

Tuning of liver circadian transcriptome rhythms by thyroid hormone state in male mice

Leonardo Vinícius Monteiro de Assis^{1*}, Lisbeth Harder^{1,2*}, José Thalles Lacerda³, Rex Parsons⁴, Meike Kaehler⁵, Ingolf Cascorbi⁵, Inga Nagel^{5,6}, Oliver Rawashdeh⁷, Jens Mittag⁸,
Henrik Oster¹

¹ Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, Germany

² Current address: Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden

³ Institute of Bioscience, Department of Physiology, University of São Paulo, Brazil

⁴ Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia

⁵ Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Germany

⁶ Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany

⁷ School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia

⁸ Center of Brain Behavior & Metabolism, Institute for Endocrinology and Diabetes – Molecular Endocrinology, University of Lübeck, Germany

de Assis, LVM: <https://orcid.org/0000-0001-5209-0835>

Harder, L: <https://orcid.org/0000-0002-0637-720X>

Lacerda, JT: <https://orcid.org/0000-0003-4588-7197>

Parsons, R: <https://orcid.org/0000-0002-6053-8174>

Kaehler, M: <https://orcid.org/0000-0002-2401-6037>

Cascorbi, I: <https://orcid.org/0000-0002-2182-9534>

Nagel, I: <https://orcid.org/0000-0001-5174-4454>

Mittag, J: <https://orcid.org/0000-0001-7778-5158>

Rawashdeh, O: <https://orcid.org/0000-0002-7147-4778>

Oster, H: <https://orcid.org/0000-0002-1414-7068>

* Authors with equal contribution.

Corresponding author: Leonardo VM de Assis Center of Brain Behavior & Metabolism, Institute of Neurobiology, University of Lübeck, Germany, Marie Curie Street, 23562 Lübeck, Germany. e-mail: henrik.oster@uni-luebeck.de or leonardo.deassis@uni-luebeck.de

ABSTRACT

Thyroid hormones (THs) are important regulators of systemic energy metabolism. In the liver, they stimulate lipid and cholesterol turnover and increase systemic energy bioavailability. It is still unknown how the TH state interacts with the circadian clock, another important regulator of energy metabolism. We addressed this question using a mouse model of hypothyroidism and performed circadian analyses. Low TH levels decreased locomotor activity, food intake, and body temperature mostly in the active phase. Concurrently, liver transcriptome profiling showed only subtle effects compared to elevated TH conditions. Comparative circadian transcriptome profiling revealed alterations in mesor, amplitude, and phase of transcript levels in the livers of low-TH mice. Genes associated with cholesterol uptake, biosynthesis, and bile acid secretion showed reduced mesor. Increased and decreased cholesterol levels in the serum and liver were identified, respectively. Combining data from low- and high-TH conditions allowed the identification of 516 genes with mesor changes as molecular markers of the liver TH state. These genes participate in many known TH-associated processes. We further explored these genes and created a unique expression panel that can assess liver TH state in a time-of-day dependent manner. Our findings suggest that the liver has a low TH state under physiological conditions. Circadian profiling reveals genes as potential markers of liver TH state in one-time point studies.

Key words: thyroid hormones; liver; hyperthyroidism; hypothyroidism; transcriptome; circadian clock

1 INTRODUCTION

2 Thyroid hormones (THs) are important regulators of embryonic development and
3 energy metabolism. Produced in the thyroid gland in response to stimulation of the
4 hypothalamus-pituitary-thyroid axis, thyroxine (T₄) and, to a much lower extent, the
5 biologically active 3,3',5-triiodothyronine (T₃) are secreted into the bloodstream. At target
6 tissues, T₄ is converted into T₃ via specific deiodinases (DIOs). T₃ can bind to the two nuclear
7 TH receptors (THR) alpha/THRA and beta/THR β which act as transcription factors. As in
8 most tissues, T₃ action in the liver is predominately exerted by one primary nuclear receptor,
9 in this case, THR β [1–3].

10 THs effects in mammals are diverse and highly tissue specific. The thyroid state (i.e.,
11 systemic levels THs) profoundly affects energy metabolism with high THs levels correlating
12 with lower body weight and increased thermogenesis, lipolysis, and glucose usage. In the liver,
13 T₃ simultaneously induces *de-novo* lipid biosynthesis and, to a greater extent, lipolysis.
14 Increased liver fatty acid (FA) uptake and turnover through beta-oxidation in mitochondria and
15 peroxisomes are induced by T₃. Similarly, T₃ enhances cholesterol uptake, biosynthesis, and
16 metabolism into bile acids, and it also increases hepatic gluconeogenesis and inhibits
17 glycolysis and acetyl-coA utilization in the tricarboxylic acid (TCA) cycle [1,3,4]. Low THs
18 levels, found in subclinical and clinical hypothyroidism, are associated with an increased
19 incidence of non-alcoholic fatty liver disease (NAFLD) or Metabolic Dysfunction Associated
20 Steatotic Liver Disease (MASLD) [5–8].

21 While the general effects of TH on liver metabolism are well-characterized, it remains
22 largely unknown how the thyroid state interacts with the circadian regulation of physiological
23 processes in an organ. Most species have developed endogenous time-keeping mechanisms
24 that allow them to keep track of (day-) time and adjust physiology and behavior in anticipation
25 of regularly recurring events. In mammals, a central clock residing in the hypothalamic
26 suprachiasmatic nucleus (SCN) is reset by the external light-dark cycle and coordinates

27 molecular oscillators in central and peripheral tissues including the liver. At the molecular
28 level, a series of oscillatory interlocked transcriptional-translational feedback loops comprised
29 of clock genes and proteins oscillate throughout the day, adjusting cellular functions across the
30 24-hour day cycle. Rhythmic factors such as body temperature, hormones (e.g., cortisol and
31 melatonin), and autonomic nervous stimuli are known pathways through which the SCN
32 pacemaker regulates peripheral clocks and rhythms [9,10], but it is still up for discussion how
33 low amplitude rhythmic or arrhythmic signals interact with circadian functions at the tissue
34 level.

35 We have recently shown that, in mice, a high-TH state leads to marked time-of-day
36 specific alterations in energy metabolism such as increased energy expenditure during the
37 active (i.e., the night) and higher body temperature during the inactive phase (i.e., the day). In
38 the liver, T₃ treatment leads to a rewiring of the diurnal liver transcriptome with strong effects
39 on energy metabolism-associated genes, especially those involved in glucose and lipid
40 metabolism. Transcriptional and metabolite data suggest higher triglyceride biosynthesis
41 during the inactive phase followed by increased lipolysis rates in the active phase in T₃-treated
42 mice. Interestingly, these effects are independent of the liver clock gene machinery itself,
43 which is rather insensitive to T₃ treatment [11].

44 While the effects of high-T₃ in the liver have been characterized, we investigated here
45 how a low thyroid state affects the circadian regulation of energy metabolism and the liver
46 transcriptome. Low TH levels reduced systemic energy turnover in line with human
47 hypothyroid conditions. At the same time, only modest effects were observed on the liver
48 transcriptome. Circadian transcriptome profiling allowed for more fine-grained
49 characterization of low-TH effects revealing changes in lipid and cholesterol metabolism. Our
50 approach identified several temporally stable TH state-responsive genes that may serve as
51 livers-specific biomarkers of the TH state.

52 **MATERIAL AND METHODS**

53

54 **Mouse model and experimental conditions**

55 Two- to three-months-old male C57BL/6J mice (Janvier Labs, Germany) were housed
56 in groups of three under a 12-hour light, 12-hour dark (LD, ~300 lux) cycle at 22 ± 2 °C and a
57 relative humidity of 60 ± 5 % with *ad-libitum* access to food and water. Mice were treated with
58 methimazole (MMI, 0.1%, Sigma-Aldrich, USA) potassium perchlorate (0.2%) and sucralose
59 (1 tablet per 50 ml, Tafelsüss, Borchers) for three weeks.

