, relative to the TSS) initiating stable or unstable
190 transcripts also revealed highly similar occurrences of transcription factor binding sites ($r>0.95$)
191 for all samples with notable uTSS ($>1.5k$, Fig. S4). These results not only emphasize that both
192 stable and unstable TSSs captured by our method are *bona fide* TSSs, but also suggest that
193 similar regulatory mechanisms support the initiation of stable and unstable transcripts in plants.

194

195 Unstable transcripts often display cell-type-specific expression (Arnold et al. 2019), which may
196 compromised their detection in complex samples. To address this notion, we compared the
197 detection of uTSRs from clonal cell populations versus tissues. About 18% of all detected TSRs
198 were uTSRs in *A. thaliana* Col-0 cells, compared to 37% in leaves. By contrast, 19% and 20% of
199 TSRs were unstable in fruit fly S2 cells and in 0-12h embryos, respectively; 0.5% versus 2% were
200 unstable in single cell yeast versus the multicellular mushroom *A. bisporus*, and 68% and 75%
201 were unstable in human lymphocytes versus white blood cells (Fig. 2f). Thus, a higher percentage
202 of uTSRs and uTSSs was observed in complex tissues across all kingdoms (Fig. 2f, Fig. S3c,
203 Table S1). Together, these data argue that the previously reported underrepresentation of
204 unstable TSRs and RNAs in plants (Hetzel et al. 2016) is not due to their limited detectability in
205 complex tissues. Indeed, our data consistently captured uTSSs and uTSRs in diverse plant

206 species, fruit flies and fungi, but they are much less prevalent in all these organisms than in
207 humans.

208

209 **Origins of plant unstable transcripts**

210

211 Studies in vertebrates have identified many distinct classes of unstable RNAs, such as short,
212 bidirectional eRNAs, promoter-divergent transcripts, and others (Seila et al. 2008; Almada et al.
213 2013; Kim and Shiekhattar 2015; Field and Adelman 2020). As genomic locations of origin, rather
214 than functional assays, were often used to classify these transcript types, we compared the
215 genomic locations of uTSRs in *A. thaliana* Col-0 cells and human lymphocytes, where quality
216 annotations are available. In total, we found 3,651 uTSRs in *A. thaliana*, compared to 37,315 in
217 humans. While this number is about the same when normalizing for genome size, it is important
218 to remember that with 16,527 vs. 17,268, a similar number of stable transcripts was expressed in
219 both species.

220

221 While unstable transcripts from promoter divergent or antisense transcription were prominent in
222 humans, unstable transcripts in plants predominantly originated from promoters in sense (Fig. 3a,
223 b). About 27% of uTSRs in *A. thaliana* were initiated in the sense orientation from annotated
224 promoters, compared to 17.8% in humans (Fig. 3a). These promoters in *A. thaliana* were often
225 tissue-specific and did not share specific pathways or gene sets (Fig. S3e), hinting that the
226 observed initiation of uTSRs may be sporadic, rather than resulting from a common or regulated
227 mechanism. Approximately 7.3% of uTSRs were promoter-proximal and divergent, compared to
228 15.3% in human lymphocytes (Fig. 3a, Fig. S3d). Another 1.5% and 5.4% in *A. thaliana*, and
229 humans respectively, were within 300 bp downstream of the TSS and therefore TSS antisense.

230

231 We found that 2.7% of human uTSRs and 5.8% in *A. thaliana* annotated to single exon transcripts
232 like snRNA and snoRNA. These short transcripts are inefficiently captured by total RNA-seq due
233 to their small size, and therefore may not, in fact, be unstable (Duttke et al. 2019). Some uTSRs
234 were found in the proximity of genes encoding miRNAs (Fig. 3a), thus likely pri-miRNA promoters,
235 and only 2.7% of human uTSRs and 5.8% *A. thaliana* uTSRs were in exons.

236

237 Therefore, most uTSRs initiated outside of annotated regions in both human lymphocytes (56.2%,
238 ~21,000 uTSRs) and Col-0 cells (54.4%, ~1950 uTSRs) (Fig. 3a). It is important to reiterate that,
239 given the higher sensitivity of csRNA-seq over RNA-seq (Duttke et al. 2019), many of these sense
240 transcripts classified as unstable could be newly activated genes or non-coding RNAs, suggesting
241 the true number of unstable RNAs found in plants to be even lower than what we are reporting.
242 However, as detailed below, many of these “distal loci” in plants but not humans also initiated
243 stable transcripts in other tissues.

244

245 **Many plant promoter and distal TSRs give rise to stable and unstable transcripts**

246

247 To determine if TSRs can switch between initiating stable and unstable transcripts, we compared
248 their stability in *A. thaliana* Col-0 cells and leaves, as well as the young and adult leaf, shoot and
249 root samples from maize. We found that about 28.4% of TSRs in *A. thaliana* and 33.4% in maize
250 switched from unstable to stable or vice versa in the different samples (Fig. 3c). Moreover, about
251 18.5% of transcripts switched between stable and unstable in biological replicates of the same
252 sample. Thus, many TSRs give rise to stable transcripts in one tissue context and unstable
253 transcripts in another.

254

255 Given these findings, we also explored the spatial relationship of stable TSRs relative to
256 annotations across species. In *A. thaliana* cells, maize leaves and S2 cells from fruit fly, TSRs

257 within 100 bp of annotations were predominantly stable, but about 28% of all uTSRs in *A. thaliana*
258 cells, 50% in maize leaves, and 64% in S2 cells also located to these promoter regions (Fig. 3d,
259 Fig. S3f). In human, a comparable number of stable and unstable transcripts initiated from within
260 100 bp of annotated promoters. However, while in most of the samples that we analyzed, a similar
261 or even higher number of TSRs >100 bp of annotated promoters initiated stable transcripts
262 compared to unstable transcripts (Fig. 3d,e), distal TSRs in human samples predominantly
263 initiated unstable transcripts. We note that the total number of distal TSRs initiating stable
264 transcripts was similar in human and plant samples, whereas the number of distal TSRs initiating
265 unstable transcripts was higher in human samples, particularly lymphocytes (Fig. 3e).

266

267 Thus, while the distance to annotations and the distal-proximal classification depends on genome
268 size and annotation quality, distal regions were consistently enriched for uTSRs in humans, but
269 not in the other species investigated. In total, we identified 19,397 distal TSRs in plants that
270 initiated stable RNAs. Overall, these findings caution against classifying distal TSRs as uTSRs.
271 Indeed, many distal TSRs initiate stable RNAs in plants, and thus may be promoters of
272 unannotated genes or non-coding RNAs further alluding to unannotated promoters and cell type-
273 dependent stability as the major source of unstable transcripts in plants.

274

275 **Canonical vertebrate enhancers are rare in plants**

276

277 Most human promoters and enhancers start transcription in both forward and reverse directions,
278 often from distinct core promoters (Core et al. 2014; Duttke et al. 2015). By contrast to this
279 predominantly bidirectional nature of transcription initiation in humans, transcription was largely
280 initiated unidirectionally in plants, flies and fungi (Fig. 4 a,b, Fig. S5a). On average, only 4.7% of
281 TSRs in plants initiated bidirectional unstable transcripts, most of which were promoter-proximal

282 (Fig.4a,b). For instance, in *A. thaliana* leaves, 62% and 91% of bidirectional TSRs were within
283 100 bp and 2 kb of annotated 5' ends respectively (Fig. S5b,c).

284

285 Although there were some instances of distal bidirectional initiation of unstable transcripts in
286 plants, reminiscent of canonical mammalian eRNAs (Fig.4c), they were rare and potentially too
287 few to serve as reliable markers for plant enhancers. For instance, only 361 (1.8%) and 72 (0.5%)
288 TSRs in *A. thaliana* Col-0 cells and leaves, respectively, initiated distal bidirectional unstable
289 transcripts. By contrast, 9,318 (17%) of TSRs in human H9 lymphocytes initiated bidirectional
290 unstable transcripts that were >2kb of annotated 5' ends (Fig.4d, Fig. S5d). This difference is not
291 simply due to genome size or gene density: even in monocots with large genomes the number of
292 distal, unstable, and bidirectional initiation events varied from only 400-857 events, contributing
293 to a maximum of 3.2% of TSRs (Fig. S5d). As such, distal bidirectional uTSRs are rare in plants.

294

295 **Promoters may be stronger enhancers in plants**

296

297 To explore the functionality of the distal transcription initiation events that we detected in plants,
298 we generated csRNA-seq data matching published STARR-seq data from maize 7d leaves (Ricci
299 et al. 2019). In this assay, open chromatin regions were cloned downstream of a minimal promoter
300 and their ability to enhance transcription quantified (Arnold et al 2013). The majority (92%) of the
301 csRNA-seq TSRs were covered by the STARR-seq library, indicating effective coverage of the
302 maize genome (Fig. S6a). Notably, we found that TSRs initiating stable transcription (i.e.,
303 promoters) showed the strongest enhancer activity in plants. Transcription activity, as assayed by
304 csRNA-seq, was overall positively correlated with STARR-seq enhancer activity ($r = 0.49$, Fig.
305 S6b). Consistent with these findings, regions with high STARR-seq activity were enriched for
306 binding sites for strong activators like GATA or EBF factors while inactive regions had repressors

307 including RPH1, HHO3, and ARID (At1g76110, Fig. S6c). These findings suggest that the
308 competence of a regulatory element to recruit RNA polymerase II contributes to its enhancer
309 activity, as assessed by STARR-seq. However, most promoters and even more uTSRs showed
310 little STARR-seq enhancer activity (Fig. S6d) and substantial STARR-seq enhancer activity was
311 also observed for many open chromatin regions that were transcriptionally inactive (Fig. 4e), as
312 assayed by csRNA-seq.

