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ABSTRACT

Omics techniques generate comprehensive profiles of biomolecules in cells and tissues.
However, a holistic understanding of the data requires joint multi-omics analyses that are
challenging. Here we present DPM, a data fusion method for combining multiple omics
datasets using directionality and significance estimates of genes, transcripts, or proteins.
DPM allows users to define how the input datasets are expected to interact directionally,
reflecting the initial experimental design or regulatory relationships between the datasets.
DPM statistically prioritises genes and pathways that change consistently across the
datasets, while penalising those violating the constraints. Joint analyses of transcriptomic,
proteomic, DNA methylation, and clinical datasets of cancer samples demonstrate how
directional integration identifies genes and pathways modulated across omics datasets,
highlights those with inconsistent evidence, and reveals candidate biomarkers with
prognostic signals in multiple datasets. DPM is implemented in the ActivePathways method
and provides a general framework for testing detailed hypotheses in multi-omics data.
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INTRODUCTION

High-throughput omics technologies enable the systematic mapping of genes, transcripts,
proteins, and epigenetic states in cells. While data generation methods advance rapidly, data
interpretation remains challenging as genes and proteins do not act alone but instead function in
complex molecular pathways and interaction networks. Pathway enrichment analysis identifies
characteristic biological processes and pathways in omics data to explain underlying
experimental conditions or phenotypes !. A common pathway analysis workflow studies lists of
significantly altered or expressed genes detected in omics experiments to identify statistical
enrichments of biological processes or molecular pathways from databases such as Gene
Ontology (GO) 2 or Reactome *. Various established tools such as GSEA 4, g:Profiler 3, and
Enrichr © are widely used for pathway enrichment analysis in basic and biomedical research.

Combining multiple omics datasets is highly beneficial since each experiment provides
complementary biological insights. For instance, transcriptomics and proteomics experiments
allow us to measure gene and protein expression, post-translational modifications, and signaling
network activity. Genomic and epigenomic methods, on the other hand, help us understand
genetic variation and gene regulation. Through joint analysis of these complex datasets, we can
prioritise genes and pathways and obtain mechanistic and translational insights that can be
experimentally validated. Major comprehensive resources like The Cancer Genome Atlas
(TCGA), Encyclopedia of DNA Elements (ENCODE), Genotype-Tissue Expression project
(GTEx), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and others offer deep multi-
omics profiles of human tissues, disease states, and cancer samples 7-1° to enable multi-omics
analyses.

Multi-omics data analysis presents unique challenges as omics platforms measure various
molecules, include distinct experimental and technical biases, and require specific data
processing methods !'!. Comparing genes, transcripts, and proteins directly across the datasets is
therefore problematic. A compelling solution to address this complexity involves mapping of
omics signals to a common space of pathways and processes . One powerful approach involves
data fusion of statistical significance estimates, such as P-values, that effectively accounts for
platform-specific confounding effects, assuming appropriate statistical analyses have been
performed upstream. Several computational methods are available for this type of analysis 1213,
Pathway-level methods evaluate pathway enrichments in input omics datasets and integrate these
as multi-omics summaries '*!4, In contrast, gene-level integration methods prioritise genes or
proteins across input datasets and then detect multi-omics pathway enrichments 1>-18, We
recently developed ActivePathways that first quantifies all genes through multi-omics data
fusion and then finds enriched pathways and their most characteristic genes and contributions
from input datasets '%.
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Multi-omics analyses often fail to consider fundamental directional dependencies in input
datasets. For example, the central dogma suggests that mRNA and protein expression levels of
genes should correlate positively. Similarly, DNA methylation of gene promoters is a repressive
epigenetic mechanism; therefore, lower gene expression often associates with higher level of
DNA methylation. Directional dependencies may be integrated in the experimental design. For
example, comparing the omics profiles resulting from gene knockout and overexpression
experiments may reveal genes and pathways that are regulated downstream of the two
perturbations. While cellular control mechanisms like post-transcriptional or post-translational
regulation are likely to confound these broad directional dependencies, direct measurements of
these additional effects are often not available for analysis. Nonetheless, considering directional
dependencies in multi-omics data analysis allows researchers to test more specific hypotheses,
prioritise genes and pathways with greater accuracy, reduce false-positive findings, and gain
detailed mechanistic insights from the data. Currently, directional methods designed for multi-
omics data analysis are lacking, leaving an opportunity for the development of such approaches
to further enhance our understanding of complex biological processes.

Here we propose the computational method DPM for directional integration of genes and
pathways across multi-omics datasets. DPM employs user-defined constraints to prioritise
significant genes or proteins whose directional changes in the omics datasets comply with these
constraints. Simultaneously, DPM penalises genes with significant P-values that have
inconsistent directions based on the constraints. The flexibility of these constraints makes our
method widely applicable to various statistical merging scenarios and experimental designs. To
demonstrate our framework, we conduct three case studies: identifying the downstream targets of
an oncogenic IncRNA based on transcriptomic profiles from functional experiments in cancer
cells; integrating transcriptomic and proteomic data with patient clinical information for cancer
biomarker discovery; and characterising the /DH-mutant subtype of glioma by integrating
epigenetic, transcriptomic, and proteomic data. The data fusion method DPM is available in the
ActivePathways R package. Researchers can utilise this tool to advance their basic biological and
biomedical research by gaining valuable insights from multi-omics datasets.
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Figure 1. Overview of directional integration of multi-omics data using DPM. (A) Four inputs are required:
(1) gene activities in multiple input omics datasets quantified as P-values derived upstream (e.g., differential
expression analysis); (2) Directional changes such as fold-change (FC) values or directional coefficients of gene
activities, simplified as positive (+1) or negative (-1) unit values. Zeroes are used if no directions are defined in
the data; (3) a user-defined constraints vector (CV) of expected directional relationships of the omics datasets;
and (4) a file with gene sets of biological processes, pathways, or other functional gene annotations. The DPM
method performs data fusion by combining the P-values and directional changes of each gene according to the
CV and provides a single integrated gene list of P-values that combines evidence across the input datasets. DPM
prioritises genes with significant P-values whose directional changes agree with the CV and penalises genes with
disagreements of the CV and the observed directional changes. Three examples of CVs and resulting merged
gene lists are shown. (B) The integrated gene list is analysed for pathway enrichments using ranked
hypergeometric tests in ActivePathways. These tests identify the strongest enrichments in top fractions of the
ranked gene list for each pathway. For each pathway, evidence from every input dataset is also evaluated. (C)
Pathway enrichment results are visualised as an enrichment map that represents a network of enriched pathways
where the edges connect pathways with many shared genes. Colours indicate the omics datasets that contribute
most to the enrichment, while node outlines indicate whether the pathways were identified using directional or
non-directional analyses.

