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Abstract

Transcriptional regulation, involving the complex interplay between regulatory sequences and
proteins, directs all biological processes. Computational models of transcriptions lack
generalizability to accurately extrapolate in unseen cell types and conditions. Here, we introduce
GET, an interpretable foundation model, designed to uncover regulatory grammars across 213
human fetal and adult cell types. Relying exclusively on chromatin accessibility data and
sequence information, GET achieves experimental-level accuracy in predicting gene expression
even in previously unseen cell types. GET showcases remarkable adaptability across new
sequencing platforms and assays, enabling regulatory inference across a broad range of cell
types and conditions, and uncovering universal and cell type specific transcription factor
interaction networks. We evaluated its performance on prediction of regulatory activity, inference
of regulatory elements and regulators, and identification of physical interactions between
transcription factors. Specifically, we show GET outperforms current models in predicting
lentivirus-based massive parallel reporter assay readout with reduced input data. In Fetal
erythroblast, we identify distal (>1Mbp) regulatory regions that were missed by previous models.
In B cell, we identified a lymphocyte-specific transcription factor-transcription factor interaction
that explains the functional significance of a lymphoma-risk predisposing germline mutation. In
sum, we provide a generalizable and accurate model for transcription together with catalogs of
gene regulation and transcription factor interactions, all with cell type specificity.

Main

Transcriptional regulation constitutes a critical yet largely unresolved domain, underpinning
diverse biological processes, including those associated with human genetic diseases and
cancers'. A conserved regulatory machinery orchestrates transcriptional changes, including
transcription factors that bind to regulatory sequences, coactivators, mediator, and core
transcriptional factors and RNA Polymerase [1>**. While different cell types may possess
different subsets of regulatory regions, the biochemistry of protein-protein interaction and
protein-DNA interaction remains largely the same across cell types when epigenetic conditions
are fixed. Clustering of known transcription factor binding site motifs® demonstrates great
functional redundancy in transcription factor DNA binding domains, further reducing the
combinatorial variability of regulatory interactions. However, our understanding of transcription
regulation is often limited to specific cell types, and it is not clear how the combinatorial
interaction of different transcription factors determines the diversity of expression profiles
observed across cell types.

Advances in sequencing technology and the adoption of sophisticated machine learning
architectures have enabled the exploration of expression and associated noncoding regulatory
features across a broad spectrum of cell types. Traditional methods, such as Expecto® and
Basenji2’, utilized convolutional neural networks for shorter input sequences, while
state-of-the-art approaches like Enformer® extended capabilities with transformer architecture.
Nonetheless, existing models present challenges. A key limitation is they can only make
predictions on the training cell types, hindering the generalizability and utility of the model.


https://www.zotero.org/google-docs/?mzBaZN
https://www.zotero.org/google-docs/?mtBlGP
https://www.zotero.org/google-docs/?fR0gLa
https://www.zotero.org/google-docs/?lXUR6b
https://www.zotero.org/google-docs/?wltV7r
https://www.zotero.org/google-docs/?ma1TGr
https://doi.org/10.1101/2023.09.24.559168
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.24.559168; this version posted September 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

In the landscape of machine learning and computational biology, foundational models like
GPT4° and ESM2™ are emerging as a transformative approach. These models serve as a
foundation, upon which specialized adaptations can be built to address specific tasks or
challenges. By utilizing extensive pretraining on broad and diverse datasets, foundation models
provide a generalized understanding of underlying patterns and relationships. In the field of
transcriptional regulation, a foundation model has the potential to synthesize the vast
complexities of regulatory mechanisms across various cell types, offering a versatile framework
that can be fine-tuned to target specific applications, cell types, or conditions.

Here we introduce the general expression transformer (GET), an interpretable foundation model
for transcription regulation across 213 human fetal and adult cell types that exhibits universal
applicability and exceptional accuracy. GET learns transcriptional regulatory syntax from
chromatin accessibility data across hundreds of diverse cell types and successfully predicts
gene expression in both seen and unseen cell types, approaching experimental accuracy. The
versatile nature of GET allows it to be transferred to different sequencing platforms and
measurement techniques. Additionally, it offers zero-shot prediction of reporter assay readout in
new cell types, potentiating itself as a prescreening tool for cell type specific regulatory
elements. GET outperforms previous state of the art models in identifying cis-regulatory
elements, and identifies novel and known upstream regulators of fetal hemoglobin. Through
interpreting GET, we provide rich regulatory insight for almost every gene in 213 cell types.
Using coregulation information predicted by GET, we performed causal discovery to pinpoint
potential transcription factor-transcription factor interactions and constructed a structural
interaction catalog of human transcription factors and coactivators. Using information provided
by GET, we successfully identified a lymphocyte-specific transcription factor-transcription factor
interaction involving PAX5 and retinoic acid receptor family transcription factors, and highlighted
a possible disease driving mechanism of a lymphoma-associated germline-variants through
affecting the binding of PAX5 disordered region to the nuclear receptor domain of retinoic acid
receptors. Overall, GET’s broad applicability and profound understanding of transcription
regulation will advance understanding of noncoding genetic variants and guide de novo design
of cell-type specific transcriptional regulatory circuits and transcription factors for synthetic
biology application.

GET, a foundation model for transcription regulation across 213 human cell types

We embarked on developing GET, a novel foundational model to comprehend the transcription
regulation across a diverse range of cell types. Unlike previous models such as Enformer®, GET
employs an extensive effective sequence length exceeding 2 Mbps and is not constrained to
making predictions in only training cell types.

The design philosophy of GET is rooted in the conceptual understanding of transcription
regulation (Figure 1b). At the forefront, Promoter and related contextual regulatory elements
can be characterized by how well they bind different transcription factors (motif binding score,
Methods) and how accessible they are in specific cell types. These features shape a chromatin
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environment (p(X)) that governs RNA polymerase Il (Polll) functioning. Using an embedding and
attention architecture' specifically designed for the regulatory elements (Methods), we
performed self-supervised pretraining to let GET learn how the regions and features interact
with each other across diverse cell types. Specifically, by randomly masking out regulatory
elements, the model is trained to predict the motif binding scores and optionally accessibility
score in the masked region. Subsequently, Polll will translate the chromatin environment p(X)
into an expression readout E (Figure 1b). A finetuning stage with the same architecture but a
different output head will simulate this process. This two-stage design makes it possible to use
chromatin accessibility data with no paired expression measurement, greatly improving the
diversity of regulation information in the training data.

The pretraining of GET uses of pseudobulk chromatin accessibility gathered from single cell
assay for transposase-accessible chromatin with sequencing (scATAC-seq) data across 213
human fetal and adult cell types' 4. Out of these, 153 were coupled with expression data,
acquired either through a multiome protocol or separate single cell RNA sequencing
(scRNA-seq) experiments'®'® (Methods and Data Availability). We calculate the motif binding
score using known position weighted matrix and summarized them according to sequence
similarity to reduce feature redundancy®. Assuming additivity in motif binding score, every
sample is a region*feature matrices derived from a continuous range on the accessible genome
across different cell types. This design of model input ensures both cell type specificity and
generalizability while enabling efficient computational modeling. Strand-specific expression
values are assigned to each region based on their overlap with expressed gene’s promoters.

GET accurately predicts gene expression in unseen cell types at experimental accuracy

We first assessed GET's ability to accurately predict gene expression in unseen cell types in a
setting where one cell type is left out during the expression finetuning process. Remarkably,
GET demonstrated the capacity to consistently predict the expression of the left-out cell types at
a level of accuracy comparable to experimental standards, even when trained without
quantitative accessibility signals. An example can be taken from left-out astrocytes, where the
Pearson correlation between GET's predicted expression values and the observed expression
reached 0.94 (R? = 0.88), a result that is in line with experimental accuracy'’ (Pearson r =
0.92-0.99, Supplementary Figure 2a). GET's performance surpasses both transcription start
site (TSS) accessibility (r = 0.47, R? = -0.23) and gene activity score' (r = 0.51, R? = -0.67),
emphasizing the significance of DNA sequence specificity and distal context information in
transcription regulation. Furthermore, GET managed to outperform two robust benchmarks,
including top correlated cell type expression (r = 0.83, R* = 0.62) and mean expression across
training cell types (r = 0.78, R? = 0.53; as illustrated in Figure 2). Additional validation was
carried out, confirming GET's capability to make cell-type-specific predictions, as evidenced by
a Pearson correlation of 0.91 (R? = 0.82) between predicted and observed log fold change for
Fetal astrocyte and Fetal erythroblast expression (see Supplementary Figure 2b).