313

314 While vertebrate enhancers are commonly marked by unstable bidirectional transcription
315 (eRNAs), initiation from the upstream STARR-seq promoter in plants was most strongly enhanced
316 by TSRs that initiated stable RNAs (Fig. 4e), whereas uTSRs had weaker enhancer activity.
317 Bidirectional uTSRs that resemble vertebrate enhancers, on average, exhibited the weakest
318 activity (“UU”, Fig. 4e, Fig. S6b). By contrast to flies where bidirectional but not unidirectional
319 promoters were reported to often act as potent enhancers (Mikhaylichenko et al. 2018), both uni-
320 and bidirectional promoters exhibited similar STARR-seq activity (Fig. S6d). Notably, uTSRs that
321 initiated stable transcription upstream also show the highest enhancer activity among uTSRs.
322 Together, these findings underscore the blurred line between promoters and “enhancers”,
323 propose enhancers as a heterogeneous group, and highlight distinct features of plant
324 transcription.

325

326 **Discussion**

327

328 By interrogating nascent transcription initiation across a wide range of organisms, we discovered
329 that unstable transcripts are rare in plants, and in fact also in fruit flies, and some fungi, compared
330 to mammals. Distal bidirectional initiation of unstable transcripts, which is a hallmark of vertebrate
331 enhancers and a predominant source of unstable transcripts and eRNAs, was particularly

332 uncommon in plants. Instead, unstable transcription was predominantly unidirectional in plants
333 (Hetzel et al. 2016), originated from promoters, and we identified numerous distal regulatory
334 elements that initiated stable transcripts, making them *bona fide* promoters. These findings
335 suggest that a considerable portion, if not the majority, of unstable RNAs in plants may arise from
336 promoters of either known or unannotated genes or non-coding RNAs (Mendieta et al. 2021) and
337 caution against using genome annotations to infer transcript stability or define “enhancers”.

338

339 This study also provides a notable resource to the scientific community. Aside from a
340 comprehensive collection of nascent TSS data paired with total RNA-seq and small RNA-seq
341 (csRNA-seq input) for an array of plant species, tissues, and cells, it demonstrates that csRNA-
342 seq can help to refine genome annotations (Shamie et al. 2021), readily captures the entire active
343 RNA polymerase II transcriptome in plants and across eukaryotes, and serves as a proof-of-
344 concept how csRNA-seq opens up new opportunities to advance our understanding of gene
345 regulation. For instance, csRNA-seq can be readily applied to investigate nascent transcription in
346 a wide range of scientifically or agriculturally important field samples and tissues, allowing for the
347 decoding of gene regulatory networks implicated in biotic or abiotic stress responses.

348

349 Our findings also shed light on the discussion surrounding the role and existence of vertebrate-
350 like eRNAs in plants (Weber et al. 2016; Zhang et al. 2022) and further blur the line between the
351 concepts of canonical promoters and enhancers. While distal loci initiating bidirectional unstable
352 transcripts were found in all plant species studied (Fig. 4, Fig. S5d), they were rare, and in some
353 instances, initiated stable transcripts in other tissues or samples from the same plant. Combining
354 csRNA-seq (Duttke et al. 2019) with STARR-seq (Arnold et al. 2013; Ricci et al. 2019),
355 demonstrated that genomic regions initiating stable transcription function as stronger enhancers
356 in plants than those starting unstable transcripts. Intriguingly, among plant TSRs, those
357 resembling mammalian-like enhancers, defined as initiating bidirectional unstable transcription,

358 exhibited the weakest activating properties by STARR-seq. In addition, it is important to note that
359 the number of distal TSRs initiating unstable transcription are also likely too few to make up all
360 plant enhancers. While enhancers defined by eRNAs vastly outnumber genes in humans (Dean
361 et al. 2021), orders of magnitude more stable than unstable transcripts were observed in plants.

362

363 It is further notable that many regions that did not initiate transcription in the plant genome, as
364 assayed by csRNA-seq, exhibited STARR-seq enhancer activity, on average more than uTSRs
365 (Fig. 4e). Furthermore, unidirectional plant promoters, on average, displayed similar enhancer
366 activity than bidirectional ones. Contrasting these observations with findings in mammals (Ding et
367 al. 2018; Arnold et al. 2019) or flies, where bidirectional promoters were reported to often act as
368 potent enhancers while unidirectional promoters generally cannot (Mikhaylichenko et al. 2018),
369 suggests that plant promoters may possess distinct attributes. However, it is also possible that
370 gene regulatory elements form a continuum, and that different species or gene regulatory contexts
371 preferentially leverage different parts of it. While “canonical vertebrate enhancers” with eRNAs
372 may be prevalent in some animals, reports of processed eRNAs (Ørom et al. 2010; Gil and Ulitsky
373 2018; Arnold et al. 2019), enhancers functioning as context-dependent promoters (Kowalczyk et
374 al. 2012), and the important role of enhancers to serve as promoters in the birth of new genes
375 (Ludwig et al. 2000), speak to such a continuum and “enhancers” as heterogeneous group of
376 regulatory elements (Zentner et al. 2011; Link et al. 2018; Halfon 2019; Panigrahi and O’Malley
377 2021). If true, this continuum hypothesis would propose that there may also be untranscribed
378 regions or unidirectional promoters that function as “enhancers” in other species including
379 humans.

380

381 **Methods**

382 Plant material and growth conditions

383 *A.thaliana* Col-0 mature leaves were collected from plants grown as described (Wang et al.
384 2023), while *A.thaliana* Col-0 suspension cells (Concia et al. 2018) were grown in 250-mL
385 baffled flasks containing 50 mL of growth medium (3.2 g/L Gamborg's B-5 medium, 3 mM MES,
386 3% [v/v] Suc, 1.1 mg L⁻¹ 2,4-dichlorophenoxyacetic acid). The cultures were maintained at
387 23°C under continuous light on a rotary shaker (160 rpm) and kindly provided as a frozen pellet
388 by Dr. Ashley M. Brooks. Barley (*Hordeum vulgare*) RNA was isolated by Dr. Pete Hedley from
389 embryonic tissue (including mesocotyl and seminal roots; EMB) isolated from grain tissues 4
390 days past germination (Mascher et al. 2017). *Physcomitrium (Physcomitrella) patens*
391 (Gransden) was grown on plates with BCDA medium in a growth cabinet at 21°C under 16h
392 light. *Selaginella moellendorffii* was purchased from Plant Delights Nursery
393 (<https://www.plantdelights.com/collections/selaginella/products/selaginella-moellendorffii>) and
394 grown at the window under normal daylight for 1 week prior to isolating RNA from stems and
395 leaves. *C. reinhardtii*, which was kindly provided by Dr. Will Ansari and Dr. Stephen Mayfield
396 (UC San Diego), was grown to late logarithmic phase in TAP (Tris-acetate-phosphate) medium
397 at 23°C under constant illumination of 5000 lux on a rotary shaker. Adult 2nd and 3rd leaves
398 from *Z. mays* L. cultivar B73 was kindly provided by Dr. Lauri Smith (UC San Diego). Plants
399 were grown in 4-inch pots in a greenhouse (temp: 23°C-29°C) without supplemental lighting or
400 humidification (humidity in the 15 hours following inoculation ranged between 70 and 90%) year
401 round in La Jolla, CA. RNA from *Z. mays* L. cultivar B73 7d old shoot, root and leaves were
402 grown in the Schmitz laboratory (University of Georgia) as described in (Ricci et al. 2019).

403 Data overview

404 A table of all generated and analyzed data can be found in Table S3

405

406 csRNA-Seq Library Preparation

407 csRNA-seq was performed as described in (Duttke et al. 2019). Small RNAs of ~20-60 nt were
408 size selected from 0.4-3 µg of total RNA by denaturing gel electrophoresis. A 10% input sample
409 was taken aside, and the remainder enriched for 5'-capped RNAs. Monophosphorylated RNAs
410 were selectively degraded by 1 hour incubation with Terminator 5'-Phosphate-Dependent
411 Exonuclease (Lucigen). Subsequently, RNAs were 5' dephosphorylated through 90 minutes
412 incubation in total with thermostable QuickCIP (NEB) in which the samples were briefly heated
413 to 75°C and quickly chilled on ice at the 60 minutes mark. Input (sRNA) and csRNA-seq libraries
414 were prepared as described in (Hetzell et al. 2016) using RppH (NEB) and the NEBNext Small
415 RNA Library Prep kit, amplified for 11-14 cycles.

416

417 **Total RNA-Seq Library Preparation**

418 Strand-specific, paired-end libraries were prepared from total RNA by ribosomal depletion using
419 the Ribo-Zero Gold plant rRNA removal kit (Illumina, San Diego, CA). Samples were processed
420 following the manufacturer's instructions.

421

422 **Sequencing Information**

423 Capped small RNA-seq libraries were sequenced on an Illumina NextSeq 500 instrument in the
424 Benner lab or, like the total RNA-seq libraries, using a NovaSeq S6 at the IGM genomics core at
425 UC San Diego. Information on read counts and alignment statistics can be found in
426 Supplementary Tables S4.