60 During the treatment period, mice were monitored for body weight individually and
61 food and water intake per cage. All *in vivo* experiments were ethically approved by the Animal
62 Health and Care Committee of the Government of Schleswig-Holstein and were performed
63 according to international guidelines on the ethical use of animals. The sample size was
64 calculated using G-power software (version 3.1) and are shown as biological replicates in all
65 graphs.

66 Euthanasia was carried out using cervical dislocation and tissues were collected every
67 4 h. Night experiments were carried out under dim red light. Tissues were immediately placed
68 on dry ice and stored at -80 °C until further processing. Blood samples were collected from the
69 trunk, and clotting was allowed for 20 min at room temperature. Serum was obtained after
70 centrifugation at 2,500 rpm, 30 min, 4 °C, and samples stored at -20 °C.

71

72 **Total T₃ and T₄ evaluation**

73 Serum quantification of T₃ and T₄ was performed using commercially available kits
74 (NovaTec, Leinfelden-Echterdingen, DNOV053, Germany for T₃ and DRG Diagnostics,
75 Marburg, EIA-1781, Germany for T₄) following the manufacturers' instructions.

76

77

78

79 **Triglycerides and cholesterol evaluation**

80 TAG and total cholesterol evaluation were processed according to the manufacturer's
81 instructions (Sigma-Aldrich, MAK266 for TAG and Cell Biolabs, San Diego, USA, STA 384
82 for cholesterol).

83

84 **Telemetry and metabolic evaluation**

85 Core body temperature and locomotor activity were monitored in a subset of single-
86 housed animals using wireless transponders (E-mitters, Starr Life Sciences, Oakmont, USA).
87 Probes were transplanted into the abdominal cavity of mice 7 days before starting the drinking
88 water treatment. During the treatment period, mice were recorded once per week for at least
89 two consecutive days. Recordings were registered in 1-min intervals using the Vital View
90 software (Starr Life Sciences). Temperature and activity data were averaged over two
91 consecutive days (treatment days: 19/20) and plotted in 60-min bins.

92 An open-circuit indirect calorimetry system (TSE PhenoMaster, TSE Systems, TSE
93 Systems, USA) was used to determine respiratory quotient (RQ = carbon dioxide produced /
94 oxygen consumed) and energy expenditure in a subset of single-housed mice during drinking
95 water treatment. Mice were acclimatized to the system for one week prior to starting the
96 measurement. Monitoring of oxygen consumption, water intake as well as activity took place
97 simultaneously in 20-min bins. VO₂ and RQ profiles were averaged over two consecutive days
98 (treatment days: 19/20) and plotted in 60-min bins. Energy expenditure was estimated by
99 determining the caloric equivalent according to Heldmaier [12]: heat production (mW) = (4.44
100 + 1.43 * RQ) * VO₂ (ml O₂/h).

101 **Microarray analysis**

102 Total RNA was extracted using TRIzol (Thermofisher, Waltham, USA) and the Direct-
103 zol RNA Miniprep kit (Zymo Research, Irvine, USA) according to the manufacturer's

104 instructions. Genome-wide expression analyses was performed using Clariom S arrays
105 (Thermo Fisher Scientific) using 100 ng RNA of each sample according to the manufacturer's
106 recommendations (WT Plus Kit, Thermo Fisher Scientific). Data were analyzed using
107 Transcriptome Analyses Console (Thermo Fisher Scientific, version 4.0) and expressed in \log_2
108 values. Sample MMI_ZT06_a and MMI_ZT18_d were removed from the data due to low
109 quality.

110

111 **Differentially expressed gene (DEG) analysis**

112 To identify global DEGs, all temporal data from each group was considered and
113 analyzed by *Student's t* test and corrected for false discovery rates (FDR < 0.1). Up- or
114 downregulated DEGs were considered when a threshold of 1.5-fold (0.58 in \log_2 values)
115 regulation was met. As multiple probes can target a single gene, we curated the data to remove
116 ambiguous genes. To identify DEGs at specific time points (ZTs – Zeitgeber time; ZT0 =
117 “lights on”), the procedure described above for each ZT was performed separately. Time-
118 independent DEGs were identified by finding consistent gene expression pattern across all ZTs.

119

120 **Rhythm analysis**

121 To identify probes that showed diurnal (i.e., 24-hour) oscillations, we employed the
122 non-parametric JTK_CYCLE algorithm [13] in the Metacycle package [14] with a set period
123 of 24 h and an adjusted p-value (ADJ.P) cut-off of 0.05. Phase and amplitude parameter
124 estimates from CircaSingle were used for rose plot visualizations [15]. To directly compare
125 rhythm parameters (mesor and amplitude) in gene expression profiles between T₃ and CON,
126 CircaCompare fits were used irrespective of rhythmicity thresholds. Phase comparisons were
127 only performed when a gene was considered as rhythmic in both conditions ($p < 0.05$) as
128 previously described [11]. Temporal profiles were made using geom_smooth (ggplot2
129 package), method “lm”, and formula = $y \sim 1 + \sin(2\pi x/24) + \cos(2\pi x/24)$. Small

130 differences in rhythmic parameters can be present due to the different sine curve fitting between
131 CircaCompare and ggplot curve fit.

132

133 **Gene set enrichment analysis (GSEA)**

134 Functional enrichment analysis of DEGs was performed using the Gene Ontology (GO)
135 annotations for Biological Processes on the Database for Annotation, Visualization, and
136 Integrated Discovery software (DAVID 6.8 [16]). Processes were considered significant for a
137 biological process containing at least 5 genes (gene count) and a p-value < 0.05. To remove the
138 redundancy of GSEA, we applied the REVIGO algorithm [17] using default conditions and a
139 reduction of 0.5. For enrichment analyses from gene sets containing less than 100 genes,
140 biological processes containing at least 2 genes were included. Overall gene expression
141 evaluation of a given biological process was performed by normalizing each timepoint by CON
142 mesor.

143

144 **Data handling and statical analysis of non-bioinformatic related experiments**

145 Samples were only excluded upon technical failure. Data from ZT0-12 were considered
146 as light phase and from ZT 12 to 24 as dark phase. Day *vs.* night analyzes were performed by
147 averaging the data and comparing using unpaired *Student's* t test with Welch correction. Time-
148 course data were analyzed by Two-way ANOVA for main treatment effects followed by
149 Bonferroni post-test. When applicable, Two-Way for repeated measures was applied. Single
150 timepoint data were evaluated by unpaired *Student's* t test with Welch correction or Mann-
151 Whitney test for parametric or non-parametric samples, respectively. ANOVA One-Way
152 followed by Tukey was used for single timepoint data when CON, MMI, and T₃ groups were
153 evaluated. Spearman's correlation was used for all correlational analyzes. Analyzes were done
154 in Prism 9.4 (GraphPad) and a p-value < 0.05 was used to reject the null hypothesis.

155 **Data handling and statical analysis of bioinformatic experiments**

156 Statistical analyses were conducted using R 4.0.3 (R Foundation for Statistical
157 Computing, Austria) or in Prism 9.4 (GraphPad). Rhythmicity was calculated using the
158 JTK_CYLCE algorithm in meta2d, a function of the MetaCycle R package v.1.2.0. Rhythmic
159 features were calculated and compared pairwise among the groups using the CircaCompare R
160 package v.0.1.1. Data visualization was performed using the ggplot2 R package v.3.3.5, eulerr
161 R package v.6.1.1, UpSetR v. 1.4.0, pheatmap v. 1.0.12, and Prism 9.4 (GraphPad).

