

18 **ABSTRACT**

19

20 Sex differences in cooperation are widespread, but their evolution remains poorly understood. Here we
21 use phylogenetic comparative methods to test the Dispersal hypothesis for the evolution of sex differences
22 in contributions to cooperative care across the cooperatively breeding birds and mammals. The Dispersal
23 hypothesis predicts that, where non-breeding individuals of both sexes help to rear offspring within their
24 natal group, the more dispersive sex will contribute less (either because leaving the natal group earlier
25 reduces the downstream direct benefit from cooperation or because dispersal activities trade-off against
26 cooperation). Our analyses reveal (i) support for the Dispersal hypothesis (sex biases in dispersal predict
27 sex biases in natal cooperation across taxa), and (ii) that this pattern cannot be readily attributed to
28 alternative hypothesized drivers of sex differences in cooperation (kin selection, heterogamety, paternity
29 uncertainty, patterns of parental care or differences between birds and mammals). Our findings help to
30 clarify the evolutionary drivers of sex differences in cooperation and highlight the need for single-species
31 studies to now tease apart whether sex differences in dispersal predict sex differences in natal cooperation
32 because dispersal impacts the direct benefits of natal cooperation (as is often proposed) or because
33 activities that promote dispersal trade-off against natal cooperation.

34

35 (200 words)

36 **INTRODUCTION**

37 In many animal societies males and females differ in their contributions to cooperative activities, and the
38 evolutionary origins of such sex differences in cooperation remain poorly understood [1-7]. In many
39 cooperatively breeding species, for example, offspring of both sexes delay dispersal from their natal
40 groups and cooperatively contribute to the feeding of future generations of their parents' young [2, 8, 9].
41 Numerous findings suggest that selection for such cooperative 'helping behavior' typically arises at least
42 in part via kin selection, with helpers accruing indirect fitness benefits from enhancing the fitness of
43 relatives [2, 8-13]. However, kin selection alone cannot readily account for the evolution of sex differences
44 in cooperation within the natal group, as male and female helpers should not differ in their mean
45 relatedness to recipients in this context ([14]; at least with regard to autosomal genes [15]). The evolution
46 of such sex differences in natal cooperation therefore seems likely to be attributable instead to sex
47 differences in the net direct fitness payoff from natal cooperation, via a sex difference in the direct benefits
48 and/or costs of cooperation [3-6, 16-19].

49

50 One general mechanism that has been hypothesized to drive the evolution of sex differences in natal
51 cooperation across taxa is sex differences in dispersal [3-6, 16-18]. The 'Dispersal hypothesis' proposes
52 that the more dispersive sex stands to gain a lower net direct fitness payoff from helping within the natal
53 group and should therefore help at a lower rate while within the natal group. This lower net direct fitness
54 payoff from natal helping for the more dispersive sex could arise via two general mechanisms, acting in
55 isolation or concert. First, as helpers of the more dispersive sex are expected to stay for less time on
56 average within their natal group, they may stand to gain a lower downstream direct fitness *benefit* from
57 natal helping if the accrual of this direct benefit is contingent in part upon remaining in the natal group [3,
58 6, 16]. For example, wherever helping increases natal group size (e.g. by improving offspring survival) and
59 members of larger groups enjoy higher survival and/or downstream breeding success [20, 21], helpers of
60 the more dispersive sex may gain a lower downstream direct fitness benefit from helping to augment natal
61 group size as they are likely to leave the natal group sooner [3, 6, 16-18]. A second general mechanism that
62 may leave the more dispersive sex standing to gain a lower net direct fitness payoff from natal cooperation
63 is if investments in cooperation trade off against investments in activities that promote dispersal success
64 [4, 5]. For example, helpers in many cooperative breeders invest in pre-dispersal extra-territorial

65 prospecting forays [e.g. 4, 5, 16, 22-24] whose conduct may trade-off against investments in natal
66 cooperation [4, 5]. Such a trade-off between cooperation and activities that promote dispersal may
67 effectively increase the direct fitness *costs* of cooperation for the more dispersive sex, given the greater
68 fitness costs entailed in compromised dispersal for the more dispersive sex [5].

69

70 The Dispersal hypothesis therefore predicts that, in species in which both sexes delay dispersal and help
71 in the natal group, individuals of the less dispersive sex should contribute to natal helping at higher rates.
72 This prediction is distinct from the necessarily tight association between dispersal and helping in
73 cooperative breeders in which only one sex ever delays dispersal and so only one sex *can* help within the
74 natal group (a fairly common scenario in the cooperative birds [2]). While studies of individual species
75 have revealed patterns consistent with the key prediction of the Dispersal hypothesis [e.g. 3, 5, 25-27], to
76 what extent it can explain sex differences in helper effort within the natal group across cooperative taxa
77 remains unclear. A recent comparative study has revealed that, among 15 cooperatively-breeding bird
78 species in which both sexes help, a species' sex difference in the probability of breeding within the natal
79 group (as a subordinate or following inheritance of the dominant breeding position) predicts its sex bias
80 in helper effort [6]; species with a more female-biased probability of natal breeding show more female-
81 biased helper contributions. This finding holds promise for the Dispersal hypothesis, as sex biases in the
82 probability of natal breeding likely arise at least in part via sex differences in dispersal. But whether
83 dispersal patterns *per se* are driving this pattern is unclear, as sex biases in the probability of natal
84 breeding will also be influenced by sex biases in reproductive skew within groups and rates of breeder
85 turnover. Moreover, without restricting attention specifically to sex biases in helping quantified within the
86 natal group (or while controlling for effects of variation in helper relatedness to recipients), any tendency
87 for the more dispersive sex to help less could be attributable instead to a role for kin selection, given the
88 higher likelihood that individuals of the more dispersive sex are immigrants, unrelated to within-group
89 recipients. To establish whether the Dispersal hypothesis can indeed explain sex differences in helper
90 contributions within the natal group, a dedicated comparative test of its key prediction is required.

91

92 Support for the Dispersal hypothesis would ideally stem from comparative support for its key prediction,
93 coupled with evidence that such support cannot be readily attributed instead to confounding effects of

94 other mechanisms that have been hypothesized to drive sex differences in helper effort in this context.
95 Several other hypotheses have been proposed for the evolution of sex differences in helper effort (see [2]
96 for a review, and the Discussion for wider coverage). For example, the 'Heterogamety hypothesis' [15]
97 recognizes that while sons and daughters will be symmetrically related to recipients in their natal groups
98 from the perspective of autosomal genes, the same need not be true for genes sited on the sex
99 chromosomes. This observation leads to the prediction of greater helper effort in the homogametic sex;
100 females in mammals and males in birds. Frequent observations of female-biased natal cooperation in
101 mammals [e.g. 3, 25] and male-biased natal cooperation in birds [e.g. 26, 27] are therefore consistent with
102 this hypothesis, while sex-reversals of these taxonomic norms give cause to question its central
103 importance [e.g. 5]. The 'Parental skills hypothesis' proposes that the sex that contributes more to parental
104 care might gain greater downstream direct fitness benefits from initially learning parenting skills via
105 investment in helping [1]. While this is conceivable, the rarity of compelling evidence that helping actually
106 does increase parental skills [2, 8, 28, 29] leaves the importance of this mechanism unclear. The 'Paternity
107 uncertainty hypothesis' proposes that paternity uncertainty may favor greater investment in helping by
108 males, by devaluing the expected fitness returns from breeding relative to helping to a greater extent in
109 males than females [2, 30]. This hypothesis cannot therefore readily explain the evolution of female-biased
110 cooperation [e.g. 3, 5, 25].

111
112 Here we use phylogenetic comparative methods to test the Dispersal hypothesis for the evolution of sex
113 differences in cooperation, by assessing its ability to explain the patterns of sex differences in helper
114 contributions to natal helping across cooperatively breeding mammals and birds. First, we use standard
115 and phylogenetically controlled analyses to test the key prediction of the Dispersal hypothesis: among the
116 cooperative breeders in which both sexes help within the natal group, a species' sex difference in dispersal
117 should predict its sex difference in contributions to natal cooperation, with helpers of the less dispersive
118 sex contributing at higher rates to helping while within the natal group. Second, we assess whether the
119 Dispersal hypothesis explains the cross-taxa patterns of sex differences in natal helping within the focal
120 data set more effectively than the three other hypotheses outlined above: the Heterogamety, Parental skills
121 and Paternity uncertainty hypotheses (in the Discussion we extend our attention to other hypotheses that
122 are not yet tractable to test in a comparative context). Note that we are not seeking here to formally test

123 the potential for the Heterogamety, Parental skills and Paternity uncertainty hypotheses to explain sex
124 differences in cooperation more broadly, as that objective might be more effectively addressed with other
125 (potentially larger) data sets ill-suited to testing the Dispersal hypothesis. Instead, our goal is to test the
126 Dispersal hypothesis (which requires data to have been collected in specific contexts; see below), and to
127 then establish whether the Dispersal hypothesis outperforms these alternative hypotheses in this context.
128