427

428 **Data analysis**

429

430 **List of used genomes and annotations:**

Species	Genome Version	Genebuild	Source
Agaricus bisporus	Agabi_varbisH97_2	GCA_000300575.1	ftp://ftp.ensemblgenomes.org/pub/release-35/
Arabidopsis thaliana	TAIR10	GCA_000001735.1 Ara port11	ftp://ftp.ensemblgenomes.org/pub/release-55/
Carica papaya	Papaya1.0	GCF_000150535.2	ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/50/535/GCF_000150535.2_Papaya1.0
Chlamydomonas reinhardtii	Chlamydomonas_r_einhardtii_v5.5	GCA_000002595	ftp://ftp.ensemblgenomes.org/pub/release-55/
Drosophila melanogaster	dm6	GCA_000001215.4	ftp://ftp.ensemblgenomes.org/pub/release-35/
Homo sapiens	GRCh38.p13	gencode.42	https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/
Hordeum vulgare	ASM32608v1	GCA_000326085.1	ftp://ftp.ensemblgenomes.org/pub/release-35/
Oryza sativa	IRGSP-1.0	GCA_001433935.1	ftp://ftp.ensemblgenomes.org/pub/release-35/

		201 3-04- IRGSP	
<i>Physcomitri um patens</i>	Phypa V3	GCA_0000 02425.2	ftp://ftp.ensemblgenomes.org/pub/release-55/
<i>Saccharomy ces cerevisiae</i>	ASM18143v1	GCA_0001 81435.1	ftp://ftp.ensemblgenomes.org/pub/release-35/
<i>Schizosacch aromyces pombe</i>	ASM294v2	GCA_0000 02945.2	ftp://ftp.ensemblgenomes.org/pub/release-35/
<i>Selaginella moellendorff ii</i>	v1.0	GCA_0001 43415.1	ftp://ftp.ensemblgenomes.org/pub/release-35/
<i>Zea mays (rest)</i>	Zm-B73- REFERENCE- NAM-5.0	GCA_9021 67145.1	ftp://ftp.ensemblgenomes.org/pub/release-55/
<i>Zea mays (STARR- seq)</i>	AGPv4.38 (STARR-seq)	GCA_0000 05005.6	https://www.ncbi.nlm.nih.gov/assembly/GCF_00005005.2/

431

432 csRNA-seq Data Analysis

433 Transcription start regions (TSRs), transcription start sites (TSSs) and their activity levels were
434 determined by csRNA-seq and analyzed using HOMER v4.12 (Duttke et al. 2019). Additional
435 information, including analysis tutorials are available at
436 <https://homer.ucsd.edu/homer/ngs/csRNaseq/index.html>. TSR files for each experiment were
437 added to the GEO data.

438

439 csRNA-seq (small capped RNAs, ~20-60 nt) and total small RNA-seq (input) sequencing reads
440 were trimmed of their adapter sequences using HOMER ("batchParallel.pl "homerTools trim -3
441 AGATCGGAAGAGCACACGTCT -mis 2 -minMatchLength 4 -min 20" none -f
442 {csRNA_fastq_path}/*fastq.gz") and aligned to the appropriate genome using *Hisat2* (Kim et al.
443 2019) ("hisat2 -p 30 --rna-strandness RF --dta -x {hisat2_genome_index} -U
444 {path_rimmed_csRNA or sRNA} -S {output_sam} 2> {mapping_stats}"). Hisat2 indices were
445 generated for each genome using "hisat2-build -p 40 genome.dna.toplevel.fa
446 {Hisat2_indexfolder} except barely which required addition of " --large-index". Homer genomes
447 were generated using "loadGenome.pl -name {Homer_genome_name} -fasta
448 {species.dna.toplevel.fa} -gtf {species.gtf}" . Only reads with a single, unique alignment (MAPQ
449 >=10) were considered in the downstream analysis. The same analysis strategy was also
450 utilized to reanalyze previously published TSS profiling data to ensure the data was processed
451 in a uniform and consistent manner, with exception of the adapter sequences, which were
452 trimmed according to each published protocol. Tag Directories were generated as described in
453 the csRNA-seq tutorial. We automated the process for all species by first generating an
454 infofile.txt and then generating them in a batch
455 for species in species_list:
456 !ls \$sam_path/*.sam > \$sam_path'samNames.txt' #list all sam files and
457 save them to the list

```
458     samNames = pd.read_csv(sam_path +'samNames.txt', sep='\t', names =
459     ['samFile']) #read in file and name the column of interest
460
460     tagDirName = samNames['samFile'].str.split('(-
461     r[1|2|3|4|5|6|7|8|9|10|11])', n = 1, expand = True) #generate a new
462
462     column with the truncated name = the name I want for the tagdir
463
463     tagDirName.columns = ['1', '2','toss'] #name columns
464
464     tagDirName_concat = tagDirName[['1','2']].apply(lambda x: None if
465     x.isnull().all() else ';' .join(x.dropna()), axis=1) #no avoid empty
466
466     rows give nan
467
467     tagDirName_concat = pd.DataFrame(tagDirName_concat, columns =
468     ['tagDirs']) #remake df
469
469     tagDirName_concat['tagDirs'] =
470
470     tagDirName_concat['tagDirs'].str.replace('.sam',
471     '').str.replace(sam_path, '').str.replace('/',
472     tagdir_path).str.replace(';', '')#first remove sam from files that lack
473
473     -r, then remove the fastq path but add the tagDirs path
474
474
475     mkDirsFile = pd.concat([tagDirName_concat['tagDirs'],
476     samNames['samFile']], axis=1, sort=False) #save as a txt for the next
477
477     command but ignore the header and index
478
478     mkDirsFile.to_csv(infoFile_path, sep = '\t', index = False,
479     header=False)
480
480
481     mkTagDirs = f'batchMakeTagDirectory.pl {infoFile_path} -cpu 50 -
482     genome {genome} -omitSN -checkGC -fragLength 150 -single -r'
483
483     !{mkTagDirs}
484
```

485 TSS and TSRs were analyzed in this study. TSR, which comprise one or several closely spaced
486 individual TSS on the same strand from the same regulatory element (i.e. 'peaks' in csRNA-
487 seq), were called using findcsRNATSS.pl (Duttke et al. 2019) ("findcsRNATSS.pl
488 {csRNA_tagdir} -o {output_dir} -i {sRNA_tagdir} -rna {totalRNA_tagdir} -gtf {gtf} -genome
489 {genome} -ntagThreshold 10"). findcsRNATSS.pl uses short input RNA-seq, total RNA-seq
490 (Ribo0), and annotated gene locations to find regions of highly active TSS and then eliminate
491 loci with csRNA-seq signal arising from non-initiating, high abundance RNAs that nonetheless
492 are captured and sequenced by the method (for more details, please see (Duttke et al. 2019)).
493 Replicate experiments were first pooled to form meta-experiments for each condition prior to
494 identifying TSRs. Annotation information, including gene assignments, promoter distal, stable
495 transcript, and bidirectional annotations are provided by findcsRNATSS.pl. To identify
496 differentially regulated TSRs, TSRs identified in each condition were first pooled (union) to
497 identify a combined set of TSRs represented in the dataset using HOMER's mergePeaks tool
498 using the option "-strand". The resulting combined TSRs were then quantified across all
499 individual replicate samples by counting the 5' ends of reads aligned at each TSR on the correct
500 strand. The raw read count table was then analyzed using DESeq2 to calculate normalized rlog
501 transformed activity levels and identify differentially regulated TSRs (Love et al. 2014).

502
503 TSS were called using getTSSfromReads.pl ("getTSSfromReads.pl -d {csRNA_tagdir} -dinput
504 {sRNA_tagdir} -min 7 > {output_file}" (Duttke et al. 2019)). To ensure high quality TSSs, at least
505 7 per 10⁷ aligned reads were required and TSS were required to be within called TSR regions
506 (subsequently filtered using mergePeaks "mergePeaks {TSS.txt} {stableTSRs.txt} -strand -
507 cobound 1 -prefix {stable_tss}" or "mergePeaks {TSS.txt} {unstableTSRs.txt} -strand -cobound 1
508 -prefix {unstable_tss}"). Furthermore, TSSs that had higher normalized read density in the small
509 RNA input sequencing than csRNA-seq were discarded as a likely false positive TSS location.

510 These sites often include miRNAs and other high abundance RNA species which are not
511 entirely depleted in the csRNA-seq cap enrichment protocol. In most cases, TSRs were
512 analyzed (i.e. to determine motifs or describe the overall transcription activity of regulatory
513 elements) but when indicated single nucleotide TSS positions were independently analyzed (i.e.
514 to determine motif spacing to the TSS).

515

516 Annotation of TSS/TSR locations to the nearest gene was performed using HOMER's
517 annotatePeaks.pl program using GENCODE as the reference annotation (Heinz et al. 2010).

518

519 For additional information about csRNA-seq analysis and tips for analyzing TSS data, please
520 visit the HOMER website: <https://homer.ucsd.edu/homer/ngs/csRNaseq/index.html>.

521 Strand specific and other IGV and genome browser files were generated using "makeUCSCfile
522 {tag_directory_name} -strand + -fragLength 1 -o {tag_directory_name}.bedGraph" where the
523 tag_directory could be csRNA-seq or 5'GRO-seq data from any species or tissue.

524

525 5'GRO-seq and GRO-seq analysis

526 Published and generated 5'GRO-seq and GRO-seq data were analyzed as described for
527 csRNA-seq and sRNA-seq above. 5'GRO-seq peaks were called using HOMER's "findPeaks
528 {5GRO_tagdirectory} -i {GRO_tagdirectory} -style tss -F 3 -P 1 -L 2 -LP 1 -size 150 -minDist 200
529 -ntagThreshold 10 > 5GRO_TSRs.txt". Detailed explanation of each parameter can be found at
530 <http://homer.ucsd.edu/homer/ngs/tss/index.html>.