162

163 **Data mining from published studies**

164 Data from CON and T₃ were used and properly disclosed in each section. All
165 experimental data from [11] was extracted from the [Figshare](#) depository, unless specified.
166 Microarray data was extracted from Gene Expression Omnibus (GEO) database ([GSE199998](#)).

167

168 **Data availability**

169 All experimental data are already deposited in public depositories. No additional data
170 was generated.

171
172
173
174

175 **RESULTS**

176

177 **TH state tunes systemic energy metabolism**

178 To model hypothyroid conditions in mice, we supplemented their drinking water with
179 methimazole and potassium perchlorate (MMI group) which suppresses TH biosynthesis
180 through inhibition of thyroperoxidase in the thyroid gland and inhibits iodine uptake [18]. MMI
181 treatment resulted in a strong reduction of T₃ and T₄ levels. T₃ levels showed circadian rhythms
182 in the control (CON) and MMI groups peaking in the late and mid-dark phase, respectively
183 (Figure 1A). T₄, on the other hand, was arrhythmic in both conditions (Figure 1B;
184 Supplementary file 1).

185 Reduced food and water intake were observed in MMI compared to CON mice
186 (Supplementary figure 1A – B). As had been reported before [19] – and unlike hypothyroid
187 humans – MMI mice had reduced body weight compared to CON mice (Figure 1C). Compared
188 to CON mice, locomotor activity rhythms were similar in MMI mice, but activity was reduced
189 specifically during the dark phase (Figure 1D; Figure 1 – Figure Supplement 1C). Body
190 temperature was reduced in MMI during the dark phase (Figure 1E; Supplementary figure 1D).
191 Energy turnover, assessed by oxygen consumption, was slightly lower throughout the day
192 (Figure 1F; Supplementary figure 1E) while respiratory quotient profiles were largely unaltered
193 in MMI mice (Figure 1; Supplementary figure 1 F – G).

194 By averaging profile data over the whole day and comparing data to high-T₃ conditions
195 [11], clear systemic effects of TH state on metabolic homeostasis became apparent. TH state-
196 dependent effects were observed for locomotor activity ($r = 0.62$, $p = 0.0191$), food intake ($r =$
197 0.85 , $p = 0.0002$), body temperature ($r = 0.75$, $p = 0.0042$), and oxygen consumption ($r = 0.79$,
198 $p = 0.032$, Figure 1 G – J). In sum, our findings confirm that a low TH state decreases systemic
199 energy turnover, but this effect is more pronounced during the dark (active) phase.

200

201 **Low TH levels have moderate effects on liver transcription**

202 In face of the marked effects of TH state on systemic energy metabolism, we focused
203 our attention on the liver due to its major role as a metabolic organ. We collected tissues every
204 4h over the whole day to allow the evaluation of time-of-day dependent effects of TH state on
205 liver transcription. To assess T₃ state effects, we determined differentially expressed genes
206 (DEGs) in T₃ and MMI conditions irrespective of sampling time. Surprisingly, T₃ mice showed
207 a 5-fold higher number of DEGs compared to MMI mice (Figure 2A; Supplementary File 2).
208 DEGs analysis performed separately for each sampling time yielded 95 DEGs in MMI livers
209 compared to 2,200 DEGs (a factor of ca. 23) in high-T₃ mice [11] (Figure 2B – C;
210 Supplementary File 2). No robust DEGs, i.e., genes consistently differentially expressed across
211 all sampling times (ZTs), were found in MMI livers (compared to 37 robust DEGs in T₃ treated
212 mice [11] (Figure 2 D). Analysis of established liver TH/THR target genes and modulators
213 confirmed a much stronger effect of high-T₃ than low TH conditions on liver TH state (Figure
214 2 E; Supplementary figure 2).

215 Together, these data show that despite marked systemic effects, MMI treatment had
216 much lower effects on liver transcription. Vice versa, this suggests that, under physiological
217 conditions (CON), the liver is already in a low-TH state.

218

219 **Diurnal profiling reveals transcriptional effects of a low-TH state in the liver**

220 Evaluation of core clock gene expression profiles showed little effect on rhythmic
221 parameters between MMI and CON mice (Figure 3A) in line with what was previously
222 observed under high-T₃ conditions [11]. To fully assess the rhythmic liver transcriptome, the
223 JTK cycle algorithm [13] was used. A total of 3,329 and 3,383 genes (3,354 and 3,397 probe
224 sets) were classified as rhythmic ($p < 0.05$) in CON and MMI, respectively (Supplementary
225 figure 3). 1,412 genes (1,417 probes) were significantly rhythmic in both groups
226 (Supplementary figure 3). An average phase delay of 0.24h was observed for these genes in
227 MMI livers (Figure 3 B) compared to a 1h phase advance in high-T₃ conditions [11].

228 Expression peak phases of rhythmic genes were widely distributed, and amplitudes were
229 overall similar between conditions (Supplementary figure 3).

230 To investigate the difference in rhythmic characteristics of the transcriptome regulation
231 under low TH conditions, we performed differential circadian rhythm analysis using
232 CircaCompare [15]. Of the 5,297 genes (5,334 probes) showing significant 24h rhythmicity in
233 at least one group, 1,882 genes showed changes in mesor, 403 in amplitude, and 391 in phase
234 between low-TH and control conditions (Figure 4 A – B; Supplementary file 4). Processes
235 associated with cellular proliferation, mRNA processing, and macromolecule complex
236 assembly were enriched in genes with mesor DOWN while processes associated with response
237 to oxidative stress and xenobiotic metabolism processes were found in the mesor UP genes.
238 Genes associated with response to hypoxia, exocytosis, and lipid transport showed increased
239 amplitudes in MMI livers. Conversely, the expression of genes involved in oxidative stress and
240 detoxification processes (cellular oxidant detoxification, hydrogen peroxide catabolism,
241 glutathione, and ethanol metabolism) were phase-delayed in MMI mice (Figure 4 C;
242 Supplementary file 4).

243 Lipid metabolism-associated processes were regulated for all three rhythm parameters
244 (Figure 4 C). A dual effect (up- and down-regulation) on mesor was observed while most lipid
245 metabolism genes showed reduced amplitudes and phase delays in MMI mice (Figure 4 D).
246 The identified genes were manually inspected and only those genes participating directly in
247 lipid metabolism pathways were included. In this refined gene set for mesor UP, approximately
248 50% of the genes were associated with acyl-CoA degradation (*Acot1, 2, 3, 4, 7, 9, 13*) and
249 biosynthesis (*Acsm 1, 3, 5*) while others were associated with lipolysis (*Lpl, Lipa*) and TAG
250 uptake (*Vldr*). In the mesor DOWN group, ca. 40% of the genes were involved in cholesterol
251 biosynthesis (*Aacs, Dhcr7, Hmgcr*), uptake (*Ldlr, Lrp10, Npc1, Lrp5, Pcsk9*), and bile acid
252 secretion (*Abcb11, Cyp7a1, Abcg5, Slc10a1, Slc10a5, Slc10a2*). Moreover, 35% of the genes
253 were associated with FA biosynthesis (*Acacb, Fasn*), elongation (*Elov11, 2, 3, 5, Hacd1*),

254 transport (*Cpt1a*, *Fabp5*), and uptake (*Slc27a2*, *Slc27a5*). Around 30% of amplitude DOWN
255 genes were associated with cholesterol biosynthesis (*Aacs*, *Hsd17b7*) and secretion (*Akr1d1*,
256 *Nr1h5*) while genes with a gain in amplitude were linked with cholesterol uptake (*Abcb1b*) and
257 internal trafficking (*Stard3*, *Npc1*) as well as TAG uptake (*Vldlr*). Genes with expression
258 profile phase effects were more diverse in their functions. Phase-delayed genes were associated
259 with cholesterol metabolism (*Cyp8b1*) and bile acid secretion (*Cyp7a1*, *Abcb11*), FA
260 biosynthesis (*Fads2*), transport (*Cpt1a*) and elongation (*Elovl2*) (Supplementary file 4).

