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Abstract 

Down syndrome (DS) is a segmental progeroid genetic disorder associated to multi-systemic 

precocious ageing phenotypes, which are particularly evident at the immune and nervous systems. 

Accordingly, people with DS show an increased biological age as measured by epigenetic clocks. 

Ts65Dn trisomic mouse, which harbors extra-numerary copies of Hsa21-syntenic regions, was 

shown to recapitulate several progeroid features of DS, but no biomarkers of age have been applied 

to it so far. Here we used a mouse specific epigenetic clock to measure epigenetic age of hippocampi 

from Ts65Dn and euploid mice at 20 weeks. Ts65Dn mice showed an increased hippocampal 

epigenetic age respect to controls, and the observed changes in DNA methylation partially 

recapitulated those observed in hippocampi from people with DS. Collectively, our results support 

the use of the Ts65Dn model to decipher the molecular mechanisms underlying the progeroid DS 

phenotypes. 
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Increased hippocampal epigenetic age in the Ts65Dn Mouse Model of Down Syndrome 

 

Down Syndrome (DS) is a common genetic disorder caused by complete or segmental triplication of 

chromosome 21 (Hsa21) and is the most frequent genetic cause of intellectual disability. DS is 

considered a segmental progeroid syndrome, characterized by a precocious aging-like deterioration 

which is particularly evident at the immune system and brain level. This view, originally proposed 

by George Martin on the basis of the analysis of DS phenotypic traits (Martin 1978), has been further 

refined in the last two decades through physiological and molecular analyses that explored 

similarities and differences between the pillars of aging and alterations occurring in DS (Franceschi 

et al. 2019; Chen et al. 2021; Zigman 2013). In this framework, several biomarkers of age have been 

explored in people with DS, including those based on telomere length (Gimeno et al. 2014; Holmes 

et al. 2006), magnetic resonance neuroimaging (brain-age) (Cole et al. 2017), serum proteins 

glycosylation (GlycoAge) (Borelli et al. 2015) and DNA methylation (DNAm) (epigenetic clocks) 

(Horvath, Garagnani, et al. 2015). These studies concordantly suggest that people with DS are older 

than their chronological age. 

Murine models are largely employed in the study of ageing and age-related disease (Palliyaguru et 

al. 2021) and mouse epigenetic biomarkers of age have been developed (Coninx et al. 2020; Lu et 

al. 2023; Han et al. 2018; Zhou et al. 2022; Wang & Lemos 2019).  So far, however, these epigenetic 

clocks have been applied to a limited extent and, to the best of our knowledge, no data are available 

for mouse models of DS. 

The Ts65Dn mouse strain is the most common model for the study of DS. These mice are 

segmentally trisomic for a region of chromosome 16 that is homologous to part of Hsa21. Ts65Dn 

mice were shown to recapitulate a wide range of DS-specific behavioral, physiological and 

neuroanatomical features such as reduced brain size, neuronal density (Lorenzi & Reeves 2006; 

Baxter 2000; Insausti et al. 1998; Stagni et al. 2018), altered neuronal function (Kleschevnikov et al. 

2004; Siarey et al. 1997) and altered dendrite architecture in hippocampal regions (Uguagliati et al. 

2022) as well as spatial learning and memory deficits. The Ts65Dn mouse, in addition, shares with 

the DS human condition multi-systemic premature aging associated with early alterations in 

mitochondrial function, DNA damage response, proteostasis and early neurodegeneration (Cisterna et 

al. 2020; Vacano et al. 2012; Puente-Bedia et al. 2022; Mollo et al. 2020; Holtzman et al. 1996; 

Kirstein et al. 2022). 

 

In this study, we aimed to evaluate hippocampal epigenetic age in the Ts65Dn model. We used a 

hippocampus-specific mouse epigenetic clock developed by Zymo Research (referred as DNAge®) 

which is based on deep bisulfite sequencing of 300 target regions containing 2045 CpG sites. Using 

this clock, Coninx and colleagues previously reported an increase in epigenetic age in the triple 

transgenic AD mouse model (Coninx et al. 2020).  

We applied the DNAge® clock to 6 Ts65Dn mice (age: 20 weeks; 5 males and 1 female) and 7 euploid 

mice (age: 20 weeks, 6 males and 1 female) (Supplementary information). As shown in Figure 1A, 

the hippocampal epigenetic clock model tended to underestimate the age of euploid mice (mean 

epigenetic age: 4.7 weeks instead of 20), an effect that is in line with the original publication (Coninx 

et al. 2020). With respect to the estimated epigenetic age of euploid controls, Ts65Dn mice were 

significantly epigenetically older (Mann-Whitney test p-value=0.0047). This result indicates for the 

first time that the Ts65Dn murine model mimics the increase in epigenetic age previously described 

in the brain and blood of subjects with DS (Horvath, Garagnani, et al. 2015; Do et al. 2017). Ts65Dn 

mice also showed a higher variance compared to euploid mice, although not reaching statistical 

significance (F-test p-value = 0.1231). This trend in higher variance can be related to the progeroid 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 25, 2023. ; https://doi.org/10.1101/2023.09.25.559272doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.25.559272
http://creativecommons.org/licenses/by/4.0/


phenotype, as an increase in epigenetic variability has been described during aging (BIOS 

consortium et al. 2016), although we cannot exclude that it is the result of the phenotypic drift 

observed in the Ts65Dn model (Shaw et al. 2020). 

To get further insights into the DNAm differences that contribute to the increased epigenetic age of 

Ts65Dn mice, we applied the Mann-Whitney test to each CpG site that makes the epigenetic clock.  

