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Abstract

Imatinib and other selective inhibitors of BCR-ABL are the mainstay of chronic myelogenous
leukemia (CML) treatment, but resistance to these drugs limits their efficacy. Known resistance mechanisms
include ABL mutations, activation of compensatory signaling pathways, and the induction of quiescence that
protects CML cells from apoptosis. CDK8/19 Mediator kinases that regulate transcriptional reprogramming
have been implicated in the development of resistance to different drugs. We have investigated the effects of
CDKZ&/19 inhibition on CML response to BCR-ABL inhibitors. Selective CDK8/19 inhibitors Senexin B and
SNX631 strongly increased the induction of apoptosis in K562 cells treated with imatinib or other BCR-
ABL inhibitors. Imatinib induced G1 arrest along with upregulation of p27"'
suppressed by CDK8/19 inhibition. Senexin B also prevented the induction of G1 arrest and protection from
imatinib-induced apoptosis of K562 cells by inducible p27*"" expression, suggesting that CDK8/19 activity
potentiates both the transcription and function of p27Kipl. In contrast, CDKS8/18 inhibition did not have the
same effect in KU812 CML cells that do not undergo G1 arrest and are hypersensitive to imatinib. Our
results suggest that inhibition of CDKS8/19 may be used as a new strategy to prevent quiescence-mediated
resistance to BCR-ABL inhibitors.
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Introduction

Chronic myelogenous leukemia (CML) is a myeloproliferative disorder characterized by an
expansion of pluripotent bone marrow stem cells. The main genetic marker of CML is the Philadelphia
chromosome generated by translocation t(9;22)(q34;q11). This translocation yields the BCR-ABL chimeric
tyrosine kinase, which activates a number of downstream pathways that drive the pathogenesis of CML as
well as a minor subset of other leukemias (1).

Introduction of the tyrosine kinase inhibitor imatinib mesylate (IM, Gleevec) has drastically
improved CML treatment outcomes (2). However, a significant proportion of patients eventually develop
resistance to BCR-ABL antagonists that can be attributed to BCR-ABL mutations or independent signaling
pathways (3). Second generation BCR-ABL inhibitors (BCR-ABLi) such as nilotinib, dasatinib and
bosutinib, are used for treatment of patients with certain mutations in BCR-ABL but are inefficient against
the T3151 mutation. While the third generation BCR-ABLi ponatinib, asciminib and PF-114 are effective
against specific BCR-ABL mutants including T3151, these drugs are limited in their ability to circumvent
BCR-ABL-independent drug resistance (4).

BCR-ABL-independent resistance is mediated by signaling pathways that involve STAT3 (5,6),
MAPK/ERK (7), B-catenin (8). One of the most refractory populations are the dormant leukemia stem cells
(LSC) capable of prolonged persistence (9). In CML, quiescence is a mechanism that can prevent the
achievement of full clinical remission (10). Moreover, quiescent CML cells may reenter the cell cycle,
leading to a relapse (11). Cell cycle arrest and quiescence are regulated by cyclin dependent kinase inhibitor
(CKI) proteins of CIP/KIP (p27%P', p57%%, and p21“"") and INK4 (p18™“* and other) families (12,13).
BCR-ABL abrogates the p27Kipl function (14-17), and inhibition of BCR-ABL by IM induces p57Kip2
followed by overexpression and stabilization of p27*"' (18). These data indicate that CML resistance to
BCR-ABL inhibitors is associated with cell cycle arrest and quiescence can be regulated epigenetically.
Indeed, pharmacological intervention into the mechanisms of epigenetic modulation has been shown to be
beneficial for exit from quiescence, therefore increasing tumor cell death (19).

