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ABSTRACT 16 

Omics techniques generate comprehensive profiles of biomolecules in cells and tissues. 17 

However, a holistic understanding of the data requires joint multi-omics analyses that are 18 

challenging. Here we present DPM, a data fusion method for combining multiple omics 19 

datasets using directionality and significance estimates of genes, transcripts, or proteins. 20 

DPM allows users to define how the input datasets are expected to interact directionally, 21 

reflecting the initial experimental design or regulatory relationships between the datasets. 22 

DPM statistically prioritises genes and pathways that change consistently across the 23 

datasets, while penalising those violating the constraints. Joint analyses of transcriptomic, 24 

proteomic, DNA methylation, and clinical datasets of cancer samples demonstrate how 25 

directional integration identifies genes and pathways modulated across omics datasets, 26 

highlights those with inconsistent evidence, and reveals candidate biomarkers with 27 

prognostic signals in multiple datasets. DPM is implemented in the ActivePathways method 28 

and provides a general framework for testing detailed hypotheses in multi-omics data.  29 
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INTRODUCTION 31 

High-throughput omics technologies enable the systematic mapping of genes, transcripts, 32 

proteins, and epigenetic states in cells. While data generation methods advance rapidly, data 33 

interpretation remains challenging as genes and proteins do not act alone but instead function in 34 

complex molecular pathways and interaction networks. Pathway enrichment analysis identifies 35 

characteristic biological processes and pathways in omics data to explain underlying 36 

experimental conditions or phenotypes 1. A common pathway analysis workflow studies lists of 37 

significantly altered or expressed genes detected in omics experiments to identify statistical 38 

enrichments of biological processes or molecular pathways from databases such as Gene 39 

Ontology (GO) 2 or Reactome 3. Various established tools such as GSEA 4, g:Profiler 5, and 40 

Enrichr 6 are widely used for pathway enrichment analysis in basic and biomedical research. 41 

Combining multiple omics datasets is highly beneficial since each experiment provides 42 

complementary biological insights. For instance, transcriptomics and proteomics experiments 43 

allow us to measure gene and protein expression, post-translational modifications, and signaling 44 

network activity. Genomic and epigenomic methods, on the other hand, help us understand 45 

genetic variation and gene regulation. Through joint analysis of these complex datasets, we can 46 

prioritise genes and pathways and obtain mechanistic and translational insights that can be 47 

experimentally validated. Major comprehensive resources like The Cancer Genome Atlas 48 

(TCGA), Encyclopedia of DNA Elements (ENCODE), Genotype-Tissue Expression project 49 

(GTEx), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and others offer deep multi-50 

omics profiles of human tissues, disease states, and cancer samples 7-10 to enable multi-omics 51 

analyses.   52 

Multi-omics data analysis presents unique challenges as omics platforms measure various 53 

molecules, include distinct experimental and technical biases, and require specific data 54 

processing methods 11. Comparing genes, transcripts, and proteins directly across the datasets is 55 

therefore problematic. A compelling solution to address this complexity involves mapping of 56 

omics signals to a common space of pathways and processes 1. One powerful approach involves 57 

data fusion of statistical significance estimates, such as P-values, that effectively accounts for 58 

platform-specific confounding effects, assuming appropriate statistical analyses have been 59 

performed upstream. Several computational methods are available for this type of analysis 12-18. 60 

Pathway-level methods evaluate pathway enrichments in input omics datasets and integrate these 61 

as multi-omics summaries 13,14. In contrast, gene-level integration methods prioritise genes or 62 

proteins across input datasets and then detect multi-omics pathway enrichments 15-18. We 63 

recently developed ActivePathways that first quantifies all genes through multi-omics data 64 

fusion and then finds enriched pathways and their most characteristic genes and contributions 65 

from input datasets 18.  66 
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Multi-omics analyses often fail to consider fundamental directional dependencies in input 67 

datasets. For example, the central dogma suggests that mRNA and protein expression levels of 68 

genes should correlate positively. Similarly, DNA methylation of gene promoters is a repressive 69 

epigenetic mechanism; therefore, lower gene expression often associates with higher level of 70 

DNA methylation. Directional dependencies may be integrated in the experimental design. For 71 

example, comparing the omics profiles resulting from gene knockout and overexpression 72 

experiments may reveal genes and pathways that are regulated downstream of the two 73 

perturbations. While cellular control mechanisms like post-transcriptional or post-translational 74 

regulation are likely to confound these broad directional dependencies, direct measurements of 75 

these additional effects are often not available for analysis. Nonetheless, considering directional 76 

dependencies in multi-omics data analysis allows researchers to test more specific hypotheses, 77 

prioritise genes and pathways with greater accuracy, reduce false-positive findings, and gain 78 

detailed mechanistic insights from the data. Currently, directional methods designed for multi-79 

omics data analysis are lacking, leaving an opportunity for the development of such approaches 80 

to further enhance our understanding of complex biological processes. 81 

Here we propose the computational method DPM for directional integration of genes and 82 

pathways across multi-omics datasets. DPM employs user-defined constraints to prioritise 83 

significant genes or proteins whose directional changes in the omics datasets comply with these 84 

constraints. Simultaneously, DPM penalises genes with significant P-values that have 85 

inconsistent directions based on the constraints. The flexibility of these constraints makes our 86 

method widely applicable to various statistical merging scenarios and experimental designs. To 87 

demonstrate our framework, we conduct three case studies: identifying the downstream targets of 88 

an oncogenic lncRNA based on transcriptomic profiles from functional experiments in cancer 89 

cells; integrating transcriptomic and proteomic data with patient clinical information for cancer 90 

biomarker discovery; and characterising the IDH1-mutant subtype of glioma by integrating 91 

epigenetic, transcriptomic, and proteomic data. The data fusion method DPM is available in the 92 

ActivePathways R package. Researchers can utilise this tool to advance their basic biological and 93 

biomedical research by gaining valuable insights from multi-omics datasets.  94 
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Figure 1. Overview of directional integration of multi-omics data using DPM. (A) Four inputs are required: 

(1) gene activities in multiple input omics datasets quantified as P-values derived upstream (e.g., differential 

expression analysis); (2) Directional changes such as fold-change (FC) values or directional coefficients of gene 

activities, simplified as positive (+1) or negative (-1) unit values. Zeroes are used if no directions are defined in 

the data; (3) a user-defined constraints vector (CV) of expected directional relationships of the omics datasets; 

and (4) a file with gene sets of biological processes, pathways, or other functional gene annotations. The DPM 

method performs data fusion by combining the P-values and directional changes of each gene according to the 

CV and provides a single integrated gene list of P-values that combines evidence across the input datasets. DPM 

prioritises genes with significant P-values whose directional changes agree with the CV and penalises genes with  

disagreements of the CV and the observed directional changes. Three examples of CVs and resulting merged 

gene lists are shown. (B) The integrated gene list is analysed for pathway enrichments using ranked 

hypergeometric tests in ActivePathways. These tests identify the strongest enrichments in top fractions of the 

ranked gene list for each pathway. For each pathway, evidence from every input dataset is also evaluated. (C) 

Pathway enrichment results are visualised as an enrichment map that represents a network of enriched pathways 

where the edges connect pathways with many shared genes. Colours indicate the omics datasets that contribute 

most to the enrichment, while node outlines indicate whether the pathways were identified using directional or 

non-directional analyses. 

