

1 Widespread dissemination of ESBL-producing *Salmonella enterica*
2 serovar Infantis exhibiting intermediate fluoroquinolone resistance and
3 harboring *bla*_{CTX-M-65}-positive pESI-like megaplasmids in Chile

4

5 Alejandro Piña-Iturbe¹, Constanza Díaz-Gavidia¹, Francisca P. Álvarez¹, Rocio
6 Barron-Montenegro¹, Diana M. Álvarez-Espejo¹, Patricia García², Doina Solís³,
7 Rodrigo Constenla-Albornoz^{4,5}, Magaly Toro^{3,6}, Jorge Olivares-Pacheco⁵, Angélica
8 Reyes-Jara^{3,7}, Jianghong Meng⁶, Rebecca L. Bell⁸, Andrea I. Moreno-Switt^{1*}

9

10 ¹Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales,
11 Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad
12 Católica de Chile, Santiago, Chile.

13 ²Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de
14 Chile, Santiago, Chile.

15 ³Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile,
16 Santiago, Chile

17 ⁴Laboratorio de Salud Pública, Ambiental y Laboral, SEREMI Salud, Región de
18 Valparaíso

19 ⁵Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales,
20 GRABPA, Instituto de Biología, Pontificia Universidad Católica de Valparaíso,
21 Chile

22 ⁶Joint Institute for Nutrition and Food Safety (JIFSAN), University of Maryland,
23 College Park, MD 20742, USA.

24 ⁷Millennium Institute Center for Genome Regulation (CGR), Santiago, Chile.

25 ⁸Center for Food Safety and Applied Nutrition, Food and Drug Administration,
26 College Park, MD 20742, USA.

27

28 *Address for correspondence: Andrea I. Moreno-Switt, Pontificia Universidad
29 Católica de Chile; Av. Vicuña Mackenna 4860; Santiago 7820436. E-mail:
30 andrea.moreno@uc.cl

31

32 Keywords: *Salmonella* Infantis; Americas, antibiotic resistance; pESI;
33 megaplasmid; CTX-M-65; fluoroquinolones; Chile

34 **Summary**

35 **Background**

36 Multidrug-resistant (MDR) *Salmonella* Infantis has disseminated worldwide, mainly
37 linked to the consumption of poultry products. Evidence shows dissemination of
38 this pathogen in Chile; however, studies are primarily limited to phenotypic data or
39 involve few isolates. As human cases of *Salmonella* Infantis infections have
40 substantially increased in recent years, a better understanding of its molecular
41 epidemiology and antimicrobial-resistance profiles are required to inform effective
42 surveillance and control measures.

43 **Methods**

44 We sequenced 396 *Salmonella* Infantis genomes and analyzed them with all
45 publicly available genomes of this pathogen from Chile (440 genomes in total),
46 representing isolates from environmental, food, animal, and human sources
47 obtained from 2009 to 2022. Based on bioinformatic and phenotypic methods, we
48 assessed the population structure, dissemination among different niches, and AMR
49 profiles of *Salmonella* Infantis in the country.

50 **Findings**

51 The genomic and phylogenetic analyses showed that *Salmonella* Infantis from
52 Chile comprised several clusters of highly related isolates dominated by sequence
53 type 32. The HC20_343 cluster grouped an important proportion of all isolates. The
54 latter was the only cluster associated with pESI-like megaplasmids, and up to 12
55 acquired AMR genes/mutations predicted to result in an MDR phenotype.

56 Accordingly, antimicrobial-susceptibility testing revealed a strong concordance
57 between the AMR genetic determinants and their matching phenotypic expression,
58 indicating that a significant proportion of HC20_343 isolates produce extended-
59 spectrum β -lactamases and have intermediate fluoroquinolone resistance.
60 HC20_343 *Salmonella* *Infantis* were spread among environmental, animal, food,
61 and human niches, showing a close relationship between isolates from different
62 years and sources, and a low intra-source genomic diversity.

63 **Interpretation**

64 Our findings show a widespread dissemination of MDR *Salmonella* *Infantis* from
65 the HC20_343 cluster in Chile. The high proportion of isolates with resistance to
66 first-line antibiotics and the evidence of active transmission between the
67 environment, animals, food, and humans highlight the urgency of improved
68 surveillance and control measures in the country. As HC20_343 isolates
69 predominate in the Americas, our results suggest a high prevalence of ESBL-
70 producing *Salmonella* *Infantis* with intermediate fluoroquinolone resistance in the
71 continent.

72 **Funding**

73 Agencia de Investigación y Desarrollo de Chile (ANID) through FONDECYT de
74 Postdoctorado Folio 3230796 and Folio 3210317, FONDECYT Regular Folio
75 1231082, and ANID – Millennium Science Initiative Program – ICN2021_044.

76 **Research in context**

77 **Evidence before the study**

78 In the last decade, emergent multidrug-resistant *Salmonella* Infantis has spread
79 worldwide, primarily linked to poultry product consumption. However, in most
80 countries from the Americas Region, such as Chile, the extent of the dissemination
81 of emergent *Salmonella* Infantis and its molecular epidemiology remains unknown.

82 In May and September 2023, an online search was conducted using the Google
83 engine and the PMC database with the terms “*Salmonella*,” “Infantis,” and “Chile,”
84 with no language restrictions. We assessed the results to select those presenting
85 antimicrobial resistance, epidemiologic, or genomic data directly associated with
86 isolates from Chile (13 studies). The selected studies showed that the prevalence
87 of *Salmonella* Infantis in poultry-meat production systems, its resistance to different
88 antibiotics, and the number of human cases of infection caused by this serovar
89 have increased since 2014-2016. However, these reports were limited to
90 phenotypic data or involved the genomic analysis of a few isolates (<50) obtained
91 from the same source. No study has assessed the genomic epidemiology of the
92 *Salmonella* Infantis population at the country level.

93 **Added value of this study**

94 Here, we present the first large-scale genomic epidemiology analysis of *Salmonella*
95 Infantis in Chile, including isolates from environmental, food, animal, and human
96 sources obtained from 2009 to 2022. We found that *Salmonella* Infantis in Chile is
97 divided into several clusters of highly related isolates and that only a single cluster,

98 the HC20_343, was associated with multiple antimicrobial-resistance determinants
99 and pESI-like megaplasmids. We also report that isolates from this cluster are
100 widespread among most sources, including irrigation water, poultry, food, and
101 human cases. Detection of AMR determinants coupled with antimicrobial-
102 susceptibility testing indicated that most HC20_343 isolates are ESBL-producers
103 and have intermediate resistance to ciprofloxacin. Population structure analysis of
104 this foodborne pathogen evidenced an active transmission of MDR *Salmonella*
105 *Infantis* between different niches. This study reveals the widespread dissemination
106 of MDR *Salmonella* *Infantis* in Chile.

107 **Implications of all the available evidence**

108 The evidence indicates that emerging *Salmonella* *Infantis* from the HC20_343
109 cluster is spreading among various niches, including irrigation water, poultry, and
110 food, causing human infections in Chile. Its resistance to first-line antibiotics used
111 for treating salmonellosis in individuals with a higher risk of severe or invasive
112 infections is concerning. Currently, most surveillance and control efforts to reduce
113 salmonellosis in Chile are focused on the poultry industry, and the study of
114 outbreaks does not include whole-genome sequence analyses. Our findings
115 highlight the urgent necessity to improve the surveillance and control measures to
116 include agricultural waters to prevent contamination of produce and the further
117 dissemination of resistance genes in the environment. As the HC20_343 cluster is
118 highly prevalent in the Americas, further research involving large-scale genomic
119 population analyses would shed light on the extent of the dissemination and

120 transmission routes of emergent *Salmonella* Infantis in the continent and may
121 contribute to informing surveillance and control policies.

122 **Introduction**

123 Non-typhoidal *Salmonella* (NTS) is one of the leading causes of foodborne disease
124 globally, mainly affecting children under five and the elderly. In 2019, NTS caused
125 215,000 deaths and the loss of approximately 15 million years of healthy life
126 worldwide, according to the estimates of the Global Burden of Disease Study¹
127 estimates. The burden posed by NTS is in part fueled by the emergence and
128 spread of antimicrobial resistance, especially to critically-relevant antimicrobials
129 such as third-generation cephalosporins and fluoroquinolones, which are the first-
130 line treatment option for severe NTS infections^{2,3}.

131 In the past decade, multidrug-resistant (MDR) and extended-spectrum β -lactamase
132 (ESBL)-producing *Salmonella enterica* serovar Infantis have emerged in different
133 continents as a zoonotic pathogen causing outbreaks of foodborne illness
134 associated with poultry products consumption⁴⁻⁶. In some countries, this pathogen
135 has displaced the historically most prevalent *Salmonella* serovars, such as
136 Typhimurium and Enteritidis^{4,7}. The success of emerging MDR *Salmonella* Infantis
137 is linked to the acquisition of a \approx 300 kbp pESI-like megaplasmid, which encodes
138 virulence, fitness-enhancing, and antibiotic-resistance factors that favor its capacity
139 of biofilm production, adhesion, invasion, and resistance to third-generation
140 cephalosporins⁴⁻⁶. Moreover, isolates of this emerging pathogen are also
141 associated with the chromosomal *gyrA* (D87Y) mutation, involved in
142 fluoroquinolone resistance^{5,8}. The enhanced virulence and antimicrobial resistance
143 traits of emergent *Salmonella* Infantis make this pathogen a global threat to public
144 health.

145 Chile is located between the Andes mountains and the Pacific Ocean, in the
146 southernmost part of South America. Organized into 16 administrative Regions,
147 Chile concentrates its population and most agricultural activities in the central area⁹,
148 being one of the leading exporters of poultry meat in the region, ranking third after
149 Brazil and the United States¹⁰. Recent research, primarily phenotypic or involving
150 few isolates, has shown the spread of MDR *Salmonella* *Infantis* in the country,
151 mainly linked to poultry. Analysis of the poultry and pig production systems
152 indicated increased *Salmonella* *Infantis* prevalence and resistance to multiple
153 antibiotics such as β -lactams, aminoglycosides, and tetracyclines^{11,12}. This was
154 concurrent with a high proportion of reported ESBL-producing isolates in poultry
155 products sold at Santiago de Chile's supermarkets¹³⁻¹⁵. In 2019, the Public Health
156 Institute of Chile (ISP) reported a 431% increase in intestinal and invasive human
157 infections caused by *Salmonella* *Infantis* in 2018, compared to 2014¹⁶, clearly
158 documenting the farm-to-fork transmission of this pathogen. Furthermore, MDR
159 strains of this pathogen also were isolated from irrigation water and a Magellanic
160 Horned-Owl^{17,18}, suggesting its dissemination in the environment outside poultry
161 sources. These data document the emergence and spread of this foodborne
162 pathogen in Chile in recent years; however, its magnitude and molecular
163 epidemiology remain unknown.