The cyclin dependent kinase 8 (CDKS) or its paralog CDK19, together with cyclin C (CCNC),
MED12, and MED13, form a module that binds to the transcriptional Mediator complex (20). The Mediator
kinase module regulates transcription by tuning the transcriptional machinery via the Mediator and
transcription factor function at enhancers and promoters. Also, the CDK module acts as a modifier of
different cancer-relevant transcription factors and coordinates the response to exogenous stimuli by
reprogramming gene expression (21). While CDK8/19 potentiate the induction of transcription by several
different signals, they also inhibit Mediator-dependent transcription of super-enhancer-associated genes
(22), in conjunction with post-transcriptional downregulation of the Mediator complex (23). CDK8/19
modulate transcription factors such as STATs (24), NF-xB (25), and others. Importantly, CDK8 depletion
does not affect viability in the adult cells or organisms, making these enzymes attractive drug targets
(26,27).

The role of CDK&8/19-mediated transcriptional reprogramming in acquired drug resistance was
demonstrated by the ability of small-molecule CDK8/19 inhibitors (CDK8/19i) to sensitize tumor cells or to
prevent the emergence of resistance to chemotherapeutics including inhibitors of estrogen receptor and
EGFRs (28-30). Thus, CDKS8/19i are considered as antitumor drug candidates in combined regimens.
Several CDKS8/191 have reached clinical trials in solid tumors and leukemias (NCT03065010,
NCT04021368, NCT05052255, NCT05300438).
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Here, we present evidence that CDK&8/19i inhibit the induction of cell cycle arrest by BCR-ABLi
mediated by cell cycle inhibitor p27*""' in CML cells, greatly potentiating the induction of apoptosis. These
results suggest that inhibition of CDK8/19 may prevent quiescence-mediated resistance to BCR-ABL
inhibitors.

Results
Senexin B synergizes with IM in triggering apoptosis in K562 cells

We tested whether a selective CDKS8/19 inhibitor Senexin B (SenB) (28,29,43) affects CML cell
response to BCR-ABL antagonist IM. Figure 1A, left shows that SenB sensitized K562 cells to IM. By 72 h
the percentage of viable cells was larger in the IM-treated cohort than in the combination. The portion of PI-
positive (late apoptosis) cells greatly increased in the combination: from 15.0+0.3% in cells treated with IM
alone to 54.0+0.6% in the combination of IM and SenB (Figure 1A, right; p<0.0001). The time course
showed that, already by 24 h, 1 uM SenB strongly increased the percentage of subG1l events (cells with
fragmented DNA) after treatment with low concentrations of IM (Figure 1B, left; compare 11.6+2.2% in
cells treated with 0.25 uM IM vs 24.6+1.4% after 0.25 uM IM and 1 uM SenB (p<0.0001)). Potentiation of
the induction of apoptosis was detectable even with submicromolar concentrations of SenB (Figure 1B,
right). SenB alone did not increase the percentage of double positive Annexin V*/PI" cells but synergized
with IM in elevating this fraction by 24 h (Figure 1C, fop, Supplementary Figure S1). As opposed to K562
cells, the BCR-ABL positive KU812 CML cell line was intrinsically hypersensitive to IM-induced
apoptosis, and the addition of SenB had no significant effect on the already very high apoptotic fraction
(Figure 1C, bottom, Supplementary Figure S1).
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Figure 1. SenB synergizes with IM in inducing K562 apoptosis. Cells were treated with SenB, IM (1 uM
each) or their combination (I+S) for indicated time periods, stained with PI (A), lysed in the PI containing
buffer (B), stained with Annexin V-PI (C) and analyzed by flow cytometry. C: Top, K562; bottom, KU812.
Values are mean+SD, n=4. (D) Immunoblotting of PARP, cleaved caspases 9 and 3 and B-actin (control)
after 24 h. (E) Time course of PARP cleavage and caspase 9 activation. Top, gel images; bottom,
densitometry data. (F) Time course of the loss of the mitochondrial membrane potential (MMP).
*#%p<0.001, ****p<0.0001.
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Next, we found that the combined inhibition of CDK8/19 and BCR-ABL increased the activation of
caspases 9 and 3 and cleavage of poly(ADPriboso)polymerase (PARP) in K562 cells, pointing to the
mitochondrial apoptosis as a mechanism of sensitization (Figure 1D). Time course (Figure 1E) showed that
combination of IM and SenB induced a faster PARP cleavage and decrease of procaspase 9. The addition of
SenB significantly increased IM-induced loss of the mitochondrial membrane potential after 16 h (Figure
1F), also indicating that SenB accelerated the onset of IM-induced apoptosis.