 96 

RESULTS 97 

Directional multi-omics data integration for gene prioritisation and pathway analysis 98 

We developed a statistical method for multi-omics data fusion that prioritises genes across 99 

multiple omics datasets by integrating their P-values and directional changes such as fold-100 

changes (FC). The method, called DPM (directional P-value merging), implements a user-101 
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defined constraints vector (CV), which specifies the directional associations between the 102 

datasets. For each gene, DPM computes a score based on the P-values and directional changes 103 

from the omics datasets such that the genes whose directional changes comply with the CV are 104 

prioritised while the genes with conflicting directional changes are penalised. The resulting score 105 

is derived from input P-values such that highly significant genes are prioritised or penalised 106 

strongly while less-significant P-values contribute less to the scoring. DPM builds on our 107 

ActivePathways method 18 and is based on our directional extension of the empirical Brown9s P-108 

value merging method 19,20. For a given gene, a directionally weighted score X is computed 109 

across k datasets as  110 �!"# = 2	|	£$%&' 	ln(�$)	�$ 	�$| +	22	£$%'(&) 	ln(�$). 111 

Here, the input P-values Pi and observed directional changes oi for the gene in dataset i are 112 

aggregated across two types of datasets: omics datasets (1 & j) with directional information and 113 

omics datasets (j+1 & k) with no directional information, permitting joint analysis of both data 114 

types. If either directional or non-directional datasets are not included in the analysis, then the 115 

left or right sum in the formula is omitted, respectively. The expected relative dataset direction ei 116 

is obtained from CV. To obtain the merged P-value P9DPM for the gene reflecting its joint 117 

significance in the input datasets given directional information, the scores XDPM are fit to a 118 

cumulative Ç2 distribution as 119 

�!"#* = 1 2	Ç+ 31� �!"# , �*7	, 120 

where the degrees of freedom k9 and scaling factor c are estimated from the input P-values 121 

empirically 19 to account for gene-to-gene covariation for improved significance estimation in 122 

omics data with dependencies.  123 

The CV assigns a positive or negative unit sign to each dataset and thereby defines the structure 124 

of the multi-omics analysis. Series of positive (+1) or negative (-1) values prioritise genes or 125 

proteins in the corresponding datasets that have the same directional changes. In contrast, series 126 

of mixed values (+1 and -1) in the CV prioritise genes or proteins that have inverse directional 127 

changes in the corresponding datasets. The CV is globally sign-invariant. For example, the CV 128 

[+1,+1] for merging two datasets prioritises genes with up-regulation in both datasets or down-129 

regulation in both datasets, and the CV [-1,-1] results in an equivalent analysis. In contrast, the 130 

CVs [+1,-1] and [-1,+1] prioritise genes with up-regulation in one dataset and down-regulation in 131 

the other dataset, or vice versa. The directional changes of genes or proteins from the omics 132 

datasets are also only considered as unit signs (i.e., +1 or -1) because the effect sizes of 133 

directions are not directly comparable between omics datasets. Instead, we assume the matching 134 

P-values model effect sizes appropriately. Effect size directions may include signs of log-135 

transformed FC values, signs of correlation coefficients, or signs of log-transformed hazard ratio 136 

(HR) values from survival analyses. Lastly, the framework permits directionless datasets for 137 
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which genes or proteins are only prioritised or penalised based on their P-values. For example, 138 

mutational burden tests, epigenetic annotations, or network topology analyses often provide P-139 

values but no directional information. Directionless datasets are encoded as zeroes in the CV. In 140 

addition to DPM, we also provide directional extensions to Stouffer9s 21 and Strube9s 22 P-value 141 

merging methods based on the METAL method for meta-analysis of genome-wide association 142 

studies 23. We adapted METAL for joint analyses of directional and non-directional multi-omics 143 

datasets (Methods).  144 

Our workflow of multi-omics gene prioritisation and pathway enrichment includes four major 145 

steps. First, we process upstream omics datasets into a matrix of gene P-values and another 146 

matrix of directional values such as FCs (Figure 1A). Dedicated upstream processing of the 147 

input omics datasets is required to obtain these P-values and FCs. We define a CV with 148 

directional constraints based on the overarching hypothesis, the experimental design, and 149 

biological insights. We also collect up-to-date pathway information and gene annotations from 150 

relevant databases 2,3. Second, the matrices of P-values and FCs are merged into a single gene list 151 

of P-values using DPM or related methods 21,22 (Figure 1B). Third, ranked pathway enrichment 152 

analysis 5,18 is used to statistically associate each pathway to its most enriched fraction of the 153 

gene list. It also determines which input omics datasets contribute to each enriched pathway 154 

identified in the analysis (Figure 1C). Finally, the pathway enrichments are visualised as an 155 

enrichment map 1,24 that allows users to extract functional themes of biologically related 156 

pathways and map their directionality and supporting omics datasets (Figure 1D). DPM, 157 

combined with pathway enrichment analysis, uses directional biological signals to prioritise 158 

genes and pathways across diverse multi-omics datasets.  159 

  160 
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Figure 2. Evaluating directional P-value merging with simulated data. Two sets of 10,000 P-values were 

simulated using five approaches and were merged using DPM and modified Strube methods. The five approaches 

are shown in panels A-E. Bar plots on the left show the numbers of significant merged P-values detected at 

different cut-offs. Scatter plots on the right display the distributions of the two sets of input P-values. Three P-

value merging scenarios were considered: all values in directional agreement [A], all values in directional 

disagreement [D], and mixed directions [M] (i.e., 50% values in agreement and 50% in disagreement). Numbers 

of significant input P-values are shown at the bottom right. (A) Merging two sets of independent P-values drawn 

from the uniform distribution. (B) Merging two sets of independent P-values drawn from the exponential 

distribution. (C) Merging of independent P-values drawn from uniform and exponential distribution. (D) Merging 

of two sets of correlated P-values drawn from the uniform distribution. (E) Merging two sets of correlated P-

values drawn the exponential distribution. Scatter plots indicate that DPM is more sensitive to weaker effects 

seen in a subset of genes with directional conflicts where one of the conflicting datasets is not supported by 

significant P-values, resulting in a lower penalty.   