261 Focusing on cholesterol metabolism, we divided this pathway into three categories:
262 uptake, biosynthesis, and bile acid secretion. Averaged diurnal gene expression from both
263 groups was rhythmic with a strong mesor DOWN effect in MMI mice (Figure 4E). Total liver
264 cholesterol was reduced and arrhythmic in MMI mice compared to the CON group. On the
265 other hand, serum total cholesterol was elevated in MMI compared to CON mice, indicating
266 impairment in liver cholesterol uptake – as previously suggested. Liver TAG was less
267 responsive to a low-TH state and showed a mesor DOWN effect (Figure 4F).

268 Our findings show that a low-TH state results in distinct alterations in liver
269 transcriptome rhythms. Rhythms in lipid and cholesterol metabolism-associated gene programs
270 are affected by low TH levels and translate into differences mostly in cholesterol levels.

271

272 **Identification of liver TH response genes**

273 When assessing liver TH state across studies – particularly those based in clinical
274 settings – it is not always possible to consider temporal dynamics in liver physiology.
275 Therefore, it would be helpful to identify molecular markers that indicate liver TH state largely
276 independent of sampling time. However, unlike what we had previously shown for high-TH
277 conditions, no robust DEGs were identified in livers of MMI mice (Figure 2B). While this
278 would preclude reliable data analysis independent of sampling time, we circumvented this
279 limitation by filtering our dataset for transcripts with marked TH state-dependent mesor effects

280 in expression. This would allow for reliable detection of TH state at any time point if sampling
281 time were consistent across experimental conditions. We identified 516 genes that showed
282 consistent mesor effects in response to changes in TH state for both MMI and T₃ conditions
283 (Figure 5 A). Gene Set Enrichment Analysis (GSEA) for genes in the DOWN-MMI/UP-T₃
284 group showed enrichment for metabolic processes such as steroid, cholesterol, FA, and bile
285 acid metabolism. Conversely, genes in the UP-MMI/DOWN-T₃ group were associated with
286 processes involved in FA, lipoprotein, carbohydrate, and xenobiotic metabolism, amongst
287 others. Interestingly, glucose Glucose/glycogen metabolism was exclusively enriched in the
288 UP in MMI/down in T₃ group (Figure 5 B – C; Supplementary file 5), suggesting a TH-driven
289 overall inhibition of these pathways in line with our previous observations [11]. Averaged
290 expression of all genes pertaining to similar biological processes across the day showed that
291 lipid metabolism – mostly comprised of FA biosynthesis, TAG uptake and biosynthesis – genes
292 were highly responsive to TH levels, being up- and downregulated in T₃ and MMI mice,
293 respectively. Genes associated with FA catabolism were up- and downregulated in MMI and
294 T₃ mice, respectively. As already indicated in the GSEA, cholesterol and bile acid metabolism
295 were markedly affected as MMI and T₃ mice showed down- and upregulation, respectively
296 (Figure 5 C; Supplementary file 5).

297 Absolute mesor change was used to rank each gene for each comparison (CON vs. T3
298 and CON vs. MMI). The top 4 genes (*Tlcd2*, *Stim2*, *Sdr9c7*, *Akr1c19*) are shown (Figure 5D)
299 and recapitulate the low- and high- TH state at any fixed timepoint across the day. The fact that
300 these genes are robustly rhythmic across conditions further emphasizes that sampling time
301 should be kept consistent even in one-timepoint sampling studies (Figure 5 D; Supplementary
302 file 5). To test the predictive efficiency of our approach, we used the published T₃ atlas that
303 combines transcriptome and TH receptor ChipSeq data from different tissues [20]. We
304 identified an overlap of ca. 70% (179 of 251 genes) between the two datasets, further
305 supporting the validity of our approach (Supplementary file 5).

306 **DISCUSSION**

307 In line with the role of TH in metabolic regulation, reducing the TH state by MMI
308 treatment decreased energy turnover in mice. Contrasting these systemic effects, transcriptional
309 responses in the liver were surprisingly subtle with only a few temporally stable DEGs
310 compared to animals with normal or elevated TH levels. Temporal profiling of transcriptome
311 responses, however, revealed time-of-day dependent changes in metabolic pathways in MMI
312 livers. An altered gene signature associated with TAG and cholesterol metabolism was
313 identified. Interestingly, cholesterol levels were more sensitive to a low TH state than TAGs.
314 Compiling our circadian low- and high-TH datasets genes, several biomarker genes for the TH
315 state were identified and could be used to assess the liver TH state robustly.

316 In MMI mice, T_3 and T_4 levels were markedly suppressed, which confirms the success
317 of our experimental approach. The circadian rhythm of T_3 in the blood was retained at low-TH
318 conditions. In line with previous studies in rodents and observations in hypothyroid patients,
319 we identified TH dose- and time-dependent effects on systemic energy metabolism [19,21,22].
320 Notably, the effects of a low-TH state on energy metabolism were largely restricted to the
321 active phase. MMI mice showed decreased body weight throughout the experiment, contrasting
322 with hypothyroid conditions in humans. These differences were recently confirmed in genetic
323 hypothyroidism mouse models and are associated with food intake suppression, higher
324 skeletal-muscle adaptive thermogenic and fatty acid oxidation in low-TH mice [19].

325 Liver transcriptome analyses showed 23-fold fewer DEGs in MMI- compared to T_3 -
326 treated (high-TH) mice. This reduced liver responsiveness to a low TH input is further reflected
327 in decreased effects on the established TH/THR target genes [2,4]. Further, THR (*Thra* and
328 *Thrb*) expression in response to TH state alterations was only seen in T_3 - but not in MMI-
329 treated animals. In contrast, the expression of *Dio1*, the main deiodinase in the liver [23],
330 showed a clear TH dose-dependent effect. Knockdown of liver *Dio1* favored the development
331 of fatty liver disease (NAFLD/MASLD) due to reduced fatty acid oxidation [24]. Our data

332 suggest that reducing TH action under physiological conditions would be of little consequence
333 as the liver is already a low-TH organ. An alternative explanation for our findings of low liver
334 responses to reduced TH state would be that intra-liver TH levels could be stabilized due to
335 high DIO1 activity. *Dio1* mRNA was downregulated in the MMI group, which speaks against
336 this idea, but evaluating DIO1 activity or directly measuring liver TH levels would be needed
337 to exclude this option.

338 While these conclusions arise from a simple overall gene expression analysis, circadian
339 profiling of transcriptome data allows for a much more fine-grained evaluation [25]. Previously
340 undetected alterations in several genes revealed novel affected biological processes in response
341 to a low TH state such as cellular proliferation, hypoxia, and oxidative stress, which may serve
342 as hypothesis-generating data for follow-up experiments. We here focused our efforts on lipid
343 metabolism because of the putative role of TH in NAFLD/MASLD regulation [26,27], a
344 condition that also has been linked to circadian rhythms [28,29].