RESULTS

Directional multi-omics data integration for gene prioritisation and pathway analysis

We developed a statistical method for multi-omics data fusion that prioritises genes across
multiple omics datasets by integrating their P-values and directional changes such as fold-
changes (FC). The method, called DPM (directional P-value merging), implements a user-
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102  defined constraints vector (CV), which specifies the directional associations between the

103  datasets. For each gene, DPM computes a score based on the P-values and directional changes
104  from the omics datasets such that the genes whose directional changes comply with the CV are
105  prioritised while the genes with conflicting directional changes are penalised. The resulting score
106  is derived from input P-values such that highly significant genes are prioritised or penalised

107  strongly while less-significant P-values contribute less to the scoring. DPM builds on our

108  ActivePathways method '® and is based on our directional extension of the empirical Brown’s P-
109  value merging method '*2°. For a given gene, a directionally weighted score X is computed

110  across k datasets as

111 Xppw = 2| 2/, In(P) 0; e;| + =23/ ;4 In(P).

112 Here, the input P-values P; and observed directional changes o; for the gene in dataset i are

113 aggregated across two types of datasets: omics datasets (/ ... j) with directional information and
114  omics datasets (j+/ ... k) with no directional information, permitting joint analysis of both data
115  types. If either directional or non-directional datasets are not included in the analysis, then the
116  left or right sum in the formula is omitted, respectively. The expected relative dataset direction e;
117  is obtained from CV. To obtain the merged P-value P 'ppis for the gene reflecting its joint

118  significance in the input datasets given directional information, the scores Xppa are fit to a

119  cumulative x? distribution as

1
120 Pppy =1 — x? (EXDPM'k’) )

121 where the degrees of freedom &’ and scaling factor ¢ are estimated from the input P-values
122 empirically ' to account for gene-to-gene covariation for improved significance estimation in
123 omics data with dependencies.

124 The CV assigns a positive or negative unit sign to each dataset and thereby defines the structure
125  of the multi-omics analysis. Series of positive (+1) or negative (-1) values prioritise genes or
126  proteins in the corresponding datasets that have the same directional changes. In contrast, series
127  of mixed values (+1 and -1) in the CV prioritise genes or proteins that have inverse directional
128  changes in the corresponding datasets. The CV is globally sign-invariant. For example, the CV
129  [+1,+1] for merging two datasets prioritises genes with up-regulation in both datasets or down-
130  regulation in both datasets, and the CV [-1,-1] results in an equivalent analysis. In contrast, the
131 CVs[+1,-1] and [-1,+1] prioritise genes with up-regulation in one dataset and down-regulation in
132 the other dataset, or vice versa. The directional changes of genes or proteins from the omics

133 datasets are also only considered as unit signs (i.e., +1 or -1) because the effect sizes of

134  directions are not directly comparable between omics datasets. Instead, we assume the matching
135  P-values model effect sizes appropriately. Effect size directions may include signs of log-

136  transformed FC values, signs of correlation coefficients, or signs of log-transformed hazard ratio
137  (HR) values from survival analyses. Lastly, the framework permits directionless datasets for
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138  which genes or proteins are only prioritised or penalised based on their P-values. For example,
139  mutational burden tests, epigenetic annotations, or network topology analyses often provide P-
140  values but no directional information. Directionless datasets are encoded as zeroes in the CV. In
141  addition to DPM, we also provide directional extensions to Stouffer’s 2! and Strube’s 22 P-value
142 merging methods based on the METAL method for meta-analysis of genome-wide association
143  studies 2. We adapted METAL for joint analyses of directional and non-directional multi-omics
144  datasets (Methods).

145  Our workflow of multi-omics gene prioritisation and pathway enrichment includes four major
146  steps. First, we process upstream omics datasets into a matrix of gene P-values and another

147  matrix of directional values such as FCs (Figure 1A). Dedicated upstream processing of the

148  input omics datasets is required to obtain these P-values and FCs. We define a CV with

149  directional constraints based on the overarching hypothesis, the experimental design, and

150  biological insights. We also collect up-to-date pathway information and gene annotations from
151  relevant databases >3. Second, the matrices of P-values and FCs are merged into a single gene list
152 of P-values using DPM or related methods 2!-*? (Figure 1B). Third, ranked pathway enrichment
153  analysis >'® is used to statistically associate each pathway to its most enriched fraction of the
154  gene list. It also determines which input omics datasets contribute to each enriched pathway
155  identified in the analysis (Figure 1C). Finally, the pathway enrichments are visualised as an
156  enrichment map !?* that allows users to extract functional themes of biologically related

157  pathways and map their directionality and supporting omics datasets (Figure 1D). DPM,
158  combined with pathway enrichment analysis, uses directional biological signals to prioritise
159  genes and pathways across diverse multi-omics datasets.

160
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Figure 2. Evaluating directional P-value merging with simulated data. Two sets of 10,000 P-values were
simulated using five approaches and were merged using DPM and modified Strube methods. The five approaches
are shown in panels A-E. Bar plots on the left show the numbers of significant merged P-values detected at
different cut-offs. Scatter plots on the right display the distributions of the two sets of input P-values. Three P-
value merging scenarios were considered: all values in directional agreement [A], all values in directional
disagreement [D], and mixed directions [M] (i.e., 50% values in agreement and 50% in disagreement). Numbers
of significant input P-values are shown at the bottom right. (A) Merging two sets of independent P-values drawn
from the uniform distribution. (B) Merging two sets of independent P-values drawn from the exponential
distribution. (C) Merging of independent P-values drawn from uniform and exponential distribution. (D) Merging
of two sets of correlated P-values drawn from the uniform distribution. (E) Merging two sets of correlated P-
values drawn the exponential distribution. Scatter plots indicate that DPM is more sensitive to weaker effects
seen in a subset of genes with directional conflicts where one of the conflicting datasets is not supported by
significant P-values, resulting in a lower penalty.

Benchmarking directional P-value merging

We evaluated our framework by simulating datasets of P-values for 10,000 genes and two
experimental conditions. First, we simulated P-values from the uniform distribution that resulted
in an expected fraction of significant P-values (i.e., 5% at P < 0.05), reflecting a dataset with no
detectable biological signal. Second, we simulated P-values from an exponential distribution that
resulted in an elevated fraction of significant P-values, reflecting a realistic omics dataset with
some significantly detected genes or proteins (i.e., 25% at P < 0.05 or 1% at FDR < 0.05). To
model various analysis scenarios, the P-values were then combined into a multi-omics dataset,
either as two independent sets of P-values (Pearson r = 1.9 x 10*#) or two highly correlated sets
of P-values (r = 0.97), reflecting the integration of two completely unrelated or related omics
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datasets, respectively. We also varied the level of directional agreement of the two input omics
datasets and included complete directional agreement, complete directional disagreement, and
50% of directional agreement. We studied the resulting 15 simulated datasets by computing
merged P-values using DPM and the modified Strube method and counting the number of
nominally significant results at different significance thresholds.