  161 

Benchmarking directional P-value merging 162 

We evaluated our framework by simulating datasets of P-values for 10,000 genes and two 163 

experimental conditions. First, we simulated P-values from the uniform distribution that resulted 164 

in an expected fraction of significant P-values (i.e., 5% at P < 0.05), reflecting a dataset with no 165 

detectable biological signal. Second, we simulated P-values from an exponential distribution that 166 

resulted in an elevated fraction of significant P-values, reflecting a realistic omics dataset with 167 

some significantly detected genes or proteins (i.e., 25% at P < 0.05 or 1% at FDR < 0.05). To 168 

model various analysis scenarios, the P-values were then combined into a multi-omics dataset, 169 

either as two independent sets of P-values (Pearson r = 1.9 x 10-4) or two highly correlated sets 170 

of P-values (r = 0.97), reflecting the integration of two completely unrelated or related omics 171 
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datasets, respectively. We also varied the level of directional agreement of the two input omics 172 

datasets and included complete directional agreement, complete directional disagreement, and 173 

50% of directional agreement. We studied the resulting 15 simulated datasets by computing 174 

merged P-values using DPM and the modified Strube method and counting the number of 175 

nominally significant results at different significance thresholds.  176 

Analysis of simulated P-value datasets revealed the properties of DPM in various multi-omics 177 

analysis scenarios (Figure 2). When integrating two independent sets of P-values, DPM 178 

generated fewer significant results than the modified Strube method. For the negative control 179 

scenario of independently generated uniform P-values with full directional agreement, DPM 180 

retrieved an expected fraction of significant merged P-values (i.e., ~500 at P < 0.05) while two-181 

fold results more were found by the Strube method (Figure 2A), suggesting that the latter 182 

method may have more false-positive findings than DPM when independent P-values are 183 

merged. This was also apparent when integrating exponentially distributed independent P-values 184 

and at the 50% level of directional disagreement for correlated and independent P-values (Figure 185 

2B-C). As an exception, DPM found more significant results when integrating datasets with full 186 

directional disagreement. We studied this in detail by examining the distributions of merged P-187 

values relative to the two sets of input P-values. DPM prioritised genes with directional conflicts 188 

if one dataset showed a highly significant P-value while the other dataset only showed limited 189 

significance, collectively providing limited significance to the conflicting datasets. In contrast, 190 

the Strube9s method assigned more stringent directionality penalties to such genes, suggesting 191 

that DPM is more sensitive towards finding genes where the apparent directional disagreement is 192 

not supported by statistical significance.  193 

In contrast to independently generated input P-values, DPM and Strube methods showed very 194 

similar performance in merging highly correlated P-values (Figure 2D-E). Both methods found 195 

the expected fractions of significant merged P-values when integrating the negative control 196 

dataset of uniform P-values with full directional agreement. When analysing datasets with full 197 

directional disagreements, no significant P-values were found at any of the tested significance 198 

thresholds, indicating that both methods applied strong directional penalties were applied to all 199 

input P-values. Therefore, directional prioritisation or prioritisation of genes depends on the 200 

extent of correlation between the input omics datasets. In summary, this benchmarking exercise 201 

demonstrates that directional integration of multi-omics data using DPM is a statistically well-202 

calibrated approach to prioritise or penalise genes via user-defined constraints.  203 
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Figure 3. Directional integration of transcriptomics data from functional experiments of HOXA10-AS in 

GBM cells. (A) Integrating differential gene expression data from the lncRNA HOXA10-AS knockdown (KD) 

and overexpression (OE) experiments. DPM was configured to prioritise genes that showed different FC 

directions in KD and OE experiments and penalise the genes with consistent up- or down-regulation in the two 

experiments. (B) Scatter plot comparing integrated gene P-values from DPM (Y-axis) and the non-directional 

Brown method (X-axis). Significant genes from DPM are shown in blue (FDR < 0.05). Genes with directional 

agreement are shown along the diagonal while the genes penalised due to directional conflicts appear below the 

diagonal. Top right: examples of prioritised and penalised genes visualised as FDR and FC values of differential 

gene expression. (C) Venn diagram of enriched pathways found with directional (DPM) and non-directional 

(Brown) analyses (FWER < 0.05). (D) Enrichment map of HOXA10-AS target pathways and processes identified 

in the directional and non-directional analyses (FWER < 0.05). The network shows pathways as nodes that are 

connected by edges and grouped into subnetworks if the corresponding pathways share many genes. Node colour 

indicates the dataset contribution (KD, OE, both, or combined-only), and node sizes reflect the number of genes 

in each pathway. Node outlines show whether the pathways were found using DPM alone (i.e., directionally 

prioritised pathway; spiky edges), the non-directional method alone (i.e., directionally penalised pathways; dotted 

edges), or were found using both approaches (i.e., pathways with consistent directions; solid edges). (E) GO 
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processes related to cell migration and oxygen levels were penalised in the non-directional analysis due to 

inconsistent changes in KD and OE conditions. Asterisks indicate genes penalised due to directional conflicts.  

 204 

Integrative analysis of transcriptomic targets of the onco-lncRNA HOXA10-AS in glioma 205 

We then studied real omics datasets to evaluate the performance of DPM. First, we analysed our 206 

earlier transcriptomics dataset in which the oncogenic lncRNA HOXA10-AS was subject to either 207 

knockdown (KD) or overexpression (OE) in patient-derived glioblastoma (GBM) cells 25. To 208 

identify putative direct target genes and pathways of the lncRNA, we used the CV [KD = 1, OE 209 

= -1] that prioritised the genes with inverse FC directions in KD and OE experiments and 210 

penalised the genes with up-regulation or down-regulation in both experiments (Figure 3A). 211 

DPM revealed 946 significant genes with the specified directional agreements (FDR < 0.05) 212 

(Figure 3B, Table S1). On the other hand, we found 640 genes that were significant in the 213 

reference non-directional analysis (FDR < 0.05); however, these were penalised when directional 214 

constraints were accounted for in DPM. Among prioritised genes, CPED1 was a top result found 215 

by DPM (FDR = 8.2 x 10-4) as it was significantly upregulated in the HOXA10-AS KD 216 

experiment and downregulated in the OE experiment (Figure 3B), indicating a potential negative 217 

regulatory target of HOXA10-AS. CPED1 encodes a cadherin and a putative tumor suppressor 218 

gene in lung cancer 29. The tumor suppressor gene FAT1 was prioritised due to significant up-219 

regulation in HOXA10-AS OE and no significant change in KD, exemplifying another mode of 220 

gene prioritisation in DPM. FAT1 encodes a cadherin protein that is frequently mutated in cancer 221 

and contributes to cell proliferation, migration, and invasion 30,31, which are hallmarks of 222 

advanced glioma. COL25A1 was a top directionally penalised gene due to significant 223 

upregulation in KD and OE experiments (FDRDPM = 0.24, FDRBrown = 1.7x10-4) (Figure 3B). 224 

COL25A1 encodes a brain-specific membrane-associated collagen protein that binds amyloid 225 

beta-peptides 26. Other notable directionally penalised genes included NEGR1, a neuronal growth 226 

regulator, and CACNA1H, a calcium voltage-gated channel, that are involved in neuronal 227 

development and cell adhesion, respectively 27,28. 228 

Directional pathway analysis using DPM revealed 138 enriched GO processes and Reactome 229 

pathways (ActivePathways with DPM, family-wise error rate (FWER) < 0.05) (Figure 3C-D, 230 

Table S2-3) while the reference non-directional analysis found 219 pathways and processes 231 

(ActivePathways with Brown, FWER < 0.05). A third of the enriched pathways from the non-232 

directional analysis (87/219), including cell death, cell motility, brain development, and oxygen 233 

response, were excluded by DPM due to directional disagreements in related genes. For example, 234 

the GO process of ameboidal-type cell migration found in the non-directional analysis included 235 

37 differentially expressed genes (FWER = 7.3 x 10-4). Eight genes showed directional 236 

disagreements as these were either upregulated or downregulated in both KD and OE 237 

experiments (WNT11, SEMA3E, APOE, HAS2, EFNB1, ITGA2, DPP4, RHOJ) (Figure 3E). 238 