SenB potentiated cell death induced not only by IM but also by other BCR-ABL antagonists of
different chemical classes and specificity (Figures 2A-B). Furthermore, the synergy with IM was also shown
for the second, chemically unrelated CDK8/191 SNX631 (30,44), indicating that the sensitization was a
general effect of CDK8/19 inhibition (Figures 2C-D).

The S727 site of STAT transcription factors is a known target of CDKS8 that regulates STAT-
mediated transcription (24). In the absence of interferon signaling, CDK8/19 inhibition often but not always
reduces STAT S727 phosphorylation (43). SenB or IM alone had no significant effect on the amount of
pSTATI1 S727 in K562 cells, but this amount was decreased by the combination of IM and SenB (Figure
2E). This decrease was due both to the inhibition of STAT1 S727 phosphorylation and a decrease in total
STATI1. Combinational treatment with SenB and IM also reduced pSTAT3 S727 but not total STATS3,
indicating the inhibition of STAT3 S727 phosphorylation. STAT3 S727 phosphorylation that augments
STAT3 transcriptional activity was shown to be stimulated by BCR-ABL (45) and to play a role in
resistance to BCR-ABLi (46).
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Figure 2. Combinations of CDK8/19 inhibitors and BCR-ABL antagonists cooperatively inhibit STAT1 and
STAT3 S727 phosphorylation and induce apoptosis in K562 cells.

K562 cells were treated with SenB, IM (1 uM each) or their combination (I+S) for 24 h. (A) Percentages of
subG1 events in untreated cells and cells treated by 1 uM IM, 1 nM dasatinib (das), 50 nM nilotinib (nilo) or
10 nM PF114 without or with 1 uM SenB. (B) Effects of BCR-ABL inhibitors alone and in combination
with SenB on STATI, pSTATI1 S727 and cleaved PARP, caspase 9 and caspase 3 (immunoblot analysis).
Effects of CDK8/19 inhibitors SenB and SNX631 (S631) in combination with IM on subG1 events (C) and

biochemical markers of cell death (D). (E) Effects on pSTAT1 S727, STAT3 and pSTAT3 S727. *p<0.05,
*#**p<0.001, ****p<0.0001.
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Effects of IM and SenB on gene expression

RNA sequencing revealed changes in gene expression patterns after 8 h treatment with SenB or IM
alone or in combination. Comparisons between the effects of different treatments are shown in the volcano
plots in Supplementary Figures S2-S5 and DEG are listed in Supplementary Tables S2-S3. IM induced
down-regulation of 2 100 genes, and up-regulation of 1 756 genes, whereas SenB down-regulated 679 genes
and up-regulated 1 017 genes (Supplementary Figures S2, S3). Combination of SenB and IM induced down-
regulation of 2 394 genes and up-regulation of 2 073 genes (Supplementary Figure S4). The combination
changed the expression of 1 185 (down-regulation) and 1 492 mRNAs (up-regulation) compared to IM alone
(Supplementary Figure S5). Among the most affected genes that significantly changed in response to IM,
6.1% (163 genes) were differentially expressed between the IM and IM+SenB groups (Figure 3A). Among
the genes that were most strongly affected by IM, SenB most often enhanced their upregulation but
counteracted their downregulation by IM (Figure 3B). GSEA (39) and ORA (42) showed that many of the
genes down-regulated by IM were related to cell proliferation and interferon/STAT signaling (Figures 3C,
Supplementary Figure S6), coding for pro-proliferative proteins and individual cell cycle inhibitors.
Notably, 17.1 % of all DEG down-regulated in combination compared to IM alone were genes related to the
cell cycle, while only 2.1 % were upregulated. The top 5 cell cycle genes downregulated by IM (VASHI,
PCBP4, GPNMB, INHA and BTN2A2) are all related to negative regulation of the cell cycle — induction of
cell cycle arrest (Supplementary Figure S7). The addition of SenB produced no major changes in the overall
effects of IM on such pathways (Figure 3C), but many of the individual genes that were differentially
affected by the combination of IM and Sen B relative to IM alone were associated with cell proliferation
(Figure 3D).
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Figure 3. RNA-Seq analysis of K562 cells treated with SenB, IM (1 uM each) and combinations. (A) A dot
plot comparing the effects of IM vs control and IM+SenB vs IM on the differentially expressed genes (DEG)
affected by IM (JFC[>1.5, FDR<0.01). Red dots — IM DEG regulated by SenB, blue dots — IM DEG
unregulated by SenB. (B) The heatmap of the effects of different treatments on the genes that are most
strongly upregulated or downregulated by IM. Scale is normalized enrichment score (NES). (C) Effects of
different treatments on the indicated pathways. (D) Genes downregulated in SenB+IM-treated cells
compared to IM alone.
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CDK8/19 inhibition abrogates IM-induced G1 arrest mediated by p27°"