Analysis of simulated P-value datasets revealed the properties of DPM in various multi-omics
analysis scenarios (Figure 2). When integrating two independent sets of P-values, DPM
generated fewer significant results than the modified Strube method. For the negative control
scenario of independently generated uniform P-values with full directional agreement, DPM
retrieved an expected fraction of significant merged P-values (i.e., ~500 at P < 0.05) while two-
fold results more were found by the Strube method (Figure 2A), suggesting that the latter
method may have more false-positive findings than DPM when independent P-values are
merged. This was also apparent when integrating exponentially distributed independent P-values
and at the 50% level of directional disagreement for correlated and independent P-values (Figure
2B-C). As an exception, DPM found more significant results when integrating datasets with full
directional disagreement. We studied this in detail by examining the distributions of merged P-
values relative to the two sets of input P-values. DPM prioritised genes with directional conflicts
if one dataset showed a highly significant P-value while the other dataset only showed limited
significance, collectively providing limited significance to the conflicting datasets. In contrast,
the Strube’s method assigned more stringent directionality penalties to such genes, suggesting
that DPM is more sensitive towards finding genes where the apparent directional disagreement is
not supported by statistical significance.

In contrast to independently generated input P-values, DPM and Strube methods showed very
similar performance in merging highly correlated P-values (Figure 2D-E). Both methods found
the expected fractions of significant merged P-values when integrating the negative control
dataset of uniform P-values with full directional agreement. When analysing datasets with full
directional disagreements, no significant P-values were found at any of the tested significance
thresholds, indicating that both methods applied strong directional penalties were applied to all
input P-values. Therefore, directional prioritisation or prioritisation of genes depends on the
extent of correlation between the input omics datasets. In summary, this benchmarking exercise
demonstrates that directional integration of multi-omics data using DPM is a statistically well-
calibrated approach to prioritise or penalise genes via user-defined constraints.
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Figure 3. Directional integration of transcriptomics data from functional experiments of HOXA10-AS in
GBM cells. (A) Integrating differential gene expression data from the IncRNA HOXA10-AS knockdown (KD)
and overexpression (OE) experiments. DPM was configured to prioritise genes that showed different FC
directions in KD and OE experiments and penalise the genes with consistent up- or down-regulation in the two
experiments. (B) Scatter plot comparing integrated gene P-values from DPM (Y-axis) and the non-directional
Brown method (X-axis). Significant genes from DPM are shown in blue (FDR < 0.05). Genes with directional
agreement are shown along the diagonal while the genes penalised due to directional conflicts appear below the
diagonal. Top right: examples of prioritised and penalised genes visualised as FDR and FC values of differential

gene expression. (C) Venn diagram of enriched pathways found with directional (DPM) and non-directional
(Brown) analyses (FWER < 0.05). (D) Enrichment map of HOXA10-AS target pathways and processes identified
in the directional and non-directional analyses (FWER < 0.05). The network shows pathways as nodes that are
connected by edges and grouped into subnetworks if the corresponding pathways share many genes. Node colour
indicates the dataset contribution (KD, OE, both, or combined-only), and node sizes reflect the number of genes
in each pathway. Node outlines show whether the pathways were found using DPM alone (i.e., directionally
prioritised pathway; spiky edges), the non-directional method alone (i.e., directionally penalised pathways; dotted
edges), or were found using both approaches (i.e., pathways with consistent directions; solid edges). (E) GO
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processes related to cell migration and oxygen levels were penalised in the non-directional analysis due to
inconsistent changes in KD and OE conditions. Asterisks indicate genes penalised due to directional conflicts.

Integrative analysis of transcriptomic targets of the onco-IncRNA HOXA10-AS in glioma

We then studied real omics datasets to evaluate the performance of DPM. First, we analysed our
earlier transcriptomics dataset in which the oncogenic IncRNA HOXA10-AS was subject to either
knockdown (KD) or overexpression (OE) in patient-derived glioblastoma (GBM) cells 2°. To
identify putative direct target genes and pathways of the IncRNA, we used the CV [KD =1, OE
= -1] that prioritised the genes with inverse FC directions in KD and OE experiments and
penalised the genes with up-regulation or down-regulation in both experiments (Figure 3A).
DPM revealed 946 significant genes with the specified directional agreements (FDR < 0.05)
(Figure 3B, Table S1). On the other hand, we found 640 genes that were significant in the
reference non-directional analysis (FDR < 0.05); however, these were penalised when directional
constraints were accounted for in DPM. Among prioritised genes, CPED] was a top result found
by DPM (FDR = 8.2 x 10%) as it was significantly upregulated in the HOXA10-4S KD
experiment and downregulated in the OE experiment (Figure 3B), indicating a potential negative
regulatory target of HOXA10-AS. CPEDI encodes a cadherin and a putative tumor suppressor
gene in lung cancer 2°. The tumor suppressor gene FATI was prioritised due to significant up-
regulation in HOXA10-AS OE and no significant change in KD, exemplifying another mode of
gene prioritisation in DPM. FATI encodes a cadherin protein that is frequently mutated in cancer
and contributes to cell proliferation, migration, and invasion 3%*!, which are hallmarks of
advanced glioma. COL25A41 was a top directionally penalised gene due to significant
upregulation in KD and OE experiments (FDRppm = 0.24, FDRprown = 1.7x10#) (Figure 3B).
COL25A1 encodes a brain-specific membrane-associated collagen protein that binds amyloid
beta-peptides 26. Other notable directionally penalised genes included NEGRI, a neuronal growth
regulator, and CACNAIH, a calcium voltage-gated channel, that are involved in neuronal
development and cell adhesion, respectively 278,

Directional pathway analysis using DPM revealed 138 enriched GO processes and Reactome
pathways (ActivePathways with DPM, family-wise error rate (FWER) < 0.05) (Figure 3C-D,
Table S2-3) while the reference non-directional analysis found 219 pathways and processes
(ActivePathways with Brown, FWER < 0.05). A third of the enriched pathways from the non-
directional analysis (87/219), including cell death, cell motility, brain development, and oxygen
response, were excluded by DPM due to directional disagreements in related genes. For example,
the GO process of ameboidal-type cell migration found in the non-directional analysis included
37 differentially expressed genes (FWER = 7.3 x 10#). Eight genes showed directional
disagreements as these were either upregulated or downregulated in both KD and OE
experiments (WNT11, SEMA3E, APOE, HAS2, EFNB1,ITGA2, DPP4, RHOJ) (Figure 3E).
Deprioritising these genes using DPM led to the loss of pathway enrichment. Similarly, four
oxygen-related processes were lost, such as the GO process describing response to oxygen levels
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(FWER = 0.0012), in which 6/23 genes had directional disagreements (Figure 3E). On the other
hand, six pathways were only found by DPM, such as vesicular transport, RAB
geranylgeranylation, TGFB signalling, muscle development, DNA replication, and phospholipid
biosynthesis, were prioritised through directional information of the pathway genes.