164 In this study, we report the first large-scale genomic analysis of the *Salmonella*
165 *Infantis* population in the country, assessing its population structure, dissemination
166 among different sources, and antimicrobial resistance. This effort will produce
167 valuable information for the entities responsible for the country's surveillance and

168 control of this pathogen. We sequenced 396 *Salmonella* Infantis genomes and
169 analyzed them with all other available *Salmonella* Infantis genomes from Chile
170 (440 genomes; April 20th, 2023), representing environmental, food, animal, and
171 clinical strains. Our analysis revealed that emergent *Salmonella* Infantis, with
172 resistance to first-line antibiotics, has been in Chile since before 2016, actively
173 transmitted between environmental, animal, food, and human sources. These
174 results make an urgent call to enhance surveillance and control measures to
175 prevent the further spread of this pathogen and antibiotic resistance genes in food
176 and the environment.

177 **Methods**

178 **Sample collection and isolation of *Salmonella* *Infantis***

179 From 2014-2022, samples from environmental, poultry, food, animal, and clinical sources were collected from three regions of central Chile: Región de Valparaíso, Región Metropolitana, and Región del Maule (**Fig. 1A** and **Supplementary Table S1**). Surface water samples (10 L) were collected at various points from five watersheds in central Chile (the Maipo, Mapocho, Claro, Lontué, and Mataquito rivers) using modified Moore swabs¹⁹. Poultry production samples (boot swabs, chicken crops, and cecal content) were collected from poultry farms and chicken-meat production systems located in Región Metropolitana. These samples were processed according to a modified FDA-BAM protocol to isolate *Salmonella* as previously described⁹. Raw meat-based dog diets and fecal samples from raw-fed dogs were processed according to the FDA-BAM protocol with modifications; raw food (25g) was enriched in 225 mL lactose broth (BD Difco), and fecal samples were enriched in 10 mL buffered peptone water. Isolation of *Salmonella* was confirmed by PCR amplification of the *invA* gene with primers *invAF* (5'-GAATCCTCAGTTTTCAACGTTTC-3') and *invAR* (5'-TAGCCGTAACCAACCAATAACAAATG-3')²⁰.

195 Raw and ready-to-eat poultry products were collected from supermarkets, restaurants, and meat-producer facilities by the Subsecretaría de Salud Pública from Valparaíso and transported at 0-4°C to the Laboratorio de Salud Pública, Ambiental y Laboral (SEREMI Salud – Valparaíso). *Salmonella* isolation from these samples was performed according to ISO 6579-2017, and serotyping was

200 performed at Instituto de Salud Pública de Chile (ISP; Public Health Institute of
201 Chile).

202 Human clinical samples (e.g., stool, blood, urine) representing human
203 salmonellosis cases from different Región Metropolitana areas were received at
204 the Laboratory of Microbiology of the UC-Christus Health network and processed
205 for *Salmonella* isolation. Samples were inoculated in Hektoen Enteric agar and
206 incubated at 35±2°C for 24-48 hours in aerobiosis; then, *Salmonella* confirmation
207 was performed using MALDI-TOF mass spectrometry, and serotyping was
208 performed at ISP, Chile.

209 *Salmonella* Infantis available from the above-described sources were all selected.
210 All isolates were stored in 20% glycerol stocks and maintained at -80°C.

211 **Genome sequencing and construction of the genome dataset**

212 Isolates from surface water were sequenced at the Food and Drug Administration,
213 Center for Food Safety and Applied Nutrition. Isolates from other sources were
214 sequenced at the GenomeTrakr New York State Department of Health laboratory.
215 Whole genome sequencing was performed on 385 isolates, and the reads were
216 deposited in the Sequence Read Archive, NCBI. Additionally, the *Salmonella*
217 Infantis strains from human cases were sequenced at SeqCenter, Pittsburgh, PA,
218 and the reads were directly uploaded to Enterobase²¹. All sequencing was
219 conducted using Illumina platforms.

220 On April 20th, 2023, the Enterobase database for *Salmonella* was queried for
221 genomes from Chile and the serovar Infantis as predicted by SISTR1²² or

222 SeqSero2²³. A total of 440 *Salmonella* Infantis records were retrieved, including the
223 396 sequenced by us, along with their associated metadata (**Table 1**;
224 **Supplementary Table S1**). All genome assemblies were downloaded from
225 Enterobase.

226 **Population structure and phylogenetic analyses**

227 The 7-gene MLST, core genome MLST (cgMLST), hierarchical clustering based on
228 cgMLST profiles, core SNP-based phylogeny, and minimum spanning trees were
229 all carried out directly in Enterobase²¹. Annotated genomes were used for allele
230 calling to classify the *Salmonella* Infantis isolates in sequence types (STs) by
231 MLST (based on genes *aroC*, *dnaN*, *hemD*, *hisD*, *purE*, *sucA* and *thrA*) or core
232 genome STs (cgSTs) by cgMLST (based on a 3002 allele scheme, cgMLST V2;
233 https://pubmlst.org/bigsdb?db=pubmlst_salmonella_seqdef&page=schemeInfo&sc_heme_id=4). HierCC V1²⁴ was used to cluster isolates based on the cgMLST
234 profiles. Clusters grouping isolates with links no more than 20 alleles apart (HC20)
235 were used to describe the *Salmonella* Infantis population. Based on cgMLST
236 profiles, a minimum spanning tree was constructed with MSTree V2 and visualized
237 with GrapeTree v1.5.1²⁵. A maximum likelihood phylogenetic tree based on core-
238 SNPs was built with the *Salmonella* Infantis N55391 genome (Enterobase Barcode
239 SAL_EA1888AA; GenBank accession NZ_CP016410.1) as a reference. The
240 phylogenetic tree was constructed with RAxML V8 based on 2008 variant sites
241 called in ≥95% of the genomes. A detailed description of how the Enterobase
242 processes and analyses work is available in reference ²¹ and its supplementary

244 files. The iTOL v6 online tool was used to display and annotate the phylogenetic
245 tree (<https://itol.embl.de/>).

246 **Identification of antibiotic-resistance genes/mutations and presence of pESI-
247 like megaplasmids**

248 All 440 genome assemblies were downloaded from Enterobase and stored locally.
249 Antibiotic resistance genes and point mutations involved in antimicrobial resistance
250 in *Salmonella* were identified using AMRFinderPlus v3.11.4²⁶. Since the *mdsA* and
251 *mdsB* genes were found in all isolates and their presence did not result or explain
252 any phenotypic resistance, these genes were not included in the analyses. The
253 presence of pESI-like megaplasmids was assessed with ABRickate v1.0.1
254 (<https://github.com/tseemann/abricate>) and a custom database that included all
255 315 genes from the pESI-like megaplasmid pN55391 (GenBank accession
256 NZ_CP016411.1).

257 **Intra-source genomic diversity analysis**

258 The cgMLST allelic profiles for each *Salmonella* Infantis isolate were downloaded
259 from Enterobase. Pairwise allelic distances (PAD) were calculated for any pair of
260 isolates within each source to assess the genomic diversity within each source.
261 Only isolates representing unique cgSTs within a given source were included in the
262 analysis. When more than one isolate per cgST was detected, only one was
263 randomly selected and included in the analysis.

264

265

266 **Antibiotic-susceptibility testing**

267 A sub-sample of 23 *Salmonella* Infantis isolates representing the diversity of the
268 HC20_343 cluster was selected for antimicrobial susceptibility testing. These
269 isolates were chosen because they represented different isolation sources and
270 collection years and had the highest intra-source genomic diversity based on their
271 PADs. Susceptibility testing was carried out in cation-adjusted Müller-Hinton agar
272 by the agar-dilution method following the recommendations of the Clinical and
273 Laboratory Standards Institute²⁷. The minimum inhibitory concentration (MIC) was
274 interpreted according to the CLSI breakpoints available in the M100Ed33
275 document²⁸. The following antibiotics, or antibiotic-inhibitor, were tested: amikacin
276 (AMK), ampicillin (AMP), ampicillin-sulbactam (SAM), cefazoline (CFZ), cefepime
277 (FEP), cefotaxime (CTX), cefotaxime/clavulanate (CTX/CLA), ceftazidime (CAZ),
278 ceftazidime/clavulanate (CAZ/CLA), ciprofloxacin (CIP), fosfomycin (FOS),
279 gentamycin (GEN), imipenem (IPM), meropenem (MEM), piperacillin-tazobactam
280 (TZP), and trimethoprim/sulfamethoxazole (SXT). ESBL production was detected
281 when the MIC of CTX and CAZ showed ≥ 3 2-fold reduction in the presence of
282 clavulanate, an ESBL-inhibitor. A multidrug-resistant phenotype was assigned to
283 isolates that displayed resistance to one or more antibiotics from at least three
284 different classes.

285 **Results**

286 **Region of origin, isolation source, and collection year of the isolates**

287 To study the structure of the *Salmonella* Infantis population from Chile, we
288 sequenced 396 isolates of this pathogen. We analyzed their genomes with all
289 public *Salmonella* Infantis genomes from Chile available in Enterobase on April
290 20th, 2023. Our dataset was mainly composed of genomes from isolates coming
291 from central Chile, specifically from Región de Valparaíso (n=60), Región
292 Metropolitana (n=378), Región del Libertador General Bernardo O'Higgins (n=1),
293 Región del Maule (n=21), Región Ñuble (n=1), and Región del Biobío (n=2). Most
294 isolates (85%) came from Región Metropolitana and Región de Valparaíso (**Fig.**
295 **1A**). Genomes from environmental (river/creek/lagoon/irrigation water; boot swabs
296 of soil/dust) and poultry/food (chicken carcass/crop/cecal content/feces; chicken
297 meat) origin made 91% of total genomes, followed by human clinical cases which
298 accounted for 2.7% (12 genomes) (**Fig. 1B**). While the collection year ranged from
299 2009 to 2022, most isolates (421/95.7%) were distributed from 2018 to 2022 (**Fig.**
300 **1C**). Although this dataset is limited to 6 out of 16 Regions in Chile and is primarily
301 concentrated in two regions, it is relevant to note that these regions harbor most of
302 the human population and poultry production in Chile (**Fig. 1A**). Therefore, the
303 genome dataset analyzed in this study offers a substantial representation of the
304 bacterial population potentially encountered by most individuals and poultry
305 raising/production systems in the country.