Deprioritising these genes using DPM led to the loss of pathway enrichment. Similarly, four 239 

oxygen-related processes were lost, such as the GO process describing response to oxygen levels 240 
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(FWER = 0.0012), in which 6/23 genes had directional disagreements (Figure 3E). On the other 241 

hand, six pathways were only found by DPM, such as vesicular transport, RAB 242 

geranylgeranylation, TGFB signalling, muscle development, DNA replication, and phospholipid 243 

biosynthesis, were prioritised through directional information of the pathway genes.  244 

This analysis demonstrates the integration of transcriptomic data from two transcriptomic 245 

profiles resulting from opposite functional interventions. Genes and pathways with the expected 246 

opposite directional changes in KD and OE experiments may include direct regulatory targets of 247 

the HOXA10-AS lncRNA that confers phenotypes of advanced glioma 25. On the other hand, the 248 

penalised genes and pathways with directional disagreements may be regulated indirectly by 249 

HOXA10-AS through feedback loops or post-transcriptional mechanisms that cannot be measured 250 

directly in the omics data we have. However, we can easily prioritise such indirect targets using 251 

our method by defining an alternative CV [+1, +1] that selects the genes with matching FCs in 252 

KD and OE experiments (Figure S1), demonstrating the flexibility of our approach. Integrating 253 

the directional associations of omics data from functional experiments improves the resolution of 254 

gene prioritisation and pathway enrichment analysis.  255 
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Figure 4. Integrating cancer transcriptomes and proteomes with patient survival information for pathway 

and biomarker analyses. (A) Analysis workflow. mRNA (R) and protein (P) levels for each gene were 

separately associated with patient overall survival (OS) for ten cancer types in CPTAC using clinical covariates 

(patient age, patient sex, tumor stage). P-values and hazard ratio (HR) values of mRNA and protein levels 

retrieved from Cox-PH survival regression models were used for gene prioritisation and pathway analysis. The 

CV prioritised genes that showed consistent OS associations with transcript and protein levels (i.e., both positive 

or both negative) while genes with opposite OS associations were penalised. (B) Multi-omics survival 

associations in ovarian cancer (OV). Directionally prioritised merged P-values of genes from DPM (Y-axis) and 
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non-directional P-values from the reference Brown method (X-axis) are shown. Significant genes from DPM are 

shown in blue (P < 0.05). Genes along the diagonal have consistent OS associations while the penalised genes 

with directional disagreements appear below the diagonal. (C) Top 100 genes prioritised or penalised by DPM 

are associated with patient survival with respect to mRNA and protein expression levels and plotted as log-scale 

HR values. Respective HR values for the same gene are connected by lines. For prioritised genes, both transcript 

and protein levels associate with higher log-HR (left) or lower log-HR values (middle) reflecting higher or lower 

patient risk. In, contrast, penalised genes on the right show inconsistent HR values such that lines connecting 

mRNA- and protein-level associations cross zero. (D) Examples of top genes prioritised or penalised by survival 

associations of mRNA and protein expression in ovarian cancer shown as Kaplan-Meier plots. ACTN4 (top): high 

mRNA and high protein levels consistently associate with worse prognosis. PIK3R4 (bottom): mRNA and protein 

levels show inconsistent associations with OS. Covariate-adjusted P-values from Cox-PH models and ANOVA 

are shown. (E) Scatterplots of mRNA and protein expression of ACTN4 and PIK3R4 in OV explain the OS 

associations in panel D. Spearman correlation coefficients and P-values are shown. (F) Enriched pathways found 

in genes with OS associations with mRNA and protein levels using directional and non-directional data 

integration (ActivePathways, FDR < 0.05). Venn diagram shows the pathways prioritised or penalised by 

directional analysis. (G) Enrichment map of pathways and processes with OS associations in transcriptomics and 

proteomics data in OV (FDR < 0.05). The network shows pathways as nodes that are connected by edges and 

grouped into subnetworks if the corresponding pathways share many genes. (H) The GO process of 

mitochondrial translation was penalised in the directional analysis due to inconsistent associations. Genes with 

inconsistent OS associations of mRNA and protein expression are indicated by asterisks.  

 256 

Multi-omics discovery of prognostic biomarkers in transcriptomes and proteomes of 257 

ovarian cancer 258 

Next, we integrated cancer transcriptomics and proteomics data from a heterogeneous cancer 259 

cohort to associate genes and pathways with patient overall survival (OS) in ten cancer types and 260 

1,140 cancer samples from the CPTAC project 32,33 (Figure 4A, Table S4). First, we asked 261 

which genes significantly associated with OS at the transcript or protein expression level using 262 

Cox proportional-hazards (PH) regression with clinical covariates of patient age, sex, and tumor 263 

stage. P-values and hazard ratios (HR) for transcript- and protein-level OS associations were 264 

integrated using DPM such that genes with consistent OS associations were prioritised while 265 

those with inconsistent associations were penalised (i.e., [RNA = 1, protein = 1]). Ten cancer 266 

types were analysed separately (Figure S3).  267 

We focused on the ovarian cancer (OV) cohort with 169 serous cystadenocarcinoma samples. 268 

DPM identified 907 genes with consistent survival associations between mRNA and protein 269 

levels (PDPM < 0.05) (Figure 4B, Table S5). Compared to a reference non-directional analysis, 270 

192 genes were penalised due to inconsistent survival associations (PBrown < 0.05). We examined 271 

the survival associations of individual genes to explain the directional integration. Significant 272 

genes identified by DPM comprised two groups with either positive or negative OS associations, 273 

while the genes penalised by DPM showed both types of associations (Figure 4C). ACTN4, the 274 

most significant prioritised gene (PDPM  = 5.4 x 10-9), encodes a cytoskeletal actin-binding protein 275 

and a well-known oncogene linked to an invasive phenotype and poor prognosis in ovarian 276 

cancer 34,35. This is confirmed in our analysis: higher transcript and protein expression of ACTN4 277 
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associated with poor prognosis in OV (Figure 4D), and ACTN4 mRNA and protein levels were 278 

expectedly highly correlated (Spearman Ã = 0.75, P < 2.2 x 10-16) (Figure 4E). In contrast, the 279 

top penalised gene PIK3R4 showed inconsistent OS associations: higher transcript expression 280 

associated negatively with OS while higher protein expression associated positively, and no 281 

significant correlation in transcript and protein expression was apparent (Figure 4D-E). PIK3R4 282 

encodes a regulatory kinase subunit in the PI3K/AKT pathway that regulates cell growth, 283 

motility, survival, metabolism, and angiogenesis 36,37. Inconsistent expression and survival 284 

associations of PIK3R4 suggest the activity of additional modes of regulation that likely remain 285 

masked in these transcriptomics and proteomics datasets.  286 

Pathway analysis with DPM revealed 170 significant pathways and processes with multi-omics 287 

survival associations (ActivePathways FDR < 0.05), including major functional themes of 288 

proliferation, focal adhesion, cell motility, immune cell activity, development, and signalling 289 

pathways such as Hedgehog, Notch, and NFKB (Figure 4F-G, Table S6-7). Compared to a 290 

reference non-directional analysis, DPM penalised pathways due to directional disagreements in 291 

pathway genes in which inverse associations with OS in transcript and protein expression were 292 

found. Biological processes of protein translation and degradation, RNA modifications, and 293 

mitochondrial function were deprioritised using DPM. This agrees with previous reports that 294 

indicated low correlations of transcript and protein expression levels in such genes 32,38,39. For 295 

example, the non-directional pathway analysis found the enriched process mitochondrial 296 

translation, however, it was penalised in the directional analysis with DPM since a large fraction 297 

of the pathway genes (8/33) had inconsistent OS associations in transcriptomics and proteomics 298 

data (Figure 4H). This analysis demonstrates how our directional multi-omics approach can 299 

integrate clinical information to discover biomarkers and biological mechanisms in 300 

heterogeneous datasets of patient cancer samples.  301 

 302 
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Figure 5. Directional integration of transcriptomics, proteomics, and DNA methylation data to 

characterise the molecular phenotype of IDH1-mutant gliomas. (A) Overview of analysis. We compared 