531

532 RNA-seq analysis

533 Paired end total ribosomal RNA-depleted RNA-seq libraries were trimmed using skewer ("time
534 -p skewer -m mp {read1} {read2} -t 40 -o {trimmed_fastq_output}") (Jiang et al. 2014) and

535 aligned using *Hisat2* (Kim et al. 2019) to ensure all data were processed as similar as possible
536 (“hisat2 -p 30 --rna-strandness RF --dta -x {hisat2_index} -1 {trimmed_RNAseq_R1} -2
537 {trimmed_RNAseq_R2} -S {output_sam} 2> {mapping_file}”). In this manuscript, total RNA-seq
538 was exclusively used to determine RNA-stability as described in the csRNA-seq analysis.

539

540 **ChIP-seq analysis**

541 Tag directories were generated for paired end sequenced ChIP libraries as described for total
542 RNA-seq. Peaks were called using HOMER’s “findPeaks {ChIP_tagdir} -i {ChIP_inout_tagdir} -
543 region -size 150 -minDist 370 > ChIP_peaks.txt”
544 Quantification of histone modifications associated with each TSS was performed from +1 to
545 +600 to capture the signal located just downstream from the TSS. When reporting log2 ratios
546 between read counts a pseudocount of “1 read” was added to both the numerator and
547 denominator to avoid divide by zero errors and buffer low intensity signal.

548

549 **ATAC-seq analysis**

550 ATAC-seq data were analyzed as described for csRNA-seq but trimmed using
551 “CTGTCTCTTATACACATCT”.

552

553 **DNA Motif Analysis**

554 *De novo* motif discovery and motif occurrence scanning were performed using HOMER (Heinz
555 et al. 2010) using TSRs as input. Binding sites were searched from -150 to +50 bp relative to the
556 primary TSS from each TSR, using GC-matched random genomic regions as background. Motif
557 occurrences, including histograms showing the density of binding sites relative to the TSS
558 (reported as motifs per bp per TSS), and average nucleotide frequency were calculated using
559 HOMER’s *annotatePeaks.pl* tool. Known motifs were analyzed using *findMotifsGenome.pl* with

560 the option -mknown to specifically analyze a motif or sets of motifs including our plant DNA
561 sequence motif library. For core promoter elements including the TATA-box or the Initiator, the
562 area where the motif is searched were constrained to their respective preferences relative to
563 TSSs. For example, TSSs with a match to BBCA+1BW (where the A+1 defines the initiating
564 nucleotide) were considered Inr-containing TSS (Vo ngoc et al. 2017). The “-nrevopp” function
565 was used to make the search strand specific and “-size -6,6” was used for Inr motifs, “ -size -
566 35,20” for TATA-box and TATA-box-like motifs. Data were summarized using custom python
567 code, transformed using pandas melt function (“pd.melt(CPE_frame, id_vars=['species'],
568 value_vars=['TATA', 'TATA_1mm', 'hINR', 'dINR'])”).
569 https://zenodo.org/record/7794821#.ZEAz_XbMJ3g and plotted using seaborn (“sns.boxplot”)
570 [10.21105/joss.03021]. Additional information can be found on the HOMER website:
571 <http://homer.ucsd.edu/homer/motif/>.
572
573 To identify de novo motifs enriched in the TSRs of all plant species and tissues, sequences of
574 each TSR were combined into one fasta file and findMotifs.pl used. The motif search was
575 constrained to sequences of 8 bp length to focus on the motif core and sequences 2000 bp
576 downstream of the TSR selected as background (“findMotifs.pl all_plantTSRs.fa fasta outputdir/
577 -fasta all_plantTRSbackground.fa -len 8 -S 200 -noconvert -p 60”). Subsequently, all known
578 plant motifs in the updated HOMERplants motif library (Hetzel et al. 2016) were added and
579 redundant motifs removed using “compareMotifs.pl {input.motif} {output_folder} -cpu 40 -
580 reduceThresh 0.6” and subsequently non-similar motifs concatenated “cat
581 output_folder/homerResults/motif[!V].motif output_folder/homerResults/motif?[!V].motif
582 output_folder/homerResults/motif??[!V].motif > NonRedudnant06.motif”.
583

584 For the Motif enrichment plot in each species (Fig.2B), the top 5 motifs from each species or
585 tissue were combined (“combineGO.pl -top 5 -f knownResults.txt -d
586 {homerresults_each_species}/* > all_species_5_motifs.txt”) and plotted using sns.clustermap.

587

588 Motif correlation of stable and unstable TSRs

589 Motifs were defined using HOMER and our 151 motif library using stable or unstable TSRs as
590 foreground and the other as background (“findMotifsGenome.pl {stable_TSS_file} {species_fa}
591 {species_tss}_stable/ -bg {UNstable_TSS_file} -mask -p 40 -size -150,50 -mset all -S 15 -len 10
592 findMotifsGenome.pl {UNstable_TSS_file} {species_fa} {species_tss}_UNstable/ -bg
593 {stable_TSS_file} -mask -p 40 -size -150,50 -mset all -S 15 -len 10”). Frames were
594 concatenated and the correlation calculated using pandas .corr function

595 (<https://zenodo.org/record/7794821#.ZD1rA3bMKUk>).

596

597 Transcript stability switch analysis

598 Transcript stability was determined as unstable if <2/10⁷ total RNA-seq reads were within -
599 100,+500 of the main TSS of the TSR. In *Arabidopsis* we compared cells and adult leaves to
600 identify transcripts that had differential stability among the conditions, in maize we used adult
601 leaves, 7d-old seedling leaves, 7d-old seedling roots and 7-d old seedling shoots. For the plots
602 (Fig. 5d; “sns.pointplot”) we limited our analysis in maize to 7d-old shoot vs. root.

603

604 Mapping stats calculation

605

606 All 2> outputs from hisat2 were copied into a mappingstats folder and summarized using the
607 following custom code.

608

```
609 mappingStats_dict = {"Library": [], "Reads": [], "Adapter reads": [], "Aligned 0
610 times": [], "Aligned 1 time": [], "Aligned >1 times": [], "Adapters %": [],
611 "Aligned 0 times %": [], "Aligned 1 time %": [], "Aligned >1 times
612 %": [], "Alignment rate": []}

613

614 for mapping_file in os.listdir('mappingstats_folder'):
615     if mapping_file.endswith('_mappingstats.txt'):
616         mapping_frame = pd.read_csv(mappingstats_folder + mapping_file, sep='\t')
617
618     library = mapping_file.split('.fastq')[0]
619
620     reads = (mapping_frame.loc[0][0]).split(' ') [0]
621     aligned_0 = (mapping_frame.loc[2][0]).split(' ') [0].split(' ') [-1]
622     aligned_0percent = (mapping_frame.loc[2][0]).split('()')[1].split('()')[0]
623
624     aligned_1 = (mapping_frame.loc[3][0]).split(' ') [0].split(' ') [-1]
625     aligned_1percent = (mapping_frame.loc[3][0]).split('()')[1].split('()')[0]
626
627     aligned_more = (mapping_frame.loc[4][0]).split(' ') [0].split(' ') [-1]
628     aligned_morePercent =
629     (mapping_frame.loc[4][0]).split('()')[1].split('()')[0]
630
631     rate = (mapping_frame.loc[5][0]).split(' ') [0]
632
633     ### also read out adapter dimers ###
634     species = mapping_file.split('_')[0] + '_' +
635     mapping_file.split('_')[1].split('-')[0]
```

```
636     trimmed_lengths_file = '/data/lab/duttke/labprojects/plants_2023/data/' +
637     species + '/fastq/csRNA/' + mapping_file.split('_mappingstats.txt')[0] +
638     '.fastq.gz.lengths'
639
640     trimmed_lengths_frame = pd.read_csv(trimmed_lengths_file, sep='\t')
641
642     adapter_dimers_reads = trimmed_lengths_frame.loc[0][1]
643
644     adapters_percent =
645     round(float((trimmed_lengths_frame.loc[0][2]).split('%')[0]),2)
646
647
648     mappingStats_dict["Library"].append(library)
649     mappingStats_dict["Reads"].append(reads)
650
651     mappingStats_dict["Adapter reads"].append(adapter_dimers_reads)
652
653     mappingStats_dict["Aligned 0 times"].append(aligned_0)
654
655     mappingStats_dict["Aligned 1 time"].append(aligned_1)
656
657     mappingStats_dict["Aligned >1 times"].append(aligned_more)
658
659     mappingStats_dict["Adapters %"].append(adapters_percent)
660
661     mappingStats_dict["Aligned 0 times %"].append(aligned_0percent)
662
663     mappingStats_dict["Aligned 1 time %"].append(aligned_1percent)
664
665     mappingStats_dict["Aligned >1 times %"].append(aligned_morePercent)
666
667     mappingStats_dict["Alignment rate"].append(rate)
668
669
670     mappingStats_dict_frame = pd.DataFrame(mappingStats_dict)
671
672     mappingStats_dict_frame = mappingStats_dict_frame.sort_values(by=['Library'])
673
674     mappingStats_dict_frame.to_csv('summary_mappingStats.tsv', sep = '\t')
675
676
677     Histograms and annotation of TSS to captured reads
678
679
680
```

662 Histograms showing csRNA-seq or other data relative to known TSS were generated using
663 “annotatePeaks.pl {known TSS} {species_homer_genome (e.g. TAIR10)} -strand + -fragLength
664 1 -size 100 -d {species_tagdirectory (e.g. P.patens_csRNaseq)} -raw > output.tsv. “Known TSS”
665 were extracted from .gtf files using “parseGTF.pl {species_gtf_file} tss > {species}_genes.tss”.
666 Histograms showing called TSS by csRNA-seq or 5’GRO-seq relative to one another or “Known
667 TSS” were generated using “annotatePeaks.pl {reference or “Known TSS”}
668 {species_homer_genome (e.g. TAIR10)} -p {2nd TSS file, i.e. csRNA-seq TSS} -size 2000 -hist
669 1 -strand + > output.tsv”.