We proceeded to investigate GET's generalizability to adult cell types when trained solely on
fetal data. Our findings showed an average R? of 0.53 across diverse adult cell types, once
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again surpassing the baseline (R* = 0.33) obtained using corresponding fetal cell types for
prediction (e.g., utilizing Fetal astrocyte to predict Adult astrocyte). The only 3 cell types where
we cannot beat the baseline are cell types with low cell counts in either ATAC-seq or RNA-seq
label (pancreatic acinar cell). This result reinforces the proposition that GET can extract
common regulatory mechanisms that span across various cell types and stages of life.

To ascertain the impact of cross-cell-type pretraining on prediction performance, we finetuned a
GET model from random initialization, which exhibited a substantial drop in performance
compared to the pretrained version with the same number of training epochs (Pearson r: 0.596;
Spearman rho: 0.642). Extending the training period for this baseline failed to enhance its
performance (Pearson r: 0.607; Spearman rho: 0.658), highlighting the essential role of
pretraining in facilitating model generalization.

In summation, our study demonstrates that by leveraging widely accessible ATAC-seq data and
established transcription factor binding motifs, GET acquires a broad understanding of the
regulatory code, empowering it to predict unseen cell type expression with experimental
precision.

GET can be transferred to different sequencing platforms and measurements

Diverse data generation platforms and processing methods often present a significant challenge
for the universal generalizability of pretrained models. To assess whether GET can be
transferred to a wholly new sequencing platform in such scenarios, we benchmarked its
performance on 10x multiome sequencing of the lymph node' (Figure 2a, Methods) using the
leave-cell-type-out evaluation approach. Notably, GET maintained consistent prediction
outcomes for both finetuned or left-out cell types.

Given GET's demonstrated adaptability, we explored its applicability to other experimental
assays. As a representative example, chromatin accessibility was chosen. We first pretrained
GET model using only motif binding scores in accessible regions, and then fine-tuned it to
predict quantitative K562 peak-level chromatin accessibility from both ENCODE OmniATAC? or
NEAT-seq?' data using a split chromosome evaluation method. Remarkably, the model achieved
a Pearson correlation exceeding 0.98 for the left-out chromosome 11 (Supplementary Figure
3a). This might be attributed to the intrinsic association between chromatin accessibility and
local DNA sequence patterns.

Zeroshot GET prediction of expression-driving regulatory elements in new cell type

Building on the versatility of GET across diverse platforms and measurements, we now venture
into examining its capacity for zero-shot prediction of expression-driving regulatory elements in
unseen cell types. Lentivirus-based massively parallel reporter assay (lentiMPRA) provides a
robust mechanism to test the regulatory activity of numerous genetic sequences by integrating
them into the genome, thereby circumventing the limitations inherent in episomal MPRAs and
ensuring relevant biological readouts in hard-to-transfect cell lines*. Recently utilized to assess
over 200,000 sequences in the K562 cell line, this experimental assay has created a
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comprehensive benchmark dataset for evaluating whether the GET model can identify
regulatory elements in a cell-type specific context?® (Figure 2c).

In an in silico procedure akin to the lentiMPRA experiment, we employed the GET model
finetuned on K562 chromatin accessibility and expression profile, which has not seen any
lentiMPRA data. We then constructed the sequences for insertion, including both the regulatory
sequence and minipromoters, randomly inserting these sequences across the genome. Utilizing
the GET model, we inferred the activity of the mini promoter within the corresponding chromatin
context and averaged over all insertions to obtain a mean readout indicative of the regulatory
activity (Figure 2c, Methods). We found that best performance is achieved when we combine
the mean expression readout with GET-predicted accessibility of the inserted element
(Supplementary Figure 3b).

Upon examination of the readout distribution for different types of elements (Figure 2d), we
found our predictions to be consistent with experimental data. Promoter sequences exhibited
the highest GET-MPRA readout, followed by chromatin accessibility peak sequences, with
heterochromatin sequences registering the lowest readouts, and control sequences spanning a
wide range of readout values (Figure 2d).

When benchmarking our model against Enformer, the previous state-of-the-art model that
utilized 486 different types of functional genomics data of K562, including transcription factor
and histone modifications chromatin co-immunoprecipitation sequencing (ChlP-seq), cap
analysis of gene expression (CAGE), and chromatin accessibility measurements, we discovered
that our model made more accurate predictions overall (Pearson’s r = 0.56 versus 0.44),
although Enformer outperformed in peak regulatory activity predictions, which can be attributed
to its nucleotide-level modeling architecture and extensive training data specifically targeting
K562. Overall, Enformer’s predictions tend to have larger across genome variance
(Supplementary Figure 3c). Ablation GET also presented significant advantages in
computational cost. In fact, for this comparison, we had to subsample to 2,000 elements to
complete the calculation with Enformer in 3 days. While using the same amount of computing
time GET can screen all 200,000 elements.

GET accurately identifies cis-regulatory elements and upstream regulators

Single-cell multiome studies enable the identification of cis-regulatory elements (CRE) in
specific cell types, offering potential phenotype intervention targets. Traditional peak-to-gene
workflows largely depend on correlating multiome ATAC-seq and RNA-seq counts, with
regulator identification necessitating additional filtering by transcription factor (TF)
expression®*2, Such methods are limited in comprehensiveness due to the nonlinear
relationship between accessibility and transcription level and sparsity of single cell data, usually
can only produce results for thousands of genes. Through model interpretation techniques
(Methods), we can efficiently derive region/motif contribution scores for expressed genes
across cell types, producing results for virtually all genes in even less abundant cell types
(~1,000 cells). Focusing on Fetal erythroblasts, we leveraged published genome base-editing
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data to investigate four known fetal hemoglobin regulating loci*’ (BCL11A, NFIX, KLF1, HBG2,
where first three are transcription factors genes and HBG2 encodes a fetal hemoglobin subunit,
Figure 3a).

Applying GET to Fetal erythroblasts yielded interesting insights into the regulation of fetal
hemoglobin. We rediscovered the central role of the GATA transcription factor, which, via its
binding to an erythroid-specific enhancer, orchestrates the expression of BCL11A, a known
modulator of hemoglobin regulation?2°. Interestingly, GET also highlighted the role of the SOX
family of transcription factors in this enhancer, which were previously linked to fetal
hemoglobin® but not known to function through this specific enhancer.

Examining all four loci—BCL11A, NFIX, KLF1, and HBG2—we benchmarked GET against
established models like Enformer®, DeepSEA®, and Activity-by-Contact (ABC)*?*® . Distinctly,
GET outperformed these counterparts, especially in detecting long-range enhancer-promoter
interactions (Figure 3c-d, Supplementary Figure 4a-b). We also show that while enhancer
chromatin accessibility is predictive of regulatory activity for proximal enhancer-promoter
relationships, its precision diminishes for long-range interactions. Alternative evaluations using
different functional enhancer thresholds (top 10% or 25% mean HbFBase, the gRNA enrichment
score defined in the original study?’) reaffirm GET's precision in this scenario (Figure 3d).

GET is able to extract overall motif importance across cis-regulatory elements (CREs) for
specific genes. For HBG2, BCL11A, and NFIX, the top motifs identified were consistent with
their known transcriptional regulators or hematopoietic transcription factors (Figure 3e). For
instance, we found significance of NFY and SOX motifs for HBG2 and the reaffirmation of
KLF1's influence on BCL11A?. Additionally, for NFIX, GET adeptly pinpointed the involvement
of TAL1, a known GATA1 binding partner and hematopoietic factor®*.

To determine downstream targets for specific regulators, we developed an in silico analysis,
taking the GATA motif as a case study. Using the GET motif contribution matrix, we spotlighted
the top 10% of genes influenced by the GATA motif. Notably, aligning with GATA1's status as a
master regulator of erythroid development, the haematopoiesis biological process was
enriched®* (Enrichment P-value=7.6x10* with multiple testing correction, Figure 3f and
Methods) within this gene set. Delving further, the identification of transcription factors within
this set laid the foundation for an erythroblast-specific transcription factor regulatory framework
centered on GATA. Recognized erythroid lineage transcription factors like KLF1, GATA1,
TAL1,and IKZF1 were predicted to be regulated by the GATA motif, underscoring GATA's pivotal
role in a multifaceted regulatory network, in line with existing literature®®.

To assess GET's capability to detect significant regulatory alterations across different cell states,
we focused on the differential expression between Fetal erythroblast and fetal hematopoietic
stem cells (HSC). Our expectation is that the genes that mark the lineage differentiation should
receive more gradient from lineage specific transcription factors than those that are indifferent
across lineages. Our findings confirmed this, as we noted substantial Spearman correlation
between the motif contributions in erythroblast and the differential expression log fold changes
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for several erythroblast-related transcription factors, including GATA, ZBTB7A, and MZF1
(Figure 39).