306

307 **The *Salmonella* Infantis population in Chile belongs to ST32 and comprises**
308 **different cgMLST clusters of highly related isolates**

309 Among all isolates, 435 (98.9%) were ST32 (7-gene MLST) while the other five
310 (three ST9835 and two ST9853) were single locus variants of ST32 that differed in
311 the *thrA* allele (**Table 1**). The core SNP-based maximum likelihood phylogeny
312 showed the presence of several clades comprising highly related genomes (**Fig. 2**).
313 The hierarchical clustering of genomes linked by no more than 20 cgMLST-allele
314 differences (HC20) revealed that the clades shown by the phylogeny corresponded
315 with different HC20 groups, dominated by clusters HC20_343 and HC20_775 (92%
316 of genomes) (**Table 1, Fig. 2**). Isolates belonging to cluster HC20_343 came from
317 the highest diversity of isolation sources and some clusters (e.g., 2398, 422,
318 215390, 327110) seemed to group isolates only from environmental sources (**Fig.**
319 **2**). However, this is most likely an effect of a sample-size bias, with the most
320 populated cluster being more likely to harbor genomes from different sources.
321 Notably, 10 out of 12 *Salmonella* Infantis isolates from human infections belonged
322 to the HC20_343 cluster. These isolates were closely related to isolates from
323 different sources, forming subclades in the phylogeny that included poultry
324 (chicken), food (chicken meat), and environmental (surface water and soil/dust
325 from boot swabs) isolates (**Fig. 2**). The interspersed distribution of isolates from
326 diverse sources across the phylogenetic tree that share temporal proximity
327 (sampled during 2020-2022) suggests an extant transmission network involving
328 environmental, animal, food, and human niches.

329 **Salmonella** *Infantis* isolates from the HC20_343 cluster include MDR ESBL-
330 producing strains and carry pESI-like megaplasmids

331 The presence of antimicrobial-resistance (AMR) genes/mutations among the 440
332 genomes from Chile was assessed (**Fig. 2; Supplementary Table S2-S3**).
333 Interestingly, the HC20_343 cluster (322 genomes) was the only one associated
334 with up to 12 acquired antimicrobial resistance genes or mutations predicted to
335 result in resistance to aminoglycosides, cephems, folate pathway antagonists,
336 chloramphenicol, fosfomycin, lincosamides, fluoroquinolones and tetracycline (**Fig.**
337 **3A**). The most frequent resistance genes among HC20_343 isolates were *tet(A)*
338 (99.4%), *sul1* (99.4%), and *aadA1* (98.8%), encoding predicted resistance to
339 tetracycline, sulfonamide, and aminoglycosides. Genes *aph(3')-Ia*, *aph(4)-Ia*,
340 *aac(3)-IVa* (aminoglycoside resistance), *bla*_{CTX-M-65} (third-generation cephalosporin
341 resistance), *dfrA14* (trimethoprim resistance), and *floR* (phenicol resistance) were
342 found in 60.6%-81.7% of the isolates. Other identified resistance genes [*aadA12*,
343 *aadA22*, *bla*_{TEM-1}, *Inu(A)*, *Inu(G)*, and *qnrB19*] were present in 6 or less isolates
344 only, except by *fosA3* (fosfomycin resistance) that was carried by 28.9% of isolates.
345 Noteworthy, all but one HC20_343 isolate (99.7%) carried the *gyrA* (D87Y)
346 mutation involved in fluoroquinolone resistance.
347 Within the HC20_343 cluster, 210 genomes (65.2%) harbored nine or more AMR
348 genes/mutations, and 321 genomes (99.7%) carried genes/mutations predicted to
349 encode resistance to at least one antibiotic from three or more antibiotic classes,
350 potentially resulting in a multidrug-resistant phenotype (**Fig. 3B**). We found a good
351 agreement between the content of genetic AMR determinants and the phenotypic

352 resistance in all the isolates for which the MIC was assessed (**Supplementary**
353 **Table S4**). Accordingly, all *bla_{CTX-M-65}*-positive isolates were resistant to the
354 cephalosporins CFZ and CTX and displayed an ESBL-phenotype. Isolates
355 harboring *aadA1*, *aac(3')-Iva*, and *aph(4)-Ia* were resistant to GEN. Many isolates
356 (9/23) had intermediate susceptibility to the fourth-generation cephalosporin FEP.
357 However, this phenotype did not correlate with any of the identified AMR genes.
358 The presence of *aadA1* alone was not sufficient to confer GEN resistance, and
359 *aph(3')-Ia* carriage did not show agreement with the resistance profile. All tested
360 isolates were susceptible to AMK. SXT-resistance was found in isolates carrying
361 *sul1* plus *dfrA14*, and lack of *dfrA14* resulted in SXT susceptibility. All *gyrA(D87Y)*-
362 positive isolates displayed intermediate resistance to CIP. Notably, the presence of
363 *qnrB19* plus *gyrA(D87Y)* resulted in CIP-resistance. Conversely, all isolates lacking
364 at least one of the genes/mutations mentioned above were susceptible to the
365 corresponding antibiotics.
366 Since many of the identified antibiotic-resistance genes have been reported to be
367 carried by the pESI-like megaplasmid associated with emerging MDR *Salmonella*
368 *Infantis*, we screened the entire genome dataset for the presence of the pN55391
369 pESI-like megaplasmid genes (**Fig. 3C; Supplementary Table S5**). We found that
370 only the HC20_343 cluster harbored most of the pESI-like megaplasmid genes
371 (from 164 to 310 out of 315 genes), including those encoding the three toxin-
372 antitoxin systems (*pemK/I*, *vapB/C* and *ccdB/A*), the K88-like and Ipf fimbria, the
373 yersiniabactin synthesis cluster, the mercury resistance cluster, and the
374 conjugative transfer region (*tra* and type-IV pili-encoding genes), which are part of

375 the pESI-like megaplasmids backbone²⁹. Most differences between the
376 megaplasmids harbored by the Chilean strains and the pN55391 megaplasmid
377 were located in the antibiotic resistance region, previously reported as a variable
378 region⁵. Nevertheless, the resistance genes contained in this region were present
379 in most of the megaplasmid-harboring genomes (*bla*_{CTX-M-65}: 69.6%; *floR*: 78.0%;
380 *aph(4)-Ia*: 81.7%; *aac(3)-IVa*: 81.7%; *dfrA14*: 64.9%; and *aph(3')-Ia*: 60.6%;
381 **Supplementary Table S5**). Our analyses revealed that the HC20_343 *Salmonella*
382 *Infantis* isolates acquired multiple antimicrobial-resistance genes/mutations, partly
383 associated with the presence of pESI-like megaplasmids.

384 **HC20_343 *Salmonella* *Infantis* isolates are disseminated among different
385 niches and show a low intra-source genomic diversity**

386 A minimum spanning tree (MST) was constructed to visualize the genomic
387 structure of the *Salmonella* *Infantis* population based on the cgMLST profiles (**Fig.**
388 **4A**). In agreement with the core SNP-phylogeny, the MST shows the bacterial
389 population grouped in nine HC20 clusters of highly related isolates linked by no
390 more than 20 allele-differences. The highest diversity of sources was found for
391 cluster HC20_343, while the other HC20 clusters came mainly from environmental
392 samples. Only two out of 12 isolates from human clinical samples were found
393 outside HC20_343 in clusters HC20_215390 and HC20_2398. All isolates from
394 food, animal feed, and companion animals (dogs) belonged to cluster HC20_343.
395 These findings highlight the foodborne, zoonotic, and human-pathogenic potential
396 of HC20_343 *Salmonella* *Infantis*.

397 We carried out a more detailed analysis of cluster HC20_343 isolates. The MST
398 evidenced putative events of transmission between different sources, as
399 exemplified by subclusters 1 to 4 in **Fig. 4 B**. Subclusters 1, 3, and 4 included
400 isolates from environmental, food, and human sources, while subcluster 2 included
401 isolates from environmental, animal feed, and companion animals. Moreover,
402 subclusters 1, 2, and 3 also included *Salmonella* Infantis from poultry. Importantly,
403 isolates from all sources within these clusters were linked to isolates obtained from
404 food (poultry products), and, ultimately, all sources within cluster HC20_343 had
405 links with poultry. We assessed the intra-source genomic diversity of the
406 HC20_343 isolates regarding the pairwise allelic differences (PAD) between any
407 pair of isolates representing unique cgSTs (**Fig. 4C; Supplementary Table S6**).
408 Overall, a low genomic diversity was found within the different isolation sources.
409 The environmental isolates displayed the highest diversity, with PAD values
410 ranging from 0 to 51. All other sources harbored isolates with PADs ≤ 34 . The
411 median PAD per source ranged from 13 in food isolates to 25 in animal feed.
412 Environmental, poultry, food, and human isolates had the lowest median PADs
413 (from 13 to 17), while the isolates from animal feed and companion animals had
414 the highest (25 and 23, respectively). Overall, the close relatedness between
415 HC20_343 isolates from different sources and the low intra-source genomic
416 diversity further supports a scenario in which MDR *Salmonella* Infantis is actively
417 disseminating among different niches, including humans, in Chile.

418 **Discussion**

419 The expansion of MDR *Salmonella* *Infantis* has been reported worldwide, with the
420 highest proportion of isolates coming from the Americas region, followed by
421 Europe³⁰. The dissemination of this foodborne pathogen is mainly linked to poultry
422 and poultry products, and different countries have reported a rise in human
423 infections^{7,12,30-32}. Nevertheless, little is known about the extent of the *Salmonella*
424 *Infantis* dissemination in different niches and its molecular epidemiology.

425 Here, we reported the first large-scale genomic analysis of this foodborne
426 pathogen population in Chile, finding evidence of the transmission of *Salmonella*
427 *Infantis* carrying pESI-like megaplasmids and multiple AMR determinants (cluster
428 HC20_343) between environmental, poultry, food, animals, and human niches.
429 Highly related isolates from different years were found in diverse sources,
430 indicating a constant inter-source transmission. The country is working to enhance
431 the surveillance and control of *Salmonella* (including antimicrobial resistance)
432 (SAG, Exempt Resolution 3687; <https://bcn.cl/2pap1>)¹³. However, these efforts
433 mainly focus on poultry and its derived products as they are known sources of
434 *Salmonella*. Importantly, we report that irrigation waters are a source of *Salmonella*
435 *Infantis* with potential MDR phenotypes. The presence of this pathogen in surface
436 watersheds that supply the country's main agricultural region⁹ underscores the
437 urgent necessity to improve the current monitoring of irrigation waters and
438 establish effective control measures to prevent the contamination of produce and
439 the dissemination of antibiotic-resistance genes in the environment.