According to the results of RNA-Seq analysis, cell proliferation driver MYC (c-Myc) was
downregulated by IM but upregulated by SenB; MYC expression in cells treated with the combination of IM
and SenB did not change MYC expression relative to the control (Figure 4A, left). In contrast, cell cycle
inhibitor CDKNIB (p27Kipl) was strongly upregulated by IM and downregulated by SenB, and SenB+IM
combination did not change CDKNIB expression relative to the control (Figure 4A, right). p27*"', a major
mediator of G1 checkpoint, is known to be involved in the response to IM (47,48). Figure 4B shows that IM
treatment increases p27<"' protein in K562 cells in a dose-dependent manner whereas SenB fully prevents
this increase. IM also upregulated two other CKIs, p57%P? and p18™*; the increase in p57°'P* was
unaffected and in p18™“* weakly inhibited by SenB (Figure 4C). Similarly, the addition of SenB slightly
reduced the effect of IM treatment on the reduction of c-Myc protein (Figure 4C, left), an effect paralleled
by changes of c-Myc dependent transcripts (Figure 3C).

Kipl Kipl

The dramatic effects of IM on p27™"", which was fully suppressed by SenB, suggested that p27
mediated cell cycle inhibition by IM could play a key role in the prevention of apoptosis, which was
counteracted by CDKS8/19 inhibition. In agreement with this hypothesis, a very different pattern was
observed in KU812 cells that are hypersensitive to IM and unaffected by CDKS8/19 inhibition: p27Kip L
plSlNC4C and c-Myc were not induced in KU812; instead, disappearance of c-Myc and p21Cip ! was detectable
already by 7 h of IM treatment and unaffected by SenB (Figure 4C, right).
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Figure 4. Effects of SenB, IM and their combination on cell cycle regulating genes and proteins. K562 and

KUS8I12 cells were treated as indicated. Proteins were analyzed by immunoblotting, mRNAs by RNA-Seq.

(A) Abundance of MYC (c-Myc) and CDKNIB (p27Kip1) mRNAs, normalized counts per million (CPM) of
reads. (B) Effects of IM and SenB on p27%"! protein. (C) Effects of IM and SenB on c-Myc, p57<"* and
p18™%* protein levels in K562 (leff) and c-Myc, p27%P", p21P!, p18™* and caspase 3 cleavage levels in

KUS8I12 (right), at the indicated time points.
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As shown in Figure 5A (top left), by 10 h of IM treatment, K562 cells underwent G1 arrest similarly
to IM+SenB treated counterparts. However, while G1 arrest caused by IM alone was maintained for the
entire 32 h observation period, this arrest was transient in cells treated with a combination of IM and SenB,
and subsequently a portion of cells re-entered the cycle. The cell cycle re-entry in combination-treated cells
was paralleled by a greater increase in apoptosis relative to cells treated with IM alone (Figure 5A, bottom
left). These data were substantiated by the increased incorporation of BrdU (Figure 5B) after treatment with
SenB+IM. Therefore the combination elevated the fraction of cells that resumed DNA replication. In
contrast to K562, the highly IM sensitive KU812 cells did not undergo G1 arrest and readily died (Figure
SA, right).
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Figure 5. SenB alleviates IM-induced G1 arrest.