670

671 Gene Ontology Analysis

672 Gene Ontology analysis was performed using METASCAPE (Zhou et al. 2019) for transcripts
673 annotated within 500 bp downstream of the main TSS of TSRs.

674

675 STARR-seq analysis

676 csRNA-seq data were generated from analogous tissue as used for STARR-seq
677 (GSE120304_STARR_B73_enhancer_activity_ratio.txt.gz) by Ricci et al (2019) as described
678 above. For compatibility reasons, this analysis thus used the *Z. mays* AGPv4 reference genome
679 and *Z. mays* AGPv4.38 genome annotation instead of maize 5.5. STARR-seq library fragments
680 of 1-50 bp were removed from the analysis as these short fragments disproportionately showed
681 no enhancer activity while longer fragments of the same locus did. csRNA-seq TSRs were
682 defined as described above and merged with the STARR-seq peaks (“mergePeaks”) to identify
683 overlaps. As sometimes several STARR-seq peaks fell within on TSR, we next corrected the
684 STARR-seq values by linking each mergedPeak ID with the sum of STARR-seq peaks that fell
685 within the peak. Next we normalized this value by the length of the peak to obtain a STARR-seq
686 value per bp for each merged peak and added the csRNA-seq values and TSR stability.

687

688 **Pausing index**

689 The pausing index was calculated as described (Chen et al. 2015) using reads near TSRs (-
690 100bp to +300bp) divided by those found downstream in the region of +301 to +2kb, relative to
691 the major TSS of the TSR.

692

693 **Data availability**

694 All raw and processed data generated for this study can be accessed at NCBI Gene Expression
695 Omnibus (GEO; <https://www.ncbi.nlm.nih.gov/geo/>) accession number GSE233927.
696 Reviewer access token: mtsxkwewnlsvxep

697

698 **Code availability**

699 Code used to analyze data in this manuscript has been described in the methods, or is available
700 from the following repositories:
701 HOMER (<http://homer.ucsd.edu/>)
702 MEIRLOP (<https://github.com/npdeloss/meirlop>)

703

704 **Competing Interest Statement**

705 There are no competing interests.

706

707 **Acknowledgments**

708

709 We thank Dr. Ashley M Brooks and Drs. Laurie Smith, Will Ansari, Pete Hedley, Stephen
710 Mayfield for generous donation of plant tissues and Dr. Tamar Juven-Gershon for *Drosophila* S2
711 cell RNA. We thank Emma L. Ledbetter and Life Science Editors for manuscript editing,
712 Christopher W. Benner for help with data generation, James T. Kadonaga, Mackenzie K. Meyer,
713 and Jacob W. Bonner for useful discussion. B.R.M is a STARS undergraduate fellow. This work
714 was supported by NIH grants R00GM135515 to S.H.D. R.J.S. was supported by the National
715 Science Foundation (IOS-1856627). S.E.J is an Investigator of the Howard Hughes Medical
716 Institute. This publication includes data generated at the UC San Diego IGM Genomics Center
717 utilizing an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of
718 Health SIG grant (#S10 OD026929)

719

720 **Author Contributions:**

721 R.J.S, S.E.J., and S.H.D. oversaw the overall design and execution of the project. The
722 experiments were performed by B.R.M., I.M.B., M.I.S. and S.H.D. The computational analyses
723 were performed by B.R.M., I.M.B., C.P., and S.H.D. C.P and S.H.D. were primarily responsible
724 for writing the manuscript. All authors revised and approved the final manuscript.

725

726 **Corresponding author**

727 Correspondence to Sascha H. Duttke (sascha.duttke@wsu.edu)

728

729 **Ethics declarations**

730 The authors declare no competing interests.

731 **References**

732 Almada AE, Wu X, Kriz AJ, Burge CB, Sharp PA. 2013. Promoter directionality is controlled by U1 snRNP
733 and polyadenylation signals. *Nature* **499**: 360-363.

734 Arnold CD, Gerlach D, Stelzer C, Boryń ŁM, Rath M, Stark A. 2013. Genome-Wide Quantitative Enhancer
735 Activity Maps Identified by STARR-seq. *Science* **339**: 1074-1077.

736 Arnold PR, Wells AD, Li XC. 2019. Diversity and Emerging Roles of Enhancer RNA in Regulation of Gene
737 Expression and Cell Fate. *Front Cell Dev Biol* **7**: 377.

738 Azofeifa JG, Allen MA, Hendrix JR, Read T, Rubin JD, Dowell RD. 2018. Enhancer RNA profiling predicts
739 transcription factor activity. *Genome Res* **28**: 334-344.

740 Benner C, Isoda T, Murre C. 2015. New roles for DNA cytosine modification, eRNA, anchors, and
741 superanchors in developing B cell progenitors. *Proc Natl Acad Sci U S A* **112**: 12776-12781.

742 Blumberg A, Zhao Y, Huang YF, Dukler N, Rice EJ, Chivu AG, Krumholz K, Danko CG, Siepel A. 2021.
743 Characterizing RNA stability genome-wide through combined analysis of PRO-seq and RNA-seq
744 data. *BMC Biol* **19**: 30.

745 Branche E WY, Viramontes KM,. 2022. Zika Virus activates SREBP2-dependent Lipid Gene Transcription to
746 Infect Human Dendritic Cells. *Nat Commun* accepted.

747 Chen F, Gao X, Shilatifard A. 2015. Stably paused genes revealed through inhibition of transcription
748 initiation by the TFIIH inhibitor triptolide. *Genes Dev* **29**: 39-47.

749 Concia L, Brooks AM, Wheeler E, Zynda GJ, Wear EE, LeBlanc C, Song J, Lee TJ, Pascuzzi PE, Martienssen
750 RA et al. 2018. Genome-Wide Analysis of the Arabidopsis Replication Timing Program. *Plant
751 Physiol* **176**: 2166-2185.

752 Core L, Adelman K. 2019. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation.
753 *Genes Dev* **33**: 960-982.

754 Core LJ, Martins AL, Danko CG, Waters CT, Siepel A, Lis JT. 2014. Analysis of nascent RNA identifies a
755 unified architecture of initiation regions at mammalian promoters and enhancers. *Nature
756 Genetics* **46**: 1311-1320.

757 Core LJ, Waterfall JJ, Lis JT. 2008. Nascent RNA Sequencing Reveals Widespread Pausing and Divergent
758 Initiation at Human Promoters. *Science* **322**: 1845-1848.

759 Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton
760 GM, Sharp PA et al. 2010. Histone H3K27ac separates active from poised enhancers and predicts
761 developmental state. *Proc Natl Acad Sci U S A* **107**: 21931-21936.

762 De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei C-L, Natoli G.
763 2010. A Large Fraction of Exogenous RNA Pol II Transcription Sites Overlap Enhancers. *PLOS
764 Biology* **8**: e1000384.

765 Dean A, Larson DR, Sartorelli V. 2021. Enhancers, gene regulation, and genome organization. *Genes Dev*
766 **35**: 427-432.

767 Delos Santos NP, Duttke S, Heinz S, Benner C. 2022. MEPP: more transparent motif enrichment by
768 profiling positional correlations. *NAR Genom Bioinform* **4**: Iqac075.

769 Ding M, Liu Y, Liao X, Zhan H, Liu Y, Huang W. 2018. Enhancer RNAs (eRNAs): New Insights into Gene
770 Transcription and Disease Treatment. *J Cancer* **9**: 2334-2340.

771 Duttke SH, Beyhan S, Singh R, Neal S, Viriyakosol S, Fierer J, Kirkland TN, Stajich JE, Benner C, Carlin AF.
772 2022a. Decoding Transcription Regulatory Mechanisms Associated with *Coccidioides immitis*
773 Phase Transition Using Total RNA. *mSystems* **7**: e0140421.

774 Duttke SH, Chang MW, Heinz S, Benner C. 2019. Identification and dynamic quantification of regulatory
775 elements using total RNA. *Genome Research*.

776 Duttke SH, Montilla-Perez P, Chang MW, Li H, Chen H, Carrette LLG, Guglielmo Gd, George O, Palmer AA,
777 Benner C et al. 2022b. Glucocorticoid Receptor-Regulated Enhancers Play a Central Role in the
778 Gene Regulatory Networks Underlying Drug Addiction. *Frontiers in Neuroscience* **16**.

779 Duttke SHC, Lacadie SA, Ibrahim MM, Glass CK, Corcoran DL, Benner C, Heinz S, Kadonaga JT, Ohler U.
780 2015. Human Promoters Are Intrinsically Directional. *Molecular Cell* **57**: 674-684.