129 To test the Dispersal hypothesis, we focus our attention on species in which offspring of both sexes are
130 known to help with offspring care while still residing within their natal group, and we seek to explain the
131 direction of any sex difference in their rate of contributions to cooperative care in this context. We focused
132 on helper contributions within the natal group as the rationale of the Dispersal hypothesis applies
133 specifically to this context (see above) and because helpers of a given age within their natal group should
134 not differ in their mean relatedness to recipients (reducing the likelihood that any sex difference in helper
135 contributions is attributable instead to a role for kin selection [10]). This approach entailed restricting
136 attention to the outcomes of studies that had statistically analyzed sex differences in the helper
137 contributions (i) *solely* of individuals residing within their natal groups, or (ii) *also* including individuals
138 with more diverse relationships to recipients while statistically controlling for effects of variation in helper
139 relatedness to recipients (thereby rendering it unlikely that their findings were confounded by sex
140 differences in mean relatedness to recipients; see Table S1 for details). We did not include species in which
141 only one sex delays dispersal and so only one sex is *available* for natal helping, as the sex difference in
142 dispersal necessarily predicts the sex difference in the occurrence of natal helping in such species [2, 8],
143 and does so in the direction predicted by the Dispersal hypothesis. The inclusion of such species would
144 therefore have falsely inflated any apparent support for the Dispersal hypothesis. This approach resulted
145 in a sample size of 27 cooperatively breeding species (18 bird species and 9 mammal species) with which
146 to test the Dispersal hypothesis. Full details of the species included and the source studies from which the
147 relevant focal traits were collected can be found in Tables S1 and S2, along with relevant species-specific
148 notes (see also Methods for full details of our approach to trait classification).

149 **METHODS**

150 **Collating the Comparative Data Set**

151 To collate the necessary data, we first collated an inclusive list of cooperatively breeding mammal and bird
152 species from relevant reviews, comparative studies and books [9, 11, 31-34], before reducing this list via
153 targeted species-by-species literature searches, to species in which (i) both sexes are known to help to
154 rear the offspring of others within their natal group (or family/clan, in colonial species in which 'groups'
155 can comprise multiple families/clans; e.g. sociable weavers, *Philataerus socius*, and white-fronted bee-
156 eaters, *Merops bullockoides*; [35, 36]) and (ii) for which the sex bias in helper contributions to individual
157 breeding attempts within the natal group (or family/clan) had been statistically investigated (or available
158 data allowed its statistical investigation; see Table S1). This entailed restricting attention to source studies
159 that had statistically analyzed sex differences in the helper contributions (i) solely of individuals residing
160 within their natal groups, or (ii) also including individuals with more diverse relationships to recipients
161 while statistically controlling for effects of variation in helper relatedness to recipients (thereby rendering
162 it unlikely that their findings were confounded by sex differences in mean relatedness to recipients; see
163 Table S1 for details). In some cases, it was necessary to seek confirmation from the authors of the source
164 studies that the original analyses did meet these criteria, and in some cases the authors were able to
165 provide revised analyses that did meet these criteria (see Tables S1 for full details; we greatly appreciate
166 their assistance; see acknowledgements). For the species with analyses that met these criteria, the sex
167 difference in helper contributions within the natal group had always been analysed without excluding
168 members of the focal helper class that were not observed to contribute. As such, the source analyses should
169 not have underestimated any sex differences in helper contributions that arise in part via a subset of
170 individuals contributing nothing. For each species we restricted our attention to the outcomes of analyses
171 of helping in contexts in which all available evidence suggested that the focal 'helpers' did not have young
172 within the brood or litter that they were feeding (i.e. that they were indeed engaged in alloparental *helping*
173 behaviour rather than parental care). For example, while our data set contains several species that are
174 known to engage in joint-nesting / plural breeding (e.g. Seychelles warbler, *Acrocephalus sechellensis*, and
175 acorn woodpecker, *Melanerpes formicivorus*), for such species we used the outcomes of analyses of the sex
176 difference in helping among non-breeding helpers (see Table S1). So-called 'failed-breeder cooperators'
177 (species in which helpers are typically individuals whose independent breeding attempts elsewhere have

178 failed), were only included in our study if the sex difference in natal helping had been characterized at an
179 age prior to the helpers dispersing away from the natal group or colony to attempt independent
180 reproduction (as was the case for Western bluebirds, *Sialia Mexicana*, and white-fronted bee-eaters for
181 example [35, 37]; Table S1), given the potential for complications to arise from any sex-specific dispersal
182 already having occurred prior to the measurement of helping.

183

184 This approach yielded a data set of 27 cooperatively breeding species in which offspring of both sexes help
185 while still resident in their natal groups (9 mammal and 18 bird species), and for which source studies had
186 statistically tested for a sex difference in helper contributions within the natal group (see Tables S1 & S2
187 for full details of the relevant traits for these species, species-specific notes, and references to the source
188 studies; we regret that we cannot cite all of the source studies within the main paper too, due to restrictions
189 on reference numbers). These 27 species were used as the focal data set for our study. For a further nine
190 species in which offspring of both sexes are known to help within their natal groups, source studies had
191 statistically analysed the sex difference in helper contributions, but *without* restricting attention to helpers
192 within their natal groups and without controlling for variation in helper relatedness to recipients, leaving
193 their outcomes ill-suited to testing the Dispersal hypothesis (as any relationship between sex differences
194 in dispersal and helper contributions in these species could be confounded by sex differences in the mean
195 relatedness of helpers to recipients within the helping data sets analysed; see rationale above). As such,
196 these nine species were not included in our analyses and play no further role in our study. In case of
197 interest (or utility for other studies), we do still report these species and their sex differences in dispersal
198 and helping (which may not reflect their patterns of *natal* helping) within our Supplementary Tables S1 &
199 S2 (the grey-highlighted species at the end of each table), where one can see that their sex differences in
200 dispersal and helping nevertheless echo the patterns within our analysed data set of 27 species in being
201 broadly consistent with the predictions of the Dispersal hypothesis (e.g. see footnote 7 in Tables S1).

202

203 For all 27 focal species, we collated information from original source studies (see Tables S1 and S2) on the
204 (i) sex difference in dispersal from the natal group (or family), categorized according to whether dispersal
205 (assessed via multiple traits; see below) was significantly male biased (MB), showed no significant sex bias
206 (NSB), or was significantly female biased (FB), and (ii) sex difference in helper contributions within the

207 natal group (specifically, the rate or incidence of offspring care provision by natal helpers [see below];
208 again, MB, NSB, or FB). The sex differences in both traits were scored in this categorical way as effect sizes
209 or the data required to calculate them were not always available and could vary due to among-study
210 variation in the focal dispersal and cooperation traits assessed (see below) or the covariates fitted in the
211 original analyses. Wherever information was available for the sex difference in helper contributions to
212 more than one form of offspring care (e.g. both incubating and nestling feeding), a species was classified
213 as showing a sex difference in helper contributions if a significant sex difference was apparent in one or
214 more forms of helper care (for none of the 27 species did two forms of care by helpers exhibit significant
215 sex biases in opposite directions; see Table S1 for details). Sex differences in dispersal were scored by
216 examining statistical analyses of sex differences in several dispersal-related traits: incidence of dispersal
217 from the natal territory, age at first dispersal, dispersal distance and population genetic structure as it
218 relates to dispersal (see Table S2 for details). A species was classified as showing a sex difference in
219 dispersal if a significant sex difference was apparent in one or more of these metrics in one or more studies
220 (as sex biases in *any* of these metrics could impact the net direct fitness payoff from natal cooperation via
221 the mechanisms envisaged in the Dispersal hypothesis, which span the impacts of dispersal patterns on
222 both the benefits and costs of helping; see Introduction). Again, for no species did two of these dispersal
223 traits show significant sex biases in opposite directions.

224
225 To then allow comparisons of the explanatory power of the Dispersal, Heterogamety, Parental skills and
226 Paternity uncertainty hypotheses in this specific context, we also collated information for the focal 27
227 species on (i) whether the species was a bird (females heterogametic) or a mammal (males
228 heterogametic), (ii) the sex bias in parental contributions to the same form of offspring care as that used
229 for the assessment of sex biases in helper contributions (again, MB, NSB, or FB), and (iii) the incidence of
230 both extra-pair and extra-group paternity (see Tables S1 & S2 for details). When collating the paternity
231 data, we recorded both the average proportion of offspring not sired by the dominant breeding male
232 within the group ('extra-pair paternity') and the average proportion of offspring not sired by any male
233 within the group ('extra-group paternity'). We then assessed the explanatory power of the Paternity
234 uncertainty hypothesis using both data forms, as (i) this hypothesis [2, 30] relates to the paternity
235 certainty of the breeding male (rendering extra-pair paternity a relevant currency), but (ii) assumes that

236 any paternity lost is lost to an unrelated male, leaving extra-group paternity a potentially more appropriate
237 currency because a proportion of extra-pair paternity could be won by within-group males related to the
238 dominant male (see [11] for a similar argument).