Extending our analysis to encompass all fetal and adult cell types, we found that for certain
well-known regulators, such as CTCF, MBD2, NFKB, and NFI, there exists a significant
correlation between the mean expression of inferred target genes and the mean expression of
all regulators within the corresponding family (e.g., NFIA, NFIB, NFIC, NFIX for the NFI motif,
Supplementary Figure 5). Overall, we conclude that GET possesses the ability to learn
meaningful regulatory information that is naturally transferable between cell states.

Cell-type specific regulatory insights through cross-cell-type embedding with GET

Utilizing a cross-cell-type architecture, GET is configured to extract the regulatory context for
genes spanning various cell types, embedding them within a shared high-dimensional space
(Methods). In order to further visualize what GET learns from different cell types, we explored
the embedding of different layers of GET. We found that the embedding from final layers
correlates well with expression levels, while earlier layers are more indicative of differences in
regulatory grammar.

To investigate whether the embedding tied to regulatory grammar retains cell type-specific
information, we gathered the first transformer layer's embedding for all promoters across cell
types. This allows us to capture not only the motif information within the promoter but also within
the cis-regulatory elements (CREs) due to the attention mechanism employed. Intriguingly, a
Uniform Manifold Approximation and Projection (UMAP)* visualization of randomly sampled
embeddings showed motif separation but no cell type differentiation, suggesting that, with a
sufficient number of cell types, most regulatory grammar is shared across cell types, although
they may be instantiated on different genes (Figure 4a).

Nonetheless, when we subset the embeddings to only three specific cell types (fetal astrocyte
and two fetal erythroblast subclusters), the UMAP exhibited distinct clusters for astrocytes and
erythroblast genes (Figure 4b). This result further corroborates that GET is proficient at
discerning cell-type-specific regulatory information.

Delving further into the astrocyte-specific gene cluster (cluster #2 in Figure 4c), we discovered
that this gene set is particularly enriched in the development of the nervous system and includes
astrocyte transcription factors such as NFIA%®%3 and GLI3* (Figure 4d). Moreover, a
comparison of motif contribution across clusters revealed a higher presence of NFI motifs in the
astrocyte-specific cluster (Figure 4e), shedding light on the unique regulatory program within
astrocytes.

GET-based causal discovery identifies potential transcription factor-transcription factor
interaction


https://www.zotero.org/google-docs/?4JmvPL
https://www.zotero.org/google-docs/?qIeLLH
https://www.zotero.org/google-docs/?RsyYHk
https://doi.org/10.1101/2023.09.24.559168
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.24.559168; this version posted September 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Given GET'’s proficiency in elucidating intricate regulatory mechanisms across diverse cellular
contexts, we next investigate whether it learns transcription factor-transcription factor functional
interactions implicitly. Using a cell-type agnostic gene-by-motif matrix (Methods), we evaluated
the correlation between different motif vectors (Supplementary Figure 6a). High correlation
may represent common genomic targets between different transcription factors. Remarkably,
the transcription factor pairs with correlation values in the top decile are more likely to
participate in the same biological functions compared to those in the bottom decile
(Supplementary Figure 6b, Kolmogorov—Smirnov test, P-value 6.78%x10%%). For example,
MBD2 and MECP2, a high correlation transcription factor pair, act both as readers of DNA
methylation*'42,

We further extended our investigation of the motif-motif interactions by utilizing a causal
discovery algorithm, Linear Non-Gaussian Acyclic Model (LINGAM)*, to derive a directed
acyclic graph from the cell-type agnostic gene-by-motif matrix (Methods). The consequent
network, displaying interactions with an absolute value greater than 0.1 for clarity in
visualization, can be seen in Supplementary Figure 6c. Interesting, we identified factors such
as CTCF, KLF/SP/2 (GC rich motif), TFAP2/1, ZFX, RBPJ, Accessibility, and
methylation-associated E2F as having the largest outdegree in the causal network across
diverse cell types (Supplementary Figure 7a, Methods), indicating the general importance of
these factors in transcription regulation. We also experimented with the GET model trained
using both quantitative ATAC signal and motif binding score as input and got similar top
out-degree transcription factors (Supplementary Figure 7b).

Here we present four subnetworks in Figure 4g as examples. Notably, MBD2 and MECP2 has
negative interaction with a promoter-enriched motif, GC-tract, which aligns with the well-known
repressive effect of promoter methylation on gene expression***°. The other three networks
centered around NR/17 (Representative transcription factor: ESR1), NFKB/1 (Representative
transcription factor: RELA), and ZFX exemplify the diverse information GET has learned. For
example, the pair NR/17-Ebox/CACCTG highlights a functional regulatory complex
ESR1-ZEB1%. NR/17-GLI is also supported by the known physical interaction between ESR1
and GLI3*. NFKB/1-Ebox/CACCTG has a strong interaction with negative effect size, while their
representative transcription factor, RELA and SNAI1, has been shown to be interacting using
co-immunoprecipitation®®. ZFX is positively linked to TFAP2/1, and has been shown to
co-localize with TFAP2A using ChIP-seq***°. NFKB/1 and NFKB/2 are dimer motifs of NFKB
family transcription factors with NFKB/1 motif specifically from NFKB1, NFKB2 and NFKB/2
motifs also contributed by REL, RELA and RELB. The strong link between these two motifs are
thus expected.

To quantitatively assess the overlap with currently known physical interactions between
transcription factors, we compared the GET motif-motif interaction network with STRING v114®
database (Methods). Our results show a precision (true positive rate) of 5.6% by random
chance. However, by selecting the top 1% (793 pairs) causal or correlation pairs from GET's
predictions, we achieved precisions of 25.2% and 15.9%, respectively. This confirms the
advantage of our innovative causal discovery based model interpretation approach. As a
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comparison, a recent mass spectrometry-based transcription factor-transcription factor
interaction study®' reaches 30.4% precision with top 1.25% (990) pairs. This reflects the
incompleteness of annotated transcription factor-transcription factor interactions and highlights
the GET-predicted motif pairs as a valuable orthogonal information for this task.

A structural catalog of human transcription factor and coactivators

With the predicted causal motif interaction network predicted by GET, we next embarked on
building a structural catalog of the human transcription factor interactome using Alphafold2°.
We started by categorizing transcription factor-transcription factor interactions into several
different catalogs: Direct interaction, which includes homodimer, intra-family heterodimer, or
inter-family heterodimer, and Cofactor-mediated interaction, which may encompass both
cooperative and competitive binding (Figure 5a). Starting from the most straightforward
intra-family interactions, we first acquire all dimeric structure predictions of more than 1,700
known human transcription factors. To evaluate whether Alphafold2 predictions reflect true
interactions, we assessed the result on predicting whether a transcription factor family can act
as an ‘intra-family binder’ based on the heuristic that intra-family binders should have a higher
chance to form homodimers due to very similar structured domains. We found that Alphafold
can reach an area under the receiver operating characteristic (AUROC) of 0.69 and an average
precision (AUPR) of 0.41 (Supplementary Figure 8a). The accuracy of AlphaFold dimer
prediction is exemplified by the perfectly aligned TFAP2A structure to experimental results®
(Supplementary Figure 8b), even though there is no other similar template in PDB.

With AlphaFold2's established ability to predict unseen multimer structures, we questioned
whether the disordered region in the structure could fold upon binding to partners. Based on
causal discovery predicted transcription factor-transcription factor interactions, we sought to
identify potential structural interactions using AlphaFold2. Taking TFAP2A and ZFX as an
example, we segmented both proteins into four distinct structured or disordered domains based
on predicted local distance difference test (pLDDT) (Figure 5b) and predicted the multimer
structure of all pairwise combinations between these segments. Remarkably, the originally
unstructured ZFX intrinsically disordered region (IDR) (Figure 5c) folded into a well-defined
multimeric structure when paired with TFAP2A structured domains, mainly driven by
electrostatic interactions (Figure 5d).