345 Gene signatures of lipid and cholesterol metabolism showed alterations in all three
346 rhythm parameters (mesor, phase, and amplitude) in MMI-treated mice. Serum cholesterol was
347 highly sensitive to TH state. Increased serum cholesterol levels in MMI mice agreed with
348 previous observations of murine models for sub-clinical [30] or severe hypothyroidism [31].
349 Diurnal transcriptome profiling showed a mesor DOWN effect in genes associated with
350 cholesterol uptake, biosynthesis, and bile acid secretion. A low TH state is known to reduce
351 bile acid secretion in gall bladder, ileum, and feces compared to euthyroid mice [32] and an
352 increased incidence of cholesterol gallstone formation has been associated with decreased
353 circulating TH levels [33,34]. In contrast, liver TAG levels were less responsive to a low TH
354 state despite marked related alterations at the transcript level. A murine study using a severe
355 hypothyroidism model (low-iodine plus *Slc5a5* knockout) found a protective effect against
356 NAFLD/MASLD. In this model, the hampered TH signaling impairs the adrenergic adipose-
357 derived lipolysis, which reduces fatty acids shuttling to the liver. The reduction of fatty acid

358 uptake by the liver prevents NAFLD/MASLD development. However, a mild hypothyroidism
359 model, achieved by a low iodine diet for 12 weeks, increased liver TAG levels as the adrenergic
360 adipose-derived fatty acid shuttling was not impaired [31]. Increased liver TAG has been
361 reported in a subclinical model of hypothyroidism, achieved by low doses of MMI in drinking
362 water after 16 weeks [30]. However, a recent study using propylthiouracil for 2 and 4 weeks
363 found no changes in TAG and cholesterol levels despite changes in the serum [35].

364 Our findings show that a low TH state produces transcriptional changes that impair
365 cholesterol metabolism by reducing liver cholesterol uptake, biosynthesis, and bile acid
366 secretion. We suggest that the low cholesterol clearance of MMI mice results in increased
367 serum cholesterol that can be classified as dyslipidemia and an early consequence of a low TH
368 state. Although transcriptional changes associated with TAG metabolism were observed, liver
369 TAG showed a less pronounced alteration and is suggestive of being a late consequence of
370 hypothyroidism.

371 Considering that liver metabolism changes over the course of the day [36,37] and many
372 metabolic genes showed time-of-day dependent responses to low- (this study) or high- [11] TH
373 state, time emerges as an important variable in characterizing metabolic footprints in liver and,
374 potentially, other tissues. We have recently modeled the impact of accounting for time in
375 identifying DEGs in a mouse model of NASH motivated by low consistency in DEG
376 identification in published studies. Accounting for time and using circadian analytical methods
377 led to a ca. 7-fold higher DEG yield [25]

378 Circadian profiling may often not often be feasible – or simply too expensive –
379 particularly in clinical settings. Therefore, we used our data to identify genes that consistently
380 respond to changes in TH state at all times of day as potential robust markers of liver TH state.
381 None of the previously identified 37 high-TH response genes [11] showed altered expression
382 after MMI treatment. In this new approach, time was fully considered yielding markers of TH
383 state in the liver. Rhythmic genes with mesor changes are associated with several metabolic

384 processes known to be TH regulated such as lipid, glucose, steroid, and xenobiotic metabolism.
385 We further explored the mesor-affected genes as possible candidates to estimate liver TH
386 status. We restricted our analysis to genes that only showed mesor changes to avoid possible
387 confounding factors caused by amplitude and/or phase. In this subset, 251 genes were identified
388 as only being affected at the mesor level. We validated our approach in the recently published
389 T_3 atlas [20]. Comparing our mesor-restricted dataset (251 genes), we identified 179 DEGs that
390 show a high overlap. Our findings show that several thousand T_3 -induced DEGs are affected
391 by time, which can directly affect DEG detection if sampling time is inconsistent. However,
392 our findings further refine this dataset and provide a selective set of genes that can be used to
393 establish liver TH state. We suggest that this gene panel can be used to estimate liver TH state
394 if sampling is time-controlled in experimental and possibly clinical studies.

395 As previously observed in a high-TH condition [11], the circadian core clock was
396 largely unaffected by either low or high T_3 conditions. These findings suggest that TH effects
397 on transcriptome rhythms are downstream of the liver circadian clock and warrant further
398 investigation. Metabolic changes evoked by a low TH state emerged only upon temporal
399 profiling. We also identified a subset of genes that respond in a TH dose-dependent manner
400 with changes in expression mesor. We suggest these genes can be used for follow-up
401 validations of TH liver state in experimental conditions containing limited time points.
402 Understanding the circadian effects of TH state may prove useful for identifying therapeutic
403 targets and optimizing existing treatment strategies for metabolic liver diseases.

404 **CONFLICT OF INTEREST**

405 All authors declare no competing interests that could have an impact on the study.

406

407 **ACKNOWLEDGEMENTS AND FUNDING**

408 This work was supported by grants of the German Research Foundation (DFG) to HO

409 353-10/1, GRK-1957, and CRC/TR 296 “LOCOTACT” (ID 424957847, TP13 and TP14). JTH

410 is a fellow of the São Paulo Research Foundation (FAPESP - 04524-8/2020).

411

412 REFERENCES

413 [1] Ritter, M.J., Amano, I., Hollenberg, A.N., 2020. Thyroid Hormone Signaling and the
414 Liver. *Hepatology* 72(2): 742–52, Doi: 10.1002/hep.31296.

415 [2] Mullur, R., Liu, Y.Y., Brent, G.A., 2014. Thyroid hormone regulation of metabolism.
416 *Physiol Rev* 94(2): 355–82, Doi: 10.1152/physrev.00030.2013.

417 [3] Sinha, R.A., Singh, B.K., Yen, P.M., 2014. Thyroid hormone regulation of hepatic lipid
418 and carbohydrate metabolism. *Trends Endocrinol Metab* 25(10): 538–45, Doi:
419 10.1016/j.tem.2014.07.001.

420 [4] Sinha, R.A., Singh, B.K., Yen, P.M., 2018. Direct effects of thyroid hormones on
421 hepatic lipid metabolism. *Nature Reviews Endocrinology* 14(5): 259–69, Doi:
422 10.1038/nrendo.2018.10.

423 [5] Elshinshawy, S., Elhaddad, H., Abdel Alem, S., Shaker, O., Salam, R., Yosry, A., et al.,
424 2023. The Interrelation Between Hypothyroidism and Non-alcoholic Fatty Liver
425 Disease, a Cross-sectional Study. *Journal of Clinical and Experimental Hepatology*
426 13(4): 638–48, Doi: 10.1016/j.jceh.2023.03.004.

427 [6] Kim, D., Kim, W., Joo, S.K., Bae, J.M., Kim, J.H., Ahmed, A., 2018. Subclinical
428 Hypothyroidism and Low-Normal Thyroid Function Are Associated With Nonalcoholic
429 Steatohepatitis and Fibrosis. *Clinical Gastroenterology and Hepatology: The Official
430 Clinical Practice Journal of the American Gastroenterological Association* 16(1): 123–
431 131.e1, Doi: 10.1016/j.cgh.2017.08.014.

432 [7] Lai, S., Li, J., Wang, Z., Wang, W., Guan, H., 2021. Sensitivity to Thyroid Hormone
433 Indices Are Closely Associated With NAFLD. *Frontiers in Endocrinology* 12.

434 [8] Ludwig, U., Holzner, D., Denzer, C., Greinert, A., Haenle, M.M., Oeztuerk, S., et al.,
435 2015. Subclinical and clinical hypothyroidism and non-alcoholic fatty liver disease: a
436 cross-sectional study of a random population sample aged 18 to 65 years. *BMC
437 Endocrine Disorders* 15(1): 41, Doi: 10.1186/s12902-015-0030-5.

438 [9] de Assis, L.V.M., Oster, H., 2021. The circadian clock and metabolic homeostasis:
439 entangled networks. *Cell Mol Life Sci*, Doi: 10.1007/s00018-021-03800-2.