239

240 **Phylogenetic logistic regression analysis**

241 We initially assessed support for the Dispersal hypothesis with a simple contingency table analysis (using
242 Fisher's exact tests, given the modest sample sizes), which allowed us to assess the association between
243 the trinomial predictor (sex bias in dispersal: MB, NSB or FB) and response (sex bias in helping: MB, NSB
244 or FB) variables, but without controlling for phylogenetic effects. We then used phylogenetic logistic
245 regressions to assess the key prediction of the Dispersal hypothesis while controlling for the phylogenetic
246 non-independence of species [38], by recategorizing our trinomial response variable (sex bias in helping;
247 MB, NSB or FB) into two binary response variables. To do this we created two new sex-bias-in-helping
248 variables (FB helping versus Other [MB & NSB combined], and MB helping versus Other [FB & NSB
249 combined]) and used these to test whether the sex bias in dispersal (MB, NSB or FB) predicted the sex bias
250 in natal helping using both binomial helping classifications (i.e. FB help vs Other, and MB help vs other).
251 The phylogenetic logistic regressions were run using the phyloglm function in the R package phylolm [39],
252 and accounted for phylogenetic non-independence by incorporating a variance-covariance matrix based
253 on the structure of the phylogenetic tree (see below for details). Standard (non-phylogenetic) logistic
254 regression models were also run. Following Ives & Garland (2010) we ran bootstrap analyses with 100
255 replicates in the phylogenetic logistic regression to derive means and 95% confidence intervals for the
256 parameters. The relative strength of support for competing models (reflecting the competing hypotheses
257 outlined above) was assessed using an information theoretic approach, in which AICc-based assessments
258 of model fit were determined for all models. Following Burnham & Anderson [40] a $\Delta\text{AICc} > 2$ between
259 pairs of competing models was considered to reflect stronger statistical support for the model with the
260 lower AICc score.

261

262 First, we assessed the strength of support for the Dispersal hypothesis (i.e. a model fitting the sex bias in
263 dispersal [MB, NSB or FB] as the sole predictor other than phylogeny) relative to a null (phylogeny only)
264 model, using the full data set of 27 species. Second, we use the same phylogenetically-controlled approach

265 to compete the Dispersal hypothesis model against models capturing the three other hypotheses outlined
266 above. The explanatory power of the Dispersal hypothesis model was compared to that of (i) a
267 Heterogamety hypothesis model (i.e. fitting whether the species was a bird [females heterogametic] or a
268 mammal [males heterogametic] as the sole predictor other than phylogeny) using the full data set of 27
269 species, (ii) a Parental skills hypothesis model (i.e. fitting the sex bias in parental contributions to the same
270 form of care as assessed for helping [MB, NSB or FB] as the sole predictor other than phylogeny) using the
271 reduced data set of 21 species for which the necessary parental contributions data was available (see
272 Tables S2), and (iii) a Paternity uncertainty hypothesis model (i.e. fitting the incidence of extra-pair or
273 extra-group paternity as the sole predictor other than phylogeny) using a reduced data set of 18 species.
274 These 18 species were those for which the necessary paternity data was available, following the exclusion
275 of five joint-nesting species (as while helping in the joint-nesting species included was assessed among
276 non-breeding helpers [see above], joint nesting systems could generate maternity uncertainty, voiding a
277 key assumption of the Paternity uncertainty hypothesis [30]).

278

279 **Phylogenetic trees and assessment of alternative phylogenetic assumptions**

280 Information on the phylogenetic relationships between the species included in this study was taken from
281 composite phylogenetic trees (“Supertrees”) of mammals [41] and birds [42]. We also checked an
282 alternative source for the bird phylogenies [43], which showed the same relative relationships between
283 the species examined in this study. Eight of the 27 species (6 birds, 2 mammals) considered were not
284 contained in these trees (see Table S3). For six of these cases the missing species could be assigned the
285 phylogenetic position of a suitable closely-related species (e.g. a sister species or congener; see Table S3).
286 In the remaining two cases species were assigned to a new branch in a position in the tree based on their
287 standard taxonomic classification (Table S3). To enable mammals and birds to be included in the same
288 analyses, the mammalian and avian trees were joined together such that their root nodes were joined by
289 branches to a new root node representing their common ancestor.

290

291 In creating these trees and running the phylogenetic comparative analyses, assumptions about the branch
292 lengths of the phylogenetic tree needed to be made. In this context, branch lengths represent the degree
293 of divergence between species either in time or in the data type used to infer the phylogeny (typically

294 genetic data). In the mammal supertree the supplied branch lengths were in units of time, but branch
295 lengths were not supplied in the bird supertree. In order to join these trees and include the additional taxa
296 mentioned above we therefore initially set all branch lengths in the combined mammal and bird tree to be
297 equal (i.e. all branch lengths take a value of one). This has the effect of assuming a short evolutionary
298 distance between bird and mammal lineages. Given that birds and mammals last shared a common
299 ancestor more than 300 million years ago [44], we explored the effect on our analyses of extending these
300 two branch lengths (from both mammals and birds back to their common ancestor). To do this, we created
301 three new trees with branch lengths leading from the root (common ancestor) to the birds and the
302 mammals that were 5, 10 or 100 times as long as the other branches (Figure S1). Rerunning our
303 phylogenetic analysis using these alternative trees confirmed that our findings are robust to variation in
304 these branch lengths to the common ancestor (Table S4). All analyses presented in the main text are
305 therefore based on the simplest assumption of equal branch lengths (though further tests were also
306 conducted to verify that our findings are robust to the nature of this assumption; see below).

307
308 Our analyses use the Ives & Garland [45] approach to estimating the phylogenetic logistic regression. This
309 method estimates the degree to which phylogenetic effects need to be controlled for, by estimating a
310 “phylogenetic signal” parameter a , which increases with increasing magnitude of the phylogenetic
311 correlations among species. The potential range for the parameter a spans zero, with more positive values
312 indicating stronger phylogenetic signal and more negative values indicating weaker phylogenetic signal,
313 with values below -4 considered to indicate negligible phylogenetic signal [45]. We explored the effects on
314 our findings of making different phylogenetic assumptions and using different analytical approaches.
315 Specifically, we investigated the effects of (i) further variation in the assumptions regarding branch lengths
316 (we used Grafen's method for arbitrarily creating ultrametric trees based on the tree structure [46],
317 exploring the effects of 3 values of the Rho scaling parameter which affects the relative length of branches
318 based on their closeness to the root of the tree; Figure S2), (ii) explicitly assuming that there is no
319 phylogenetic signal in the data (implemented in two ways: first by scaling the branch lengths by Pagel's λ
320 with $\lambda=0$, and second by conducting standard, non-phylogenetic logistic regression), and (iii) using
321 Maximum Penalized Likelihood estimation (again with all branch lengths set to one; see above) instead of
322 the Ives & Garland [45] method. Using these alternative approaches had no effect on the relative support

323 that the analyses revealed for the competing hypotheses, perhaps principally because our analyses suggest
324 that there was only weak phylogenetic signal in the data set (see Results). The AICc values for all of the
325 competing models are reported for each one of these different approaches within Tables S5 & S6.

326

327

328 **RESULTS**

329 **Testing the Dispersal hypothesis**

330 To test the Dispersal hypothesis, we compiled a data set of 27 species in which non-breeding helpers of
331 both sexes help to rear offspring within their natal group, and for which source studies had statistically
332 tested for the existence of sex differences in both (i) dispersal (significant Male-bias [MB], no significant
333 sex bias [NSB], significant Female-bias [FB]) and (ii) helper contributions within the natal group (MB, NSB
334 or FB). The 27 species were taxonomically diverse (Figure 1), comprising 18 bird and 9 mammal species,
335 representing 24 genera, 19 families and 6 orders. Notably, in all 13 species that showed significant sex
336 biases in both dispersal and natal helping effort, species with male-biased dispersal showed female-biased
337 natal helper contributions, while species with female-biased dispersal showed male-biased natal helper
338 contributions (Figures 1 and 2a), just as predicted by the Dispersal hypothesis. Not a single species showed
339 the opposite sex bias in natal helping to that which would be predicted by the Dispersal hypothesis.
340 Contingency table analyses (i.e. lacking phylogenetic control) confirmed that a species' sex bias in
341 dispersal (MB, NSB or FB) significantly predicted its sex bias in natal helping (MB, NSB or FB; n = 27
342 species, Fisher's 3x3 exact test $p < 0.001$; Figure 2a). As predicted by the Dispersal hypothesis, species with
343 male-biased dispersal were significantly more likely to show female-biased natal helping (7 of 9 species)
344 than species with female-biased dispersal (0 of 14 species; Fisher's 2x2 exact test $p < 0.001$), while species
345 with female-biased dispersal were significantly more likely to show male-biased natal helping (6 of 14
346 species) than species with male-biased dispersal (0 of 9; Fisher's 2x2 exact test $p = 0.048$).