781 Field A, Adelman K. 2020. Evaluating Enhancer Function and Transcription. *Annu Rev Biochem* **89**: 213-
782 234.

783 Flynn RA, Almada AE, Zamudio JR, Sharp PA. 2011. Antisense RNA polymerase II divergent transcripts are
784 P-TEFb dependent and substrates for the RNA exosome. *Proc Natl Acad Sci U S A* **108**: 10460-
785 10465.

786 Gearing LJ, Cumming HE, Chapman R, Finkel AM, Woodhouse IB, Luu K, Gould JA, Forster SC, Hertzog PJ.
787 2019. Ciiider: A tool for predicting and analysing transcription factor binding sites. *PLoS One* **14**:
788 e0215495.

789 Gil N, Ulitsky I. 2018. Production of Spliced Long Noncoding RNAs Specifies Regions with Increased
790 Enhancer Activity. *Cell Syst* **7**: 537-547.e533.

791 Haberle V, Stark A. 2018. Eukaryotic core promoters and the functional basis of transcription initiation.
792 *Nat Rev Mol Cell Biol* **19**: 621-637.

793 Halfon MS. 2019. Studying Transcriptional Enhancers: The Founder Fallacy, Validation Creep, and Other
794 Biases. *Trends Genet* **35**: 93-103.

795 Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. 2010.
796 Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory
797 Elements Required for Macrophage and B Cell Identities. *Molecular Cell* **38**: 576-589.

798 Hetzel J, Duttke SH, Benner C, Chory J. 2016. Nascent RNA sequencing reveals distinct features in plant
799 transcription. *Proceedings of the National Academy of Sciences of the United States of America*
800 **113**: 12316-12321.

801 Jiang H, Lei R, Ding SW, Zhu S. 2014. Skewer: a fast and accurate adapter trimmer for next-generation
802 sequencing paired-end reads. *BMC Bioinformatics* **15**: 182.

803 Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping
804 with HISAT2 and HISAT-genotype. *Nat Biotechnol* **37**: 907-915.

805 Kim T-K, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptev M, Barbara-Haley K,
806 Kuersten S et al. 2010. Widespread transcription at neuronal activity-regulated enhancers.
807 *Nature* **465**: 182.

808 Kim TK, Shiekhattar R. 2015. Architectural and Functional Commonalities between Enhancers and
809 Promoters. *Cell* **162**: 948-959.

810 Kindgren P, Ivanov M, Marquardt S. 2020. Native elongation transcript sequencing reveals temperature
811 dependent dynamics of nascent RNAPII transcription in Arabidopsis. *Nucleic Acids Res* **48**: 2332-
812 2347.

813 Kowalczyk MS, Hughes JR, Garrick D, Lynch MD, Sharpe JA, Sloane-Stanley JA, McGowan SJ, De Gobbi M,
814 Hosseini M, Vernimmen D et al. 2012. Infragenic enhancers act as alternative promoters. *Mol
815 Cell* **45**: 447-458.

816 Kwak H, Fuda NJ, Core LJ, Lis JT. 2013. Precise Maps of RNA Polymerase Reveal How Promoters Direct
817 Initiation and Pausing. *Science* **339**: 950-953.

818 Lam MTY, Cho H, Lesch HP, Gosselin D, Heinz S, Tanaka-Oishi Y, Benner C, Kaikkonen MU, Kim AS, Kosaka
819 M et al. 2013. Rev-Erbα repress macrophage gene expression by inhibiting enhancer-directed
820 transcription. *Nature* **498**: 511-515.

821 Lam MTY, Duttke SH, Odish MF, Le HD, Hansen EA, Nguyen CT, Trescott S, Kim R, Deota S, Chang MW et
822 al. 2023. Dynamic activity in cis-regulatory elements of leukocytes identifies transcription factor
823 activation and stratifies COVID-19 severity in ICU patients. *Cell Rep Med* **4**: 100935.

824 Lauberth SM, Nakayama T, Wu X, Ferris AL, Tang Z, Hughes SH, Roeder RG. 2013. H3K4me3 interactions
825 with TAF3 regulate preinitiation complex assembly and selective gene activation. *Cell* **152**: 1021-
826 1036.

827 Lewis MW, Li S, Franco HL. 2019. Transcriptional control by enhancers and enhancer RNAs. *Transcription*
828 **10**: 171-186.

829 Lim JY, Duttke SH, Baker TS, Lee J, Gambino KJ, Venturini NJ, Ho JSY, Zheng S, Fstkhyan YS, Pillai V et al.
830 2021. DNMT3A haploinsufficiency causes dichotomous DNA methylation defects at enhancers in
831 mature human immune cells. *J Exp Med* **218**.

832 Link VM, Duttke SH, Chun HB, Holtman IR, Westin E, Hoeksema MA, Abe Y, Skola D, Romanoski CE, Tao J
833 et al. 2018. Analysis of Genetically Diverse Macrophages Reveals Local and Domain-wide
834 Mechanisms that Control Transcription Factor Binding and Function. *Cell* **173**: 1796-1809.e1717.

835 Liu W, Duttke SH, Hetzel J, Groth M, Feng S, Gallego-Bartolome J, Zhong Z, Kuo HY, Wang Z, Zhai J et al.
836 2018. RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of
837 polymerase V transcripts in Arabidopsis. *Nature Plants* **4**: 181-188.

838 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq
839 data with DESeq2. *Genome Biology* **15**: 550.

840 Lozano R, Booth GT, Omar BY, Li B, Buckler ES, Lis JT, Del Carpio DP, Jannink JL. 2021. RNA polymerase
841 mapping in plants identifies intergenic regulatory elements enriched in causal variants. *G3*
842 (*Bethesda*) **11**.

843 Lu Z, Marand AP, Ricci WA, Ethridge CL, Zhang X, Schmitz RJ. 2019. The prevalence, evolution and
844 chromatin signatures of plant regulatory elements. *Nat Plants* **5**: 1250-1259.

845 Ludwig MZ, Bergman C, Patel NH, Kreitman M. 2000. Evidence for stabilizing selection in a eukaryotic
846 enhancer element. *Nature* **403**: 564-567.

847 Luse DS, Parida M, Spector BM, Nilson KA, Price DH. 2020. A unified view of the sequence and functional
848 organization of the human RNA polymerase II promoter. *Nucleic Acids Res* **48**: 7767-7785.

849 Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley
850 PE, Russell J et al. 2017. A chromosome conformation capture ordered sequence of the barley
851 genome. *Nature* **544**: 427.

852 Mendieta JP, Marand AP, Ricci WA, Zhang X, Schmitz RJ. 2021. Leveraging histone modifications to
853 improve genome annotations. *G3 (Bethesda)* **11**.

854 Mikhaylichenko O, Bondarenko V, Harnett D, Schor IE, Males M, Viales RR, Furlong EEM. 2018. The
855 degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA
856 transcription. *Genes Dev* **32**: 42-57.

857 Mousavi K, Zare H, Dell'orso S, Grontved L, Gutierrez-Cruz G, Derfoul A, Hager GL, Sartorelli V. 2013.
858 eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. *Mol
859 Cell* **51**: 606-617.

860 Murray A, Mendieta JP, Vollmers C, Schmitz RJ. 2022. Simple and accurate transcriptional start site
861 identification using Smar2C2 and examination of conserved promoter features. *Plant J* **112**: 583-
862 596.

863 Oka R, Zicola J, Weber B, Anderson SN, Hodgman C, Gent JI, Wesselink JJ, Springer NM, Hoefsloot HCJ,
864 Turck F et al. 2017. Genome-wide mapping of transcriptional enhancer candidates using DNA
865 and chromatin features in maize. *Genome Biol* **18**: 137.

866 Oksuz O, Henninger JE, Warneford-Thomson R, Zheng MM, Erb H, Vancura A, Overholt KJ, Hawken SW,
867 Banani SF, Lauman R et al. 2023. Transcription factors interact with RNA to regulate genes. *Mol
868 Cell* **83**: 2449-2463.e2413.

869 Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C,
870 Huang Q et al. 2010. Long noncoding RNAs with enhancer-like function in human cells. *Cell* **143**:
871 46-58.

872 Palazzo AF, Lee ES. 2015. Non-coding RNA: what is functional and what is junk? *Front Genet* **6**: 2.

873 Panigrahi A, O'Malley BW. 2021. Mechanisms of enhancer action: the known and the unknown. *Genome*
874 *Biology* **22**: 108.

875 Ricci WA, Lu Z, Ji L, Marand AP, Ethridge CL, Murphy NG, Noshay JM, Galli M, Mejía-Guerra MK, Colomé-
876 Tatché M et al. 2019. Widespread long-range cis-regulatory elements in the maize genome. *Nat*
877 *Plants* **5**: 1237-1249.

878 Schaukowitch K, Joo JY, Liu X, Watts JK, Martinez C, Kim TK. 2014. Enhancer RNA facilitates NELF release
879 from immediate early genes. *Mol Cell* **56**: 29-42.

880 Seila AC, Calabrese JM, Levine SS, Yeo GW, Rahl PB, Flynn RA, Young RA, Sharp PA. 2008. Divergent
881 transcription from active promoters. *Science* **322**: 1849-1851.

882 Shamie I, Duttke SH, Karottki KJC, Han CZ, Hansen AH, Hefzi H, Xiong K, Li S, Roth SJ, Tao J et al. 2021. A
883 Chinese hamster transcription start site atlas that enables targeted editing of CHO cells. *NAR*
884 *Genom Bioinform* **3**: Iqab061.

885 Sloutskin A, Shir-Shapira H, Freiman RN, Juven-Gershon T. 2021. The Core Promoter Is a Regulatory Hub
886 for Developmental Gene Expression. *Frontiers in Cell and Developmental Biology* **9**.