IDH1-wildtype and IDH1-mutant gliomas by integrating differential transcript and protein expression and 

promoter DNA methylation using DPM. The CV defined directional associations between the input datasets: 

mRNA (R) and protein (P) expression levels associated negatively with DNA promoter methylation (M), as a 

repressive regulatory mechanism while mRNA and protein levels associated positively with each other. (B) Venn 

diagrams of significant genes found separately in the three datasets (FDR < 0.1). Downregulated genes (bottom 

left) show reduced mRNA and protein expression and increased promoter methylation, and upregulated genes 

show decreased promoter methylation and increased expression (top right). (C) Scatter plot of directionally 

prioritised and penalised genes with integrated gene P-values from DPM (Y-axis) and non-directional Brown P-

values (X-axis). Significant genes from DPM are shown in blue (FDR < 0.05). Genes with consistent multi-omics 

signals according to the CV are shown on the diagonal, while the 201 genes below the diagonal have directional 

disagreements. (D) Heatmap of significant genes that were either prioritised or penalised by DPM. The genes 
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were selected stringently using non-directional P-value merging (Brown, FDR < 0.001) and labelled based on 

DPM as directionally penalised (orange) or prioritised (teal). As expected, prioritised genes were often 

characterised by high promoter methylation consistently with reduced mRNA and protein expression. Penalised 

genes often had high promoter methylation and elevated transcript or protein expression that is inconsistent with 

the CV. Known cancer genes are labelled. (E) Venn diagram of enriched pathways from the directional and non-

directional analyses (ActivePathways, FWER < 0.05). DPM and Brown methods were used for gene 

prioritisation, respectively. (F) Enrichment map of pathways and processes representing the multi-omics 

phenotype of IDH1-mutant GBM. The network shows pathways as nodes that are connected by edges if the 

corresponding pathways share many genes. Groups of pathways lost or gained in the directional analysis are 

grouped on the right. (G) The gliogenesis process is significantly detected in the directional analysis and remains 

undetected in the non-directional analysis. Multiple genes involved in gliogenesis show significant and 

directionally consistent changes in the three omics datasets that collectively prioritise this process via DPM. 

Pathway genes with significant multi-omics signals are shown with FDR and FC values.  

 

 303 

Integrating DNA methylation with transcriptomic and proteomics data to dissect molecular 304 

phenotypes of IDH1-mutant gliomas 305 

Lastly, we integrated DNA methylation, transcriptomics, and proteomics datasets available in 306 

TCGA and CPTAC 33,40 using an extended design of positive and negative directional 307 

associations between the three data modalities. DNA methylation of gene promoters is a known 308 

repressive epigenetic mechanism that often correlates with reduced gene expression; therefore, 309 

we can obtain more accurate maps of gene and pathway modulation by inversely associating it 310 

with transcript and protein expression (Figure 5A). We studied this in detail in the TCGA GBM 311 

cohort by comparing subsets of glioma samples based on the mutation status of IDH1. IDH1 312 

encodes isocitrate dehydrogenase 1, a well-established molecular marker of glioma that indicates 313 

lower-risk disease 41. First, we analysed differential transcript and protein expression and DNA 314 

promoter methylation of the molecular phenotype of IDH1-mutant glioma and compared the 315 

resulting lists of significant genes. Differential analyses of DNA methylation and transcript 316 

expression contributed the most significant genes, perhaps reflecting the hypermethylation 317 

phenotype of IDH1 mutant gliomas 42 (Figure 5B, Table S8). However, only few genes (32) 318 

were found as significant across all three datasets, and the overlaps were even smaller when 319 

considering up-regulated and down-regulated genes separately. This highlights opportunities for 320 

directional analysis with DPM that combines significance and FC values for gene prioritisation.   321 

We performed a directional analysis of the multi-omics dataset by prioritising inverse 322 

associations of promoter methylation levels with direct associations of protein and transcript 323 

levels using the CV [methylation = +1, mRNA = -1, protein = -1] (Figure 5A). This revealed 324 

1138 significant genes (FDR < 0.05, Figure 5C, Table S8), while 201 additional genes were 325 

penalised due to directional conflicts, compared to the reference non-directional analysis 326 

(Brown, FDR < 0.05).  The directionally prioritised genes were often driven by high promoter 327 

methylation and reduced transcript and protein expression that is consistent with the IDH1 328 
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hypermethylator phenotype. In contrast, the genes penalised by DPM often showed higher 329 

promoter methylation combined with upregulation at the transcript or protein level (Figure 5D), 330 

potentially due to additional post-transcriptional or post-translational regulation that we could 331 

not detect reliably. We found 98 known cancer-associated genes using DPM (FDR < 0.05), of 332 

which 26 (27%) were consistently regulated between the three datasets. Pathway enrichment 333 

analysis of the directionally prioritised genes revealed 72 pathways and processes (FWER < 334 

0.05, ActivePathways, Table S10), while 33 pathways identified through a non-directional 335 

reference analysis were penalised by DPM (Figure 5E, Table S9). DPM penalised biological 336 

processes and pathways that appear to be less relevant to glioma biology, such as the muscle 337 

organ development process found in the non-directional reference analysis (Figure 5F). Many 338 

significant genes in the pathway showed directional disagreements (80/195) and were therefore 339 

penalised by DPM. Encouragingly, some processes relevant to glioma biology were only found 340 

in the directional analysis, such as the process of gliogenesis that defines IDH1-mutant gliomas 341 
43 (FWER = 0.0207) (Figure 5G). As expected, several genes involved in gliogenesis showed 342 

significant and directionally consistent changes in IDH1-mutant gliomas. For example, the 343 

transcription factor OLIG2 that regulates glial fate and gliomagenesis 45 was upregulated in 344 

IDH1-mutant gliomas at the mRNA and protein level, while the oncogenic receptor tyrosine 345 

kinase ERBB2 that associates with cell survival and proliferation in various cancer types 44 was 346 

inhibited through the three data modalities. In summary, this case study demonstrates the use of 347 

DPM in analysing complex multi-omics datasets for fundamental and translational insights.  348 