440 [10] Finger, A.M., Kramer, A., 2020. Mammalian circadian systems: Organization and
441 modern life challenges. *Acta Physiol (Oxf)*: e13548, Doi: 10.1111/apha.13548.

442 [11] de Assis, L.V.M., Harder, L., Lacerda, J.T., Parsons, R., Kaehler, M., Cascorbi, I., et al.,
443 2022. Rewiring of liver diurnal transcriptome rhythms by triiodothyronine (T3)
444 supplementation. *Elife* 11, Doi: 10.7554/elife.79405.

445 [12] Heldmaier, G., 1975. Metabolic and thermoregulatory responses to heat and cold in the
446 Djungarian hamster, *Phodopus sungorus*. *Journal of Comparative Physiology* 102(2):
447 115–22, Doi: 10.1007/BF00691297.

448 [13] Hughes, M.E., Hogenesch, J.B., Kornacker, K., 2010. JTK_CYCLE: an efficient
449 nonparametric algorithm for detecting rhythmic components in genome-scale data sets.
450 *J Biol Rhythms* 25(5): 372–80, Doi: 10.1177/0748730410379711.

451 [14] Wu, G., Anafi, R.C., Hughes, M.E., Kornacker, K., Hogenesch, J.B., 2016. MetaCycle:
452 an integrated R package to evaluate periodicity in large scale data. *Bioinformatics*
453 32(21): 3351–3, Doi: 10.1093/bioinformatics/btw405.

454 [15] Parsons, R., Parsons, R., Garner, N., Oster, H., Rawashdeh, O., 2020. CircaCompare: a
455 method to estimate and statistically support differences in mesor, amplitude and phase,
456 between circadian rhythms. *Bioinformatics* 36(4): 1208–12, Doi:
457 10.1093/bioinformatics/btz730.

458 [16] Huang, D.W., Sherman, B.T., Lempicki, R.A., 2009. Systematic and integrative analysis
459 of large gene lists using DAVID bioinformatics resources. *Nat Protoc* 4(1): 44–57, Doi:
460 10.1038/nprot.2008.211.

461 [17] Supek, F., Bošnjak, M., Škunca, N., Šmuc, T., 2011. REVIGO summarizes and
462 visualizes long lists of gene ontology terms. *PLoS One* 6(7): e21800, Doi:
463 10.1371/journal.pone.0021800.

464 [18] Hoefig, C.S., Wuensch, T., Rijntjes, E., Lehmpfuhl, I., Daniel, H., Schweizer, U., et al.,
465 2015. Biosynthesis of 3-Iodothyronamine From T4 in Murine Intestinal Tissue.
466 *Endocrinology* 156(11): 4356–64, Doi: 10.1210/en.2014-1499.

467 [19] Kaspari, R.R., Reyna-Neyra, A., Jung, L., Torres-Manzo, A.P., Hirabara, S.M.,
468 Carrasco, N., 2020. The paradoxical lean phenotype of hypothyroid mice is marked by
469 increased adaptive thermogenesis in the skeletal muscle. *Proc Natl Acad Sci U S A*
470 117(36): 22544–51, Doi: 10.1073/pnas.2008919117.

471 [20] Zekri, Y., Guyot, R., Flamant, F., 2022. An Atlas of Thyroid Hormone Receptors’
472 Target Genes in Mouse Tissues. *International Journal of Molecular Sciences* 23(19):
473 11444, Doi: 10.3390/ijms231911444.

474 [21] Johann, K., Cremer, A.L., Fischer, A.W., Heine, M., Pensado, E.R., Resch, J., et al.,
475 2019. Thyroid-Hormone-Induced Browning of White Adipose Tissue Does Not
476 Contribute to Thermogenesis and Glucose Consumption. *Cell Rep* 27(11): 3385-
477 3400.e3, Doi: <https://doi.org/10.1016/j.celrep.2019.05.054>.

478 [22] Yavuz, S., Salgado Nunez Del Prado, S., Celi, F.S., 2019. Thyroid Hormone Action and
479 Energy Expenditure. *Journal of the Endocrine Society* 3(7): 1345–56, Doi:
480 10.1210/jes.2018-00423.

481 [23] Luongo, C., Dentice, M., Salvatore, D., 2019. Deiodinases and their intricate role in
482 thyroid hormone homeostasis. *Nature Reviews Endocrinology* 15(8): 479–88, Doi:
483 10.1038/s41574-019-0218-2.

484 [24] Bruinstroop, E., Zhou, J., Tripathi, M., Yau, W.W., Boelen, A., Singh, B.K., et al., 2021.
485 Early induction of hepatic deiodinase type 1 inhibits hepatosteatosis during NAFLD
486 progression. *Molecular Metabolism* 53: 101266, Doi: 10.1016/j.molmet.2021.101266.

487 [25] de Assis, L.V.M., Demir, M., Oster, H., 2023. Nonalcoholic Steatohepatitis Disrupts
488 Diurnal Liver Transcriptome Rhythms in Mice. *Cellular and Molecular
489 Gastroenterology and Hepatology* 16(3): 341–54, Doi: 10.1016/j.cmh.2023.05.008.

490 [26] Wirth, E.K., Puengel, T., Spranger, J., Tacke, F., 2022. Thyroid hormones as a disease
491 modifier and therapeutic target in nonalcoholic steatohepatitis. *Expert Review of
492 Endocrinology & Metabolism* 17(5): 425–34, Doi: 10.1080/17446651.2022.2110864.

493 [27] Zhao, M., Xie, H., Shan, H., Zheng, Z., Li, G., Li, M., et al., 2022. Development of
494 Thyroid Hormones and Synthetic Thyromimetics in Non-Alcoholic Fatty Liver Disease.
495 *Int J Mol Sci* 23(3), Doi: 10.3390/ijms23031102.

496 [28] de Assis, L.V.M., Demir, M., Oster, H., 2023. The role of the circadian clock in the
497 development, progression, and treatment of non-alcoholic fatty liver disease. *Acta
498 Physiologica* n/a(n/a): e13915, Doi: 10.1111/apha.13915.

499 [29] Marjot, T., Ray, D.W., Tomlinson, J.W., 2022. Is it time for chronopharmacology in
500 NASH? *J Hepatol*, Doi: 10.1016/j.jhep.2021.12.039.