347

348 Phylogenetic comparative analysis confirmed that these relationships hold when controlling for
349 phylogenetic effects: the sex bias in dispersal (MB, NSB, or FB) predicted both the probability of female-
350 biased natal helping (Figure 2b; $\Delta\text{AICc} = -13.40$ relative to the phylogeny-only model; $R^2 = 0.61$, n = 27
351 species, $a = -2.41$ indicating weak phylogenetic signal) and the probability of male-biased natal helping

352 (Figure 2c; $\Delta AIC_c = -3.53$ relative to the phylogeny-only model; $R^2 = 0.26$, $n = 27$ species, $a = -2.17$ indicating
353 weak phylogenetic signal). Inspection of the estimates and 95% confidence intervals for the predicted
354 means (Figures 2b and 2c) and the pair-wise contrasts among dispersal classes (Table 1) confirms support
355 for the Dispersal hypothesis. First, in the model of the probability of female-biased helping (Table 1 upper
356 half; Figure 2b), species with male-biased dispersal were significantly more likely to show female-biased
357 helping than species with female-biased dispersal (while species with NSB dispersal showed an
358 intermediate probability of female-biased helping). Second, in the model of the probability of male-biased
359 helping (Table 1 lower half; Figure 2c), species with female-biased dispersal were significantly more likely
360 to show male-biased helping than species with male-biased dispersal (while species with no significant
361 sex-bias in dispersal showed a similar probability of male-biased helping to those with female-biased
362 dispersal). These findings were robust to (i) using different assumptions regarding phylogenetic branch
363 lengths (Tables S4-S6), (ii) using standard logistic regression without controlling for phylogeny (Tables
364 S5 & S6), and (iii) using the maximum penalized likelihood estimation method for phylogenetic logistic
365 regression in place of the Ives & Garland [45] method (Tables S5 & S6).

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

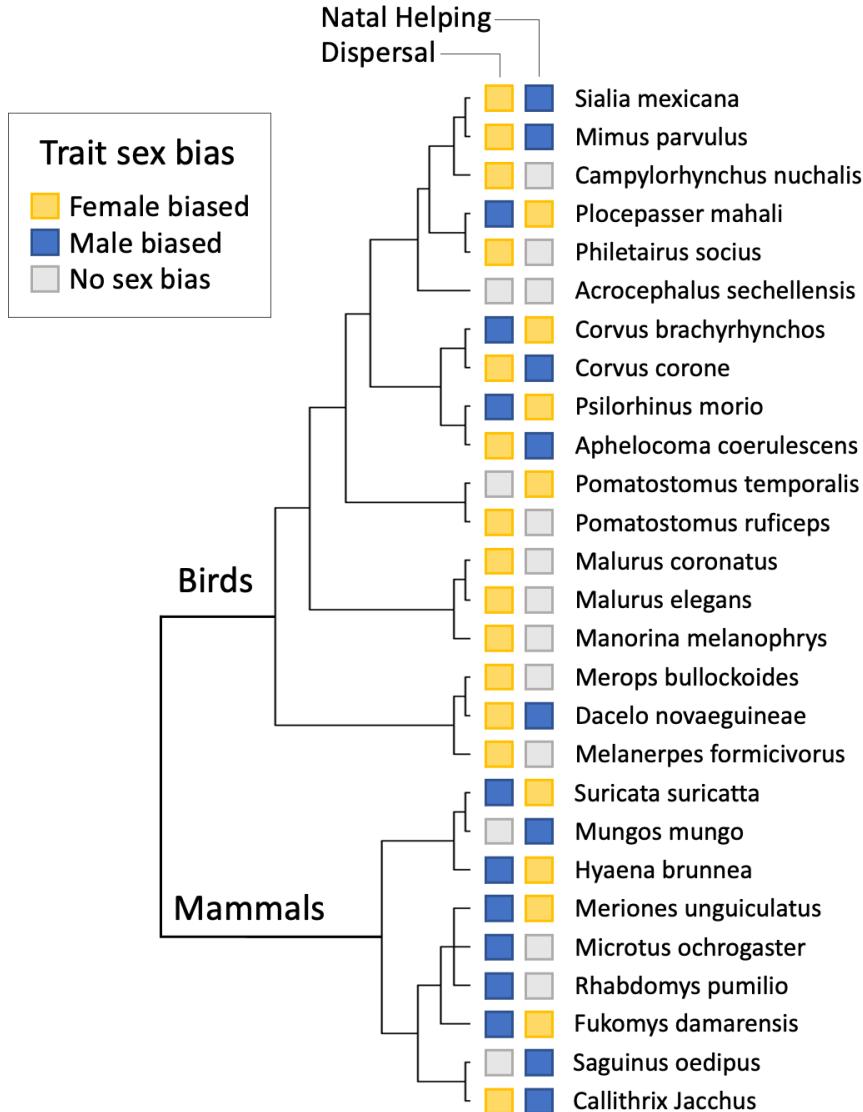
384

385

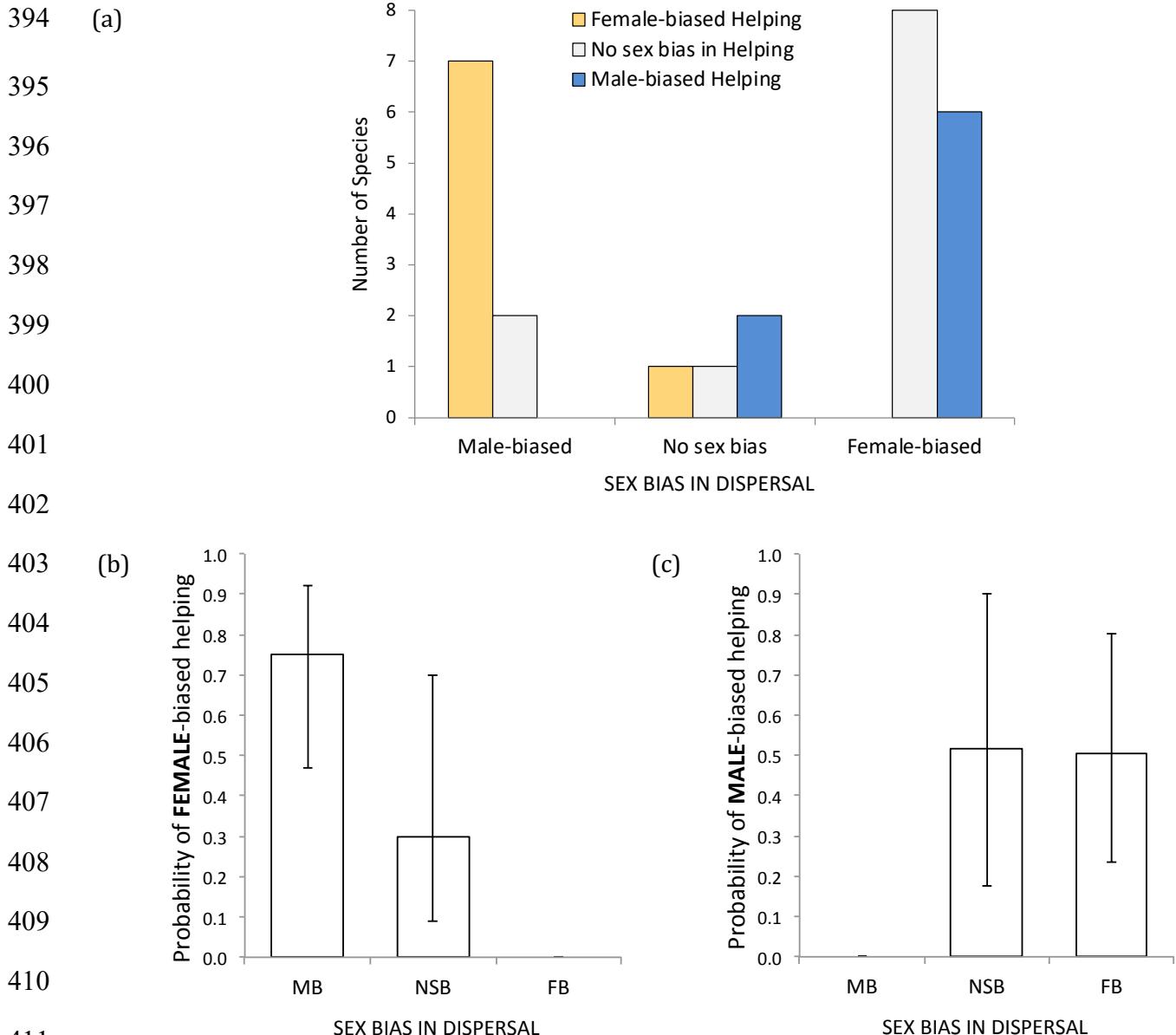
386

387

388


389

390


391

392

393

Figure 1 – The phylogenetic distribution of the 27 focal species in the analyses within the main paper, representing 24 genera, 19 families and 6 orders. The shaded squares present our codings for the species' sex biases in Dispersal (left) and Natal Helping (right), which reflect whether the source studies found a statistically significant sex bias in the focal trait and the direction of any significant sex bias detected (see methods and Tables S1 & S2 for details). Notably, every species that shows significant sex differences in both traits shows the sex difference in natal helping that would be predicted by the Dispersal hypothesis on the basis of its sex difference in dispersal (see also Figure 2a). All other species show no significant sex bias in either dispersal or natal helping. Not a single species shows the opposite sex bias in natal helping to that which would be predicted by the Dispersal hypothesis. The tree captures the structure of the phylogenetic relationships in the tree but not the branch lengths tested (for which a range of different assumptions were tested; see Methods and Tables S5 and S6).