440 Human infection with non-typhoidal *Salmonella* usually results in self-limited acute
441 gastroenteritis. However, children under five, adults over 65, and
442 immunocompromised people are at higher risk of developing a severe life-
443 threatening infection³. Antibiotics, such as third-generation cephalosporins and
444 fluoroquinolones, are recommended to prevent or treat severe diseases³. In 2017,
445 the World Health Organization presented a list of 12 antibiotic-resistant bacterial
446 pathogens, categorized into critical, high, and medium priority tiers, urgently
447 requiring research and development of novel antibiotics since available treatments
448 are becoming limited³³. This list placed third-generation cephalosporin-resistant
449 *Enterobacteriaceae* and fluoroquinolone-resistant *Salmonella* spp. as critical and
450 high-priority pathogens. A significant proportion of *Salmonella* *Infantis* from the
451 HC20_343 cluster (69.6%) harbored the ESBL-encoding gene *bla*_{CTX-M-65} in a pESI-
452 like megaplasmid. Moreover, almost all HC20_343 isolates (321/322) harbored the
453 chromosomal *gyrA* (D87Y) mutation involved in fluoroquinolone resistance.
454 Although the resistance profiles of emergent *Salmonella* *Infantis* reported in
455 different countries are variable^{7,31,34,35}, partially as a result of the diversity within the
456 megaplasmid AMR region (see Fig. 3C and ref. ⁵), our findings in Chile are in
457 agreement with a recent global survey of reported AMR determinants in
458 *Salmonella* *Infantis*³⁰. Importantly, we found that the aminoglycoside AMK and the
459 carbapenems IPM and MEM were consistently active against all tested isolates
460 from Chile. Our findings imply that the available options for preventing or treating
461 severe infections in susceptible individuals are limited.

462 An unexpected finding was the association of the HC20_343 isolates with the
463 presence of the pESI-like megaplasmids. Alba *et al.*⁶ found pESI-like
464 megaplasmids carrying the *bla*_{CTX-M-1} gene in European *Salmonella* *Infantis* isolates
465 from a higher diversity of HC20 clusters, and mainly from the HC20_7898 cluster.
466 They also reported that megaplasmid-positive isolates from North America, or
467 associated with traveling to South America, harbored the *bla*_{CTX-M-65} gene on the
468 megaplasmid and belonged to the HC20_343 cluster. Similar to our study, they
469 found that strains from the HC20_775 cluster lacked the megaplasmid. In addition
470 to the known association of *bla*_{CTX-M-65} with American and *bla*_{CTX-M-1} with European
471 megaplasmid-carrying *Salmonella* *Infantis*^{6,7}, our findings suggest that the
472 American megaplasmid-positive *Salmonella* *Infantis* strains might be associated
473 with the HC20_343 cluster. Testing this hypothesis might help to better understand
474 the global dissemination of emerging *Salmonella* *Infantis*. Importantly, we found
475 that, out of 14706 *Salmonella* *Infantis* genomes from the Americas, 60% belonged
476 to the HC20_343 cluster (**Supplementary File, FigS1**), suggesting a high
477 prevalence of megaplasmid-positive ESBL-producing isolates with intermediate
478 fluoroquinolone resistance in the continent.
479 The approximate time for the arrival of the emerging *Salmonella* *Infantis* into
480 Chilean territory remains unknown. The oldest pESI-like positive genomes in our
481 dataset date from 2016 (4 genomes) and 2017 (1 genome) (**Supplemental Table**
482 **S1**). These genomes represent four clinical isolates and one isolate obtained from
483 a Dominican gull (*Larus dominicanus*), indicating that *Salmonella* *Infantis* carrying
484 *bla*_{CTX-M-65}-positive pESI-like megaplasmids were circulating in Chile before 2016. A

485 minimum spanning tree constructed with the cgMLST profiles from all *Salmonella*
486 *Infantis* isolates from the Americas (available in Enterobase on July 7th, 2023)
487 revealed that the HC20_343 isolates from the United States and Chile cluster
488 together (**Supplementary File, FigS1**, also seen at [NCBI Pathogen Detection](#)).

489 This finding suggests two possible scenarios in which emerging *Salmonella* *Infantis*
490 from Chile came from the United States, or isolates from both countries share a
491 common origin³⁶.

492 We analyzed a dataset of 440 genomes representing the population structure of
493 *Salmonella* *Infantis* in Chile. This population comprises strains lacking genetic
494 determinants of antibiotic resistance and antibiotic-resistant strains that harbor
495 pESI-like megaplasmids, both from the globally spread ST32. The megaplasmid-
496 carrying strains belonged to the HC20_343 cluster, circulating among
497 environmental, food, diverse animals, and human niches. Our results indicate that
498 a significant proportion of the HC20_343 isolates encode ESBLs and display an
499 intermediate resistance to fluoroquinolones, which limits the available treatments
500 for individuals at a higher risk. Our findings and the reported increase in human
501 cases highlight the urgent need to study the dissemination dynamics of this
502 pathogen to devise effective surveillance and control measures.

503 **Contributors**

504 Conceptualization - API, AIMS

505 Data curation - API, FPA, RBM, DMAE, PG, DS, JOP, ARJ, AIMS

506 Formal analysis - API, CDG, FPA, RBM, DMAE

507 Funding acquisition - API, DMAE, ARJ, AIMS

508 Investigation - API, CDG, FPA, RBM, DMAE, PG, DS, RCA, MT, JOP, ARJ, JM,
509 RLB, AIMS

510 Methodology - API, CDG, FPA, RBM, DMAE, PG, DS, RCA, MT, JOP, ARJ, JM,
511 RLB, AIMS

512 Software - API, CDG

513 Supervision - AIMS

514 Visualization - API

515 Writing original draft - API, AIMS

516 Writing review and editing - API, CDG, FPA, RBM, DMAE, PG, DS, RCA, MT, JOP,
517 ARJ, JM, RLB, AIMS

518 All authors read and approved the submitted version of the manuscript.

519 **Data sharing statement**

520 All genome metadata, identified AMR genes/mutations, antimicrobial susceptibility
521 testing results, and identified megaplasmid genes are available in the
522 Supplementary Material. Genome assemblies are publicly available in Enterobase
523 (<https://enterobase.warwick.ac.uk/species/index/senterica>) and GenBank
524 (<https://www.ncbi.nlm.nih.gov/genbank/>) using the corresponding accession
525 numbers found in the Supplementary Table S1.

526 **Acknowledgements**

527 This work was supported by Agencia de Investigación y Desarrollo de Chile (ANID)
528 through FONDECYT de Postdoctorado Folio 3230796 (to A.P-I.) and Folio
529 3210317 (to D.A-E), FONDECYT Regular Folio 1231082 (to A.I.M-S), and ANID –
530 Millennium Science Initiative Program – ICN2021_044 (to A.R-J).
531 The funders of the study had no role in study design, data collection, data analysis,
532 data interpretation, or the writing of the report.

533 **References**

534 1 GBD 2019 Antimicrobial Resistance Collaborators. Global mortality
535 associated with 33 bacterial pathogens in 2019: a systematic analysis for the
536 Global Burden of Disease Study 2019. *Lancet* 2022; **400**: 2221–48.

537 2 Antimicrobial Resistance Collaborators. Global burden of bacterial
538 antimicrobial resistance in 2019: a systematic analysis. *Lancet* 2022; **399**:
539 629–55.

540 3 CDC. *Salmonella* - Information for Healthcare Professionals and
541 Laboratories. 2023. <https://www.cdc.gov/salmonella/general/technical.html>
542 (accessed Aug 23, 2023).

543 4 Aviv G, Tsyba K, Steck N, *et al*. A unique megaplasmid contributes to stress
544 tolerance and pathogenicity of an emergent *Salmonella enterica* serovar
545 Infantis strain. *Environ Microbiol* 2014; **16**: 977–94.

546 5 Tate H, Folster JP, Hsu C-H, *et al*. Comparative Analysis of Extended-
547 Spectrum-B-Lactamase CTX-M-65-Producing *Salmonella enterica* Serovar
548 Infantis Isolates from Humans, Food Animals, and Retail Chickens in the
549 United States. *Antimicrob Agents Chemother* 2017; **61**: e00488-17.

550 6 Alba P, Leekitcharoenphon P, Carfora V, *et al*. Molecular epidemiology of
551 *Salmonella infantis* in Europe: Insights into the success of the bacterial host
552 and its parasitic pESI-like megaplasmid. *Microb Genomics* 2020; **6**: e000365.

553 7 Mejía L, Medina JL, Bayas R, *et al*. Genomic Epidemiology of *Salmonella*
554 Infantis in Ecuador: From Poultry Farms to Human Infections. *Front Vet Sci*

555 2020; **7**: 547891.

556 8 Bogomazova AN, Gordeeva VD, Krylova E V., *et al.* Mega-plasmid found
557 worldwide confers multiple antimicrobial resistance in *Salmonella* *Infantis* of
558 broiler origin in Russia. *Int J Food Microbiol* 2020; **319**: 108497.

559 9 Toro M, Weller D, Ramos R, *et al.* Environmental and anthropogenic factors
560 associated with the likelihood of detecting *Salmonella* in agricultural
561 watersheds. *Environ Pollut* 2022; **306**: 119298.

562 10 The Observatory of Economy Complexity. Poultry Meat.
563 <https://oec.world/en/profile/hs/poultry-meat> (accessed Sept 12, 2023).

564 11 Alegria-Moran R, Rivera D, Toledo V, Moreno-Switt AI, Hamilton-West C.
565 First detection and characterization of *Salmonella* spp. In poultry and swine
566 raised in backyard production systems in central Chile. *Epidemiol Infect*
567 2017; **145**: 3180–90.

568 12 Lapierre L, Cornejo J, Zavala S, *et al.* Phenotypic and genotypic
569 characterization of virulence factors and susceptibility to antibiotics in
570 *Salmonella* *Infantis* strains isolated from chicken meat: First findings in Chile.
571 *Animals* 2020; **10**: 1049.

572 13 Paredes-Osses EA, Fernandez Ricci A, Duarte Boke S, *et al.* Estudio Piloto
573 de Vigilancia Integrada de susceptibilidad fenotípica y presencia de genes
574 de resistencia a antimicrobianos β -lactámicos en cepas de *Salmonella*
575 *enterica* subsp. *enterica* serovar *Infantis* aisladas desde alimentos en Chile.
576 *Rev del Inst Salud Pública Chile* 2020; **4**: 42–51.

577 14 Retamal P, Gaspar J, Benavides MB, *et al.* Virulence and antimicrobial
578 resistance factors in *Salmonella enterica* serotypes isolated from pigs and
579 chickens in central Chile. *Front Vet Sci* 2022; **9**: 971246.