This analysis demonstrates the integration of transcriptomic data from two transcriptomic
profiles resulting from opposite functional interventions. Genes and pathways with the expected
opposite directional changes in KD and OE experiments may include direct regulatory targets of
the HOXA10-AS IncRNA that confers phenotypes of advanced glioma 2°. On the other hand, the
penalised genes and pathways with directional disagreements may be regulated indirectly by
HOXA10-AS through feedback loops or post-transcriptional mechanisms that cannot be measured
directly in the omics data we have. However, we can easily prioritise such indirect targets using
our method by defining an alternative CV [+1, +1] that selects the genes with matching FCs in
KD and OE experiments (Figure S1), demonstrating the flexibility of our approach. Integrating
the directional associations of omics data from functional experiments improves the resolution of
gene prioritisation and pathway enrichment analysis.
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Figure 4. Integrating cancer transcriptomes and proteomes with patient survival information for pathway
and biomarker analyses. (A) Analysis workflow. mRNA (R) and protein (P) levels for each gene were
separately associated with patient overall survival (OS) for ten cancer types in CPTAC using clinical covariates
(patient age, patient sex, tumor stage). P-values and hazard ratio (HR) values of mRNA and protein levels
retrieved from Cox-PH survival regression models were used for gene prioritisation and pathway analysis. The
CV prioritised genes that showed consistent OS associations with transcript and protein levels (i.e., both positive
or both negative) while genes with opposite OS associations were penalised. (B) Multi-omics survival
associations in ovarian cancer (OV). Directionally prioritised merged P-values of genes from DPM (Y-axis) and
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non-directional P-values from the reference Brown method (X-axis) are shown. Significant genes from DPM are
shown in blue (P < 0.05). Genes along the diagonal have consistent OS associations while the penalised genes
with directional disagreements appear below the diagonal. (C) Top 100 genes prioritised or penalised by DPM
are associated with patient survival with respect to mRNA and protein expression levels and plotted as log-scale
HR values. Respective HR values for the same gene are connected by lines. For prioritised genes, both transcript
and protein levels associate with higher log-HR (left) or lower log-HR values (middle) reflecting higher or lower
patient risk. In, contrast, penalised genes on the right show inconsistent HR values such that lines connecting
mRNA- and protein-level associations cross zero. (D) Examples of top genes prioritised or penalised by survival
associations of mRNA and protein expression in ovarian cancer shown as Kaplan-Meier plots. ACTN4 (top): high
mRNA and high protein levels consistently associate with worse prognosis. PIK3R4 (bottom): mRNA and protein
levels show inconsistent associations with OS. Covariate-adjusted P-values from Cox-PH models and ANOVA
are shown. (E) Scatterplots of mRNA and protein expression of ACTN4 and PIK3R4 in OV explain the OS
associations in panel D. Spearman correlation coefficients and P-values are shown. (F) Enriched pathways found
in genes with OS associations with mRNA and protein levels using directional and non-directional data
integration (ActivePathways, FDR < 0.05). Venn diagram shows the pathways prioritised or penalised by
directional analysis. (G) Enrichment map of pathways and processes with OS associations in transcriptomics and
proteomics data in OV (FDR < 0.05). The network shows pathways as nodes that are connected by edges and
grouped into subnetworks if the corresponding pathways share many genes. (H) The GO process of
mitochondrial translation was penalised in the directional analysis due to inconsistent associations. Genes with
inconsistent OS associations of mRNA and protein expression are indicated by asterisks.

Multi-omics discovery of prognostic biomarkers in transcriptomes and proteomes of
ovarian cancer

Next, we integrated cancer transcriptomics and proteomics data from a heterogeneous cancer
cohort to associate genes and pathways with patient overall survival (OS) in ten cancer types and
1,140 cancer samples from the CPTAC project 3>3* (Figure 4A, Table S4). First, we asked
which genes significantly associated with OS at the transcript or protein expression level using
Cox proportional-hazards (PH) regression with clinical covariates of patient age, sex, and tumor
stage. P-values and hazard ratios (HR) for transcript- and protein-level OS associations were
integrated using DPM such that genes with consistent OS associations were prioritised while
those with inconsistent associations were penalised (i.e., [RNA = 1, protein = 1]). Ten cancer
types were analysed separately (Figure S3).

We focused on the ovarian cancer (OV) cohort with 169 serous cystadenocarcinoma samples.
DPM identified 907 genes with consistent survival associations between mRNA and protein
levels (Pppm < 0.05) (Figure 4B, Table S5). Compared to a reference non-directional analysis,
192 genes were penalised due to inconsistent survival associations (Pgrown < 0.05). We examined
the survival associations of individual genes to explain the directional integration. Significant
genes identified by DPM comprised two groups with either positive or negative OS associations,
while the genes penalised by DPM showed both types of associations (Figure 4C). ACTN4, the
most significant prioritised gene (Pppm = 5.4 x 107), encodes a cytoskeletal actin-binding protein
and a well-known oncogene linked to an invasive phenotype and poor prognosis in ovarian
cancer *+%, This is confirmed in our analysis: higher transcript and protein expression of ACTN4
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associated with poor prognosis in OV (Figure 4D), and ACTN4 mRNA and protein levels were
expectedly highly correlated (Spearman p = 0.75, P < 2.2 x 10°'°) (Figure 4E). In contrast, the
top penalised gene PIK3R4 showed inconsistent OS associations: higher transcript expression
associated negatively with OS while higher protein expression associated positively, and no
significant correlation in transcript and protein expression was apparent (Figure 4D-E). PIK3R4
encodes a regulatory kinase subunit in the PI3K/AKT pathway that regulates cell growth,
motility, survival, metabolism, and angiogenesis 3%’ Inconsistent expression and survival
associations of PIK3R4 suggest the activity of additional modes of regulation that likely remain
masked in these transcriptomics and proteomics datasets.