412 **Figure 2** - The Dispersal hypothesis predicts that, among helpers within their natal group, the more
413 dispersive sex should contribute less to helping. Our comparative analyses of 27 species of cooperative
414 birds and mammals support for this prediction. (a) Female-biased helping was strongly associated with
415 male-biased dispersal (and never occurred alongside female-biased dispersal), while male-biased helping
416 was strongly associated with female-biased dispersal (and never occurred alongside male-biased
417 dispersal). Accordingly, in our phylogenetic comparative analyses, the sex bias in dispersal significantly
418 predicted whether natal helper effort was (b) significantly *Female*-biased or not, and (c) significantly *Male*-
419 biased or not (see results). In (b) and (c) the bars present predicted means ($\pm 95\%$ confidence intervals)
420 while controlling for phylogenetic effects. MB = (significantly) Male-biased, NSB = No significant sex bias,
421 FB = (significantly) Female-biased.

422

423

424

Response Variable	Parameters	Estimated effect size	Boot-strapped 95% CI
Probability of Female-biased Helping (vs Other)	<i>Intercept</i>	2.06	-1.70, 5.83
	<i>Sex bias in Dispersal</i>		
	Male-biased (reference)	0.00	-
	No Sex Bias	-2.88	-7.11, 1.34
Probability of Male-biased Helping (vs Other)	<i>Intercept</i>	-19.85	-21.43, -18.28
	<i>Sex bias in Dispersal</i>		
	Male-biased (reference)	0.00	-
	No Sex Bias	20.34*	18.43, 22.25
	Female-biased Dispersal	20.04*	18.50, 21.59

425

426 **Table 1 - Effect size estimates from the phylogenetic logistic regressions investigating whether sex**
427 **biases in dispersal predict sex biases in helping within the natal group**

428 The sex bias in dispersal significantly predicted both (i) the probability that helper contributions within
429 the natal group were significantly female-biased (upper half of table; $\Delta\text{AICc} = -13.40$ relative to the
430 phylogeny-only model; $n = 27$ species; Figure 2b; Table S5) and (ii) the probability that helper
431 contributions within the natal group were significantly male-biased (lower half of table; $\Delta\text{AICc} = -3.53$
432 relative to the phylogeny-only model; $n = 27$ species; see also Figure 2c; Table S6). The effect size estimates
433 for the contrasts between a given dispersal factor level (either female-biased dispersal or no significant
434 sex bias in dispersal) and the reference level (male-biased dispersal) are shown here, along with their
435 boot-strapped 95% confidence intervals. The effect sizes for factor levels of the sex bias in dispersal
436 predictor whose estimates differ significantly from that for male-biased dispersal (the reference level) are
437 highlighted *. These models used the Ives & Garland [45] method with all branch lengths set = 1 (see
438 Methods).

439

440 **Testing the Dispersal Hypothesis against Alternative Explanations**

441 Comparisons of alternative (phylogenetically controlled) models for explaining the incidence of *female-*
442 *biased helping* revealed substantially stronger support for the Dispersal hypothesis than the
443 Heterogamety, Parental skills and Paternity uncertainty hypotheses. Heterogamety hypothesis: sex bias in
444 dispersal was a stronger predictor of female-biased helping than whether the focal species was a bird
445 (females heterogametic) or mammal (males heterogametic; $\Delta\text{AICc} = -14.58$; $n = 27$ species with data for
446 both predictors; Table S5 upper third). The Heterogamety hypothesis model (i.e. allowing for an effect of
447 whether the species was a bird or mammal) explained the data no more effectively than the null
448 (phylogeny only) model ($\Delta\text{AICc} = +1.18$; $n = 27$; Table S5 upper third). As this null (phylogeny only) model
449 may itself account for effects of any contrast between birds and mammals via the phylogeny, we note that
450 the Heterogamety hypothesis model also explained the data no more effectively than the null model when
451 phylogenetic effects were not controlled (e.g. setting $\lambda = 0$, $\Delta\text{AICc} = +1.18$; or using standard logistic
452 regression, $\Delta\text{AICc} = +0.89$; Table S5 upper third). Parental skills hypothesis: sex bias in dispersal was also
453 a stronger predictor of female-biased helping than sex bias in parental care ($\Delta\text{AICc} = -12.73$; $n = 21$ species
454 with data for both predictors; Table S5 middle third). The Parental skills hypothesis model (i.e. allowing
455 for an effect of the species' sex bias in parental care) explained the data no more effectively than the null,
456 phylogeny only, model ($\Delta\text{AICc} = +4.69$, $n = 21$ species; Table S5 middle third). Paternity uncertainty
457 hypothesis: sex bias in dispersal was also a stronger predictor of female-biased helping than the incidence
458 of paternity loss (ΔAICc relative to *extra-pair* paternity predictor = -12.93 ; ΔAICc relative to *extra-group*
459 paternity predictor = -12.54 ; $n = 18$ species with paternity data; Table S5 lower third). The Paternity
460 uncertainty model (i.e. allowing for an effect of the extent of paternity loss) did not explain the data
461 significantly more effectively than the null, phylogeny only, model (ΔAICc for *extra-pair* paternity = -0.95 ;
462 ΔAICc for *extra-group* paternity = -1.34 ; $n = 18$ species; Table S5 lower third). The patterns in the raw data
463 (Figure S2b) suggest that any weak association that there is between paternity uncertainty and sex biases
464 in helping actually runs counter to the predictions of the Paternity uncertainty hypothesis (species with
465 female-biased helping if anything show the highest incidence of extra-pair/group paternity; Figure S3c).
466 The outcomes of these model comparisons were robust to using a range of different phylogenetic
467 assumptions (Table S5). The raw data associations between the Heterogamety, Parental skills and
468 Paternity uncertainty hypothesis predictors and species' sex biases in helping are presented in Figure S2.

469

470 Comparisons of alternative (phylogenetically controlled) models for explaining the incidence of *male-*
471 *biased helping* revealed that the Dispersal hypothesis model outperformed both the null (phylogeny only)
472 model ($\Delta\text{AICc} = -3.53$; $n = 27$ species; Table S6 upper third) and the Heterogamety hypothesis model
473 ($\Delta\text{AICc} = -6.07$; $n = 27$ species; Table S6 upper third) when using the full data set of 27 species. Once again,
474 the Heterogamety hypothesis model explained the data no more effectively than the null model, whether
475 controlling for phylogenetic effects or not ($\Delta\text{AICc} = +2.18$ to $+2.55$ depending on the method; $n = 27$; Table
476 S6 upper third). Using the reduced data set available for testing the Parental skills hypothesis ($n = 21$
477 species), neither the Dispersal nor Parental skills hypothesis models consistently outperformed ($\Delta\text{AICc} <$
478 -2) the null, phylogeny only, model across all sets of phylogenetic assumptions (Table S6 middle third).
479 While the Parental skills hypothesis did outperform the null model in two phylogenetic scenarios (for Rho
480 $= 3$ and Standard logistical regression [i.e. without phylogenetic control]; Table S6 middle third) it did not
481 outperform the Dispersal hypothesis model in any of the scenarios tested. When using the reduced data
482 set available for testing the Paternity uncertainty hypothesis ($n = 18$ species), neither the Paternity
483 uncertainty hypothesis nor the Dispersal hypothesis predicted the incidence of male-biased helping
484 significantly more effectively than the null (phylogeny only) model ($\Delta\text{AICc} > -1$ for all comparisons to the
485 null model under all phylogenetic assumption sets tested; Table S6 lower third).

486

487 **DISCUSSION**

488 Our comparative analyses sought to test the Dispersal hypothesis for the evolution of sex differences in
489 cooperation, which proposes that the more dispersive sex should contribute less to natal helping in any
490 given breeding attempt as it may stand to gain a lower net direct fitness payoff from natal helping (because
491 dispersal can impact the downstream direct benefits and/or costs of natal cooperation; see Introduction).
492 Our analyses therefore focused on species in which non-breeding helpers of both sexes help to rear
493 offspring within their natal groups, and investigated whether, across such taxa, sex differences in dispersal
494 predict sex differences in helper contributions within the natal group. Notably, in every species that
495 showed significant sex differences in both dispersal and natal helping, the sex bias in dispersal predicted
496 that in natal helping in the direction predicted by the Dispersal hypothesis. Accordingly, our phylogenetic
497 comparative analyses revealed support for the Dispersal hypothesis. Species' sex biases in dispersal
498 significantly predicted their sex biases in natal helping, when modelling both the probability of female-
499 biased helping (Figure 2b) and the probability of male-biased helping (Figure 2c). As predicted, relative to
500 species with male-biased dispersal, species with female-biased dispersal were significantly *more* likely to
501 show male-biased contributions to natal helping (Figure 2c; Table 1 lower half) and significantly *less* likely
502 to show female-biased contributions to natal helping (Figure 2b; Table 1 upper half). This association is
503 distinct from the necessarily perfect association between sex biases in dispersal and sex biases in natal
504 cooperation in those cooperative breeders in which only one sex delays dispersal and so only that sex is
505 available for natal helping (as such species were not included in the analysis). Support for the Dispersal
506 hypothesis was also robust to varying the phylogenetic assumptions within our models (see methods,
507 Figures S1 & S2 and Tables S4-6). Below, we consider potential alternative explanations for our findings,
508 highlight that the mechanisms by which sex differences in dispersal might drive sex differences in natal
509 cooperation demand closer attention, and consider the wider implications of these findings for our
510 understanding of the evolution of cooperation.