(A) Time course of G1 and subG1 (apoptotic) fractions of K562 (left) and KU812 (right) cells treated with
IM and SenB (1 uM each). Note that IM alone in K562 caused a sustained accumulation in G1 whereas in
the IM+SenB group the portion of cells in G1 gradually decreased (top left). Concomitantly, cells treated
with the combination died more readily than in the ‘IM alone’ cohort (bottom left). (B) K562 cells treated
with SenB+IM for 24 h re-entered the cycle more readily (note a larger BrdU positive population) compared

to ‘IM alone’ counterparts (bottom left vs bottom right). Shown is one representative experiment out of three
biological replicates.
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To investigate whether p27*P' can mediate the sensitization of K562 cells to IM by SenB, we
generated the inducible K562p27tet-on derivative in which the exogenous CDKNIB is expressed under the
control of doxycycline-inducible promoter. Before the addition of doxycycline, the percentage of
K562p27tet-on cells in G1 phase was 35.3+£1.6%; by 24 h of doxycycline treatment, this value increased up
to 64.8£0.7%, p<0.0001. SenB attenuated doxycycline-induced G1 accumulation in a dose dependent
manner (Supplementary Figure S8). IM, together with doxycycline, further elevated the G1 fraction,
whereas SenB abrogated this increase (Figure 6A, left). This effect of SenB was paralleled by the increase of
subGl1 events (Figure 6A, right). As shown in Figure 6B, doxycycline partially prevented IM-induced
apoptosis in K562p27tet-on cells: 17.3£2.7% subG1 events in ‘no doxycycline’ group vs 11.6£0.4% in
‘doxycycline’ cohort, p<0.01. In contrast, the addition of SenB increased the percentage of the subG1 phase
to 26.4+3.4% overcoming the protective effect of p27*"" induction. SenB also partially decreased p27""'
levels with and without the addition of doxycycline (Figure 6C). These results provide additional evidence
that CDK8/19 inhibition sensitized cells to IM via alleviation of p27ijl associated G1 arrest.
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Figure 6. SenB counteracts the effects of exogenous CDKNIB (p27Kip1) overexpression on cell cycle and
survival.

K562p27tet-on subline was treated with 1 ug/ml doxycycline and 1 uM IM for 24 h in the absence or
presence of indicated concentrations of SenB followed by flow cytometry analysis. (A) Decreased G1 arrest
(left) and increased apoptotic DNA fragmentation (subG1; right). (B) SenB (1 uM) alleviates the protective
effect of doxycycline on IM-induced apoptosis. (C) Exogenous p27ijl overexpression decreases apoptosis
after treatment with SenB and IM (1 uM each) or the combination. **p<0.01, ****p<0.0001.
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Discussion

Treatment of CML with BCR-ABLIi remains one of the most efficient anticancer therapy to date.
Despite its success, patients must continue treatment to avoid relapse, due to persistence of resistant LSC
(49) and/or emergence of de novo resistance. While BCR-ABL mutants are successfully treated with new
generations of target inhibitors, non-mutational resistance remains challenging.

The Mediator protein kinases CDK8/19, in concert with a number of critical transcription factors,
regulate effects of a variety of exogenous stimuli. CDK8/19 also directly phosphorylate transcription factors,
such as STATs (50). CDK8/19 have been established as druggable antitumor targets, either alone
(NCTO04021368) or in combination with conventional therapeutics (29,30). Exploring the possibility to
improve the efficacy of BCR-ABLi in CML cells, we herein demonstrated that SenB as well as other
CDKS8/19i sensitized the K562 CML cells to various BCR-ABLi (Figures 2A-D). The most significant effect
of this sensitization was the increase in mitochondrial apoptosis (Figure 1). It was previously reported that
CDKS8 is downregulated by dasatinib but not by IM, and that siRNA knockdown of CDKS$ sensitizes cells to
IM but not to dasatinib in K562 cells (51). In the present study, we have observed no changes of CDKS
expression by IM treatment upon 24 h exposure (Supplementary Figure S9), and CDK&8/19i sensitized K562
to all BCR-ABL antagonists, including dasatinib (Figure 2). Possible causes for the different results obtained
with CDKS8 siRNA and CDK&8/19i are the effect of the inhibitors on CDK19 and the fact that CDK8/19
depletion but not kinase inhibition leads to the degradation of cyclin C, which has CDK&8/19 independent
activities (23).