580 15 Krüger GI, Pardo-Esté C, Zepeda P, *et al.* Mobile genetic elements drive the
581 multidrug resistance and spread of *Salmonella* serotypes along a poultry
582 meat production line. *Front Microbiol* 2023; **14**: 1072793.

583 16 ISP. Boletín de Vigilancia de *Salmonella* spp. 2014-2018. 2019
584 <http://www.ispch.cl/sites/default/files/BoletínSalmonella-12052020A.pdf>.

585 17 Martínez MC, Retamal P, Rojas-Aedo JF, Fernández J, Fernández A,
586 Lapierre L. Multidrug-Resistant Outbreak-Associated *Salmonella* Strains in
587 Irrigation Water from the Metropolitan Region, Chile. *Zoonoses Public Health*
588 2017; **64**: 299–304.

589 18 Fuentes-Castillo D, Farfán-López M, Esposito F, *et al.* Wild owls colonized
590 by international clones of extended-spectrum β -lactamase (CTX-M)-
591 producing *Escherichia coli* and *Salmonella* Infantis in the Southern Cone of
592 America. *Sci Total Environ* 2019; **674**: 554–62.

593 19 Sbodio A, Maeda S, Lopez-Velasco G, Suslow T V. Modified Moore swab
594 optimization and validation in capturing *E. coli* O157:H7 and *Salmonella*
595 *enterica* in large volume field samples of irrigation water. *Food Res Int* 2013;
596 **51**: 654–62.

597 20 Jeong SK, Gang GL, Jong SP, *et al.* A novel multiplex PCR assay for rapid
598 and simultaneous detection of five pathogenic bacteria: *Escherichia coli*

599 O157:H7, *Salmonella*, *Staphylococcus aureus*, *Listeria monocytogenes*, and
600 *Vibrio parahaemolyticus*. *J Food Prot* 2007; **70**: 1656–62.

601 21 Zhou Z, Alikhan NF, Mohamed K, Fan Y, Agama Study Group T, Achtman M.
602 The Enterobase user's guide, with case studies on *Salmonella* transmissions,
603 *Yersinia pestis* phylogeny, and *Escherichia* core genomic diversity. *Genome*
604 *Res* 2020; **30**: 138–52.

605 22 Robertson J, Yoshida C, Kruczakiewicz P, *et al.* Comprehensive assessment
606 of the quality of *Salmonella* whole genome sequence data available in public
607 sequence databases using the *Salmonella in silico* Typing Resource (SISTR).
608 *Microb genomics* 2018; **4**: e000151.

609 23 Zhang S, den Bakker HC, Li S, *et al.* SeqSero2: Rapid and improved
610 *Salmonella* serotype determination using whole-genome sequencing data.
611 *Appl Environ Microbiol* 2019; **85**: e01746-19.

612 24 Zhou Z, Charlesworth J, Achtman M. HierCC: a multi-level clustering scheme
613 for population assignments based on core genome MLST. *Bioinformatics*
614 2021; **37**: 3645–6.

615 25 Zhou Z, Alikhan NF, Sergeant MJ, *et al.* Grapetree: Visualization of core
616 genomic relationships among 100,000 bacterial pathogens. *Genome Res*
617 2018; **28**: 1395–404.

618 26 Feldgarden M, Brover V, Gonzalez-Escalona N, *et al.* AMRFinderPlus and
619 the Reference Gene Catalog facilitate examination of the genomic links
620 among antimicrobial resistance, stress response, and virulence. *Sci Rep*

621 2021; **11**: 1–9.

622 27 CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria
623 That Grow Aerobically, 11th Edition. CLSI standard M07, 11a edn. 2018.

624 28 CLSI. M100-ED33:2023. Performance Standards for Antimicrobial
625 Susceptibility Testing, 33rd Edition. 2023.
626 <http://em100.edaptivedocs.net/GetDoc.aspx?doc=CLSI%20M100%20ED33:2023&scope=user>.

628 29 dos Santos AMP, Panzenhagen P, Ferrari RG, Conte-Junior CA. Large-scale
629 genomic analysis reveals the pESI-like megaplasmid presence in *Salmonella*
630 Agona, Muenchen, Schwarzengrund, and Senftenberg. *Food Microbiol* 2022;
631 **108**: 104112.

632 30 Alvarez DM, Barrón-Montenegro R, Conejeros J, Rivera D, Undurraga EA,
633 Moreno-Switt AI. A review of the global emergence of multidrug-resistant
634 *Salmonella enterica* subsp. *enterica* Serovar Infantis. *Int J Food Microbiol*
635 2023; **403**: 110297.

636 31 Quino Sifuentes W, Hurtado CV, Escalante-Maldonado O, *et al.* Multidrug
637 resistance of *Salmonella* Infantis in Peru: A study through next generation
638 sequencing. *Rev Peru Med Exp Salud Publica* 2019; **36**: 37–45.

639 32 Tyson GH, Li C, Harrison LB, *et al.* A Multidrug-Resistant *Salmonella* Infantis
640 Clone is Spreading and Recombining in the United States. *Microb Drug
641 Resist* 2021; **27**: 792–9.

642 33 WHO. Global priority list of antibiotic-resistant bacteria to guide research,

643 discovery, and development of new antibiotics. 2017 <http://remed.org/wp-content/uploads/2017/03/lobal-priority-list-of-antibiotic-resistant-bacteria-2017.pdf>.

644

645

646 34 Brown A, Chen J, Watkins L, *et al.* CTX-M-65 Extended-Spectrum β -Lactamase-Producing *Salmonella enterica* Serotype Infantis, United States.

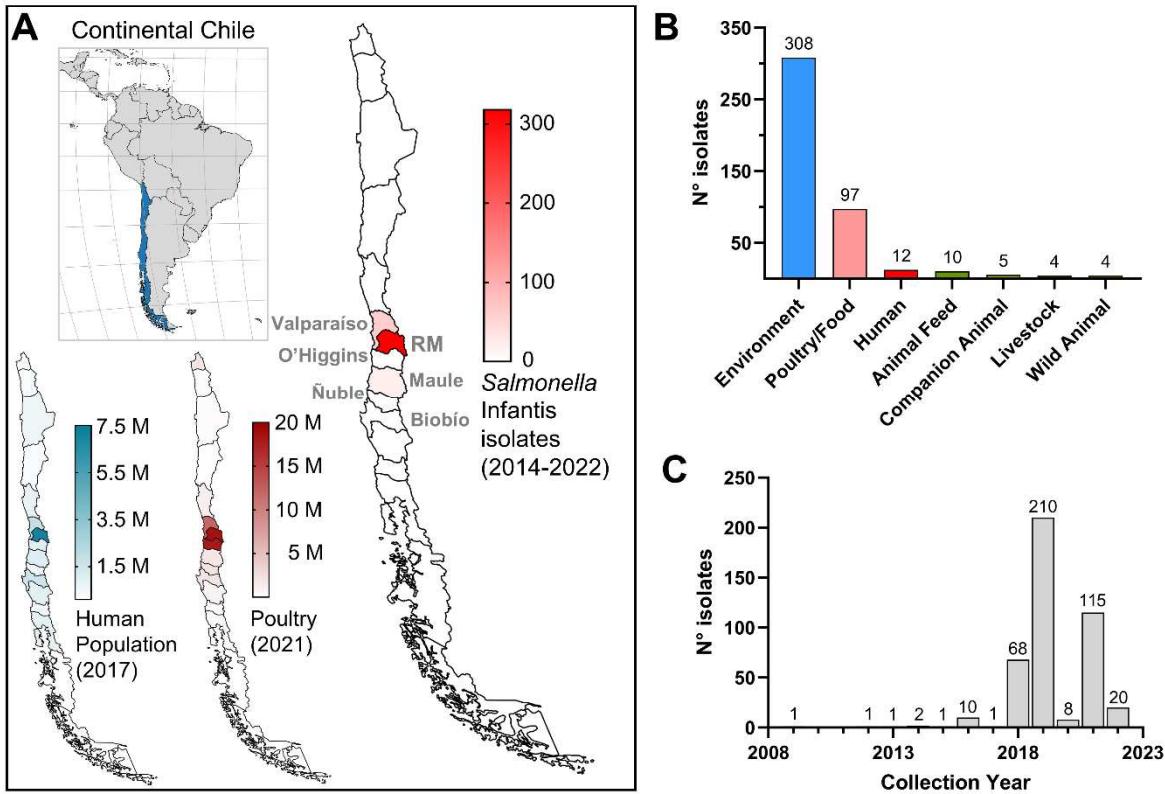
647

648 *Emerg Infect Dis* 2018; **24**: 2284–91.

649 35 Franco A, Leekitcharoenphon P, Feltrin F, *et al.* Emergence of a Clonal Lineage of Multidrug-Resistant ESBL-Producing *Salmonella* Infantis Transmitted from Broilers and Broiler Meat to Humans in Italy between 2011 and 2014. *PLoS One* 2015; **10**: e0144802.