887 Timko MP, Kausch AP, Castresana C, Fassler J, Herrera-Estrella L, Van den Broeck G, Van Montagu M,
888 Schell J, Cashmore AR. 1985. Light regulation of plant gene expression by an upstream enhancer-
889 like element. *Nature* **318**: 579-582.

890 Vo ngoc L, Cassidy CJ, Huang CY, Duttke SHC, Kadonaga JT. 2017. The human initiator is a distinct and
891 abundant element that is precisely positioned in focused core promoters. *Genes & Development*
892 **31**: 6-11.

893 Wang M, Zhong Z, Gallego-Bartolomé J, Li Z, Feng S, Kuo HY, Kan RL, Lam H, Richey JC, Tang L et al. 2023.
894 A gene silencing screen uncovers diverse tools for targeted gene repression in Arabidopsis. *Nat*
895 *Plants* **9**: 460-472.

896 Weber B, Zicola J, Oka R, Stam M. 2016. Plant Enhancers: A Call for Discovery. *Trends Plant Sci* **21**: 974-
897 987.

898 Wissink EM, Vihervaara A, Tippens ND, Lis JT. 2019. Nascent RNA analyses: tracking transcription and its
899 regulation. *Nat Rev Genet* **20**: 705-723.

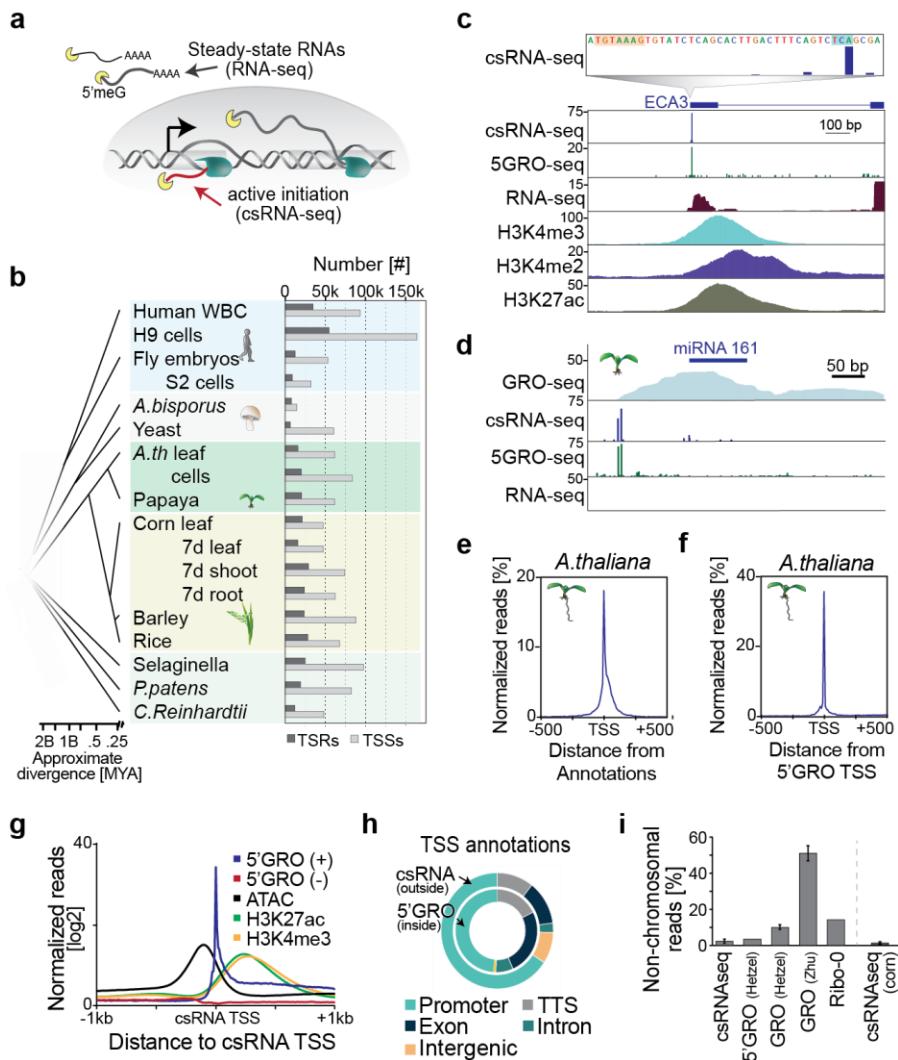
900 Yamada T, Akimitsu N. 2019. Contributions of regulated transcription and mRNA decay to the dynamics
901 of gene expression. *Wiley Interdiscip Rev RNA* **10**: e1508.

902 Yan W, Chen D, Schumacher J, Durantini D, Engelhorn J, Chen M, Carles CC, Kaufmann K. 2019. Dynamic
903 control of enhancer activity drives stage-specific gene expression during flower morphogenesis.
904 *Nat Commun* **10**: 1705.

905 Yao L, Liang J, Ozer A, Leung AK-Y, Lis JT, Yu H. 2022. A comparison of experimental assays and analytical
906 methods for genome-wide identification of active enhancers. *Nature Biotechnology* **40**: 1056-
907 1065.

908 Zentner GE, Tesar PJ, Scacheri PC. 2011. Epigenetic signatures distinguish multiple classes of enhancers
909 with distinct cellular functions. *Genome Res* **21**: 1273-1283.

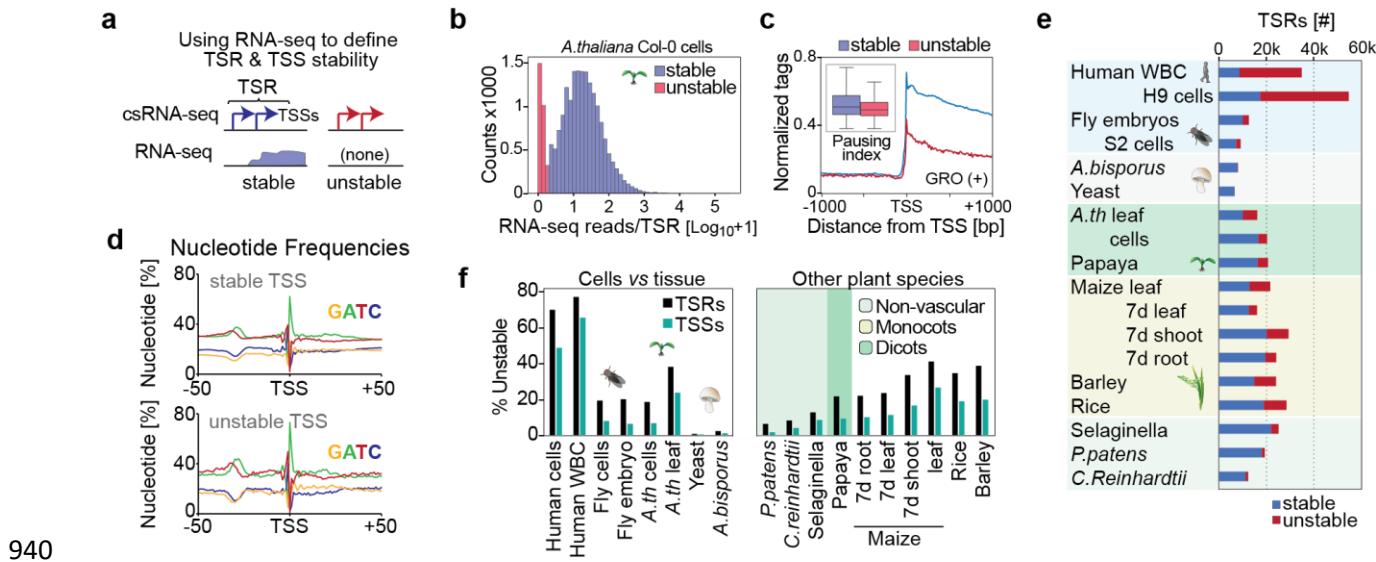
910 Zhang Y, Tang M, Huang M, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. 2022. Dynamic enhancer transcription
911 associates with reprogramming of immune genes during pattern triggered immunity in
912 Arabidopsis. *BMC Biol* **20**: 165.

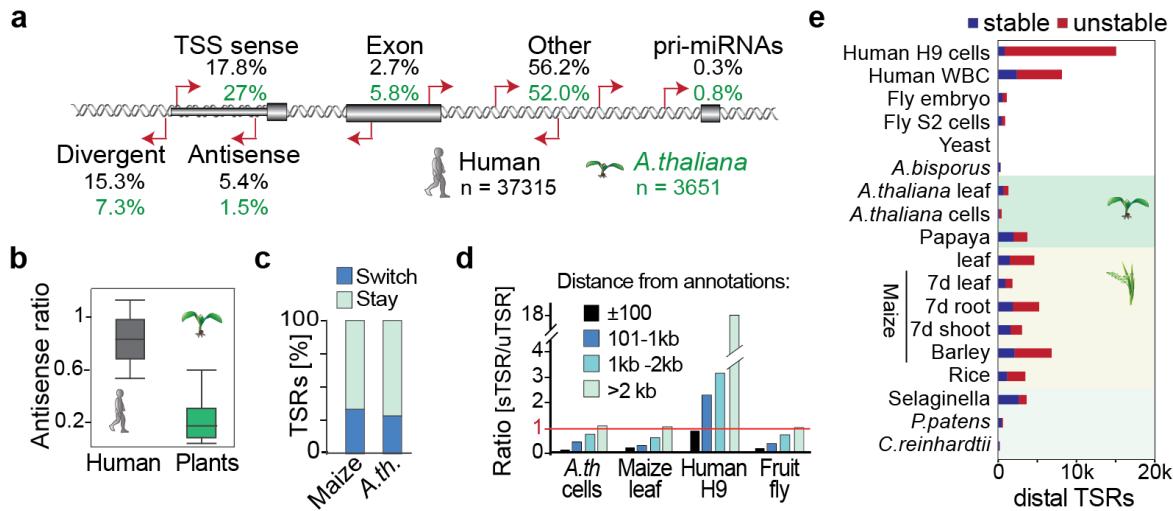

913 Zhao L, Zhou Q, He L, Deng L, Lozano-Duran R, Li G, Zhu JK. 2022. DNA methylation underpins the
914 epigenomic landscape regulating genome transcription in Arabidopsis. *Genome Biol* **23**: 197.