To provide another line of evidence, we employed molecular dynamics simulations (Methods),
discovering that the monomer IDR exhibited a more collapsed structure after 100 ns (Figure 5e)
and fewer inter-chain hydrogen bonds (Supplementary Figure 8c). Moreover, the per-residue
pLDDT of ZFX IDR and TFAP2A in the multimer structure correlated strongly with residue
instability, as measured by root mean squared distance (RMSD; Supplementary Figure 8d),
aligning with previous studies indicating AlphaFold's implicit learning of protein folding energy
functions. To validate the predicted interactions between these two proteins, we performed
co-immunoprecipitation experiments. As shown in Figure 5f, we are able to pull down ZFX
using a TFAP2A antibody.


https://www.zotero.org/google-docs/?sblaEs
https://www.zotero.org/google-docs/?8tcVoU
https://www.zotero.org/google-docs/?xlg6VN
https://doi.org/10.1101/2023.09.24.559168
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.24.559168; this version posted September 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

When extending our method to negative effect pairs such as SNAI1 (Ebox/CACCTG) and RELA
(NFKB/1), the absence of robust structural interactions, despite previous physical evidence, led
us to explore cofactor-mediated interactions (Figure 5i). Both transcription factors are known to
physically interact with EP300%®, and the predicted structures underscored electrostatic
interactions with EP300's TAZ1 and TAZ2 domains (Figure 5j). This concurs with existing
studies on the electrostatic binding of transcription factor IDR to EP300 TAZ domains®-*’.

Broadening our study, we applied the procedure to top 5% transcription factor pairs in each cell
type (totalling 1,718 transcription factor pairs or 24,737 pairs of transcription factor segments,
see Methods) as predicted through GET-based causal discovery and built a structural catalog
of transcription factor interactions. Interestingly, the folded conformation of ZFX IDR can also be
seen in other transcription factor pairs, for example EGR1 IDR-ZFX IDR (Supplementary
Figure 8e). We also show that the previously mentioned interaction between ESR1 and ZEB1
could be driven by a confident structural interaction between the ZEB1 C-terminal IDR and
ESR1 NR domain (Supplementary Figure 8f).

GET uncovers mechanism of germline mutation in disorder region of transcription
factors

To demonstrate the utility of information provided by the GET Catalog, we performed a case
study on PAXS5, a driver transcription factor of B-cell precursor acute lymphoblastic leukemia
(B-ALL)*®. B-ALL is the most frequent pediatric malignancy, and somatic genetic alterations
(deletions, translocations and mutations) in PAX5 occur in approximately 30% of sporadic
cases®. While most PAX5 somatic missense mutations affect the DNA-binding domain (V26G
or P80R), G183S is a recurrent familial germline mutation that confers an elevated risk of
developing B-ALL***°, Somatic mutation of G183 and frameshift in a nearby hotspot is also
seen in B-ALL patients®'. Although the pLDDT plot of PAX5 highlights G183 and the octapeptide
domain as a small peak in the entire intrinsically disordered region, its functional role remains
elusive (Figure 6a).

To probe this, we first explored potential interaction pairs involving PAX5 (PAX/2 motif) in fetal B
lymphocytes (CXCR5+). We identified promising interactions with several transcription factors
including E2F3, MZF1, MECP2, NR4A2, RFX3, and RORA (NR/3 motif, Figure 6b).
Subsequent exhaustive segment interaction screening revealed a novel interaction between the
RORA nuclear receptor (NR) domain and the octapeptide domain of PAX5 (Figure 6¢). The
G183 residue is close to the binding site alpha helix where a mutation to Serine or Valine might
introduce spatial clash. This interaction was further corroborated by positive affinity
purification-mass spectrometry (AP-MS) data of their paralog PAX2-NR2C2°', as both the PAX5
octapeptide domain and NR domain are highly conserved and structurally similar across their
paralogs.

To elucidate whether PAX/2 and NR/3 motif corregulate genes, we examined the top 10,000
promoters predicted to be most influenced by them. Our analysis uncovered a set of 2,570
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genes commonly regulated by both, including surface markers like CD19 and CD79B, as well as
known oncogenes implicated in B cell acute lymphoblastic leukemia (B-ALL) including MYC,
CEBPD, LMO2, although these oncogenes are also predicted to be strongly repressed by
IKZF1 (IKAROS tumor suppressor, with ZNF143 motif), and are not highly expressed (Figure
6d). Enrichment analysis revealed an overrepresentation of genes involved in leukocyte
activation and genes affected by PAXS perturbation during B cell differentiation, aligning with
previous work on the G183S mutation®®®2¢" (Figure 6e, Supplementary Figure 9a,b). On the
other hand, the genes that are specifically regulated by PAX/2 or NR/3 are enriched in neuronal
pathways and cell cycle respectively. These results are corroborated by the sequence pattern of
PAX/2 motif which contains a partial RARA/RORA motif, while another PAX5 motif, PAX/1,
contains a partial LHX6 motif which is a neuronal lineage transcription factor (Supplementary
Figure 9c).

Finally, we used patient tumor RNA-sequencing data to validate our findings. Using data from 15
B-ALL patients®® without PAX5 somatic coding mutations, we found significant correlations
(P<0.05) between both PAX5 and RARA/NR4A1 (paralogs of RORA with NR/3 motif)
expression levels and the expression of predicted target genes (Figure 6f, Supplementary
Figure 9d), further supporting the role of the PAX5-nuclear receptor interaction in lymphoma
transcriptional programs. In sum, our analysis suggests that the PAX5 G183S germline mutation
may confer B-ALL-specific risk by disrupting interactions between the PAXS5 intrinsically
disordered region and the nuclear receptor domains of other transcription factors, thereby leads
to oncogenic transcriptional programs.

Discussion

In this study, we introduced GET, a state-of-the-art foundational model specifically engineered to
decipher mechanisms governing transcriptional regulation across a wide range of human cell
types. By integrating chromatin accessibility data and genomic sequence information, GET
achieves a level of predictive precision comparable to experimental replicates in leave out cell
types. Furthermore, GET demonstrates exceptional adaptability across an array of sequencing
platforms and assay types. Notably, the model successfully identified long range regulatory
elements regulating fetal hemoglobin and their associated transcription factors. Collecting
regulatory information from all 213 cell types and synergizing causal interactions deduced
through GET with protein structure predictions, we constructed the GET Catalog. Utilizing the
PAX5 gene as a case study, we illustrated the catalog's utility in elucidating functional variants in
disordered protein domains that were difficult to study. The GET Catalog is publicly accessible
via https://huggingface.co/spaces/get-foundation/getdemo.

Future enhancements to GET can be envisioned through the incorporation of multiple layers of
biological information, including but not limited to nucleotide-level ATAC footprints,
three-dimensional chromatin architecture, and regulator expression profiles. Multiplexed
nucleotide-level perturbations or randomizations will be instrumental in calibrating GET for
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precise predictions of the functional impact of noncoding genetic variants. The evergrowing
single-cell multi-omics datasets offer enormous potential for training GET on continuous cellular
trajectories and perturbed states, thereby imparting the model with a dynamic understanding of
cell state transitions. Leveraging GET as a computational framework, generative models can be
developed to design megabase-scale enhancer arrays and engineer cell-type specific
transcription factors or their interaction inhibitors for targeted therapeutic interventions.
Collectively, GET represents a pioneering approach in cell type-specific transcriptional
modeling, with broad applicability in the identification of regulatory elements, upstream
regulators, and crucial transcription factor interactions.

Data availability

Precomputed regulatory inference result, preprocessed data and structure prediction can be
viewed at GET website https://huggingface.co/spaces/get-foundation/GET. The full processed
data and inference result will be provided in a public AWS S3 bucket.

Code availability
Code for pretraining, finetuning, data preprocessing, and results analyzing will be made
available in github (https://github.com/RabadanLab, https://github.com/GET-Foundation) after