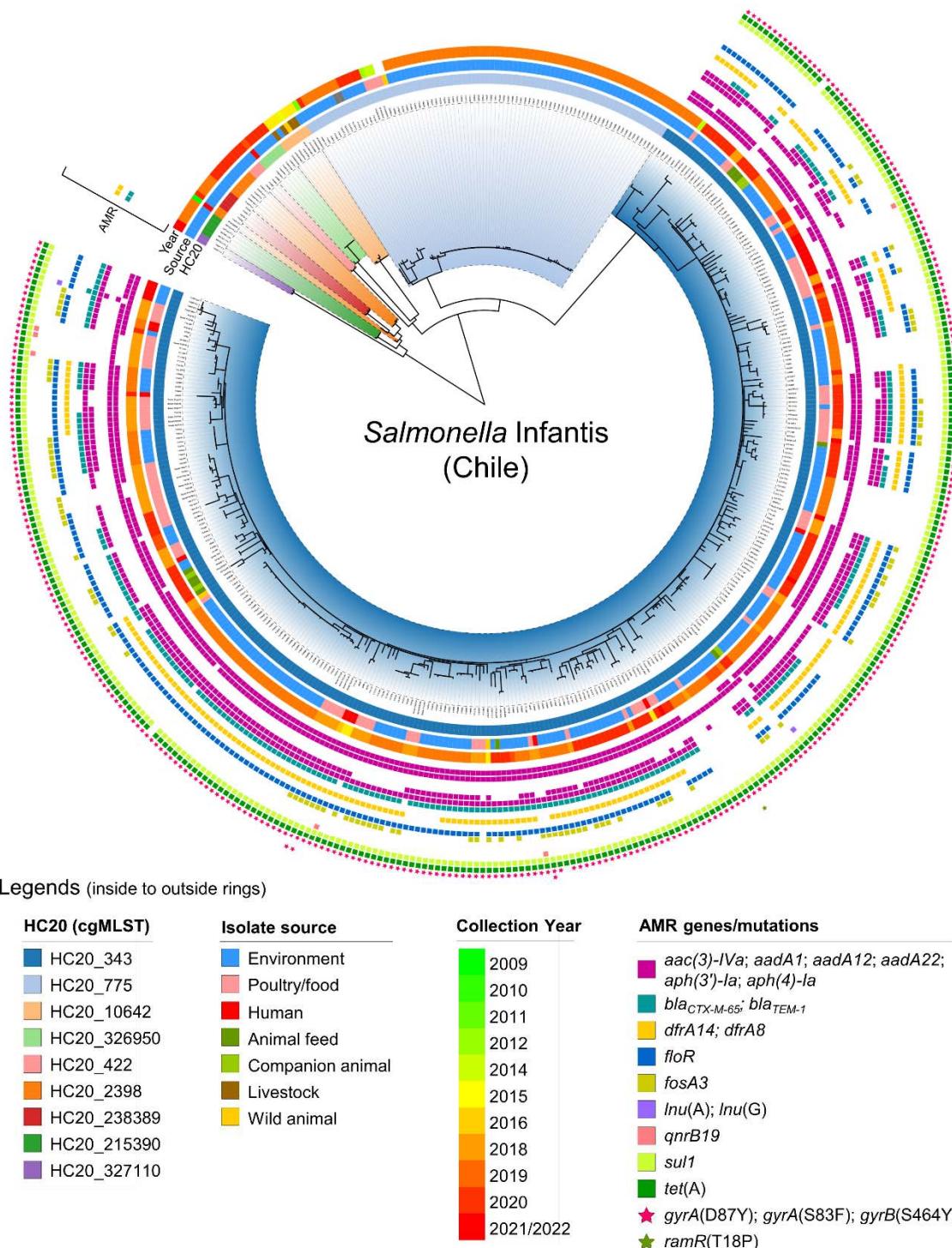
650

651


652

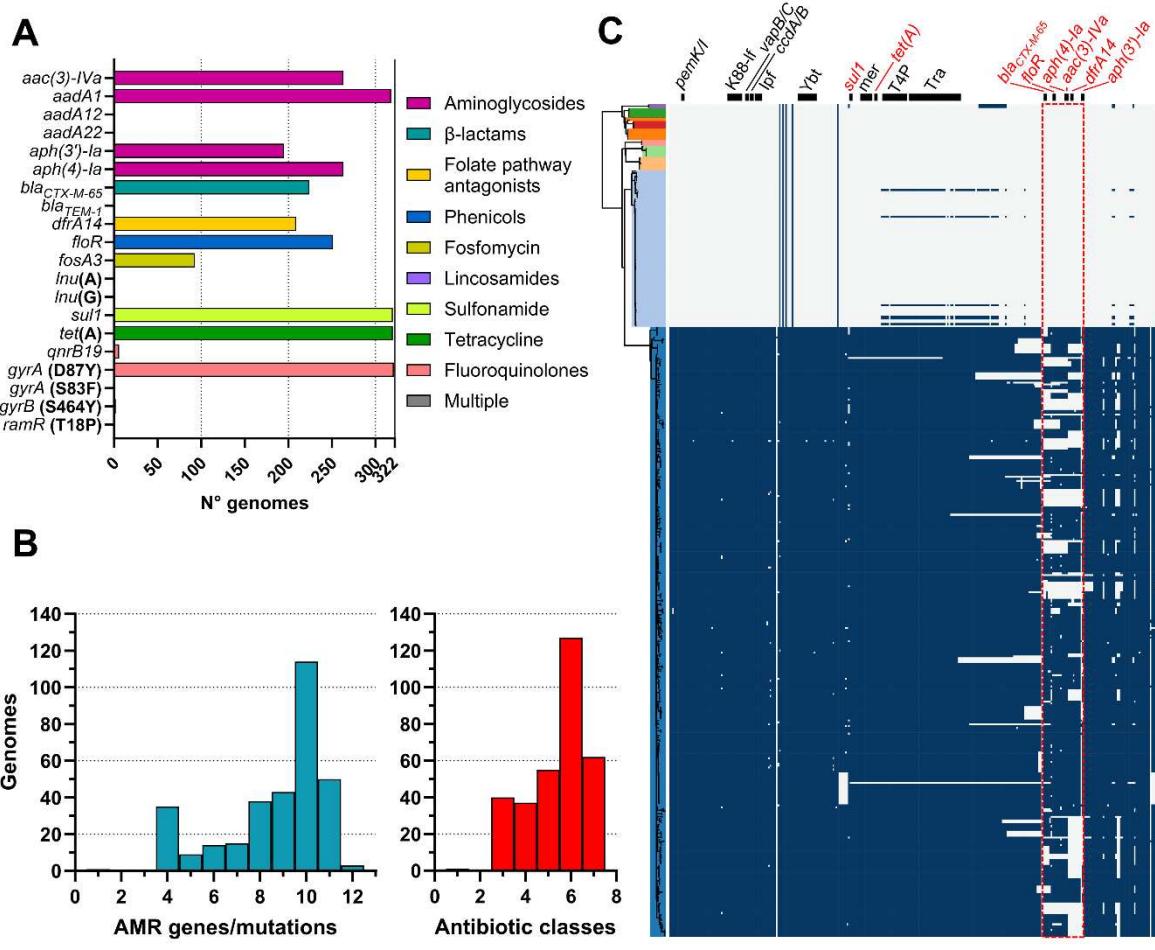
653 36 Li S, He Y, Mann DA, Deng X. Global spread of *Salmonella* Enteritidis via centralized sourcing and international trade of poultry breeding stocks. *Nat Commun* 2021; **12**: 5109.

654


655

656

657


658 **Figure 1. Region of origin, isolation source, and collection year of the**
659 ***Salmonella* *Infantis* isolates analyzed in this study. A)** Location of continental
660 Chile in South America and distribution of its human population, poultry production,
661 and collected *Salmonella* *Infantis* isolates among the 16 Regions (first-level
662 administrative divisions). Note the concentration of these three variables in central
663 Chile, especially in the Metropolitan Region. Population and poultry data were
664 obtained from the corresponding last population and agricultural censuses carried
665 out in 2017 and 2021, respectively (available at <http://resultados.censo2017.cl/> and
666 <https://www.ine.gob.cl/censoagropecuario/resultados-finales/graficas-regionales>.
667 The administrative Regions from which the *Salmonella* *Infantis* isolates were
668 collected are indicated. RM: Región Metropolitana. **B)** *Salmonella* *Infantis* isolates
669 distribution per isolation source and per **C)** collection year.

670

671 **Figure 2. Phylogenetic analysis of Chilean *Salmonella* Infantis genomes. A**
672 core SNP-based maximum likelihood phylogeny (2008 variant sites; 95%

673 presence) was constructed with 440 Chilean *Salmonella* Infantis genomes using
674 *Salmonella* Infantis N55391 (Enterobase barcode SAL_EA1888AA), a USA strain
675 isolated from poultry in 2014, as the reference. Additionally, metadata regarding
676 the HC20 clusters (clade colors and first ring), isolation source (second ring),
677 isolation year (third ring), and presence of antibiotic-resistance genes/mutations as
678 determined by AMRFinderPlus (colored squares/stars) were incorporated into the
679 phylogenetic tree.

681 **Figure 3. Antibiotic-resistance determinants and pESI-like megaplasmid**

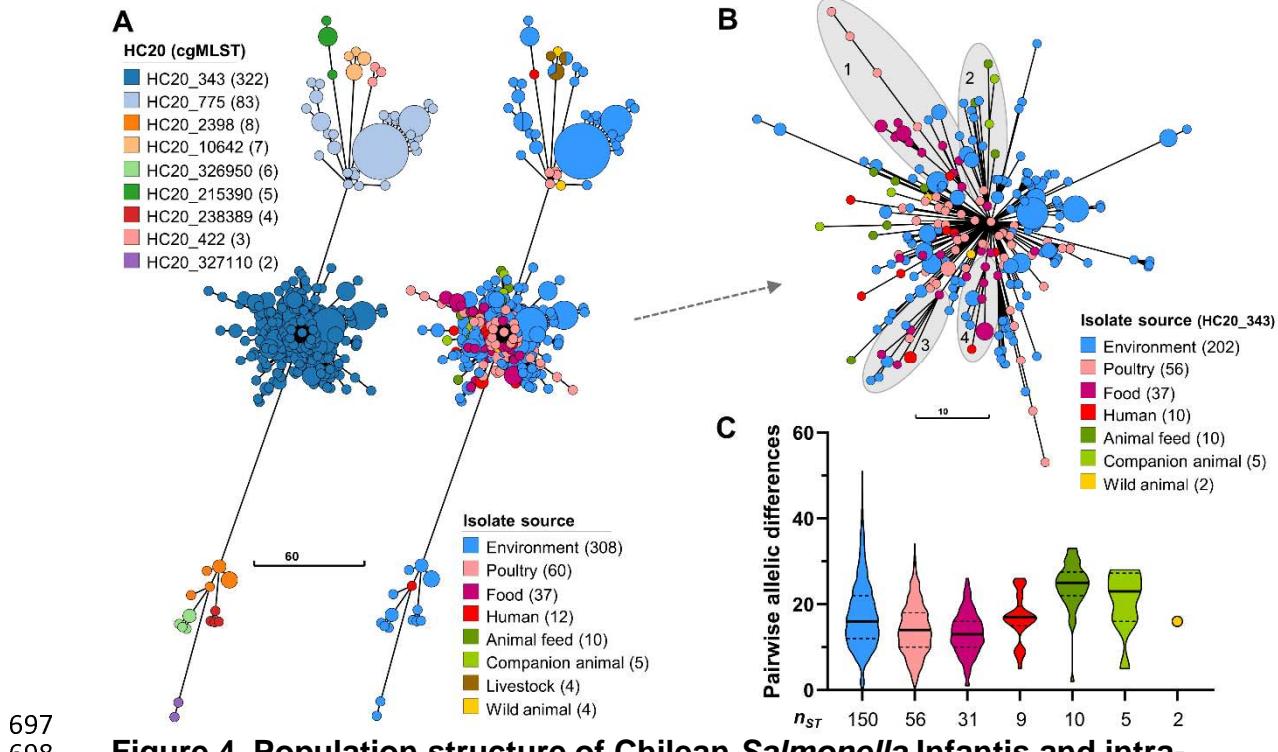
682 **presence among *Salmonella* Infantis from the HC20_343 cluster. A)**