511
512 Having found support for the Dispersal hypothesis, we tested whether such support could be attributed
513 instead to confounding effects of the mechanisms envisaged in the Heterogamety, Parental skills and
514 Paternity uncertainty hypotheses. Our analyses suggest that this is unlikely, as (i) none of these other
515 hypotheses consistently outperformed a null model in any of our analyses, and (ii) the Dispersal

516 hypothesis significantly outperformed all of these hypotheses, as well as the null model, either in the model
517 of female-biased helping, the model of male-biased helping, or both. That the Dispersal hypothesis model
518 outperformed the bird/mammal contrast captured in the Heterogamety model is notable, as sex biases in
519 dispersal could have been confounded by a bird/mammal contrast, given that birds and mammals often
520 show female- and male-biased dispersal respectively [47]. Indeed, species that show rare examples of
521 male-biased dispersal among birds (e.g. brown jays, *Psilorhinus morio* [5, 48] and American crows, *Corvus*
522 *brachyrhynchos* [49]) illustrate the predictive power of the Dispersal hypothesis, as these species are also
523 unusual among cooperative birds in showing female-biased contributions to natal helping [5, 49]. When
524 using the restricted data sets available for competing the Dispersal hypothesis against the Parental skills
525 ($n = 21$ species) and Paternity uncertainty ($n = 18$ species) hypotheses, the Dispersal hypothesis
526 outperformed both (and the null model) when modelling the probability of female-biased helping, but
527 none of these hypotheses consistently outperformed the null model when modelling male-biased helping.
528 This latter ambiguity could be due to the restricted sample sizes available for these comparisons, coupled
529 with patterns of dispersal appearing to be a slightly stronger predictor of female-biased helping than male-
530 biased helping in our data set (a pattern echoed in our analyses of the full data set). The overall lack of
531 support for the Heterogamety, Parental skills and Paternity uncertainty hypotheses in our analyses
532 suggests that they do not provide credible alternative explanations for our findings in support of the
533 Dispersal hypothesis (the focal hypothesis under test here) and are unlikely to be the *primary* driver of sex
534 differences in cooperation in the context studied here. Our findings do not give cause to rule out *any* role
535 for the mechanisms envisaged in these alternative hypotheses though, as they could conceivably still have
536 contributed to selection for sex differences in cooperation in this and other contexts (see Supplementary
537 Material - Extended Discussion).

538
539 It has also been suggested that the sex that shows higher variance in lifetime reproductive success
540 (hereafter termed 'reproductive variance') may invest more in helping early in life as their chance of
541 ultimately securing direct fitness by becoming a breeder is lower ([1], see also [2]). This idea warrants
542 formal modeling, however, as it seems conceivable that the sex with higher reproductive variance could
543 also stand to gain more from *foregoing* helping, because a given consequent increase in competitive ability
544 (e.g. if helping entails costs to growth and/or body condition; [50-52]) could presumably yield a greater

545 downstream direct fitness return in the sex with higher reproductive variance. Either way, while the rarity
546 of studies that have estimated sex differences in reproductive variance in cooperative breeders currently
547 precludes comparative tests of this idea [53], the limited available evidence does not support a simple
548 association between the sex biases in reproductive variance and either dispersal or natal helping effort in
549 the types of species studied here (those in which both sexes delay dispersal and help in the natal group).
550 Data for meerkats, *Suricata suricatta*, and Damaraland mole-rats, *Fukomys damarensis*, for example,
551 appear consistent with the hypothesis, as reproductive variance is estimated to be higher in females than
552 males in both species [53, 54] and females are also the less dispersive and more helpful sex [3, 25, 55].
553 However, females have also been estimated to show higher reproductive variance than males in superb
554 starlings, *Lamprotornis superbus* [56], where males are the more philopatric sex and helper contributions
555 appear to be male biased [57].

556

557 The observed association between sex biases in dispersal and natal cooperation also cannot be readily
558 attributed instead to helpers being studied in contexts in which those of the more dispersive sex are on
559 average less related to their recipients than those of the less dispersive sex (a scenario in which kin
560 selection might account for our findings). This is because our analyses focused specifically on studies that
561 had characterized sex differences in the contributions of helpers (i) within their natal groups (where male
562 and female helpers should not differ in their mean autosomal relatedness to recipients) or (ii) while
563 controlling for effects of variation in relatedness to recipients if helpers in more diverse relatedness
564 contexts were also included. Another potential complication is that the less dispersive sex is likely to stay
565 for longer on average in its natal group, and so the original source studies could have monitored natal
566 helping on average at older ages in this sex than the more dispersive sex (leaving sex differences in
567 dispersal confounded by sex differences in mean helper age at monitoring). However, we minimized the
568 potential for such an age confound by drawing wherever possible on analyses of natal helping effort that
569 had controlled for effects of helper age (either by restricting attention to a given age class or by statistically
570 controlling for age effects; see Table S1). While this was not possible for four of the 27 species used (Table
571 S1), follow-up analyses confirmed that removing these species from the data set left the outcomes of our
572 model comparisons unchanged (see footnote 5 in Table S1). As such, our findings cannot be readily
573 attributed instead to sex differences in mean age-at-monitoring within the original studies.

574

575 Our analyses provide support for the Dispersal hypothesis, which proposes that sex differences in natal
576 cooperation evolve because the more dispersive sex stands to gain a lower net direct fitness payoff from
577 natal helping, due to two potentially widespread mechanisms that could act in isolation or concert in any
578 given species. The more dispersive sex may (i) stand to gain a lower direct fitness *benefit* from natal
579 helping [3, 6] and/or (ii) experience a greater direct fitness *cost* of natal helping [4, 5]. The more dispersive
580 sex could gain a lower direct *benefit* from natal helping wherever accruing a direct benefit is contingent in
581 part upon continued philopatry. This could be the case either because helping improves a local public good
582 (e.g. the size of the natal group or territory, from which residents may derive a direct benefit as long as
583 they remain within the group, particularly if they breed there [3, 6, 16, 20, 21]) or because the benefits of
584 helping are contingent in part upon continued interactions with prior recipients or observers of one's help
585 (e.g. a role for reciprocal altruism, the accrual of social prestige, or signaling one's quality to mates [2, 8]).
586 The more dispersive sex could also suffer a greater direct fitness *cost* of helping, because investment in
587 helping may trade off against their simultaneous need to invest in activities that promote dispersal (such
588 as extra-territorial prospecting, growth or the accrual of body reserves; [4, 5]). This latter mechanism,
589 focused on direct costs of helping, could arguably apply more widely than the former (focused on direct
590 benefits of helping), as it does not require that helping yields a downstream direct benefit whose
591 magnitude is contingent upon remaining in the natal group. Our comparative findings do not allow us to
592 discriminate between these two mechanisms. Similarly, while recent evidence that the sex bias in
593 probability of natal breeding predicts the sex bias in helping across 15 cooperative bird species could
594 reflect a role for sex differences in the direct *benefits* of helping (which could scale with the probability of
595 natal breeding; see above) [6], such a pattern could also reflect a role for sex differences in the direct fitness
596 *costs* of helping (because the sex that is less likely to breed within the natal group may invest more in
597 activities that promote dispersal, at the expense of natal cooperation [4, 5]). This pattern is nevertheless
598 consistent with the predictions of the Dispersal hypothesis, to the extent that the focal sex biases in
599 probability of natal breeding (both as a subordinate and following dominance acquisition; their effects
600 could not be teased apart [6]) arose via sex differences in dispersal rather than sex differences in
601 reproductive skew and/or dominance tenure length. While the two general mechanisms by which sex
602 differences in dispersal could drive sex differences in natal cooperation (i.e. via sex differences in the direct

603 fitness benefits or costs of cooperation) are likely to prove difficult to tease apart, attempts to do so might
604 now be usefully prioritized. Indeed, variation among species in the relevance of these two mechanisms
605 could also help to explain deviations within our data set from the patterns predicted by the Dispersal
606 hypothesis (see Supplementary Materials – Extended Discussion).