publication. Pretrained model will be available on Huggingface
(https://hugaingface.co/get-foundation).  Code  for the website is available at
https://huggingface. -foundation/GET/tree/main.
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Figure 1. The GET model's universal applicability and exceptional accuracy as a
foundational transcription model. a. GET derives transcriptional regulatory syntax (pretrain)
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from chromatin accessibility data across hundreds of cell types, furnishing reliable predictions
(finetune) of gene expression in both seen and unseen cell types. The model's broad
applicability and comprehensibility allow for zero-shot prediction of lentiMPRA measurements,
extensive identification of cell-type-specific regulatory elements and upstream transcription
factors (transcription factors), universal embedding of regulatory information, and facilitating
causal understanding of transcription factor-transcription factor interactions. b. Schematic
illustration of training scheme of GET. The input of GET is a peak (accessible region) by
transcription factor (motif) matrix derived from human single cell (sc) ATAC-seq atlas,
summarizing regulatory sequence information across a genomic locus of more than 2 Mbps.
Through self-supervised random mask-prediction pretrain of the input data across more than
200 cell types, GET learns transcriptional regulatory syntax (p). Finetuned on paired single cell
ATAC-seq/RNA-seq data, GET learns to transform the regulatory syntax to gene expression
even in leave-out cell types.(f.p). ¢. Benchmark of GET prediction performance on unseen cell
types (Fetal astrocyte). Each point is a gene. Color represents normalized chromatin
accessibility in TSS. Gene activity is a score widely used in modern scATAC-seq analysis
pipeline'®. Top correlated cell type is the training cell type whose observed gene expression has
the largest correlation with Fetal astrocyte, in this case Fetal inhibitory neuron. Mean cell type is
the mean observed gene expression across training cell types. Dash line represents linear fits.
d. Example visualization of observed expression (top, log,,TPM), GET prediction (mid,
log.,TPM) and chromatin accessibility (bottom, log,,CPM) of the BCL11A locus in Fetal
erythroblast. Positive (negative) values represent expression on positive (negative) strand on
hg38. e. GET trained on fetal cell types generalize to adult cell types without retraining,
outperforming most correlated celltype baseline. X axis showing R? score between GET
prediction in adult cell types and observed expression in most similar fetal cell types. Y axis
showing R? score between GET prediction and observed expression in the adult cell type.
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Figure 2. Transfer learning adapts GET to new platforms and measurements. a. Schematic
illustration of transferring GET to lymph node 10x multiome dataset b. Finetuned GET
accurately predicts expression in training and leave-out evaluating cell types. ¢. Schematic
workflow of lentiMPRA experiments and in silico lentiMPRA using GET model finetuned on
K562 multiome data. d. Readout distribution of lentiMPRA (log,RNA/DNA) and GET prediction
(mean expression across genomic insertions) for different types of elements. e. Benchmark
GET lentiMPRA prediction against Enformer on random subset of elements.
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Figure 3. GET model identifies cell-type-specific regulator and cis-regulatory elements. a.
Case study of identifying cis-regulatory elements (CRE) and regulators controlling a phenotype,
fetal hemoglobin (HbF) level. Four genome-wide association loci (BCL11A, MYB, NFIX, HBG2)
have been subjected to genome editing in a previous study, providing the labels for GET
benchmark. Region/motif contribution score for each gene can be computed using GET model.
b. GET identifies GATA motif in erythroid-specific enhancer that upregulates BCL11A, an HbF
repressor. Top: motif contribution score for BCL11A expression in the erythroid-specific
enhancer. Mid: gRNA enrichment score (HbFBase). Higher score means enrichment in high
HbF cells, which implies these edits disturb a cis-regulatory element or regulator binding site
that can upregulate BCL11A. Bottom: single cell ATAC-seq signal and peak from Fetal
erythroblast. ¢. Genome track of inferred CREs for BCL11A, MYB, NFIX and HBG2. From top to
bottom: HbFBase: the gRNA enrichment score from base-editing experiments. GET:
GET-infered region importance score (Methods). Enformer: Enformer-infered region importance
score. ABC: Activity-by-contact prediction collected from the original base-editing study.
ATAC/HUDEP-2: Chromatin accessibility track of HUDEP-2, the erythroblast cell line used in
base-editing study. ATAC/Fetal Erythroblast: Chromatin accessibility track of Fetal erythroblast,
used in the training of GET. HiChIP/HUDEP-2: H3K27ac HiChIP track of HUDEP-2 cell line. d.
Benchmark results of GET against existing methods and baselines at two HbFBase cutoffs. Left
shows results for all enhancer-promoter pairs. Right shows results for only distal
enhancer-promoter pairs with distance larger than 100 kbp. AUPR: area under precision and
recall curve. e. Predicted top 3 three regulators (motifs) for BCL11A, NFIX and HBG2. Similar
sequence patterns are highlighted with color shades. f. GATA downstream targets inferred by
GET (top 10% motif score) show functional enrichment in Hemopoiesis. Scatterplot shows
predicted gene expression (X-axis) and GATA-motif score (Y-axis) for GATA-targeted genes with
predicted expression larger than one. All transcription factors among these genes are labeled in
the plot, where those involved in Hemopoiesis are highlighted in red color. g. Correlation
between motif contribution (y-axis) in 'Fetal Erythroblast 1° and the predicted target gene
expression change (x-axis) between 'Fetal Erythroblast 1° and Fetal HSC. Four motifs relevant
to erythroid differentiation are shown.
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Figure 4. GET captures regulatory information across cell types and informs casual
transcription factor-transcription factor interaction. a. Workflow to collect and visualize
cross-cell-type regulatory embedding. b. The cross-cell-type regulatory embedding reveals
cell-type specificity in transcription regulation. Subsampled embedding from Fetal astrocyte
(blue) and two Fetal erythroblast (yellow and brown) cell types are visualized with UMAP. c.
Louvain clustering of subsampled embedding in b. Note that cluster 2 is the astrocyte specific
cluster. d. Gene ontology enrichment of genes in cluster 2. Showing astrocyte-relevant terms
and astrocyte marker genes e.g. NFIA, GLI3. e. GET motif contribution Z-score (Methods, red
means higher score comparing to other clusters) for each clusters. Note that cluster 2 has
elevated NFI/1 and NFI/2 motifs, which correspond to the NFI family transcription factors. f.
Causal discovery using the GET motif contribution matrix identifies transcription
factor-transcription factor interaction. Physical interactions from STRING databases are used as
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a benchmark to calculate the concordance. g. Example causal neighbor graph showing
interactions (edges) between motifs (nodes). Edge weights means interaction effect size. Edge
directions marks casual direction. Blue and red edge color marks negative or positive effect
size. Node color marks community detected on the full causal graph. In-community edges are
marked by reduced saturation. h. Benchmark the concordance of inferred transcription
factor-transcription factor interaction using different methods with physical interactions from the
STRING database. X axis marks different cutoffs of retained interaction in percentile of 79,242
total possible interactions. Y axis marks the ratio of selected interactions that is also marked as
interacted in STRING. Green line marks the random selection background. Orange line marks
the result of selection using motif-motif contribution score correlation. Blue line marks the causal
discovery result. Shaded area marks standard error across 5 bootstraps. The star marks the
result from a recent mass-spectrometry-based transcription factor-transcription factor interaction
atlas®'.
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Figure 5. Structural properties of inferred transcription factor-transcription factor
interactions through GET causal discovery. a. Catalogs of transcription factor-transcription
factor interactions. Direct interaction includes homodimer, intra-family heterodimer or inter-family
heterodimer. Cofactor-mediated interaction may include both cooperative and competitive
binding. d. pLDDT plot for TFAP2A and ZFX, showing correspondence between high pLDDT
regions and known protein domains (red rectangles). e. Predicted monomer structure of ZFX,
showing DNA binding domain (DBD, grey) and intrinsically disordered region (IDR, red). f.
Predicted structure of TFAP2A structured domains and ZFX IDR. Red and blue color marks
negative and positive electrostatic surfaces. g. Molecular dynamics simulation of TFAP2A-ZFX
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IDR (red) or ZFX IDR monomer (purple). Collapsed structure in ZFX IDR monomer is
highlighted in rectangle. h. Correlation between pLDDT and residue RMSD across the
simulation trajectory of ZFX IDR in the complex structure. Visualized in scatter plot (top) and line
plot across the protein sequence (bottom). Yellow and blue shades in the line plot highlight beta
sheets or alpha helices. i. pLDDT plot for EP300, highlighting TAZ1 and TAZ2 transcription
factor interacting domain. Region of interest (red) and domain (green) marks annotated regions
on UNIPROT. Low pLDDT regions are highlighted in gray shades. j. Predict structural interaction
between SNAI1 N-terminal and EP300 TAZ2 domain (left), SNAI1 N-terminal and EP300 TAZ1
domain (mid), and RELA C-terminal and EP300 TAZ1 domain (right). Red and blue color marks
negative and positive electrostatic surfaces.
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Figure 6. GET identifies a cell type specific transcription factor-transcription factor
interaction affected by a cancer-associated germline variant. a. pLDDT plot for PAX5.
Showing three mutational hotspots: V26G, P80R, G183S/V/A and two frameshift hotspots®’.
Region annotations from UNIPROT are shown in the figure as ‘region of interest’. b. B-cell
specific motif interactions of PAX/2. PAX5 is the highest expressed transcription factor with
PAX/2 motif. RORA is the highest expressed transcription factor with the NR/3 motif. Color
scheme follows Figure 4g. c. Predicted multimer structure of PAX5 IDR and RORA NR domain.
Showing contacts around G183 and R225. d. Venn diagram of identified PAX/2 and NR/3
specific and common regulatory targets using GET gene-by-motif importance matrix. e.
Enrichment analysis using B-cell associated gene sets in Shah et al.® (top) and biological
process gene ontology gene sets (bottom). Results for the PAX/2-NR/3 common genes are
shown in this figure. Results for PAX/2 or NR/3 specific genes are shown in Supplementary
Figure 9. f. Spearman correlation between PAX5 (PAX/2), RARA (NR/3) and the average
expression of PAX/2-specific (blue), NR/3 specific (orange) and common (light brown) target
genes in B-ALL patients without PAX5 somatic coding mutations.
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Methods

ATAC-seq Data processing

Pseudobulk

To get the chromatin accessibility score for each region, we used the scATAC-seq count table and cell annotation table from
each studies. To group single cells into pseudobulk "cell types", we used the louvain clustering result from each study. The cell
type annotation of each cluster is used to define the biological cell type. We empirically used cell count > 600 as a threshold
to select cell clusters with enough sequencing depth. We have compiled a table of pseudobulk cell types used in the training
process below:

Cell-type-specific accessible region identification

For the identification of cell-type-specific accessible regions, the peak calling results from the original studies of each dataset
were followed to obtain a union set of peaks. Subsequently, to compile a list of accessible regions specific to each cell type,
peaks with no counts were filtered out.