683 Frequency of individual antibiotic-resistant genes/mutations in the HC20_343

684 colored by antibiotic class. **B)** Frequency of overall antibiotic-resistance

685 genes/mutations per genome (blue bars) and antibiotic classes targeted per

686 genome (red bars). **C)** Presence of pESI-like megaplasmids among the Chilean


687 *Salmonella* Infantis genomes. A vertical representation of the same phylogenetic

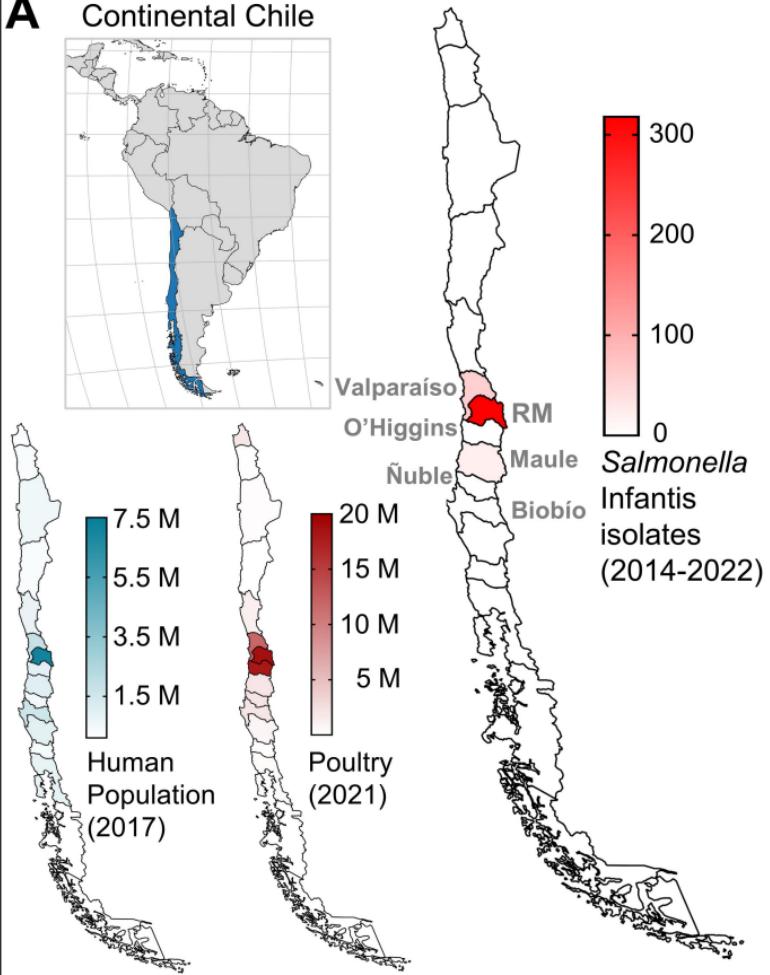
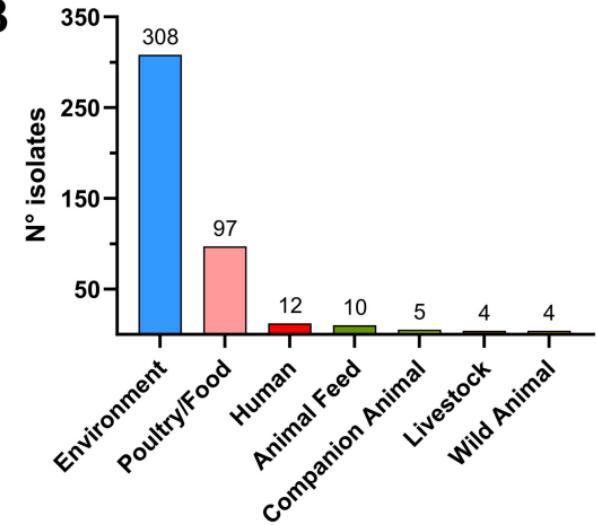
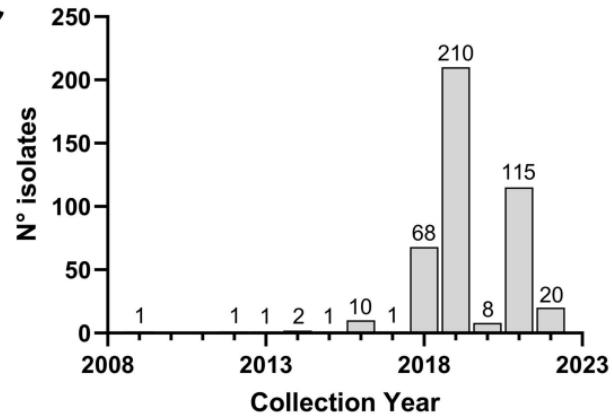
688 tree of Fig. 2 is colored according to the HC20 clusters. The presence of each of

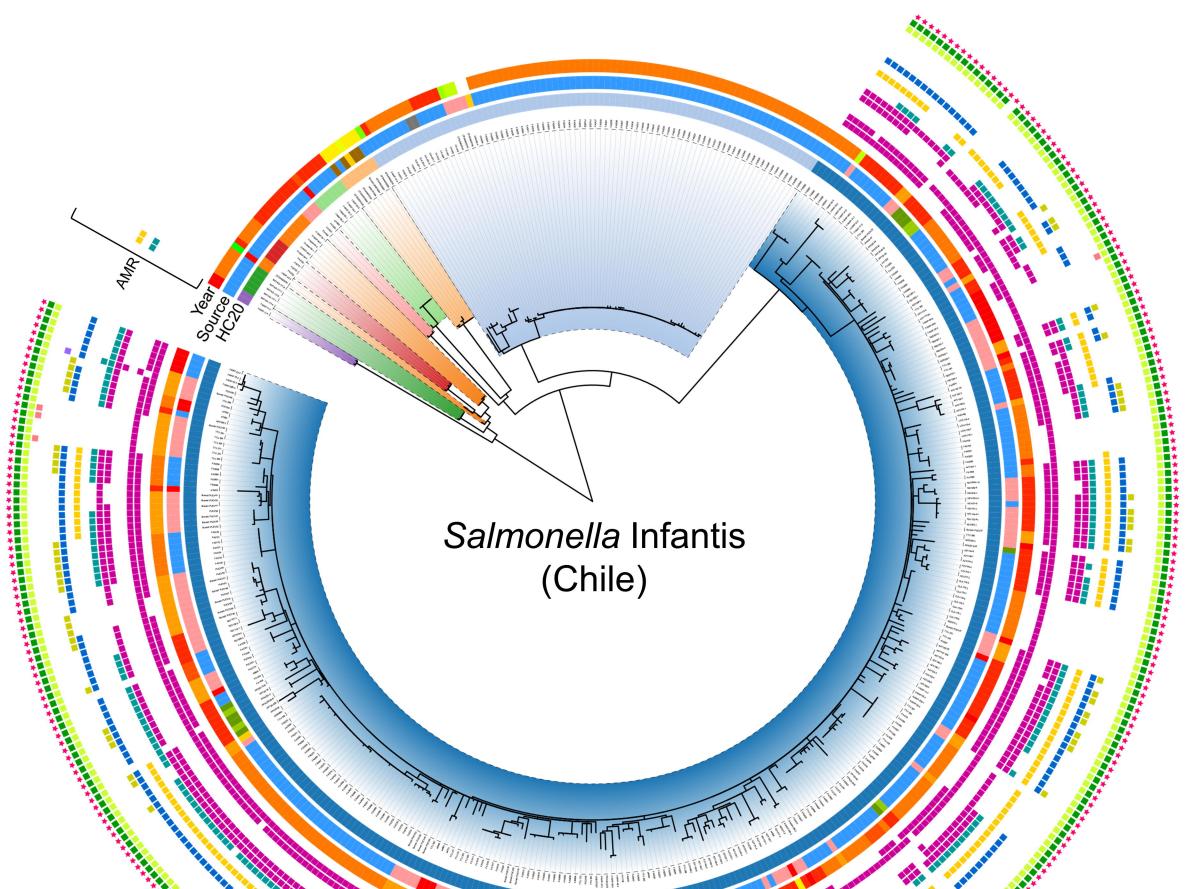
689 the 315 genes from the pESI-like megaplasmid pN55391 was assessed by

690 ABRicate using a custom database (blue squares). Black horizontal bars above the

691 presence/absence matrix indicate the backbone regions of the megaplasmid
692 (genes in black font) or the antibiotic-resistance regions (genes in red font). A red
693 dashed line rectangle delimits the most variable region among the Chilean pESI-
694 like megaplasmids relative to pN55391. K88-If (K88-like fimbria), lpf (Infantis
695 plasmid-encoded fimbria, Ybt (Yersiniabactin synthesis cluster), mer (mercury-
696 resistance cluster), T4P (type-IV pili encoding cluster), Tra (transfer region).

Figure 4. Population structure of Chilean *Salmonella* Infantis and intra-




source genomic diversity within cluster HC20_343. **A**) Minimum spanning tree depicting the population structure of *Salmonella* Infantis in Chile based on the cgMLST profiles of 3002 alleles. Nodes are colored according to the HC20 clusters determined by HierCC or the isolation source, and their size is proportional to the number of isolates included in each node. The legends indicate the different HC20 clusters present, the isolation sources, and the number of isolates. **B**) Zoom-in view of the HC20_343 cluster structure with nodes colored according to the isolation source. The legend also indicates the number of isolates per source within HC20_343. The shaded area and numbers indicate subclusters evidencing transmission of *Salmonella* Infantis between different sources. **C**) Pairwise allelic differences between unique cgSTs from cluster HC20_343 per isolation source. Each violin plot, truncated at the highest and smallest values, represents the