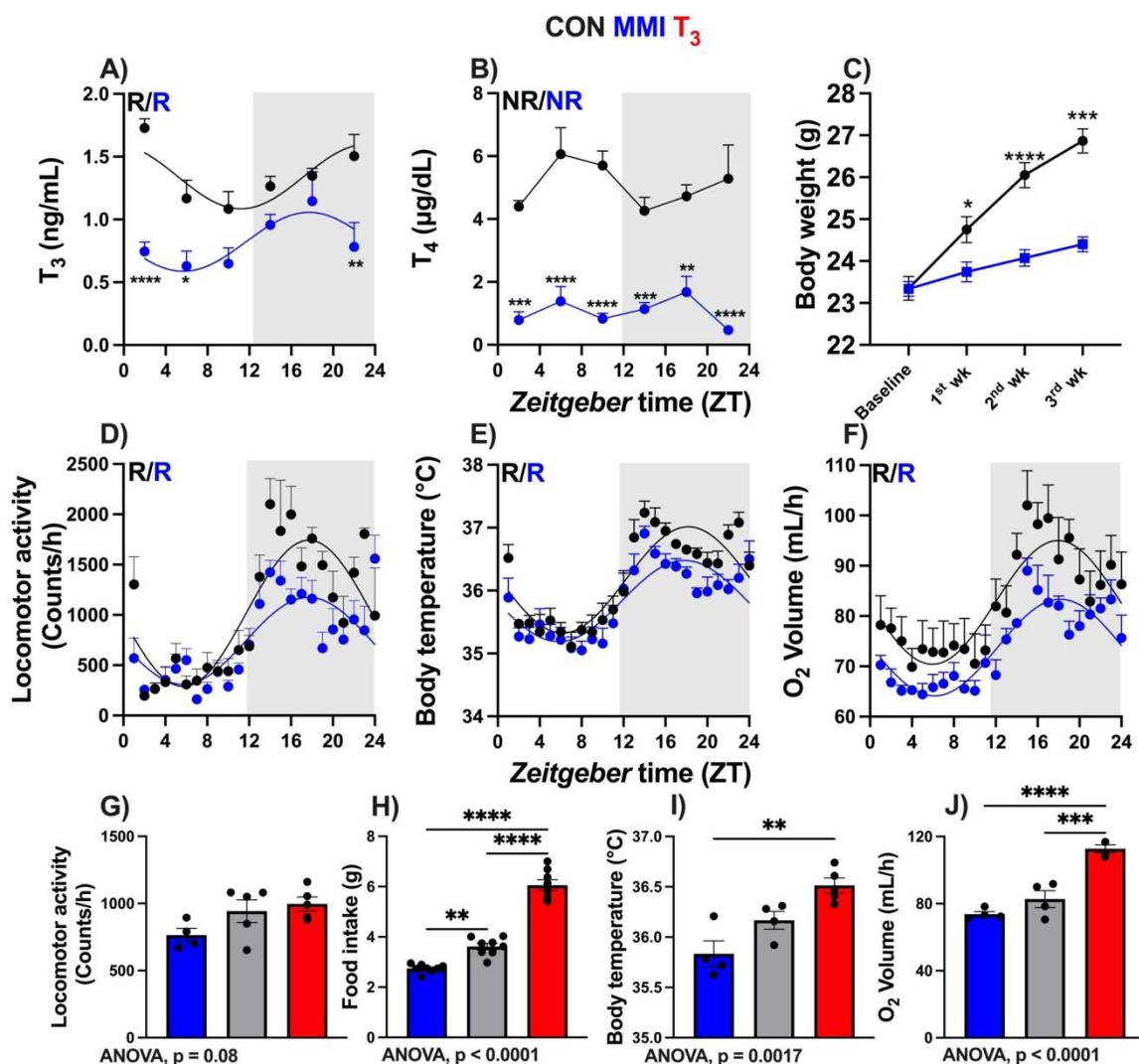
501 [30] Zhou, L., Ding, S., Li, Y., Wang, L., Chen, W., Bo, T., et al., 2016. Endoplasmic
502 Reticulum Stress May Play a Pivotal Role in Lipid Metabolic Disorders in a Novel
503 Mouse Model of Subclinical Hypothyroidism. *Scientific Reports* 6: 31381, Doi:
504 10.1038/srep31381.

505 [31] Ferrandino, G., Kaspari, R.R., Spadaro, O., Reyna-Neyra, A., Perry, R.J., Cardone, R.,
506 et al., 2017. Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and
507 extrahepatic mechanisms. *Proceedings of the National Academy of Sciences of the
508 United States of America* 114(43): E9172–80, Doi: 10.1073/pnas.1707797114.

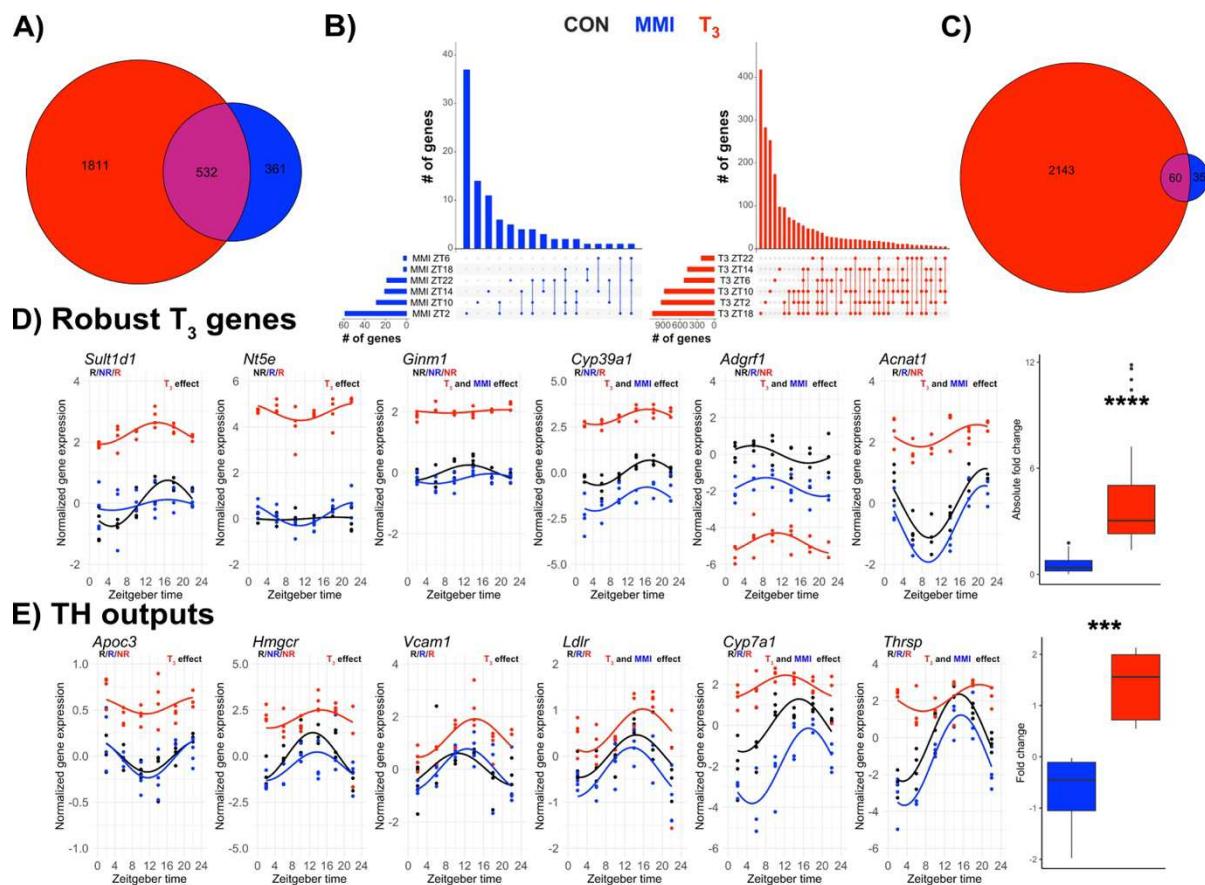
509 [32] Yan, Y., Niu, Z., Sun, C., Li, P., Shen, S., Liu, S., et al., 2022. Hepatic thyroid hormone
510 signalling modulates glucose homeostasis through the regulation of GLP-1 production

511 via bile acid-mediated FXR antagonism. *Nature Communications* 13(1): 6408, Doi:
512 10.1038/s41467-022-34258-w.