Pathway analysis with DPM revealed 170 significant pathways and processes with multi-omics
survival associations (ActivePathways FDR < 0.05), including major functional themes of
proliferation, focal adhesion, cell motility, immune cell activity, development, and signalling
pathways such as Hedgehog, Notch, and NFKB (Figure 4F-G, Table S6-7). Compared to a
reference non-directional analysis, DPM penalised pathways due to directional disagreements in
pathway genes in which inverse associations with OS in transcript and protein expression were
found. Biological processes of protein translation and degradation, RNA modifications, and
mitochondrial function were deprioritised using DPM. This agrees with previous reports that
indicated low correlations of transcript and protein expression levels in such genes 3283, For
example, the non-directional pathway analysis found the enriched process mitochondrial
translation, however, it was penalised in the directional analysis with DPM since a large fraction
of the pathway genes (8/33) had inconsistent OS associations in transcriptomics and proteomics
data (Figure 4H). This analysis demonstrates how our directional multi-omics approach can
integrate clinical information to discover biomarkers and biological mechanisms in
heterogeneous datasets of patient cancer samples.
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Figure S. Directional integration of transcriptomics, proteomics, and DNA methylation data to
characterise the molecular phenotype of IDHI-mutant gliomas. (A) Overview of analysis. We compared
IDH I-wildtype and /DH[-mutant gliomas by integrating differential transcript and protein expression and
promoter DNA methylation using DPM. The CV defined directional associations between the input datasets:
mRNA (R) and protein (P) expression levels associated negatively with DNA promoter methylation (M), as a
repressive regulatory mechanism while mRNA and protein levels associated positively with each other. (B) Venn
diagrams of significant genes found separately in the three datasets (FDR < 0.1). Downregulated genes (bottom
left) show reduced mRNA and protein expression and increased promoter methylation, and upregulated genes
show decreased promoter methylation and increased expression (top right). (C) Scatter plot of directionally
prioritised and penalised genes with integrated gene P-values from DPM (Y-axis) and non-directional Brown P-
values (X-axis). Significant genes from DPM are shown in blue (FDR < 0.05). Genes with consistent multi-omics
signals according to the CV are shown on the diagonal, while the 201 genes below the diagonal have directional
disagreements. (D) Heatmap of significant genes that were either prioritised or penalised by DPM. The genes
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were selected stringently using non-directional P-value merging (Brown, FDR < 0.001) and labelled based on
DPM as directionally penalised (orange) or prioritised (teal). As expected, prioritised genes were often
characterised by high promoter methylation consistently with reduced mRNA and protein expression. Penalised
genes often had high promoter methylation and elevated transcript or protein expression that is inconsistent with
the CV. Known cancer genes are labelled. (E) Venn diagram of enriched pathways from the directional and non-
directional analyses (ActivePathways, FWER < 0.05). DPM and Brown methods were used for gene
prioritisation, respectively. (F) Enrichment map of pathways and processes representing the multi-omics
phenotype of /DH[-mutant GBM. The network shows pathways as nodes that are connected by edges if the
corresponding pathways share many genes. Groups of pathways lost or gained in the directional analysis are
grouped on the right. (G) The gliogenesis process is significantly detected in the directional analysis and remains
undetected in the non-directional analysis. Multiple genes involved in gliogenesis show significant and
directionally consistent changes in the three omics datasets that collectively prioritise this process via DPM.
Pathway genes with significant multi-omics signals are shown with FDR and FC values.

Integrating DNA methylation with transcriptomic and proteomics data to dissect molecular
phenotypes of IDHI-mutant gliomas

Lastly, we integrated DNA methylation, transcriptomics, and proteomics datasets available in
TCGA and CPTAC 33" using an extended design of positive and negative directional
associations between the three data modalities. DNA methylation of gene promoters is a known
repressive epigenetic mechanism that often correlates with reduced gene expression; therefore,
we can obtain more accurate maps of gene and pathway modulation by inversely associating it
with transcript and protein expression (Figure SA). We studied this in detail in the TCGA GBM
cohort by comparing subsets of glioma samples based on the mutation status of IDHI. IDH1
encodes isocitrate dehydrogenase 1, a well-established molecular marker of glioma that indicates
lower-risk disease #!. First, we analysed differential transcript and protein expression and DNA
promoter methylation of the molecular phenotype of IDH1-mutant glioma and compared the
resulting lists of significant genes. Differential analyses of DNA methylation and transcript
expression contributed the most significant genes, perhaps reflecting the hypermethylation
phenotype of IDHI mutant gliomas *? (Figure 5B, Table S8). However, only few genes (32)
were found as significant across all three datasets, and the overlaps were even smaller when
considering up-regulated and down-regulated genes separately. This highlights opportunities for
directional analysis with DPM that combines significance and FC values for gene prioritisation.

We performed a directional analysis of the multi-omics dataset by prioritising inverse
associations of promoter methylation levels with direct associations of protein and transcript
levels using the CV [methylation = +1, mRNA = -1, protein = -1] (Figure 5A). This revealed
1138 significant genes (FDR < 0.05, Figure SC, Table S8), while 201 additional genes were
penalised due to directional conflicts, compared to the reference non-directional analysis
(Brown, FDR < 0.05). The directionally prioritised genes were often driven by high promoter
methylation and reduced transcript and protein expression that is consistent with the /DH1
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hypermethylator phenotype. In contrast, the genes penalised by DPM often showed higher
promoter methylation combined with upregulation at the transcript or protein level (Figure SD),
potentially due to additional post-transcriptional or post-translational regulation that we could
not detect reliably. We found 98 known cancer-associated genes using DPM (FDR < 0.05), of
which 26 (27%) were consistently regulated between the three datasets. Pathway enrichment
analysis of the directionally prioritised genes revealed 72 pathways and processes (FWER <
0.05, ActivePathways, Table S10), while 33 pathways identified through a non-directional
reference analysis were penalised by DPM (Figure SE, Table S9). DPM penalised biological
processes and pathways that appear to be less relevant to glioma biology, such as the muscle
organ development process found in the non-directional reference analysis (Figure 5F). Many
significant genes in the pathway showed directional disagreements (80/195) and were therefore
penalised by DPM. Encouragingly, some processes relevant to glioma biology were only found
in the directional analysis, such as the process of gliogenesis that defines /DH/-mutant gliomas
3 (FWER = 0.0207) (Figure 5G). As expected, several genes involved in gliogenesis showed
significant and directionally consistent changes in /DH-mutant gliomas. For example, the
transcription factor OLIG?2 that regulates glial fate and gliomagenesis *° was upregulated in
IDH-mutant gliomas at the mRNA and protein level, while the oncogenic receptor tyrosine
kinase ERBB? that associates with cell survival and proliferation in various cancer types ** was
inhibited through the three data modalities. In summary, this case study demonstrates the use of
DPM in analysing complex multi-omics datasets for fundamental and translational insights.