 349 

DISCUSSION 350 

We describe a data fusion algorithm that applies user-defined constraints for directional gene 351 

prioritisation and pathway enrichment analysis in multi-omics datasets. The method is broadly 352 

applicable to various analytical workflows and experimental designs as it relies only on 353 

appropriately derived P-values and directional information for all genes. Further, datasets with 354 

and without directional information can be analysed jointly. We demonstrate our method by 355 

analysing multi-omics datasets of experimental systems and heterogeneous patient cohorts where 356 

we encode various directional constraints to capture direct and inverse associations of genes and 357 

proteins and pathways. We can also integrate patient clinical information to enable discovery of 358 

candidate biomarkers and explore the molecular phenotypes of high-risk disease. A notable 359 

limitation of our approach is that directional constraints only provide simplified representation of 360 

cellular logic. For example, transcript and protein levels are not always correlated due to 361 

additional control mechanisms such as post-translational modifications, protein-protein 362 

interactions, alternative splicing, or feedback loops, for which comprehensive molecular data are 363 

often not available. Limited transcript-protein correlations have been described in protein 364 

translation, mRNA splicing, oxidative phosphorylation, electron transport chain, and other 365 

housekeeping processes 32,38,39,46. However, our method remains valid given the underlying 366 
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assumptions. Inverted directional constraints can be used provide further insights: for example, 367 

one can map genes and pathways whose transcript and protein levels are inversely associated to 368 

study their additional control mechanisms. Thus, the directional constraints provide a useful tool 369 

for more accurate hypothesis testing in integrative multi-omics analyses. 370 

Our generic framework is broadly applicable as it makes only a few assumptions about input 371 

data. First, accurate upstream data processing is essential for directional multi-omics analyses. 372 

Different omics platforms require dedicated preprocessing methods to identify statistically 373 

significant signals and account for intrinsic biases. Second, our method relies on accurately 374 

computed P-values, which need to be well calibrated and comparable between the input datasets. 375 

Third, we only use discrete directional information to reflect increases or decreases in gene or 376 

protein activity. Examples include signs of log-transformed fold-changes from differential 377 

expression analyses, coefficients from correlation or regression analyses, and hazard ratios from 378 

survival analyses. We use discrete directional information as a simple and robust approach that 379 

can be adapted to various designs such as case-control comparisons, time series, and cluster 380 

analysis and we assume that P-values reflect the strength directional information appropriately. 381 

In contrast, numeric directional values would be error-prone as effect sizes of various omics 382 

platforms are not comparable directly. Fourth, genes, proteins, transcripts, sites in non-coding 383 

DNA, and other elements measured in multi-omics datasets need to be mapped to a common 384 

namespace of genes, requiring additional work and compromises in dataset annotation. Lastly, 385 

we envision several areas of future work. Our current method is designed for analysing bulk 386 

omics datasets and single-cell datasets in common workflows that integrate across a relatively 387 

small number of omics profiles or clusters. More work is needed to ensure the scalability of our 388 

method to large numbers of multi-omics profiles. Second, our pathway analysis currently uses a 389 

simplified representation of molecular pathways and biological processes collapsed into gene 390 

sets, however, future data fusion approaches designed for molecular interaction networks can 391 

provide complementary insights to gene function and interactions in multi-omics data. In 392 

summary, directional multi-omics analysis for gene prioritisation and pathway analysis enables 393 

mechanistic and translational insights by focusing on understudied intersections of complex 394 

omics datasets.  395 

 396 

  397 
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METHODS 398 

Directional P-value merging (DPM). To integrate multiple omics datasets through gene P-399 

values and directional information, we implemented or repurposed directional extensions to four 400 

P-value merging strategies: the methods by Fisher, Brown, Stouffer, and Strube. The methods by 401 

Brown and Strube were extended based on the methods by Fisher and Stouffer, respectively, to 402 

account for the covariation of gene P-values across input datasets. All methods assume that the 403 

P-values are uniformly distributed under the null hypothesis and are well calibrated. Covariation-404 

adjusted methods account for dependencies in the P-value distributions and thereby provide more 405 

conservative merged P-values. As omics datasets include biological dependencies, covariation-406 

adjusted methods are usually more appropriate for this type of analysis.  407 

The Fisher9s method for merging P-values 47,48 assumes independent P-values are used as input. 408 

It collapses � P-values �$ to a score XF that is a sum of log-transformed P-values. The score XF is 409 

transformed into a merged P-value P9F  through the cumulative Ç2 distribution with 2� degrees of 410 

freedom: 411 

�, = 22	£$%&) ln(�$), 412 

�,* = 1 2	�+(�, , 2�). 413 

The Brown9s method 20 extends the Fisher9s method to account for P-value covariation in input 414 

datasets by approximating the score �, from the Fisher9s method using a scaled �+ distribution. 415 

The scaling factor � and the updated degrees of freedom �* are derived as � = -./[1]

+3[1]
 and �* =416 

+(3[1])!

-./[1]
, respectively. The expected value and variance of the scaled distribution are derived as 417 E[��+(�*)] = ��* and Var[��+(�*)] = 2�+�*, respectively. The merged Brown P-value P9B is 418 

computed as a sum of log-transformed P-values from the cumulative scaled Ç2 distribution with 419 

the scaling factor c and degrees of freedom k9, as  420 

�6 =	22	£$%&) ln(�$), 421 

�26 = 1 2	�+ 3�6� , �*7. 422 

The empirical Brown9s method (EBM) estimates the expected value and variance from the input 423 

datasets non-parametrically 19. We used EBM here and refer to it as Brown9s method.  424 

To incorporate directionality to the Fisher9s method, we jointly analyse the directional 425 

information with the observed gene direction �$ and the expected gene direction �$ in each 426 

dataset �. For example, in differential gene expression analyses of two conditions relative to a 427 

control condition, �$ would be the sign of the fold-change of a gene in condition i, and �$ would 428 
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be the expected relative directional agreement of the two conditions. Both �$ and �$ adopt the 429 

values of +1, -1 and 0. The constraint vector (CV) [+1, +1] prioritises genes with consistent fold-430 

change directions across two conditions and is functionally equivalent to the CV [-1, -1] in our 431 

method. Alternatively, the CV [+1, -1] or the CV [-1, +1] can be used interchangeably to 432 

prioritise genes with opposite fold-change directions across two conditions. Values of zero are 433 

used for both �$ and �$ to define datasets where the user intends to not encode directional 434 

information, for example acquiring P-values from a gene mutational burden test. The directional 435 

coefficients are incorporated in P-value merging to sum log-transformed P-values, as 436 

�!"# = 		2	|	£$%&
' 	ln(�$)	�$ 	�$ 	| +	22	£$%'(&) 	ln(�$)		. 437 

Here, the datasets (1, 2, &, �) have defined directional information available while the datasets 438 

(�+1, �+2, &, �) do not. This approach permits analyses of mixed directional and non-directional 439 

datasets. If either directional or non-directional datasets are not included in the analysis, then the 440 

left or right sum is omitted, respectively. Intuitively, directional agreements increase the sums of 441 

log-transformed P-values that lead to increased significance of the merged P-value, while 442 

directional disagreements reduce the sums. The absolute function is used to ensure that the CV is 443 

globally sign invariant (i.e., [-1,1] c [1,-1] and [1,1] c	 [-1,-1]). An example is shown in Figure 444 