In the context of the human fetal and adult chromatin accessibility atlas, we employed the peak set produced by Kai Zhang
etal.!, incorporating the fetal chromatin accessibility atlas originally published by Silvia Domcke et al.>. We have also trained
a version of fetal-only GET model using the original peak calling and cell type annotation from Silvia Domcke et al., resulting
in comparable expression prediction and regulatory analysis performance. For the 10x multiome data, we used the provided
peak fragment count matrix. For the K562 NEAT-seq and bulk chromatin accessibility data, a more permissive version of peaks
was called using MACS2?, and different 1ogTPM cutoffs were applied to the resulting peak set to select accessible regions.
This accessibility-based data augmentation enhances the diversity of input data and fine-tunes the GET model for data from a
single cell type. The code for processing is publicly available in our Github repository at atac rna data processing.

Accessibility features

In our study, the chromatin accessibility score for a specific genomic region is defined by the count of fragments located within
that region for a given cell type pseudobulk. To enhance the model’s generalizability, these counts are further normalized
through the logTPM (Log Transcripts Per Million) procedure. Specifically, let # be the total fragment count in a pseudobulk,
and ¢; be the fragment count in region i. Then, the accessibility score s; is computed as:

i
s; =log;o (TZ + l) , t :Zci
i

For the majority of the regulatory analysis, the *Without-ATAC” version of the GET (Gene Expression Tracking) model is
utilized to comprehensively evaluate the regulatory influences exerted by transcription factors. In both the training and inference
phases of this specific model version, the accessibility scores are uniformly set to 1 if the region is identified as a chromatin
accessibility peak. This equates to assuming binary chromatin accessibility states within the studied scenario.

Motif features

To calculate the motif binding score within a specific genomic region, the corresponding sequence is scanned against the hg38
reference genome. This procedure involves utilizing 2,179 transcription factor motif position-weighted matrices (PWMs), as
previously compiled by Jeff et al.#, accessible at Vierstra’s resources. For the scanning process, the MOODS tool is used with
default threshold”.

More specifically, to represent sequence information while mitigating feature redundancy, a specialized motif scoring
process is implemented. Building on Jeff’s prior research, these 2,179 motifs are categorized into 282 motif clusters, a
classification determined by PWM similarity. By using this established clustering definition, nucleotide-level motif matches
that are redundant are eliminated, retaining only the match with the highest score within overlapping matches belonging to the
same motif cluster.

Subsequently, the scores of all non-overlapping motif matches within each motif cluster are summed, yielding one
cumulative score for each of the 282 clusters. As a final step, motif binding scores for all regions within a given cell type are
determined and subjected to min-max normalization across regions. This normalization facilitates model generalization and the
training process, ensuring that each motif cluster’s score is processed in a standardized manner.

Input data

GET is designed to capture the interaction between different regions and regulators. To facilitate that, we need each input
sample to contain a certain number of consecutive accesible regions, mimicking the "reception field" of an RNA Polymerase II.
Through previous experiment we found that ideally the equivalent genome coverage should be around or more than 2 Mbp, a
range where most of the chromatin contact happens. As a result, based on our current data prepossessing pipeline we choose to
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use 200 as the input region numbers for one training sample. We acquired non-overlapping samples from the genome to use as
our pretrain input, and from only the training chromosomes to use as our finetune input.

GET model is engineered to encapsulate the interactions between neighboring regions. To achieve this, it is essential
for each input sample to encompass a specific number of consecutive accessible regions, simulating the "reception field"
of an RNA Polymerase II. Through empirical research, we determined that an optimal equivalent genome coverage for this
purpose is approximately 2 Mbp or greater, a span within which the majority of chromatin contacts occur. Consequently, in line
with our existing data preprocessing pipeline, we selected 200 as the quantity of input regions for a single training sample.
Non-overlapping samples were extracted from the genome for pretraining, and exclusively from training chromosomes for the
finetuning phase.

RNA-seq Data Processing

Cell Type Matching

For experiments encompassing multiomics, the correspondence between accessibility and expression is inherently determined
through cell barcodes. In pseudobulk cases, where accessibility and expression are assessed independently, cell type annotations
are utilized to facilitate the mapping. Specifically, the fetal expression atlas from Cao et al.® is employed for fetal cell types,
while adult data is extracted from Tabula Sapiens’. When several ATAC pseudobulk share the same cell type annotation,
identical expression labels are assigned. This approach, while a compromise, is necessitated by the current dearth of multiome
sequencing data, a situation expected to change dramatically in the near future.

Expression Values

Expression values are allocated to each region within our input. Constrained by poly-A scRNA-seq, only aggregated mRNA
levels can be captured, resulting in values that are not reflective of the nascent transcription rate more closely tied to regulatory
events. Nonetheless, these values furnish valuable cell-type-specific information. The process begins by intersecting the input
region list with Gencode V40 transcripts annotation to pinpoint promoters, followed by the assignment of log count per million
(CPM) values to regions corresponding to these promoters. All remaining regions are assigned a value of 0. Although this does
not perfectly represent all transcription events happening in a cell, we believe the zero label on non-promoter region helps in
delivering informative negative labels to the model.

Input Target
In alignment with the 200x283 input matrix, the target input is a 200x2 matrix, symbolizing the transcription levels of the
corresponding 200 regions across both positive and negative strands.

Model architecture
The GET architecture consists of three parts: 1) A regulatory element (RE) embedding layer, 2) 12 RE-wise attention layers,
and 3) a linear layer as the expression prediction head (Supplementary Figure 1).

Our GET takes 200 regulatory elements, each with 282 motif binding scores and optionally one accessibility score as a
sample as the input. As a result, the input is a 200x 283 matrix. When we choose to not using the quantitative accessibility
score, we set the 283-th column to 1.

Then we feed the sample into the RE embedding layer to generate the regulatory element embedding with a dimension
of 768 for each peak. Since we do not want to lose information in the input of the original regulatory element, we apply a
linear layer to capture the general information in the different classes of transcription factor binding sites. To learn the cis- and
trans-interactions between regulatory elements and transcription factors, we apply 12 RE-wise Attention (REA) layers with a
multi-head attention mechanism on the RE embeddings along the regulatory element.

Suppose Ny, d,,d; denote the number of heads, the depth of values, and the depth of keys. The output from each head 4 is
computed as

X'W, (X'Wi)"
Vi

where W, W, € RxD)xdi yy, « R(=D)xdv gre |earnable linear transformations.

Then we concatenated the output from each head & for the RE-wise Attention block. The Layer Normalization (LN),
Feed-forward Network (FFN), and Residual Connections are finally utilized to generate the output for each layer. Thus, the
mechanism behind the RE-wise attention block is summarized as:

0y, = Softmax ( ) (X'W,) (H

z;=MHA(LN(z;_;)) +2,_1;2z, = FEN(LN(z})) + 7 ()

where z),2;_) denote the intermediate representation in the block / and the output from the block / — 1. We apply two linear
layers with a GELU® activation layer in the FEN layer.
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The GET architecture is similar to the state-of-the-art model Enformer”. However, the following changes helped us improve
and exceed its performance: GET uses the regulatory element (RE) embedding layer to capture the general information of
regulatory elements in the different classes of transcription factor binding sites. Moreover, a masked regulatory element
mechanism was utilized to learn the general cis- and trans-interactions between regulatory elements and transcription factors
from different kinds of human cell types.