607

608 Our findings highlight a contemporary association between sex differences in dispersal and natal
609 cooperation that is consistent with the scenario envisaged in the Dispersal hypothesis, in which past
610 evolutionary changes in sex differences in dispersal drove changes in the sex difference in natal
611 cooperation. However, it is conceivable that sex differences in natal helping have also (or instead) shaped
612 the patterns of selection on sex differences in dispersal. For example, wherever trade-offs exist between
613 investments in helping and dispersal-promoting activities [4, 5], sex differences in natal cooperation
614 would also have the potential to drive sex differences in dispersal. While the co-evolution of sex differences
615 in dispersal and cooperation does seem plausible, it seems unlikely that the association observed here
616 *solely* reflects sex biases in cooperation driving sex biases in dispersal. Such a scenario would require the
617 evolution of significant sex biases in natal helping via some alternative mechanism (other than those
618 envisaged in the Dispersal hypothesis) that then drove evolutionary changes in the sex biases in dispersal,
619 bringing the species' sex biases in both traits in line with the predictions of the Dispersal hypothesis. It is
620 notable then that we currently lack compelling support for such alternative mechanisms for the evolution
621 of sex differences in cooperation (see above; e.g. the Heterogamety, Parental skills and Paternity
622 uncertainty hypotheses). Moreover, most species in our data set have sex biases in dispersal that conform
623 to their historical taxonomic norms (i.e. female-biased dispersal in birds and male-biased dispersal in
624 mammals [47]), leaving it likely that the dispersal patterns of most of our focal species were in place prior
625 to the evolution of helping in their clade. That said, our findings do highlight the need for closer attention
626 to the possibility that sex differences in the payoff from natal cooperation influence the patterns of
627 selection on dispersal [8, 58].

628

629 Together, our analyses provide novel support for the Dispersal hypothesis for the evolution of sex
630 differences in cooperation. Our analyses necessarily focused on the subset of cooperative breeders in
631 which both sexes help within their natal group, because the rationale of the Dispersal hypothesis only

632 applies in this context. Nevertheless, the observed association between sex differences in dispersal and
633 natal cooperation will of course extend to cooperative breeders in which only one sex delays dispersal, as
634 in such species only members of the less dispersive sex are *available* to engage in natal cooperation. While
635 there is naturally a need for caution in generalizing our findings beyond the subset of species for which
636 the necessary data were available, our findings do highlight the potential for sex differences in dispersal
637 to have played a widespread role in driving sex differences in cooperation across taxa (whether in isolation
638 or acting in concert with other mechanisms). As our analyses focused on helping behaviour within the
639 natal group, it remains an open question to what extent patterns of dispersal are also relevant to
640 understanding sex differences in (i) other forms of cooperation (e.g. cooperative vigilance, foraging,
641 construction and territorial defence [59-64]) and (ii) cooperation in other contexts (e.g. following
642 dispersal from the natal group [14, 19, 59, 61, 65, 66]). While a wealth of evidence now supports the view
643 that *indirect* fitness benefits have played a key role in the evolution of cooperation via kin selection [8, 11-
644 13], our findings provide evidence suggestive of a wider role for differences in net *direct* fitness payoffs in
645 shaping patterns of cooperation across species [6, 19, 66, 67]. Importantly though, our findings do not
646 implicate a role specifically for sex differences in the direct fitness *benefits* of cooperation, as sex
647 differences in dispersal and philopatry could also drive sex differences in cooperation by generating sex
648 differences in the direct fitness *costs* of cooperation [4, 5]. A key focus for future work on individual model
649 systems will therefore be to establish whether sex differences in dispersal shape patterns of cooperation
650 via impacts on the sex-specific direct fitness benefits or costs of cooperation.

651

652 **ACKNOWLEDGEMENTS**

653 We thank Mike Cant, Pablo Capilla-Lasheras, Jeremy Field, Xavier Harrison, Sarah Hodge, Shakti Lamba
654 and Andy Russell for fruitful discussions and/or comments on the manuscript, and Elena Berg, Lyanne
655 Brouwer, Steve Emlen, Anne Peters, Morne du Plessis, Andy Radford, Mandy Ridley, Dustin Rubenstein,
656 Sheng-Feng Shen and Faye Thompson for responses to queries during data compilation. AJY was
657 supported by a BBSRC David Phillips Research Fellowship (BB/H022716/1).

658

659

REFERENCES

- 660 1. Koenig, W.D., R.L. Mumme, and F. Pitelka, *Female roles in cooperatively breeding acorn*
661 *woodpeckers*, in *Social behavior of female vertebrates*, S.K. Wasser, Editor. 1983, Academic Press. p.
662 235-261.
- 663 2. Cockburn, A., *Evolution of helping behavior in cooperatively breeding birds*. Annual Review of
664 Ecology and Systematics, 1998. **29**: p. 141-177.
- 665 3. Clutton-Brock, T.H., et al., *Evolution and development of sex differences in cooperative behavior in*
666 *meerkats*. Science, 2002. **297**(5579): p. 253-256.
- 667 4. Young, A.J., A.A. Carlson, and T.H. Clutton-Brock, *Trade-offs between extra-territorial prospecting*
668 *and helping in a cooperative mammal*. Animal Behaviour, 2005. **70**: p. 829-837.
- 669 5. Williams, D.A. and A.M. Hale, *Female-biased helping in a cooperatively breeding bird: Female benefits*
670 *or male costs?* Ethology, 2007. **113**(6): p. 534-542.
- 671 6. Downing, P.A., A.S. Griffin, and C.K. Cornwallis, *Sex differences in helping effort reveal the effect of*
672 *future reproduction on cooperative behaviour in birds*. Proceedings of the Royal Society B-Biological
673 Sciences, 2018. **285**(1885).
- 674 7. Hodge, S.J., *Counting the costs: the evolution of male-biased care in the cooperatively breeding*
675 *banded mongoose*. Animal Behaviour, 2007. **74**: p. 911-919.
- 676 8. Dickinson, J.L. and B.J. Hatchwell, *Fitness consequences of helping*, in *Ecology and Evolution of*
677 *Cooperative Breeding in Birds*, W.D. Koenig and J.L. Dickinson, Editors. 2004, Cambridge University
678 Press: Cambridge. p. 48-66.
- 679 9. Koenig, W.D. and J.L. Dickinson, eds. *Cooperative breeding in vertebrates: studies of ecology,*
680 *evolution and behavior*. 2016, Cambridge University Press.
- 681 10. Hamilton, W.D., *The genetical evolution of social behaviour. Parts I and II*. Journal of Theoretical
682 Biology, 1964. **7**: p. 1-52.
- 683 11. Cornwallis, C.K., et al., *Promiscuity and the evolutionary transition to complex societies*. Nature,
684 2010. **466**(7309): p. 969-U91.
- 685 12. Abbot, P., et al., *Inclusive fitness theory and eusociality*. Nature, 2011. **471**(7339): p. E1-E4.
- 686 13. Boomsma, J.J., et al., *Only full-sibling families evolved eusociality*. Nature, 2011. **471**(7339): p. E4-
687 E5.
- 688 14. Johnstone, R.A. and M.A. Cant, *Sex differences in dispersal and the evolution of helping and harming*.
689 American Naturalist, 2008. **172**(3): p. 318-330.
- 690 15. Whitney, G., *Genetic substrates for the initial evolution of human sociality. I. Sex chromosome*
691 *mechanisms*. American Naturalist, 1976. **110**(975): p. 867-875.
- 692 16. Woolfenden, G.E. and J.W. Fitzpatrick, *Inheritance of Territory in Group-Breeding Birds*. Bioscience,
693 1978. **28**(2): p. 104-108.

694 17. Ligon, J.D. and S.H. Ligon, *Communal breeding in the green woodhoopoe as a case for reciprocity*.
695 Nature, 1978. **276**: p. 496-498.

696 18. Owens, D.D. and M.J. Owens, *Helping-Behavior in Brown Hyenas*. Nature, 1984. **308**(5962): p. 843-
697 845.

698 19. Taborsky, M., J.G. Frommen, and C. Riehl, *The evolution of cooperation based on direct fitness*
699 *benefits*. Philosophical Transactions of the Royal Society B-Biological Sciences, 2016. **371**(1687).

700 20. Kokko, H., R.A. Johnstone, and T.H. Clutton-Brock, *The evolution of cooperative breeding through*
701 *group augmentation*. Proceedings of the Royal Society of London Series B-Biological Sciences,
702 2001. **268**(1463): p. 187-196.

703 21. Kingma, S.A., et al., *Group augmentation and the evolution of cooperation*. Trends in Ecology &
704 Evolution, 2014. **29**(8): p. 476-484.

705 22. Young, A.J., G. Spong, and T.H. Clutton-Brock, *Subordinate male meerkats prospect for extra-group*
706 *paternity: alternative reproductive tactics in a cooperative mammal*. Proceedings of the Royal
707 Society of London Series B-Biological Sciences, 2007. **274**(1618): p. 1603-1609.