Activation of pro-survival pathways contributes to tumor cell persistence. Importantly, in at least
25% of cases and up to 60% of the resistance to BCR-ABLi stems from mechanisms independent of the
structure of the BCR-ABL indicating non-genetic resistance (52). The major pro-survival pathways activated
in response to BCR-ABL inhibition are STAT3 and STAT1 (53). In turn, inhibition of these pathways can
increase the potency of BCR-ABLi. We found that the combination of SenB and IM reduced the amounts of
total STAT1 and STAT3 phosphorylated at S727 (Figures 2B, 2D-E). Although S727 phosphorylation of
STATI1/3 is considered as a marker for CDK8/19 activity (50), there is evidence that other kinases can
phosphorylate it (43), so only partial inhibition by SenB alone can be explained by activity of other kinases.
JAK2/STAT3 is a major contributor to BCR-ABLI resistance, activated by autocrine signaling (6) and
cytokines secreted by the bone marrow (5). Inhibition of STAT3 can overcome resistance to BCR-ABLi and
induce synthetic lethality in STAT3-dependent CML (5), including LSC (54).

From the onset of the TKI era in CML treatment, it became clear that non-dividing cells are much
less sensitive to these drugs compared to proliferating counterparts. Subpopulations of quiescent LSC
survived the exposure to BCR-ABLI resulting in disease relapse (55). IM induced apoptosis primarily in S
and G2/M phases (56), therefore investigational strategies focused on eliminating quiescent cells or
inhibitor-induced G1 cell cycle arrest. Altered response of CML cells to IM via quiescence has been
reported (55,57). Quiescence has been attributed to the delay of full clinical remission (10,57), and may
mediate the relapse of CML patients (11).

Our principal mechanistic finding is the identification of IM-induced G1 cell cycle arrest, mediated

by p27%P!, as the critical mediator of the sensitization of CML cells to IM by CDK8/19 inhibition. IM

treatment of K562 cells led to G1 accumulation (Figure 5A, fop leff) and upregulation of p27"' and

p18™%4 (Figures 4B-C). Of note, p27*""" and p57"""* are inducible within the initial hours of treatment with

IM (18). Furthermore, CKIs have been mechanistically related to LSC persistence (13,58). Strikingly,

combining IM with a CDKS8/191 released the cells from G1 arrest, elevated the fraction of cells entering
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replication (Figure 5B), and prevented the upregulation of p27*"' (Figures 4A-B). Supporting the role of
cell cycle regulation in the sensitivity to IM, in BCR-ABL positive KU812 cells IM influenced neither cell
cycle progression nor CKI protein expression (Figures 4C, right, SA, right). Rather, these cells readily
underwent IM-induced death in a SenB independent manner.

The role of p275"?' was confirmed by the results that inducible p27*P" expression in K562 cells
increased the G1 fraction and attenuated IM-induced apoptosis. Both of these effects were reversed by
combining IM with SenB (Figure 6). Importantly, SenB alone counteracted p27*"'-induced G1 arrest, but
evoked no significant effect on viability. These results show that CDK8/19i affects not only transcription,
but also the activity of p275Pt, Similarly to our results, a CDK8/19i decreased p27?! RNA and protein
levels and induced G1 to S transition in prostate cancer cells (59). On the other hand, CDKS8 can act as a
negative regulator of p27""! protein stability but does not affect its mRNA level in breast cancer cells (60);
the different results that we obtained in CML cells suggest that the effect of CDKS8 on p27ijl is cell type-
specific.