Specifically, a random set of positions was uniformly selected to mask out M = {m[}f-;l with a mask ratio of r = k/n. We
replaced the regions in the selected positions with a [MASK] regulatory element, and the masked input regulatory element is
denoted as X™Maked = (X M, [MASK]). where X = {x;}__, is the input sample with n regulatory elements. The training goal
is to predict the original values of the masked elements M. Specifically, we take masked regulatory element embeddings
xmasked aq input to our GET, while a simple linear layer is appended as the prediction head. Therefore, the overall objective of
self-supervised training is formulated as:

< =E (Z —10gp(Xi|XmaSked)) ()

ieM
where x; denote the masked region to be predicted.

Training scheme

We conduct pre-training in the large-scale single-cell Chromatin accessibility data. Then we fine-tune the pre-trained model
on the Paired chromatin accessibility-gene expression data with the same Poisson negative log-likelihood loss function as
Enformer’. Expression values are represented as normalized transcript per million (TPM). We then match the cell types between
RNA and ATAC datasets by annotating cell type names and ignoring those that cannot be matched. To improve training stability,
we log-transform the expression values as log;(TPM+1). We then map the gene expression to accessible regions using the
following approach: if a region overlaps with a gene’s transcription start site (TSS), the gene’s expression value is assigned
to that region as a label; if a region overlaps with multiple gene’s TSS, the expression values of the corresponding gene are
summed up and used as the label of that region; if a region does not overlap with any TSS, the corresponding expression label
is set as 0. Finally, each regulatory element is assigned to an expression target value.

The GET implementation is based on PyTorch!® framework. For the first training stage, we applied AdamW!! as our
optimizer with a weight decay of 0.05 and a batch size of 256. The model was trained for 800 epochs with 40 warmup
epochs for linear learning rate scaling. We set the maximum learning rate to 1.5e-4. For the second fine-tuning stage, we used
AdamW!! as our optimizer with a weight decay of 0.05 and a batch size of 256. The model was trained for 100 epochs.

Model evaluation

We use pearson correlation, spearman correlation, and R to evaluate the prediction performance in all settings. For evaluation
of cell type specific gene prediction, we compare the observed and predicted log fold change between two cell types using the
same metrics.

Cross-cell-type expression prediction

In cross-cell-type prediction setting, we pretrained on ATAC-seq data from all cell types, and finetuned with expression data
from only training cell types, hiding the evaluation cell type expression label from the model. On average, GET achieves 0.799
peasrson s r and 0.845 spearman correlation across different leave-out-cell type settings. Furthermore, GET is able to get
similar performance when chromosomes (chr4,chr14) are also leaved out (cell-type & chromosome leave-out, Spearman rho:
0.938, R2: 0.868, Pearson’s r: 0.935).

Platform transfer prediction
In order to transfer to a new sequencing platform, there are multitude of domain shift that need to be addressed. This including
but not limit to: 1. Sequencing depth: as lower depth will lead to less captured peaks. It will also affect the signal to noise ratio
in the accessibility quantification; 2. Peak calling threshold and software; 3. Technical bias due to different library constructing
and sequencing method; and 4. biological differences

Due to these biases, it’s hard to directly apply a model trained on one dataset to a new platform without finetuning. Thus,
for a new dataset with multiple cell type avaliable, we took a leave-out cell type approach of finetuning. For a dataset of sorted
cell types where only one cell type is avaliable, we used leave-out chromosome training.

LentiMPRA zeroshot prediction

The experimental procedure involves designing a library of lentivirus vector which contains both desired sequence elements
and a minipromoter; then the vector will be randomly inserted on the genome through viral infection; the regulatory activity
is then measure through sequencing and counting the log copy number of transcribed RNAs and integrated DNA copies. To
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simulate this approach using GET, we first collect the sequence element library and constructed the vector sequence with
mini promoter. We then follows the same data preprocessing procedure to get the motif score of the inserted elements. For
each element, we perform ’in silico insertion’ by sum up its motif score with a existing region on the genome. The +/- 100
regions centered around the insertion region where then used as a input sample for GET to make expression prediction. The
mean predicted expression (log,o7PM were multiplied with the predicted accessibility (using a GET model finetuned to
predict ATAC logTPMs) as the predicted regulatory activity. For each region, we perform 600 insertion across the genome
to match with the experimental insertion count. We used the GET model finetuned on K562 multiome and bulk ATAC- and
RNA-sequencing data to perform the inference. For Enformer, we performed the same analysis, with the only difference is that
we integrate the vector sequence to a random position on the genome and collected a 196,608 bp sequence centered around the
insertion site. Enformer is trained on 5,313 human epigenome track, with 486 experiments specifically for K562. To compute
the regulatory activity, we selected the output from the K562 CAGE track, which is a quantitative and nucleotide-level map
of 5’ of transcripts. Following the practice of the original study, we used the average output of the 3 bins in the center of
sequence as the predicted expression for a sample. Each elements were also inserted into 600 random genome locations to
compute the final averaged regulatory activity. We were only able to perform this experiments for 1,000 enhancers and 1,000
non-enhancer elements due to the time complexity of Enformer inference. The comparison with GET is performed on the same
set of elements.

Model interpretation and analysis
Calculation of jacobian matrix
We used multiple feature attribution methods in different analysis.

The gradient of the model’s output with respect to the input features, represented by the vector V f(x), tells that how much
the model output (Expression) will change when we change a small amount of the input along a dimension (e.g. a certain motif
in a cisregulatory region).

The generalization to multiple outputs in the context of neural network feature attribution extends to the Jacobian matrix:

Jij=

“

k)
8xj

where f; is the i-th output, representing the transcription level on either the positive or negative strand, and x; is the j-th
input feature, comprising scanned and summarized binding scores for 282 TF motif clusters, and an additional dimension for
accessibility scores.

For our specific analysis, the input is a region-by-feature matrix of dimensions (200,283), including 282 features for TF
motif clusters and 1 for accessibility scores. Two models are considered:

* With-ATAC Model: Accessibility scores are set to the normalized TPM of Tn5 insertion count in the given accessible
region.

* Without-ATAC Model: Accessibility scores for all regions are set to 1, focusing solely on chromatin accessibility peaks.

The corresponding output is a region-by-strand matrix of dimensions (200,2), capturing the transcription levels on both
positive and negative strands. This formulation enables the computation of the Jacobian matrix, vital for understanding the
influence of individual features on the transcription levels.

Integrated Gradients (IG) provides importance scores by approximating the integral of gradients along a path from given
baselines to inputs. The mathematical formulation is:

1
IG(X) = (X - Xbaseline) . /0 Vf(Xbaselinc +o (X - Xbaseline)) d(X, (5)

where Xpaceline 1S the baseline input?.

DeepLIFT (Deep Learning Important FeaTures) attributes the difference in activation to each input feature, based on a
reference input.

These methodologies offer unique perspectives on feature importance, with choices guided by computational efficiency,
granularity, and the specific modeling context.

Identifying important regions and regulators
We first gather inference samples across the genome by producing 200-region windows that centered around each genes
promoter. Given a specific gene g on strand s € {0, 1}, the expression value can be inferred using the General Expression
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Method Conceptual Overview

Gradients/Jacobians Provides a first-order approximation of feature influence
on the output.

Integrated Gradients' | Approximates the integral of gradients along a path, pro-
viding smoother and more detailed attribution, with base-
line comparisons.

DeepLIFT13 Focuses on differences in activation, running faster than
Integrated Gradients, with support for specific non-linear
activations.

Table 1. Summary of Feature Attribution Approaches

Transformer (GET) model f applied to an input matrix X € R™”, where r denotes the number of regions, and m includes
motifs and optionally accessibility features:

E=f (X) (6)
E,=E[r//2,s] (7
Where [+, ] is the indexing operator, s is the strand of the gene.

The jacobian matrix (tensor) Jy € R"™2*"™™ of f at the point (E,X) evaluates how each output dimension will change
when each input dimension changes a small quantity. We specifically pick the output dimension and strand that correspond to
the given gene, represented as Vg € R

Ve =1Jxlr//2, ®
JE
Ix=-x ©)

The feature (motif) importance vector v, € R™ is obtained by multiplying the gradient element-wise with the original input
and summarizing across regions:

(VeoX)[i] 10)

™-

Vg:

i=1

where © signifies the element-wise or Hadamard product. Since the gene-by-motif matrix is mostly used for feature-feature
interaction analysis, we use the X with quantitative ATAC signal even when we infer Jx using a *Without-ATAC’ model. This
helps us to study the relationship between regulators and observed chromatin accessibility.

The cell type c specific genome-wide gene-by-motif matrix V, is acquired by concatenating the v, across the genome. And
the same process can be applied to different cell types.