915 Zhou M, Law JA. 2015. RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II's
916 rules. *Curr Opin Plant Biol* **27**: 154-164.

917 Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. 2019.
918 Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. *Nat*
919 *Commun* **10**: 1523.

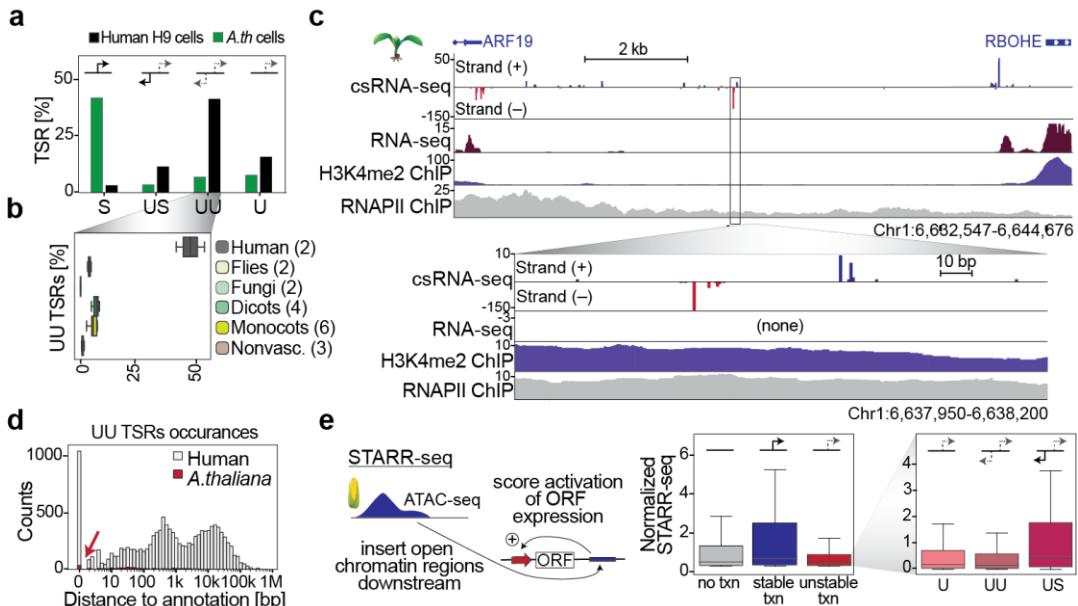
920 Zhu J, Liu M, Liu X, Dong Z. 2018. RNA polymerase II activity revealed by GRO-seq and pNET-seq in
921 *Arabidopsis*. *Nat Plants* **4**: 1112-1123.


922 **Figures**


923

924 **Fig. 1 | A comprehensive atlas of nascent plant transcription initiation. a**, Schematic of
 925 steady state RNA, as captured by RNA-seq, and actively initiating or nascent transcripts,
 926 captured by csRNA-seq. **b**, Overview of samples studied with the numbers of captured
 927 transcription start regions (TSRs), which include promoters and enhancers, and of transcription
 928 start sites (TSSs). Samples generated in this study are marked with an asterisk (*). WBC = white
 929 blood cells. **c**, *A. thaliana* ECA3 loci with csRNA-seq at single nucleotide resolution and zoomed
 930 out. 5' GRO-seq and histone ChIP-seq data. **d**, *A. thaliana* miRNA 161 cluster. **e**, Distribution of

931 A. *thaliana* csRNA-seq data from leaves relative to TAIR10 TSS annotations. **f**, Distribution of
932 csRNA-seq TSSs from A. *thaliana* leaves relative to 5'GRO-seq TSSs mapped in 7d-old
933 seedlings. **g**, Distribution of 5' GRO-seq reads as well as open chromatin (ATAC-seq) and
934 histone marks H3K4me3 and H3K27ac relative to csRNA-seq TSSs in A. *thaliana*. **h**,
935 Comparison of annotations of TSSs mapped by 5'GRO-seq and csRNA-seq in A. *thaliana*. **i**,
936 Percent of non-chromosomal RNA reads captured by csRNA-seq, GRO-seq (Hetzell et al. 2016;
937 Zhu et al. 2018)et, 5'GRO-seq (Hetzell et al. 2016), or total RNA-seq (Ribo0) in A. *thaliana* and
938 maize (csRNA-seq only). These RNAs are not synthesized by RNA polymerase II or other
939 eukaryotic RNA polymerases.



941 **Fig. 2 | Unstable RNAs are infrequent in plants. a**, Schema of how transcript stability was
 942 determined by integrating total RNA-seq read counts from -100 to +500 with respect to the
 943 major TSSs within TSRs identified by csRNA-seq. **b**, Distribution of RNA-seq reads per million
 944 within -100 to +500 bp relative to the main TSS of each TSRs, plotted as $[\log_{10} + 1]$. **c**, GRO-
 945 seq signal (+ strand only) in *A. thaliana* (Hetzel et al. 2016; Zhu et al. 2018) in proximity to the
 946 TSS of stable and unstable transcripts. Inset: calculated pausing index (reads -100, +300 /
 947 reads +301, +3000, see methods). **d**, Metaplot of nucleotide frequency with respect to the +1
 948 TSS as defined by csRNA-seq for stable and unstable transcripts in *A. thaliana* **e**, Summary of
 949 the number of stable and unstable TSRs in each sample analyzed. **f**, Percent of TSRs and
 950 TSSs initiating unstable transcripts across all species and tissues assayed.

951

952 **Fig. 3 | Distinct origins of stable and unstable transcripts in humans, plants, and other**
 953 **species. a**, Classification of uTSR genomic sites in human H9 lymphoblast and *A. thaliana* Col-
 954 0 cells, relative to current annotations (Araport11/ gencode.42). TSS = ± 275 bp of 5' gene
 955 annotation in sense direction; TSS antisense, within the TSS region but antisense; TSS
 956 divergent, initiating from -1 to -275bp to the TSS. **b**, Ratio of promoter-proximal antisense
 957 transcription reveals most plant but not human unstable transcripts to initiate in *sense* direction.
 958 Ratio of TSRs in antisense to genome-annotated TSSs (-275 to +275 relative to the annotated
 959 TSS) divided by the number of total TSRs that mapped to annotated TSS. **c**, Percentage of
 960 TSRs that switch between initiating stable and unstable transcripts among *A. thaliana* Col-0
 961 cells and leaves, maize adult leaves and 7d-old leaves, shoot, and roots, and Human H9 cells
 962 and white blood cells (WBCs). **d**, Number of TSRs initiating unstable divided by stable
 963 transcripts relative to distance to genome annotations by regions (i) ± 100 bp, (ii) 101-1,000 bp,
 964 (iii) 1,001-2,000 bp, (iv) > 2,000 bp for *A. thaliana*, fruit fly S2 and human lymphoblast cells as
 965 well as maize leaves. **e**, Number of TSRs >2,000 bp from annotations that initiate stable or
 966 unstable transcripts.

967

968 **Fig. 4 | Vertebrate-like enhancers are rare in plants and have less enhancer activity than**
969 **promoters.** **a**, Overview of TSR directionality and type in human H9 lymphoblast and *A.*
970 *thaliana* Col-0 cells.; S, TSR is stable and unidirectional; US, TSR produces an unstable sense
971 transcripts and a stable antisense transcript; UU, TSR produces unstable sense and antisense
972 transcripts; U, TSR is unstable and unidirectional. **b**, Average percentage of bidirectional
973 unstable transcription in samples from humans (H9 cells, WBC), flies (*D. melanogaster*
974 embryos, S2 cells), fungi (*S. cereviciae*, *A. bisporus*), dicots (*A. thaliana* cells and leaf, papaya),
975 monocots (maize [4], rice, barley), and nonvascular plants (*Selaginella*, *P. patens*, *C.*
976 *reinhardtii*). **c**, Example of one of the 72 distal TSRs in *A. thaliana* leaves initiating unstable
977 bidirectional transcription. **d**, Distribution of distance to nearest genome annotations for all TSRs
978 initiating unstable bidirectional transcription; annotations in human H9 and *A. thaliana* Col-0
979 cells. **e**, Overview of the STARR-seq assay (Arnold et al 2013), left) which measures the ability
980 of DNA regions, here all open chromatin regions in maize captured by ATAC-seq (Ricci et al
981 2019), cloned downstream of a minimal promoter to enhance its transcription. Enhancer
982 function, as measured by STARR-seq promoter activity [scaled by 100], was subgrouped by

983 csRNA-seq in tissue defined TSR type (no, stable or unstable transcription initiation). Regions
984 initiating unstable transcription were further subgrouped by their initiation styles (U, UU, US).