Altogether, we demonstrated that pharmacological inhibition of CDK&8/19 promotes apoptosis in
CML cells treated with BCR-ABLI by suppressing G1 arrest induced by these inhibitors. The mechanism is
attributed to the effects of CDK8/191 on the p27Kip1, which is upregulated by BCR-ABL inhibitors. Given
that CDK&8/191 evoke a negligible general toxicity (NCTO03065010, NCT04021368, NCT05052255,
NCTO05300438), our results support the perspective of targeting these transcriptional kinases in situations
when the efficacy of conventional drugs is limited.
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Materials and Methods
Reagents

All reagents were from Sigma-Aldrich, Burlington, MA, unless specified otherwise. IM (Gleevec®)
was purchased from Novartis, Basel, Switzerland. Dasatinib and nilotinib were from Selleck Chemicals,
Houston, TX. PF-114 (31) was a gift of Dr. G. Chilov. CDKS8/19 inhibitors Senexin B (SenB) and
SNX631/15U are from Senex Biotechnology, Columbia, SC.

Cell lines and culture conditions

Human CML cell lines K562 (Russian Collection of Cell Cultures, Saint-Petersburg, Russia) and
KU812 (CRL-2099-ATCC, Manassas, VA) were propagated in RPMI-1640 (PanEco, Moscow, Russia) with
10% fetal bovine serum (Biosera, France), 2 mM L-glutamine, 100 U/ml penicillin and 100 pg/ml
streptomycin (PanEco) at 37°C, 5% CO; in humidified atmosphere. Cells in the logarithmic phase of growth
were used in the experiments.

Flow cytometry

Cell cycle distribution was analyzed as described (32). Cells were lysed in a buffer containing 50
pg/ml propidium iodide (PI), 100 pg/ml RNAse A, 0.1% sodium citrate, 0.3% NP-40 (VWR Life Science,
Radnor, PA) for 30 min in the dark. Apoptosis was analyzed with eBioscience Annexin V Apoptosis
Detection Kit APC (Thermo FS, Waltham, MA) in accordance with the manufacturer's recommendations.
The MitoTracker® Red CMXRos (Invitrogen, Carlsbad, CA) was used to evaluate the mitochondrial
membrane potential. Live/dead cells were determined by PI Nucleic Acid Stain (Thermo FS). Survival
fraction was calculated as the percentage of PI negative cells after normalizing to the total cell count.

To assess cell proliferation, cells were labeled with 30 pg/ml 5-bromo-2'-deoxyuridine (BrdU) for 30
min, fixed with 70% ice cold ethanol for 5 min and treated with 1.5 M HCI for 30 min. Cells were stained
with anti-BrdU antibody (Bu20a; BioRad, Hercules, CA) and counterstained with secondary Alexa Fluor®
488 conjugated antibody (Cell Signaling Technology, Danvers, MA), 50 pg/ml PI and 100 ug/ml RNAse A
in saline. Fluorescence was measured on a Cytoflex flow cytometer 26 (Beckman Coulter, Indianapolis, IN).
At least 10,000 events were collected per each sample, and analyzed using CytExpert Software (Beckman
Coulter).

RNA sequencing (RNASeq)
Preparation of cDNA libraries

K562 cells (200x10° cells/ml) were treated with the vehicle (0.02% DMSO), 1 uM IM, 1 pM SenB
or their combination (two replicates per each treatment) for 8 h. Total RNA was extracted with TRI reagent.
4 ng RNA was used to isolate poly(A)-enriched RNA with NEBNext® Poly(A) mRNA Magnetic Isolation
Module (NE Biolabs, Ipswich, MA) that was used to prepare RNA sequencing libraries with NEBNext®
Ultra™ II Directional RNA Library Prep Kit for Illumina (NE Biolabs). Actinomycin D was used for first
strand cDNA synthesis; cDNA libraries ligated with the Illumina suitable adaptor sequences were generated
and amplified with Q5 DNA polymerase (NE Biolabs). After purification from dimers by size selection in
the agarose gel the libraries were sequenced on a NovaSeq 6000 (Illumina, San Diego, CA).
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Analysis of RNASeq data

Quality of short reads was checked using the FastQC software (33). Sequencing adaptors were
removed using cutadapt (34), read ends with quality scores <20 were trimmed and subsequently reads
shorter than 30 bp were removed using sickle (35). Mapping of trimmed reads to human genome assembly
GRCh37 (hg19) and calculation of per-gene read counts were performed using STAR (36).