Similarly, the region importance vector [, € R" is given by:

=L (2o X} (n

Regulator top targets

Based on the gene-by-motif matrix V., we can choose a TF/motif (in our case, GATA) and ask what genes will be mostly
affected by this TF by identify the largest entries in the motif column. We choosed top 1,000 genes and performed gene
ontology enrichment analysis using go:Profiler with the default "g_SCS" multiple hypothesis testing correction. To avoid
general terms we filtered the result with term size (gene number in a term definition) larger than 500 and smaller than 1000.
Terms with adjusted P-value smaller than 0.05 are retained as significant terms. We further selected TFs in the "Hemopoiesis"
term with expression log;TPM > 1 for visualization against "GATA’ motif score.
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Transcription Factor and Target Gene Correlation Analysis in Fetal Cell Types

In this analysis, we sought to elucidate the relationship between transcription factors (TFs) and their target gene expression
across different cell types. Gene-by-motif files were aggregated and organized into a unified structure comprising genes, motifs,
and corresponding cell features. We identified the target genes for each TF within predefined motif clusters, and computed the
mean expressions of both the target genes and the corresponding TFs. To avoid potential artifacts caused by experimental batch
effect in expression measurement, we performed the analysis both in adult+fetal cell types and also in only fetal cell types and
get similar results.

The relationship was assessed using Spearman correlation analysis, with the results visualized through scatter plots. The
x-axis represented the mean expression of the target genes, and the y-axis represented the mean expression of the TFs. Each
plot was annotated with the Spearman correlation coefficient and the associated p-value, providing a statistical assessment of
the correlation.

The analysis was performed iteratively for all TFs within the motif clusters specific to fetal cell types. The correlation
coefficients and p-values were compiled, and the visualizations were saved as individual image files. This comprehensive view
of the relationship between TFs and their target genes offers valuable insights into the regulatory dynamics within the context
of fetal development.

Regulatory embedding
We collected the embedding of each gene after each transformer block of GET. For a gene g, it’s embedding is defined as the
embedding vector of the promoter in the output of i-th block. The embedding contains not only promoter information but also
information from surrounding regions owing to the attention mechanism. In general, the deeper the layer, the more its space is
dominated by the expression output. UMAP'* was used to visualize the embedding. Louvain clustering was performed on the
embedding space to colorize the UMAP visualization. Resolution is arbitrarily chosen to keep the cluster number around 10
and close to the UMAP density.

We computed the embedding in two different settings: cell type specific setting, where each dot is a gene embedding from a
specific cell; cell type agnostic setting, where each dot is a gene embedding randomly sampled from all cell types. 50,000
embedding is sampled in the second case to make UMAP computation feasible.

Causal discovery of regulator interaction

We performed pairwise Spearman correlation using the gene-by-motif matrix also in both cell type specific and agnostic settings.
Input*gradient score were used to constructed the matrix for comuputational efficiency. For the cell type agnostic settings, all
genes with their promoter overlaps with a open chromatin peaks from all cell types are involved in the correlation calculation.
Causal discovery was performed on the gene-by-motif matrix using LINGAM!. For the cell type agnostic settings, 50,000
genes were randomly sampled from all cell types, the resulting matrix were subjected to LINGAM algorithm implemented in
the Causal Discovery Toolbox python package.

To benchmark the predicted causal edges in the cell type agnostic setting, we downloaded known physical interaction
subnetwork from STRING V11 database'® and kept interactions with a combined score larger than 400 as the ground truth
label. Since the pairs predicted by GET is on motif cluster level, we mapped the physical interactions between TFs onto the
motif clusters based on the motif cluster annotation. The resulting motif-motif physical interaction network were then compared
with our prediction to calculate the precision. We also downloaded and compiled all significant interactions determined by
mass spectroscopy from the Human Transcription Factor protein interaction network!” and mapped them also to motif-motif
interactions for comparison.

For our TF interaction database, we performed the LINGAM analysis using cell-type-specific gene-by-motif table. Interac-
tions with top 5% absolute effect size are retained in the final database. For each interaction, we performed structural analysis
between the two TFs with highest expression in the corresponding cell types.

Structural analysis

Alphafold benchmark on intra-family binder prediction

We classify a TF as a intra-family binder if any of its member TFs have a known physical interaction annotated in STRING
V11 database. Based on the hypothesis that if a TF can bind as a heterodimer, due to sequence and structure similarity they
should also have the potential of binding as a homodimer, although the dimerization affinity might be different. We thus used
AlphaFold to predict the "hypothetical homodimer structure’ of all known TFs, and try to predict whether a TF could be a
intra-family binder based on various AlphaFold-based metrics. Among several different Alphafold-based metrics, including
mean_plddt (average predicted Local Distance Difference Test score across all residues), pAE (predicted Aligned Error
across all inter-chain interactions), pDockQ (predicted DockQ metric using interface pLDDT), and pDockQ X pAE. We
found that pDockQx pAE led to the best AUROC (0.69) and AUPR (0.41) when classifying intrafamily binder TFs.
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Protein sequence segmentation

pLDDT from Alphafold is a reliable protein domain caller due to its accurate structure prediction performance. We segment
each TF protein sequence to low and high pLDDT regions. Empirically, we found that 80% (recall) of known DNA-binding
domains can be easily identified using high pLDDT regions plus high ratio of positive charged residues. More specifically, we
first computed smoothed pLDDT using a 10 aa moving-average kernel and then normalize the score by dividing the max. After
that, any region that has a smoothed pLDDT score less than 0.6 is defined as a low pLDDT region. If two low pLDDT regions
are close (<30 aa) they will be merged as one. Any region that is not a low pLDDT region will be labeled as a high-pLDDT
region.

Multimer structure prediction
LocalColabFold and ColabFold is used to predict multimer structure with AlphaFold Multimer v2.3 model. For homodimer
prediction, we used all 5 models with 3 recycles. For our large scale interaction screening, we used model 3 and 3 recycles
for each prediction. Predicted aligned error (PAE) and predicted LDDT were stored for downstream analysis. pDockQ were
calculated following code from FoldDock'®.

For the large score interaction screening, we performed exhaustive multimer prediction between all possible low/high-
pLDDT segment pairs of the two protein in a pair. We then compare the new pLDDT of each segment in the multimer structure
with their original pLDDT in the monomer or homodimer structure. If a segment showing higher

Molecular dynamics simulation

The initial configuration was prepared from the Alphafold predicted PDB file. The Amber99SB-dispersion (a99SBdisp) force
field was employed for system parameterization. A cubic simulation box was defined with a box size of 1 nm. Subsequently,
the system was solvated using the TIP4P water model through the solvate module. To neutralize the system and generate
physiological ion concentrations, sodium (Na+) and chloride (Cl-) ions were added using the genion module. The energy
minimization terminates upon reaching a maximum force below 1000.0 kJ/mol/nm. Each minimization iteration utilizes a step
size of 0.01 and is configured to run for a maximum of 50,000 steps. The system was then equilibrated in two steps: first in the
NVT (Constant Number, Volume, Temperature) ensemble and then in the NPT (Constant Number, Pressure, Temperature)
ensemble for 100 ps of simulation time. A 100-ns production run was then performed and trajectories and energy profiles were
stored for subsequent analysis. All configs of these are avaliable at the Proscope repo.

Structure visualization
ChimeraX was used to visualize the predicted structures. VMD were used to generate the movie of molecular dynamics
simulation trajectory.

Biological experiments

Cell Culture

HeLa cells were purchased from ATCC (CCL-2). HeLa cells were cultured in DMEM (Gibco, 11965) supplemented with 10%
defined FBS (HyClone, SH30070), at 37°C/ 5% CO2.

TFAP2A co-immunoprecipitation

HeLa cell protein lysates were generated with 0.5% NP-40 lysis buffer (50mM Tris-HCI, 150mM NaCl, 0.5% NP-40) with
phosphatase and protease inhibitor cocktail (Sigma-Aldrich, PPC1010). Samples were incubated with 5 ug agarose-conjugated
TFAP2A primary antibody (Santa Cruz Biotechnology, sc-12726 AC) overnight at 4°C. Beads were washed, then boiled in
Laemmli loading buffer (BioRad, 1610737). Proteins were separated on 10% Tris-Glycine gels (ThermoFisher, XP00100),
transferred to PVDF (Immobilon-P, IPVH00010) and probed with primary antibodies against TFAP2A (ABclonal, A2294), ZFX
(ThermoFisher, PA5-34376) and B-ACTIN (Santa Cruz Biotechnology, sc-47778) followed by chemiluminescence detection.

Data avaliability

Bulk RNA-sequencing of B-ALL Patients published in our previous study'® is acquired at SRA (PRINA534488). Human
transcription factor protein interaction networks are downloaded from supplementary data of Helka, et al'’. Training data and
trained model will be open sourced upon publication.
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