DISCUSSION

We describe a data fusion algorithm that applies user-defined constraints for directional gene
prioritisation and pathway enrichment analysis in multi-omics datasets. The method is broadly
applicable to various analytical workflows and experimental designs as it relies only on
appropriately derived P-values and directional information for all genes. Further, datasets with
and without directional information can be analysed jointly. We demonstrate our method by
analysing multi-omics datasets of experimental systems and heterogeneous patient cohorts where
we encode various directional constraints to capture direct and inverse associations of genes and
proteins and pathways. We can also integrate patient clinical information to enable discovery of
candidate biomarkers and explore the molecular phenotypes of high-risk disease. A notable
limitation of our approach is that directional constraints only provide simplified representation of
cellular logic. For example, transcript and protein levels are not always correlated due to
additional control mechanisms such as post-translational modifications, protein-protein
interactions, alternative splicing, or feedback loops, for which comprehensive molecular data are
often not available. Limited transcript-protein correlations have been described in protein
translation, mRNA splicing, oxidative phosphorylation, electron transport chain, and other
housekeeping processes 3238346 However, our method remains valid given the underlying
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assumptions. Inverted directional constraints can be used provide further insights: for example,
one can map genes and pathways whose transcript and protein levels are inversely associated to
study their additional control mechanisms. Thus, the directional constraints provide a useful tool
for more accurate hypothesis testing in integrative multi-omics analyses.

Our generic framework is broadly applicable as it makes only a few assumptions about input
data. First, accurate upstream data processing is essential for directional multi-omics analyses.
Different omics platforms require dedicated preprocessing methods to identify statistically
significant signals and account for intrinsic biases. Second, our method relies on accurately
computed P-values, which need to be well calibrated and comparable between the input datasets.
Third, we only use discrete directional information to reflect increases or decreases in gene or
protein activity. Examples include signs of log-transformed fold-changes from differential
expression analyses, coefficients from correlation or regression analyses, and hazard ratios from
survival analyses. We use discrete directional information as a simple and robust approach that
can be adapted to various designs such as case-control comparisons, time series, and cluster
analysis and we assume that P-values reflect the strength directional information appropriately.
In contrast, numeric directional values would be error-prone as effect sizes of various omics
platforms are not comparable directly. Fourth, genes, proteins, transcripts, sites in non-coding
DNA, and other elements measured in multi-omics datasets need to be mapped to a common
namespace of genes, requiring additional work and compromises in dataset annotation. Lastly,
we envision several areas of future work. Our current method is designed for analysing bulk
omics datasets and single-cell datasets in common workflows that integrate across a relatively
small number of omics profiles or clusters. More work is needed to ensure the scalability of our
method to large numbers of multi-omics profiles. Second, our pathway analysis currently uses a
simplified representation of molecular pathways and biological processes collapsed into gene
sets, however, future data fusion approaches designed for molecular interaction networks can
provide complementary insights to gene function and interactions in multi-omics data. In
summary, directional multi-omics analysis for gene prioritisation and pathway analysis enables
mechanistic and translational insights by focusing on understudied intersections of complex
omics datasets.
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398 METHODS

399  Directional P-value merging (DPM). To integrate multiple omics datasets through gene P-

400  values and directional information, we implemented or repurposed directional extensions to four
401  P-value merging strategies: the methods by Fisher, Brown, Stouffer, and Strube. The methods by
402  Brown and Strube were extended based on the methods by Fisher and Stouffer, respectively, to

403  account for the covariation of gene P-values across input datasets. All methods assume that the
404  P-values are uniformly distributed under the null hypothesis and are well calibrated. Covariation-
405  adjusted methods account for dependencies in the P-value distributions and thereby provide more
406  conservative merged P-values. As omics datasets include biological dependencies, covariation-
407  adjusted methods are usually more appropriate for this type of analysis.

408  The Fisher’s method for merging P-values 4748

assumes independent P-values are used as input.
409 It collapses k P-values P; to a score Xr that is a sum of log-transformed P-values. The score Xr is
410 transformed into a merged P-value P’r through the cumulative x? distribution with 2k degrees of

411  freedom:
412 Xp = —23K  In(P),
413 P; =1— y*(Xg, 2k).

414  The Brown’s method ?° extends the Fisher’s method to account for P-value covariation in input
415  datasets by approximating the score X from the Fisher’s method using a scaled y? distribution.
] /

and k' =

Var[Xx
2E[X]

416  The scaling factor ¢ and the updated degrees of freedom k' are derived as ¢ =
2(ELX])?
Var[X]
418  E[cy?(k")] = ck’ and Var[cy?(k')] = 2c?k’, respectively. The merged Brown P-value P’z is
419  computed as a sum of log-transformed P-values from the cumulative scaled ¥ distribution with

420  the scaling factor ¢ and degrees of freedom &, as

417

, respectively. The expected value and variance of the scaled distribution are derived as

421 Xg = —2ZF In(P),
X
422 Plp=1— y2 (TB,k’).
423 The empirical Brown’s method (EBM) estimates the expected value and variance from the input
424  datasets non-parametrically '°. We used EBM here and refer to it as Brown’s method.

425  To incorporate directionality to the Fisher’s method, we jointly analyse the directional

426  information with the observed gene direction o; and the expected gene direction e; in each

427  dataset i. For example, in differential gene expression analyses of two conditions relative to a
428  control condition, o; would be the sign of the fold-change of a gene in condition i, and e; would
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429  be the expected relative directional agreement of the two conditions. Both o; and e; adopt the
430  values of +1, -1 and 0. The constraint vector (CV) [+1, +1] prioritises genes with consistent fold-
431  change directions across two conditions and is functionally equivalent to the CV [-1, -1] in our
432  method. Alternatively, the CV [+1, -1] or the CV [-1, +1] can be used interchangeably to

433 prioritise genes with opposite fold-change directions across two conditions. Values of zero are
434  used for both 0; and e; to define datasets where the user intends to not encode directional

435  information, for example acquiring P-values from a gene mutational burden test. The directional
436  coefficients are incorporated in P-value merging to sum log-transformed P-values, as

437 Xppw = 21, In(P)oje; |+ =254, In(P) .

438  Here, the datasets (1, 2, ..., j) have defined directional information available while the datasets
439  (j+1, j+2, ..., k) do not. This approach permits analyses of mixed directional and non-directional
440  datasets. If either directional or non-directional datasets are not included in the analysis, then the
441  left or right sum is omitted, respectively. Intuitively, directional agreements increase the sums of
442  log-transformed P-values that lead to increased significance of the merged P-value, while

443  directional disagreements reduce the sums. The absolute function is used to ensure that the CV is
444  globally sign invariant (i.e., [-1,1] = [1,-1] and [1,1] = [-1,-1]). An example is shown in Figure
445  S2. Finally, a scaled cumulative y? distribution is computed from Brown’s method to obtain the
446  merged P-values directionally as