Statistical analysis was conducted using the edgeR package (37). Only the genes with counts greater
than one per million library reads (cpm>1) in at least two replicate samples were included. Read counts were
normalized using the trimmed mean of values method implemented in edgeR. General linear models and the
likelihood ratio test were used to identify differentially expressed genes (DEG). The Benjamini-Hochberg
false discovery rate (FDR) correction was applied to the test results (alpha=0.05).

Over-representation analysis (ORA) using both Gene Ontology (GO) enrichment analysis of DEG
and Reactome Pathways Database were conducted using the WebGestaltR package (38). The gene set
enrichment analysis (GSEA) for different comparisons (39) was conducted using the fgsea package(40) with
the specific gene sets downloaded from the Human Molecular Signatures Database (MSigDB). The ggplot2
(41) and clusterProfiler (42) R libraries were used for data visualization.

All raw RNA-Seq data were deposited in the Sequence Read Archive (SRA) under the BioProject
accession PRINA1008677 (to be released at the manuscript publication). Detailed information about RNA-
Seq samples is listed in Table S4.

Lentiviral transduction

To obtain pCW-p27 lentiviral plasmid carrying p27Kipl ORF (RefSeq NM_004064.5), total RNA was
isolated from IM-treated K562 cells. Complementary DNA was synthesized. Primers CDKN1B-forv 5°-
attagctagc ATGTCAAACGTGCGAGTGTCTAA-3’ and CDKNI1B-rev 5’-
taatggatccTTACGTTTGACGTCTTCTGAGGC-3’ (Evrogen, Moscow, Russia) containing Nhel and BamHI
restriction sites were used for amplification. The ORF was then cloned into the pCW vector replacing Cas9
in the pCW-Cas9 plasmid (https://www.addgene.org/50661/). The K562p27tet-on subline with doxycycline
inducible p27ijl overexpression was obtained by lentiviral transduction. The virus was concentrated by
ultracentrifugation (120,000g) for 2 h at 4°C. Polybrene (20 pg/ml) was added, and the supernatant was
mixed with K562 cells in the fresh medium (1:1 v/v). Selection was performed with 2 pg/ml puromycin.

Exogenous p27Kipl was induced by 1 ug/ml doxycycline.
Immunoblotting

K562 and KUS12 cells (200x10° cells/ml) were treated with 0.02% DMSO or drugs, harvested and
lysed for 30 min on ice in a buffer containing 50 mM Tris-HCI pH 8.0, 150 mM NaCl, 0.1% sodium dodecyl
sulfate, 1% NP-40, 2 mM phenylmethylsulfonyl fluoride (VWR Life Science, Radnor, PA) and the protease
inhibitor cocktail. Protein concentrations were determined by the Bradford method. Lysates were separated
by SDS-PAGE (30-50 pg total protein per lane) and transferred onto a 0.2 pm nitrocellulose membrane
(Bio-Rad). Membranes were blocked with 5% skimmed milk for 30 min at RT and treated with primary
antibodies (Supplementary Table S1) diluted in Tris-borate saline with Tween 20 (TBST) and 1% bovine
serum albumin overnight at 4°C. Then membranes were washed with TBST and incubated with a secondary
antibody conjugated with horseradish peroxidase for 1 h at RT. Proteins were visualized with the Clarity
Western ECL Substrate (Bio-Rad) using the iBright FL1500 Imaging System (Invitrogen, Waltham, MA).
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Statistical analysis

The data are representative of at least three independent experiments. One-way or two-way analysis
of variance (ANOVA) followed by Sidak’s post hoc test for multiple comparisons was used (GraphPad
Prism 9; GraphPad Software, San Diego, CA). P value <0.05 was taken as evidence of statistical
significance.
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