708 23. Mares, R., et al., *Timing of predispersal prospecting is influenced by environmental, social and state-*
709 *dependent factors in meerkats*. Animal Behaviour, 2014. **88**: p. 185-193.

710 24. Kingma, S.A., et al., *The cost of prospecting for dispersal opportunities in a social bird*. Biology Letters,
711 2016. **12**(6).

712 25. Zottl, M., et al., *Differences in cooperative behavior among Damaraland mole rats are consequences*
713 *of an age-related polyethism*. Proceedings of the National Academy of Sciences of the United States
714 of America, 2016. **113**(37): p. 10382-10387.

715 26. Legge, S., *Helper contributions in the cooperatively breeding laughing kookaburra: feeding young is*
716 *no laughing matter*. Animal Behaviour, 2000. **59**: p. 1009-1018.

717 27. Canestrari, D., J.M. Marcos, and V. Baglione, *Effect of parentage and relatedness on the individual*
718 *contribution to cooperative chick care in carrion crows Corvus corone corone*. Behavioral Ecology
719 and Sociobiology, 2005. **57**(5): p. 422-428.

720 28. Komdeur, J., *Influence of helping and breeding experience on reproductive performance in the*
721 *Seychelles warbler: A translocation experiment*. Behavioral Ecology, 1996. **7**(3): p. 326-333.

722 29. Koenig, W.D. and E.L. Walters, *Age-related provisioning behaviour in the cooperatively breeding*
723 *acorn woodpecker: testing the skills and the pay-to-stay hypotheses*. Animal Behaviour, 2011. **82**(3):
724 p. 437-444.

725 30. Charnov, E.L., *Kin selection and helpers at the nest - effects of paternity and biparental care*. Animal
726 Behaviour, 1981. **29**: p. 631-632.

727 31. Cockburn, A., *Prevalence of different modes of parental care in birds*. Proceedings of the Royal
728 Society B-Biological Sciences, 2006. **273**(1592): p. 1375-1383.

729 32. Lukas, D. and T. Clutton-Brock, *Cooperative breeding and monogamy in mammalian societies*.

730 Proceedings of the Royal Society B-Biological Sciences, 2012. **279**(1736): p. 2151-2156.

731 33. Stacey, P.B. and W.D. Koenig, eds. *Cooperative breeding in birds*. 1990, Cambridge University Press.

732 34. Solomon, N.G. and J.A. French, eds. *Cooperative Breeding in Mammals*. 1997, Cambridge University
733 Press: Cambridge.

734 35. Emlen, S.T., *White-fronted bee-eaters: helping in a colonially nesting species*, in *Cooperative breeding*
735 *in birds: long-term studies of ecology and behavior*, P.B. Stacey and W.D. Koenig, Editors. 1990,
736 Cambridge University Press: Cambridge. p. 487-526.

737 36. Doutrelant, C., et al., *Unexpected sex ratio adjustment in a colonial cooperative bird: pairs with*
738 *helpers produce more of the helping sex whereas pairs without helpers do not*. Behavioral Ecology
739 and Sociobiology, 2004. **56**(2): p. 149-154.

740 37. Dickinson, J.L., W.D. Koenig, and F.A. Pitelka, *Fitness consequences of helping behavior in the western*
741 *bluebird*. Behavioral Ecology, 1996. **7**(2): p. 168-177.

742 38. Harvey, P.H. and M.D. Pagel, *The Comparative Method in Evolutionary Biology*. Oxford Series in
743 Ecology & Evolution. 1991: Oxford University Press.

744 39. Ho, L.S.T. and C. Ané, *A linear-time algorithm for Gaussian and non-Gaussian trait evolution models*.
745 Systematic Biology, 2014. **63**(3): p. 397-408.

746 40. Burnham, K.P. and D.R. Anderson, *Model Selection and Multimodel Inference*. 2 ed. 2002, New York:
747 Springer-Verlag New York.

748 41. Bininda-Emonds, O.R.P., et al., *The delayed rise of present-day mammals*. Nature, 2007. **446**(7135):
749 p. 507-512.

750 42. Davis, K.E. and R.D.M. Page, *Reweaving the Tapestry: a Supertree of Birds*. PLOS Currents Tree of
751 Life, 2014. **June 9**.

752 43. Jetz, W., et al., *The global diversity of birds in space and time*. Nature, 2012. **491**(7424): p. 444-8.

753 44. Hedges, S.B. and S. Kumar, *The timetree of life*. 2009, Oxford: Oxford University Press.

754 45. Ives, A.R. and T. Garland, *Phylogenetic Logistic Regression for Binary Dependent Variables*.
755 Systematic Biology, 2010. **59**(1): p. 9-26.

756 46. Grafen, A., *The phylogenetic regression*. Philos Trans R Soc Lond B Biol Sci, 1989. **326**(1233): p.
757 119-57.

758 47. Greenwood, P.J., *Mating Systems, Philopatry and Dispersal in Birds and Mammals*. Animal Behaviour,
759 1980. **28**(Nov): p. 1140-1162.

760 48. Williams, D.A. and K.N. Rabenold, *Male-biased dispersal, female philopatry, and routes to fitness in a*
761 *social corvid*. Journal of Animal Ecology, 2005. **74**(1): p. 150-159.

762 49. Caffrey, C., *Female-Biased Delayed Dispersal and Helping in American Crows*. Auk, 1992. **109**(3): p.

763 609-619.

764 50. Heinsohn, R. and S. Legge, *The cost of helping*. Trends in Ecology & Evolution, 1999. **14**(2): p. 53-57.

765

766 51. Russell, A.F., et al., *Cost minimization by helpers in cooperative vertebrates*. Proceedings of the National Academy of Sciences of the United States of America, 2003. **100**(6): p. 3333-3338.

767

768 52. Cram, D.L., J.D. Blount, and A.J. Young, *The oxidative costs of reproduction are group-size dependent in a wild cooperative breeder*. Proceedings of the Royal Society B-Biological Sciences, 2015. **282**(1819).

769

770

771 53. Young, A.J. and N.C. Bennett, *Intra-sexual selection in cooperative mammals and birds: why aren't females bigger and better armed?* Philosophical Transactions of the Royal Society B-Biological Sciences, 2013.

772

773

774 54. Clutton-Brock, T.H., et al., *Intrasexual competition and sexual selection in cooperative mammals*. Nature, 2006. **444**: p. 1065-1068.

775

776 55. Young, A.J., et al., *Physiological suppression eases in Damaraland mole-rat societies when ecological constraints on dispersal are relaxed*. Hormones and Behavior, 2010. **57**(2): p. 177-183.

777

778 56. Rubenstein, D.R., *Natural history miscellany - Temporal but not spatial environmental variation drives adaptive offspring sex allocation in a plural cooperative breeder*. American Naturalist, 2007. **170**(1): p. 155-165.

779

780

781 57. Rubenstein, D.R., *Superb starlings: cooperation and conflict in an unpredictable environment*, in *Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior*, W.D. Koenig and J.L. Dickinson, Editors. 2016, Cambridge University Press: Cambridge. p. 181-196.

782

783

784 58. Ekman, J., et al., *Delayed dispersal*, in *Ecology and Evolution of Cooperative Breeding in Birds*, W.D. Koenig and J.L. Dickinson, Editors. 2004, Cambridge University Press: Cambridge. p. 35-47.

785

786 59. Reyer, H.U., *Breeder-Helper-Interactions in the Pied Kingfisher Reflect the Costs and Benefits of Cooperative Breeding*. Behaviour, 1986. **96**: p. 277-303.

787

788 60. Creel, S. and N.M. Creel, *Communal Hunting and Pack Size in African Wild Dogs, Lycaon- Pictus*. Animal Behaviour, 1995. **50**: p. 1325-1339.

789

790 61. Clutton-Brock, T.H., et al., *Selfish sentinels in cooperative mammals*. Science, 1999. **284**(5420): p. 1640-1644.

791

792 62. Radford, A.N., *Territorial vocal rallying in the green woodhoopoe: influence of rival group size and composition*. Animal Behaviour, 2003. **66**: p. 1035-1044.

793

794 63. Walker, L.A., J.E. York, and A.J. Young, *Sexually selected sentinels? Evidence of a role for intrasexual competition in sentinel behavior*. Behavioral Ecology, 2016. **27**(5): p. 1461-1470.

795

796 64. York, J.E., K.J. Wells, and A.J. Young, *Dominance-related contributions to collective territory defence are adjusted according to the threat*. Animal Behaviour, 2019. **158**: p. 25-34.

797

798 65. Clutton-Brock, T., *Behavioral ecology - Breeding together: Kin selection and mutualism in*
799 *cooperative vertebrates*. *Science*, 2002. **296**(5565): p. 69-72.

800 66. Dey, C.J., et al., *Direct benefits and evolutionary transitions to complex societies*. *Nature Ecology and*
801 *Evolution*, 2017(0137 (2017)).

802 67. Kingma, S.A., *Direct benefits explain interspecific variation in helping behaviour among cooperatively*
803 *breeding birds*. *Nature Communications*, 2017. **8**.

804