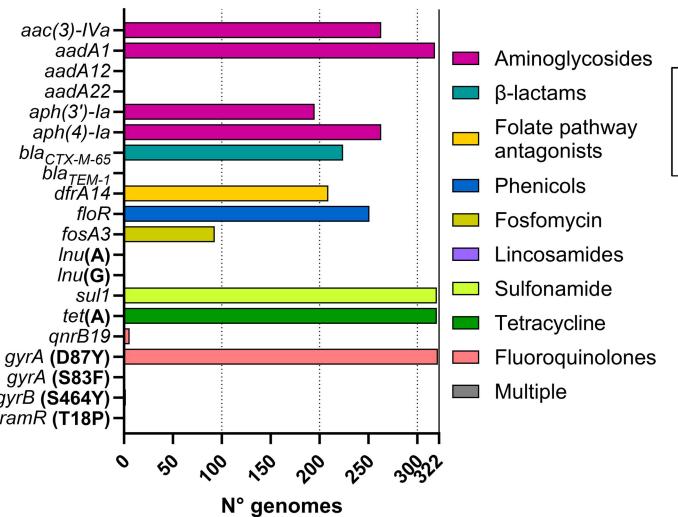
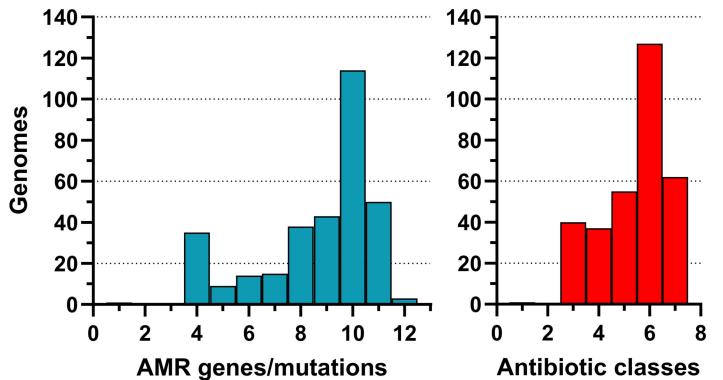
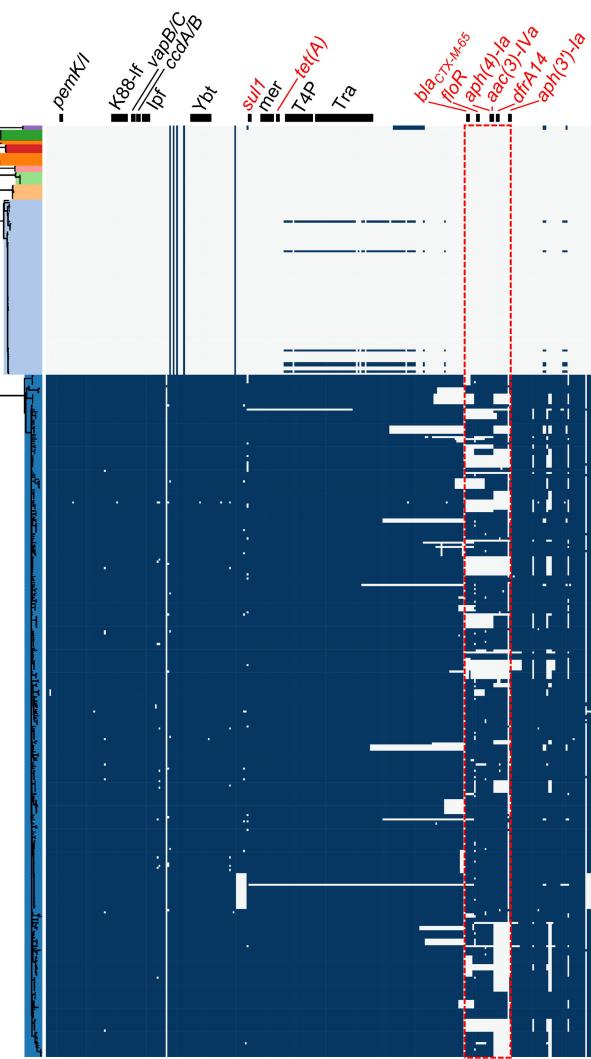

711 frequency distribution of PADs. The black unbroken and dashed lines represent the
712 median PAD, and the 25th and 75th percentiles, respectively. The n_{ST} value
713 indicates the number of isolates with unique cgSTs within each isolation source.
714 Only isolates representing unique cgSTs were included in the analysis.

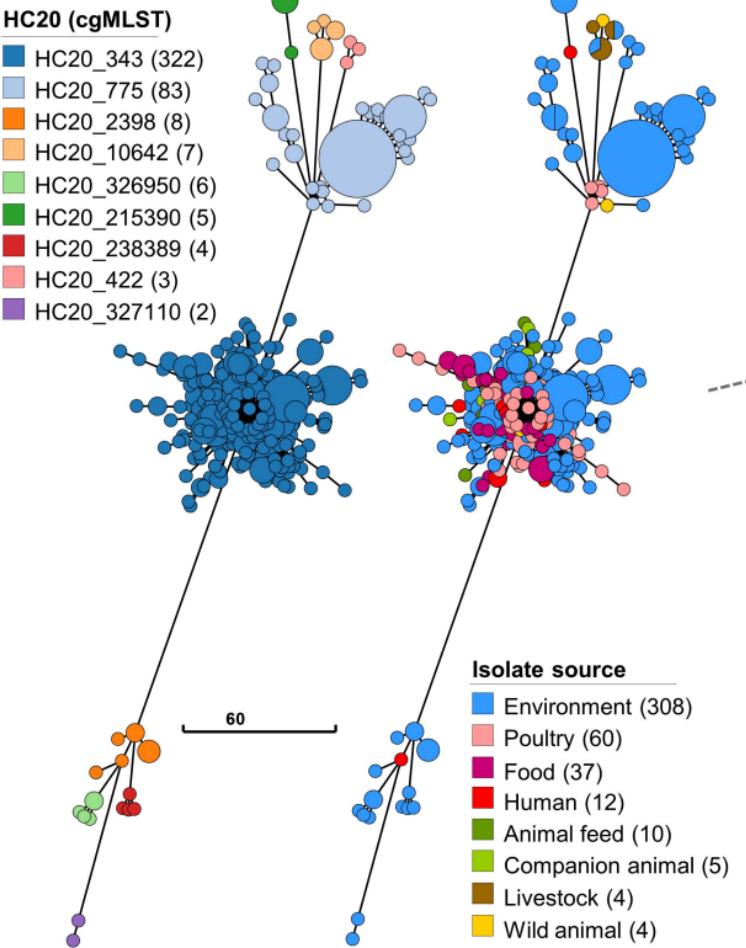
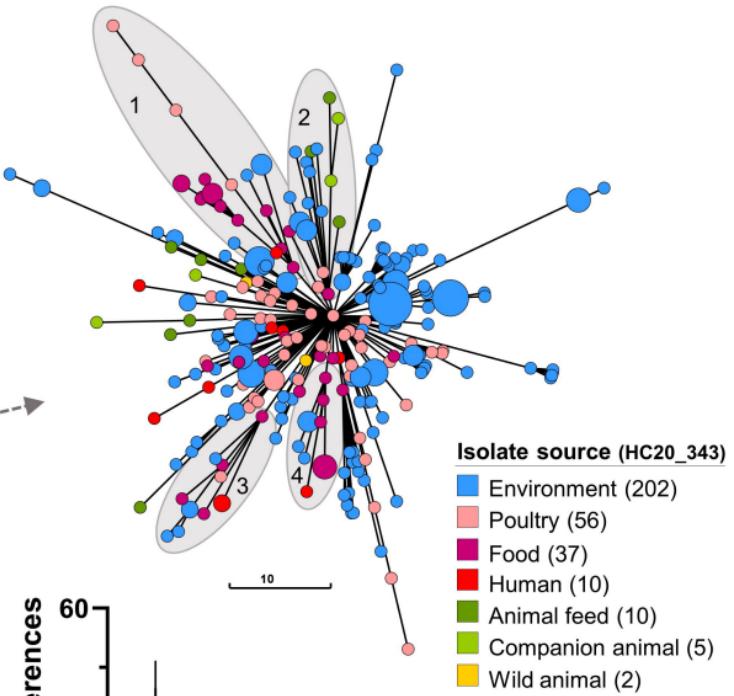
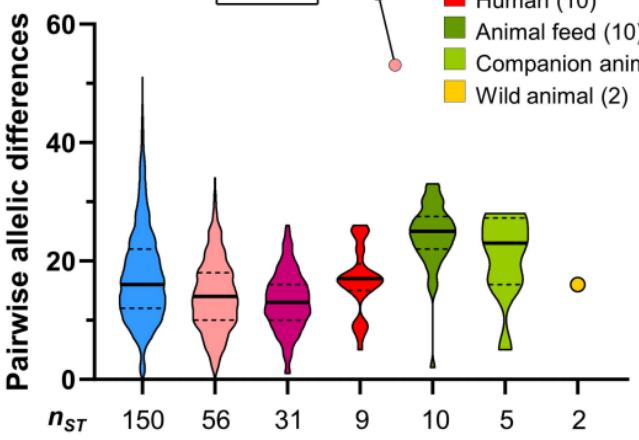
715 **Table 1.** Features of the publicly available *Salmonella* Infantis genomes from Chile
716 (April 20th, 2023)

Feature	# genomes (Total = 440)
<hr/>	
7-gene MLST	
ST32 (<i>thrA19</i>)	435 (98.9%)
ST9835 (<i>thrA1541</i>)	3 (0.7%)
ST9853 (<i>thrA1552</i>)	2 (0.5%)
<hr/>	
cgMLST + HierCC	
HC20_343	322 (73.2%)
HC20_775	83 (18.9%)
HC20_2398	8 (1.8%)
other HC20 clusters	27 (6.1%)
<hr/>	
Isolation source	
Environment ^a	308 (70.0%)
Food/Poultry	97 (22.0%)
Human	12 (2.7%)
Other	23 (5.2%)
<hr/>	
Isolation year	
2022	20 (4.5%)
2021	115 (26.1%)
2020	8 (1.8%)
2019	210 (47.7%)
2018	68 (15.5%)
2009-2017	19 (4.3%)

717 ^aEnvironmental isolates were obtained from surface water (n=265) and soil/dust
718 (n=43).

A Continental Chile**B****C**




Legends (inside to outside rings)




HC20 (cgMLST)
HC20_343
HC20_775
HC20_10642
HC20_326950
HC20_422
HC20_2398
HC20_238389
HC20_215390
HC20_327110

Isolate source
Environment
Poultry/food
Human
Animal feed
Companion animal
Livestock
Wild animal

Collection Year
2009
2010
2011
2012
2014
2015
2016
2018
2019
2020
2021/2022

AMR genes/mutations
<i>aac(3)-IVa</i> ; <i>aadA1</i> ; <i>aadA12</i> ; <i>aadA22</i> ; <i>aph(3')-la</i> ; <i>aph(4)-la</i>
<i>bla_{CTX-M-65}</i> ; <i>bla_{TEM-1}</i>
<i>dfrA14</i> ; <i>dfrA8</i>
<i>floR</i>
<i>fosA3</i>
<i>Inu(A)</i> ; <i>Inu(G)</i>
<i>qnrB19</i>
<i>sul1</i>
<i>tet(A)</i>
★ <i>gyrA(D87Y)</i> ; <i>gyrA(S83F)</i> ; <i>gyrB(S464Y)</i>
★ <i>ramR(T18P)</i>

A**B****C**

A**B****C**