We found 27 differentially methylated CpGs (nominal p-value<0.01), of which 21 were 

hypermethylated and 6 hypomethylated in Ts65Dn compared to euploid mice (Supplementary 

Table 1). Furthermore, we identified 5 genomic regions that contained at least two CpG sites having 

a nominal p-value<0.01 (Figure 1B). These differentially methylated regions (DMRs) annotated to 

Bin1, Ajm1, Hsf4, Gm2662 and Gm26576 genes. Bin1 is a ubiquitously expressed gene which is 

known to modulate tau processing as well as to be involved in vesicle trafficking, inflammation and 

apoptosis (GERAD consortium et al. 2013; Thinakaran & Koo 2008; Galderisi et al. 1999). Ajm1 seems 

to be involved in cell-to-cell organization, while Hsf4 is a transcription factor known to act upstream 

of several processes, including DNA damage repair (Cui et al. 2012), and is central in the 

development of the eye (Fujimoto et al. 2004). Gm2662 and Gm26576 functions are not known. 

 

 
Figure 1. Increased epigenetic age of hippocampi in Ts65Dn mice. Boxplots showing epigenetic age predicted using 

ZymoResearch DNAge® predictor algorithm in Ts65Dn and wild-type euploid (wt) mice. Blue and red circles indicate 

data from male and female mice, respectively. *: p < 0.01, Mann-Whitney test). B) Lineplots of DNA methylation 

profiles in Ts65Dn mouse hippocampi for differentially methylated regions with at least two significant CpG sites. *: p 

< 0.01, Mann-Whitney test). 

 

Previous studies using whole-genome bisulfite sequencing (WGBS) on whole cerebral hemispheres 

of newborn Dp(16)1Yey and Dp(10)1Yey mice highlighted similarities in DNAm profiles between 

trisomic humans and mice (Mendioroz et al. 2015). We therefore performed a cross-species analysis 

to check whether the DNAge® CpG sites differentially methylated in Ts65Dn mice showed altered 

methylation in hippocampi from subjects with DS. We searched Gene Expression Omnibus (GEO) 

repository and found a small dataset (GSE63347) containing DNAm data from hippocampi from 2 

subjects with DS (age:42-57 y.o., 2 males) and 7 euploid controls (age:38-64, 2 males and 5 females), 

generated by the Illumina Infinium HumanMethylation450K microarray (Horvath, Garagnani, et al. 

2015). Using UCSC lift-over tool (Hinrichs 2006), the genomic coordinates of 15 out of the 27 CpG 
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sites identified above were lifted from mouse (mm10 genome assembly) to human (hg19 genome 

assembly). We analyzed all the human microarray probes mapping between 250bp upstream and 

250bp downstream of the 15 lifted CpG sites (a total of 19 probes). No probe was significantly 

differentially methylated between subjects with DS and controls (Mann-Whitney test p-value>0.05), 

possibly due also to the small sample size of the dataset; however, we found a CpG probe 

(cg04235075) mapping within HSF4 gene which showed a trend towards hypermethylation in DS 

(Figure 2A), concordantly with what observed in mouse. Interestingly, DNAm of this probe was also 

found to be positively associated with age in healthy human hippocampi, as resulting from the 

analysis of GSE129428 (age 34-78, 13 females and 19 males) (Fries et al. 2020) and GSE64509 (age 

38-114, 17 females and 8 males) (Horvath, Mah, et al. 2015) datasets (Figure 2B and Figure 2C). This 

concordance in DNAm changes observed in trisomic mice and humans as well as in human aging is 

of interest, as it suggests the presence of cross-species conserved epigenetic mechanisms that can 

contribute to the progeroid phenotype of DS. 

 
Figure 2. DNAm profiles of HSF4 CpGs in human hippocampi. A) DNAm profiles of Illumina Infinium 450k probes 

cg03140421 and cg04235075, mapping within human Hsf4 orthologous region, in hippocampus from subjects with DS 

(GSE63347) (p-value calculated with Mann-Whitney test). B, C) DNAm profiles of Illumina Infinium 450k probes 

cg03140421 and cg04235075 in hippocampus from subjects without overt pathologies at different ages (GSE129428, 

GSE64509) (p-values calculated with linear model). 

 

Collectively, our results show an increased hippocampal epigenetic age in the Ts65Dn mouse model. 

This is fully in line with its progeroid phenotypes (see above) and the notion that epigenetic 

alterations represent a pillar of aging (Mendioroz et al. 2015). The analysis of a small DNAm dataset 

of hippocampi from DS subjects revealed that some DNAm changes found in Ts65Dn mice were also 

present in humans. Although larger samples are needed, our study supports the use of the Ts65Dn 

model to decipher the molecular mechanisms underlying the progeroid DS phenotype. Finally, our 

study supports the use of the DNAge® clock and, possibly, other recently developed mouse 

epigenetic clocks (Lu et al. 2023; Zhou et al. 2022), as biomarkers of biological age. Such tools might 

be exploited to monitor the impact of disease and disease-modifying interventions in DS. It is worth 

to note that the DNAge® epigenetic clock is based on deep bisulfite sequencing of few genomic 

regions and therefore it is not informative of genome-wide epigenetic remodeling occurring in 

Ts65Dn mice. The recent release of Illumina Infinium Mouse Methylation microarray will allow 

investigation of genome wide DNAm profiles of DS models in a cost-effective manner and to get 

further insights into the epigenetic basis of the progeroid phenotype of DS. 
  

p-value=0.055 p-value=0.039 p-value=3e-04

A B CGSE63347 GSE129428 GSE64509
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