S2. Finally, a scaled cumulative �+ distribution is computed from Brown9s method to obtain the 445 

merged P-values directionally as 446 

�!"#* 	= 1 2	Ç+ 3&
,
�!"# , �*6. 447 

This method is referred to as DPM (directional P-value merging) and is used throughout our 448 

study. 449 

In addition to the above, we implemented a directional extension of the METAL method 49 that 450 

extends Stouffer9s method 21 for meta-analysis of GWAS studies. Each study has a direction of 451 

effect that reflects the impact each allele has on the observed phenotype. This observed 452 

directional term, �$, can either be positive (+1), reflecting an increase in the observed phenotype, 453 

or negative (-1), reflecting a decrease. Directional Stouffer9s method introduced by METAL 454 

converts P-values from � independent tests into Z-scores using the inverse of the standard 455 

normal cumulative distribution function §7&	as	 456 

�# = 	3 §7&)
$%& G�$2H �$:� . 457 

The merged P-values are generated through the standard normal cumulative distribution 458 

function, as 	�#* = 	2§(2|�#|). To account for P-value dependencies, Strube9s extension to 459 

Stouffer9s method 22 leads to more conservative significance estimates by incorporating the 460 

overall covariation of P-values in input datasets 22, similarly to Brown9s extension of the Fisher9s 461 
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method. We implemented a directional extension of Strube9s and Stouffer9s methods similarly to 462 

METAL as 463 

�8 = J
	3 §7&'

$%& G�$2H �$�$K� J +	
	3 §7&)

$%'(& G�$2HK� 2 (� + 1) 	. 464 

Here, Z scores are acquired for the directional datasets (1, 2, &, �) separately from the non-465 

directional datasets (�+1, �+2, &, �) and then each term is combined before calculating a merged 466 

P-value, similarly to DPM above.  467 

DPM is available as part of the ActivePathways R package in the CRAN repository 468 

(https://cran.r-project.org/web/packages/ActivePathways/index.html). 469 

Evaluating DPM using simulated and real datasets. We compared DPM and the modified 470 

Strube9s method using simulated datasets. The simulated datasets were constructed by generating 471 

two sets of 10,000 randomly sampled P-values. First, we created two sets of input P-values 472 

independently of each other (IND). Uniformly distributed P-values PU were generated by 473 

sampling Z-scores from the normal distribution (¿ = 0, Ã = 1) and transforming these to P-values 474 

relative to the normal distribution (¿ = 0, Ã = 1). Exponentially distributed P-values PE were 475 

generated by sampling Z-scores from the normal distribution (¿ = 1, Ã = 1) and transforming 476 

these to P-values relative to (¿ = 1, Ã = 1), resulting in an exponential-like distribution that was 477 

over-represented in significant P-values (i.e., ~25% with P < 0.05). Second, we generated the 478 

two sets of input P-values such that the P-values were positively correlated with each other 479 

(COR), by first creating one set of Z-scores as described above (i.e., representing either PU or PE) 480 

and then adding normally distributed noise (¿ = 1, Ã = 0.2) to these Z-scores prior to P-value 481 

transformation to obtain the second, correlated set of P-values. Spearman correlations of the two 482 

sets of P-values were computed. In total, five simulated datasets of P-values were generated: 483 

IND(PU, PU), IND(PE, PE), COR(PU, PU), COR(PE, PE), and IND(PU, PE). We then merged the 484 

simulated P-values with directional information in three different configurations: all P-values 485 

having directional agreement with the constraints vector, all P-values having directional 486 

disagreement, and half of P-values having directional disagreement and half having directional 487 

agreement. In the latter case, directional disagreement was assigned randomly using the binomial 488 

distribution. Using the resulting 15 configurations of simulated data, we performed directional 489 

merging of P-values and counted the numbers of nominally significant merged P-values from 490 

DPM and modified Strube methods at different significance thresholds (P < (0.2, 0.1, 0.05, 491 

0.01)). 492 

 493 
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Integration of transcriptomics datasets from functional experiments of the HOXA10-AS 494 

lncRNA in GBM cells. We analysed the genes and pathways prioritised by directional 495 

integration of transcriptomic data from HOXA10-AS knockdown (KD) and overexpression (OE) 496 

experiments in GBM cells from our earlier study 25. We used the CV [KD = -1, OE = 1] to 497 

prioritise genes with opposite FCs in the two experiments to account for the inverse modulation 498 

of the HOXA10-AS lncRNA in the knockout and overexpression experiments. DPM was 499 

compared to the non-directional analysis using Brown9s P-value merging. For DPM, we used 500 

gene FDR values and FC values for 12,996 protein-coding genes from the original study that 501 

filtered previously to exclude very lowly expressed genes. Gene sets of biological processes of 502 

Gene Ontology (GO) 2 and molecular pathways of Reactome 3 were downloaded from the 503 

g:Profiler website 50 on March 27, 2023. We limited the analysis to gene sets of 10 to 750 genes. 504 

The statistical background set included all protein-coding genes. Statistically significant 505 

pathways were selected after the default multiple testing correction in ActivePathways (FWER < 506 

0.05). Significantly enriched pathways from the directional and non-directional analyses were 507 

merged and visualised as an enrichment map 24 in Cytoscape using standard protocols 1. 508 

Subnetworks were manually organised as functional themes of related pathways. Significant 509 

genes in individual pathways were visualised as dot plots with FC and FDR values and cancer 510 

genes of the COSMIC Cancer Gene Census database 51 were highlighted separately. 511 

 512 

Integration of survival information with transcriptomics and proteomics data in CPTAC. 513 

We integrated quantitative proteomic and transcriptomic data of cancer samples with patient 514 

survival information obtained from the CPTAC project release 3 10 and TCGA PanCanAtlas 515 

dataset 7 that included 1,140 cancer samples of ten cancer types: pancreatic, ovarian, colorectal, 516 

breast, kidney, head & neck, and endometrial cancer, two subtypes of lung cancer, and brain 517 

glioblastoma (Table S4). We used the combined dataset assembled by Zhang et al. (2022) 32 that 518 

included transcriptomics data for 15,424 genes and proteomics data for approximately 10,000 519 

genes that varied between cancer types. We used previously processed transcriptomics and 520 

proteomics datasets in which transcripts and proteins were measured as standard deviations from 521 

median values in the cohorts 32. First, we derived directional information from transcript or 522 

protein associations with overall survival (OS) based on median dichotomisation of transcript or 523 

protein expression. Two Cox proportional-hazards (PH) regression models H0 and H1 were used 524 

separately for transcript and protein levels for each gene and in each cancer type. The null Cox-525 

PH model H0 only included clinical covariates as predictors of OS. The alternative Cox-PH 526 

model H1 used transcript or protein expression level together with common clinical covariates 527 

(patient age, patient sex, tumor stage) as predictors of OS. ANOVA analysis comparing the fits 528 

of the models H0 and H1 using a chi-square test was conducted to derive P-values and HR 529 

values reflecting transcript- and protein-level OS associations. Second, the directional integration 530 

with DPM was conducted using a matrix of transcript and protein P-values from the ANOVA 531 

analyses and as directional information the corresponding log-transformed HR values were used. 532 
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A non-directional analysis was conducted using the Brown9s method as reference. To handle 533 

missing values in the data, genes that had fewer than 20 patients with transcriptomic, proteomic, 534 

or clinical information were not analysed and were assigned insignificant values (P = 1, log2HR 535 