447 Pppu =1—x? GXDPM'k’)-

448  This method is referred to as DPM (directional P-value merging) and is used throughout our
449  study.

450 In addition to the above, we implemented a directional extension of the METAL method #° that
451  extends Stouffer’s method 2! for meta-analysis of GWAS studies. Each study has a direction of
452  effect that reflects the impact each allele has on the observed phenotype. This observed

453  directional term, o;, can either be positive (+1), reflecting an increase in the observed phenotype,
454  or negative (-1), reflecting a decrease. Directional Stouffer’s method introduced by METAL

455  converts P-values from k independent tests into Z-scores using the inverse of the standard

456  normal cumulative distribution function ®~1 as

@7 (%) 0;
N :

458  The merged P-values are generated through the standard normal cumulative distribution

459  function, as Py, = 2®(—|Zy|). To account for P-value dependencies, Strube’s extension to

460  Stouffer’s method ?? leads to more conservative significance estimates by incorporating the

461  overall covariation of P-values in input datasets 22, similarly to Brown’s extension of the Fisher’s

457 Zy =
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method. We implemented a directional extension of Strube’s and Stouffer’s methods similarly to
METAL as

{=1 Pt (%) 0;€; N ’i€=j+1 ot (%)

Ji Je=G+D

ZS=

Here, Z scores are acquired for the directional datasets (1, 2, ..., j) separately from the non-
directional datasets (j+1, j+2, ..., k) and then each term is combined before calculating a merged
P-value, similarly to DPM above.

DPM is available as part of the ActivePathways R package in the CRAN repository
(https://cran.r-project.org/web/packages/ActivePathways/index.html).

Evaluating DPM using simulated and real datasets. We compared DPM and the modified
Strube’s method using simulated datasets. The simulated datasets were constructed by generating

two sets of 10,000 randomly sampled P-values. First, we created two sets of input P-values
independently of each other (IND). Uniformly distributed P-values Py were generated by
sampling Z-scores from the normal distribution (1 = 0, 6 = 1) and transforming these to P-values
relative to the normal distribution (u = 0, o = 1). Exponentially distributed P-values Pr were
generated by sampling Z-scores from the normal distribution (u = 1, o = 1) and transforming
these to P-values relative to (u = 1, 6 = 1), resulting in an exponential-like distribution that was
over-represented in significant P-values (i.e., ~25% with P < 0.05). Second, we generated the
two sets of input P-values such that the P-values were positively correlated with each other
(COR), by first creating one set of Z-scores as described above (i.e., representing either Py or Pg)
and then adding normally distributed noise (1 = 1, 6 = 0.2) to these Z-scores prior to P-value
transformation to obtain the second, correlated set of P-values. Spearman correlations of the two
sets of P-values were computed. In total, five simulated datasets of P-values were generated:
IND(PU, Pu), IND(PE, PE), COR(PU, Pu), COR(PE, PE), and IND(PU, PE). We then merged the
simulated P-values with directional information in three different configurations: all P-values
having directional agreement with the constraints vector, all P-values having directional
disagreement, and half of P-values having directional disagreement and half having directional
agreement. In the latter case, directional disagreement was assigned randomly using the binomial
distribution. Using the resulting 15 configurations of simulated data, we performed directional
merging of P-values and counted the numbers of nominally significant merged P-values from
DPM and modified Strube methods at different significance thresholds (P < (0.2, 0.1, 0.05,
0.01)).
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Integration of transcriptomics datasets from functional experiments of the HOXA10-AS
IncRNA in GBM cells. We analysed the genes and pathways prioritised by directional
integration of transcriptomic data from HOXA10-AS knockdown (KD) and overexpression (OE)
experiments in GBM cells from our earlier study . We used the CV [KD =-1, OE = 1] to
prioritise genes with opposite FCs in the two experiments to account for the inverse modulation
of the HOXA10-AS IncRNA in the knockout and overexpression experiments. DPM was
compared to the non-directional analysis using Brown’s P-value merging. For DPM, we used
gene FDR values and FC values for 12,996 protein-coding genes from the original study that
filtered previously to exclude very lowly expressed genes. Gene sets of biological processes of

Gene Ontology (GO) 2 and molecular pathways of Reactome * were downloaded from the
g:Profiler website °° on March 27, 2023. We limited the analysis to gene sets of 10 to 750 genes.
The statistical background set included all protein-coding genes. Statistically significant
pathways were selected after the default multiple testing correction in ActivePathways (FWER <
0.05). Significantly enriched pathways from the directional and non-directional analyses were
merged and visualised as an enrichment map 2* in Cytoscape using standard protocols !.
Subnetworks were manually organised as functional themes of related pathways. Significant
genes in individual pathways were visualised as dot plots with FC and FDR values and cancer
genes of the COSMIC Cancer Gene Census database 3! were highlighted separately.

Integration of survival information with transcriptomics and proteomics data in CPTAC.
We integrated quantitative proteomic and transcriptomic data of cancer samples with patient
survival information obtained from the CPTAC project release 3 ' and TCGA PanCanAtlas
dataset 7 that included 1,140 cancer samples of ten cancer types: pancreatic, ovarian, colorectal,
breast, kidney, head & neck, and endometrial cancer, two subtypes of lung cancer, and brain
glioblastoma (Table S4). We used the combined dataset assembled by Zhang et al. (2022) 32 that
included transcriptomics data for 15,424 genes and proteomics data for approximately 10,000

genes that varied between cancer types. We used previously processed transcriptomics and
proteomics datasets in which transcripts and proteins were measured as standard deviations from
median values in the cohorts 32, First, we derived directional information from transcript or
protein associations with overall survival (OS) based on median dichotomisation of transcript or
protein expression. Two Cox proportional-hazards (PH) regression models HO and H1 were used
separately for transcript and protein levels for each gene and in each cancer type. The null Cox-
PH model HO only included clinical covariates as predictors of OS. The alternative Cox-PH
model H1 used transcript or protein expression level together with common clinical covariates
(patient age, patient sex, tumor stage) as predictors of OS. ANOVA analysis comparing the fits
of the models HO and H1 using a chi-square test was conducted to derive P-values and HR
values reflecting transcript- and protein-level OS associations. Second, the directional integration
with DPM was conducted using a matrix of transcript and protein P-values from the ANOVA
analyses and as directional information the corresponding log-transformed HR values were used.
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A non-directional analysis was conducted using the Brown’s method as reference. To handle
missing values in the data, genes that had fewer than 20 patients with transcriptomic, proteomic,
or clinical information were not analysed and were assigned insignificant values (P = 1, log2ZHR
= 0) in the final input matrices. The CV [RNA = +1, protein = +1] was used to prioritise the
genes for which transcript and protein levels associate with OS either positively or negatively,
while the genes showing a positive OS association with transcript and a negative association with
protein expression (or vice versa) should be penalised. Integrative pathway enrichment analysis
was performed in the ovarian cancer (OV) dataset similarly to the HOXA10-AS dataset described
above. We compared the pathway enrichment results between the gene lists prioritised by DPM
and as reference, the gene lists prioritised using the non-directional Brown’s method. The
background set for pathway analysis included 9,064 genes for which both transcriptomic and
proteomic measurements were available. Significant pathways were selected using the more
sensitive FDR correction (FDR < 0.05) instead of the default correction Holm FWER method in
ActivePathways to account for reduced statistical power of OS associations in heterogeneous
datasets of cancer patients.