= 0) in the final input matrices. The CV [RNA = +1, protein = +1] was used to prioritise the 536 

genes for which transcript and protein levels associate with OS either positively or negatively, 537 

while the genes showing a positive OS association with transcript and a negative association with 538 

protein expression (or vice versa) should be penalised. Integrative pathway enrichment analysis 539 

was performed in the ovarian cancer (OV) dataset similarly to the HOXA10-AS dataset described 540 

above. We compared the pathway enrichment results between the gene lists prioritised by DPM 541 

and as reference, the gene lists prioritised using the non-directional Brown9s method. The 542 

background set for pathway analysis included 9,064 genes for which both transcriptomic and 543 

proteomic measurements were available. Significant pathways were selected using the more 544 

sensitive FDR correction (FDR < 0.05) instead of the default correction Holm FWER method in 545 

ActivePathways to account for reduced statistical power of OS associations in heterogeneous 546 

datasets of cancer patients.  547 

 548 

Integrative analysis of IDH1-mutant GBMs using transcriptomics, proteomics, and DNA 549 

methylation data. We integrated three data modalities with multi-directional constraints: 550 

transcriptomics (RNA-seq), quantitative proteomics (isobaric label quantitation analysis with 551 

orbitrap), and DNA methylation (CpG Illumina 450k microarray). We studied genes and 552 

pathways differentially regulated in a subset of gliomas categorised as glioblastomas (GBMs) 553 

that carry a specific missense mutation (R132H) in the IDH1 gene, a prognostic marker of lower-554 

risk gliomas. We included transcriptomics and DNA methylation datasets from TCGA 52 and 555 

proteomics data from CPTAC-3 53. GBMs with IDH1 R132H mutations were identified from the 556 

Genomic Data Commons (GDC) web portal using their TCGA patient IDs 54. First, we 557 

performed differential analyses of transcriptomics, methylation, and proteomics datasets by 558 

comparing subsets of GBMs based on their IDH1 mutation status. We limited the analyses to 559 

10,902 genes for which all three data types were available. Transcriptomics data were 560 

downloaded as gene read counts of transcripts per million (TPM) values using the TCGAbiolinks 561 

R package 55 (May 9th, 2023). We compared the transcriptomes of 7 IDH1-mutant (IDH1 562 

R132H) GBMs and 166 IDH-wildtype GBMs. One GBM sample with a different IDH1 mutation 563 

(R132G) was excluded from all analyses. A differential gene expression analysis of IDH1-564 

mutant vs. wildtype GBMs was performed non-parametrically using Mann-Whitney U-tests. The 565 

resulting P-values for genes were corrected for multiple testing using the Benjamini-Hochberg 566 

FDR method. DNA methylation data were downloaded using TCGAbiolinks 55 for 6 IDH1-567 

mutant GBMs and 149 IDH1-wildtype GBMs as beta values measuring CpG site methylation. 568 

We limited the analysis to CpGs in gene promoters using Human EpicV2 annotations 56. For 569 

each gene, we calculated the mean beta value across the CpG probes in its promoter and 570 

conducted a differential methylation analysis of the mean values in IDH1-mutant vs. IDH1-571 
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wildtype GBMs using Mann-Whitney U-tests. P-values were corrected for multiple testing using 572 

FDR. Genes with significant but small fold-changes in differential methylation (absolute log2-573 

FC < 0.25) were soft-filtered by assigning insignificant P-values (P = 1). Proteomics data for 574 

GBMs was retrieved from the CPTAC-3 project and the dataset processed by Zhang et al. (2022) 575 
32. GBMs carrying IDH1 R132H mutations were identified in GDC using CPTAC-3 IDs 54. 576 

Significant proteome-wide differences in 6 IDH1-mutant GBMs (IDH1 R132H) relative to 92 577 

IDH1-wildtype GBMs were evaluated using Mann-Whitney U-tests and P-values corrected for 578 

multiple testing using FDR. Gene- and pathway-based multi-omics data integration of the IDH1-579 

mutant GBM analysis was performed similarly to the analyses above. The P-values from 580 

transcriptomic, methylation, and proteomic data were merged using DPM and the Brown method 581 

as a reference. Unadjusted P-values and log2-transformed FC values were used for data 582 

integration. The CV was defined as [mRNA = -1, protein = -1, methylation = +1] to prioritise 583 

genes with positive associations between transcriptomic and proteomic values and negative 584 

associations with DNA methylation in promoters, assuming that high promoter methylation is a 585 

repressive gene-regulatory signal that inversely associates with gene expression at the transcript 586 

and protein level, while transcript expression directly associates with protein expression. An 587 

integrative pathway enrichment analysis was performed similarly to the analyses described 588 

above. The statistical background set for the pathway analysis included 10,902 genes. Significant 589 

pathways were selected using ActivePathways using default thresholds (Holm FWER < 0.05). 590 

Genes with significant differences in the three datasets were studied using hierarchical clustering 591 

and visualised as a heatmap. For the heatmap, unadjusted P-values from the three datasets were 592 

merged non-directionally using Brown9s method, corrected for multiple testing using FDR, and 593 

filtered for significance using a stringent cut-off (FDR < 0.001). Complete hierarchical clustering 594 

was performed using a Euclidean distance metric on directional gene scores (i.e., -log10(FDR) x 595 

sign(log2FC)). Using P-value integration from DPM and the non-directional Brown merging, we 596 

categorised the selected genes as either showing or lacking directional agreement between the 597 

three omics datasets. Known cancer genes from the COSMIC Cancer Gene Census database 51 598 

were labelled in the heatmap.  599 

  600 
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SUPPLEMENTARY MATERIAL 618 

Supplementary tables: 619 

Table S1. Differentially expressed genes in patient-derived GBM cells from the HOXA10-AS 620 

lncRNA knockdown (KD) and overexpression (OE) experiments. 621 

Table S2. Non-directional analysis of enriched pathways in HOXA10-AS KD and OE 622 

experiments using the Brown's method. 623 

Table S3. Directional analysis of enriched pathways in HOXA10-AS KD and OE experiments 624 

using DPM. 625 

Table S4. Cancer samples with matching transcriptomics and proteomics data in the CPTAC and 626 

TCGA datasets. 627 

Table S5. Associations of protein and transcript expression levels with patient overall survival 628 

(OS) in ovarian cancer. 629 

Table S6. Non-directional analysis of enriched pathways with OS associations in transcript and 630 

protein expression levels in ovarian cancer using the Brown's method. 631 

Table S7. Directional analysis of enriched pathways with OS associations in transcript and 632 

protein expression levels in ovarian cancer using DPM. 633 

Table S8. Differential protein and transcript expression, and DNA methylation of IDH1-mutant 634 

gliomas relative to IDH1-wildtype gliomas.  635 

Table S9. Non-directional pathway enrichments in IDH1-mutant gliomas derived using the 636 

Brown's method. 637 

Table S10. Directional pathway enrichments in IDH1-mutant gliomas derived using DPM. 638 

 639 

Supplementary figures: 640 

Figure S1. Directional integration of HOXA10-AS transcriptomics data that prioritises genes and 641 

pathways with matching changes in knockdown (KD) and overexpression (OE) experiments. 642 

Figure S2. A minimal example of merging P-values with directional information across three 643 

datasets.  644 

Figure S3. Integrating transcriptomic and proteomic signals with cancer patient survival 645 

information for prognostic biomarker discovery and pathway analysis in 10 cancer types. 646 
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