Integrative analysis of IDHI-mutant GBMs using transcriptomics, proteomics, and DNA
methylation data. We integrated three data modalities with multi-directional constraints:

transcriptomics (RNA-seq), quantitative proteomics (isobaric label quantitation analysis with
orbitrap), and DNA methylation (CpG Illumina 450k microarray). We studied genes and
pathways differentially regulated in a subset of gliomas categorised as glioblastomas (GBMs)
that carry a specific missense mutation (R132H) in the IDH1 gene, a prognostic marker of lower-
risk gliomas. We included transcriptomics and DNA methylation datasets from TCGA 32 and
proteomics data from CPTAC-3 *3. GBMs with /DH] R132H mutations were identified from the
Genomic Data Commons (GDC) web portal using their TCGA patient IDs >4, First, we
performed differential analyses of transcriptomics, methylation, and proteomics datasets by
comparing subsets of GBMs based on their /DH] mutation status. We limited the analyses to
10,902 genes for which all three data types were available. Transcriptomics data were
downloaded as gene read counts of transcripts per million (TPM) values using the TCGAbiolinks
R package > (May 9th, 2023). We compared the transcriptomes of 7 IDH-mutant (IDH1
R132H) GBMs and 166 IDH-wildtype GBMs. One GBM sample with a different /DHI mutation
(R132G) was excluded from all analyses. A differential gene expression analysis of IDH -
mutant vs. wildtype GBMs was performed non-parametrically using Mann-Whitney U-tests. The
resulting P-values for genes were corrected for multiple testing using the Benjamini-Hochberg
FDR method. DNA methylation data were downloaded using TCGAbiolinks > for 6 IDHI-
mutant GBMs and 149 IDH-wildtype GBMs as beta values measuring CpG site methylation.
We limited the analysis to CpGs in gene promoters using Human EpicV2 annotations >°. For
each gene, we calculated the mean beta value across the CpG probes in its promoter and
conducted a differential methylation analysis of the mean values in /DH[-mutant vs. IDH -
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572 wildtype GBMs using Mann-Whitney U-tests. P-values were corrected for multiple testing using
573  FDR. Genes with significant but small fold-changes in differential methylation (absolute log2-
574  FC <0.25) were soft-filtered by assigning insignificant P-values (P = 1). Proteomics data for

575  GBMs was retrieved from the CPTAC-3 project and the dataset processed by Zhang et al. (2022)
576 2. GBMs carrying /DH1 R132H mutations were identified in GDC using CPTAC-3 IDs .

577  Significant proteome-wide differences in 6 /IDH[-mutant GBMs (IDH1 R132H) relative to 92
578  IDHI-wildtype GBMs were evaluated using Mann-Whitney U-tests and P-values corrected for
579  multiple testing using FDR. Gene- and pathway-based multi-omics data integration of the /DH1-
580 mutant GBM analysis was performed similarly to the analyses above. The P-values from

581 transcriptomic, methylation, and proteomic data were merged using DPM and the Brown method
582  as areference. Unadjusted P-values and log2-transformed FC values were used for data

583 integration. The CV was defined as [mnRNA = -1, protein = -1, methylation = +1] to prioritise
584  genes with positive associations between transcriptomic and proteomic values and negative

585  associations with DNA methylation in promoters, assuming that high promoter methylation is a
586  repressive gene-regulatory signal that inversely associates with gene expression at the transcript
587  and protein level, while transcript expression directly associates with protein expression. An

588 integrative pathway enrichment analysis was performed similarly to the analyses described

589  above. The statistical background set for the pathway analysis included 10,902 genes. Significant
590 pathways were selected using ActivePathways using default thresholds (Holm FWER < 0.05).
591  Genes with significant differences in the three datasets were studied using hierarchical clustering
592  and visualised as a heatmap. For the heatmap, unadjusted P-values from the three datasets were
593  merged non-directionally using Brown’s method, corrected for multiple testing using FDR, and
594 filtered for significance using a stringent cut-off (FDR < 0.001). Complete hierarchical clustering
595  was performed using a Euclidean distance metric on directional gene scores (i.e., -logl 0(FDR) x
596  sign(log2FC)). Using P-value integration from DPM and the non-directional Brown merging, we
597  categorised the selected genes as either showing or lacking directional agreement between the
598  three omics datasets. Known cancer genes from the COSMIC Cancer Gene Census database !
599  were labelled in the heatmap.

600
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SUPPLEMENTARY MATERIAL
Supplementary tables:

Table S1. Differentially expressed genes in patient-derived GBM cells from the HOXA10-AS
IncRNA knockdown (KD) and overexpression (OE) experiments.

Table S2. Non-directional analysis of enriched pathways in HOXA10-AS KD and OE
experiments using the Brown's method.

Table S3. Directional analysis of enriched pathways in HOXA10-AS KD and OE experiments
using DPM.

Table S4. Cancer samples with matching transcriptomics and proteomics data in the CPTAC and
TCGA datasets.

Table S5. Associations of protein and transcript expression levels with patient overall survival
(OS) in ovarian cancer.

Table S6. Non-directional analysis of enriched pathways with OS associations in transcript and
protein expression levels in ovarian cancer using the Brown's method.

Table S7. Directional analysis of enriched pathways with OS associations in transcript and
protein expression levels in ovarian cancer using DPM.

Table S8. Differential protein and transcript expression, and DNA methylation of /DH-mutant
gliomas relative to /DH-wildtype gliomas.

Table S9. Non-directional pathway enrichments in /DH/-mutant gliomas derived using the
Brown's method.

Table S10. Directional pathway enrichments in /DH-mutant gliomas derived using DPM.

Supplementary figures:

Figure S1. Directional integration of HOXA10-AS transcriptomics data that prioritises genes and
pathways with matching changes in knockdown (KD) and overexpression (OE) experiments.

Figure S2. A minimal example of merging P-values with directional information across three
datasets.

Figure S3. Integrating transcriptomic and proteomic signals with cancer patient survival
information for prognostic biomarker discovery and pathway analysis in 10 cancer types.
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