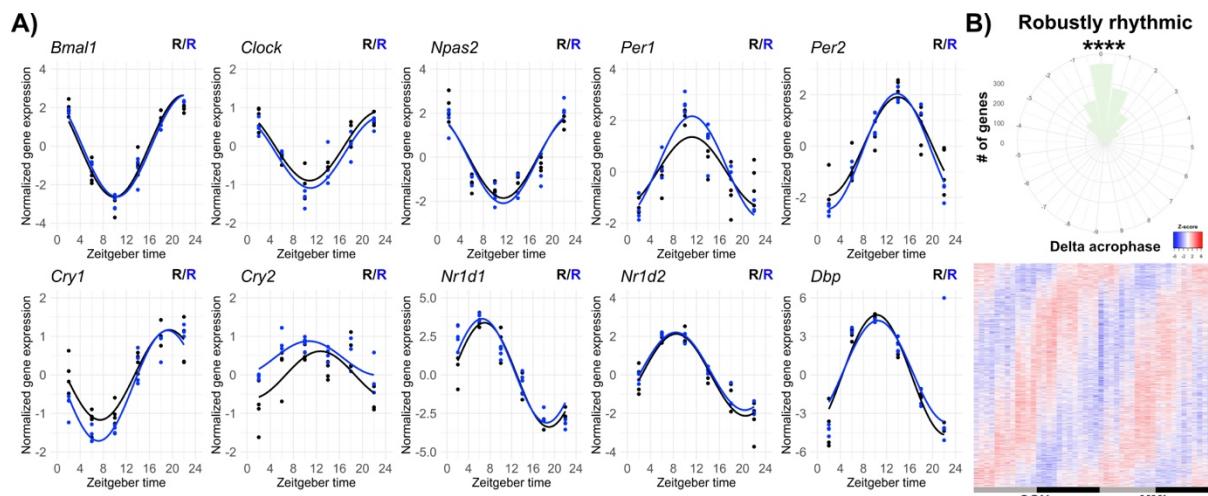
513 [33] Kube, I., Kowalczyk, M., Hofmann, U., Ghallab, A., Hengstler, J.G., Führer, D., et al.,
514 2022. Hepatobiliary Thyroid Hormone Deficiency Impacts Bile Acid Hydrophilicity and
515 Aquaporins in Cholestatic C57BL/6J Mice. *International Journal of Molecular Sciences*
516 23(20): 12355, Doi: 10.3390/ijms232012355.


517 [34] Kube, I., Tardio, L.B., Hofmann, U., Ghallab, A., Hengstler, J.G., Führer, D., et al.,
518 2021. Hypothyroidism Increases Cholesterol Gallstone Prevalence in Mice by Elevated
519 Hydrophobicity of Primary Bile Acids. *Thyroid: Official Journal of the American*
520 *Thyroid Association* 31(6): 973–84, Doi: 10.1089/thy.2020.0636.

521 [35] Wang, Z., Haange, S.-B., Haake, V., Huiszinga, M., Kamp, H., Buesen, R., et al., 2023.
522 Assessing the Influence of Propylthiouracil and Phenytoin on the Metabolomes of the
523 Thyroid, Liver, and Plasma in Rats. *Metabolites* 13(7): 847, Doi:
524 10.3390/metabo13070847.


525 [36] Reinke, H., Asher, G., 2019. Crosstalk between metabolism and circadian clocks.
526 *Nature Reviews. Molecular Cell Biology* 20(4): 227–41, Doi: 10.1038/s41580-018-
527 0096-9.

528 [37] Reinke, H., Asher, G., 2016. Circadian Clock Control of Liver Metabolic Functions.
529 *Gastroenterology* 150(3): 574–80, Doi: 10.1053/j.gastro.2015.11.043.


530

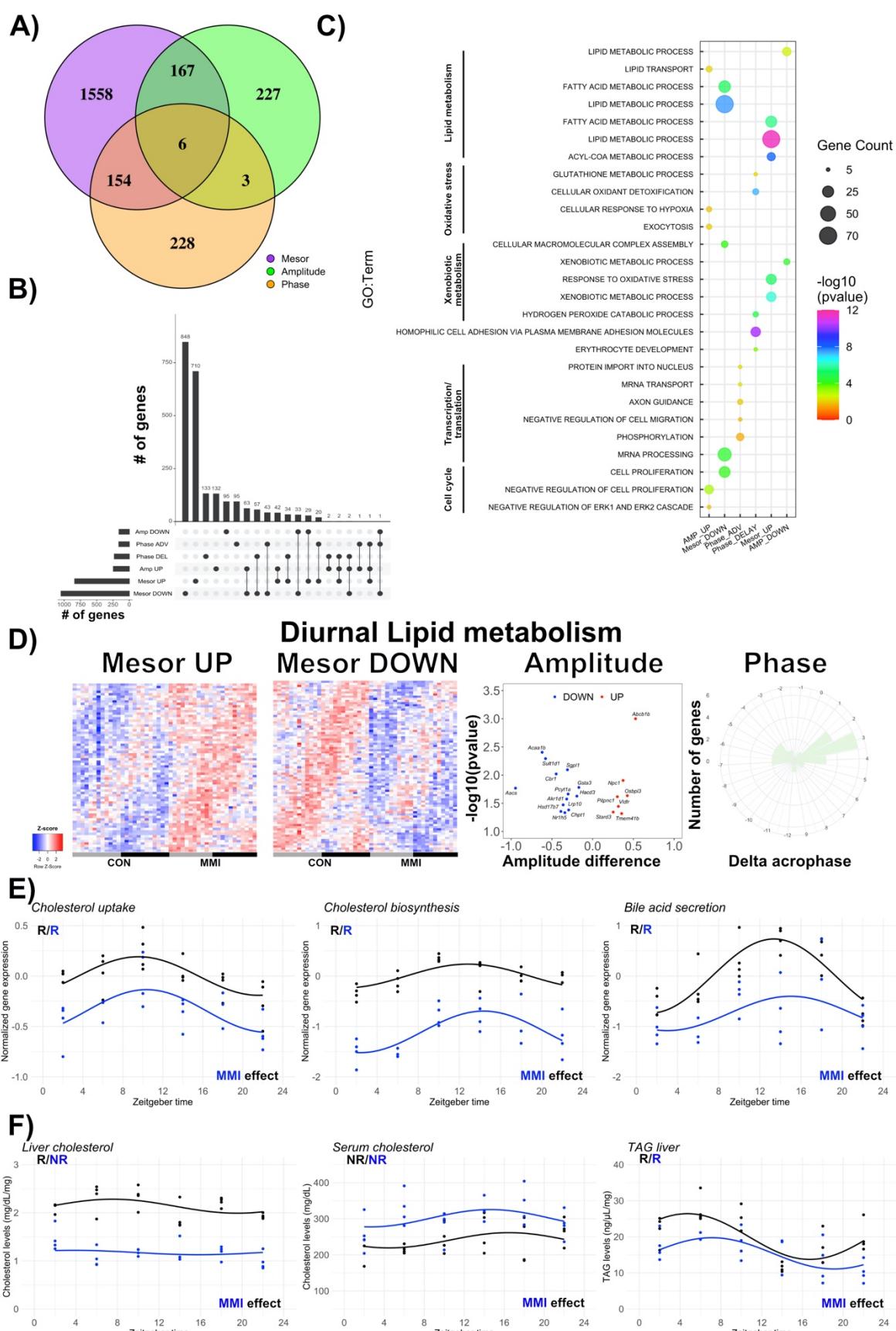

Figure 1: Dose-dependent effects of thyroid hormone (TH) state on systemic energy metabolism. A – F) Serum levels of T_3 and T_4 , body weight across the experiment, 24-hour profiles of locomotor activity, body temperature, and O_2 consumption are shown. Rhythmicity was assessed using CircaCompare algorithm. Presence (R) or absence (NR) of significant circadian rhythmicity is depicted. In the presence of significant 24-hour rhythmicity, a sine curve was fit to the data. G – J) 24h average data for locomotor activity, food intake, body temperature, and O_2 consumption for MMI, CON, and T_3 (de Assis et al., 2022) groups. One-way ANOVA was performed (p value is shown) followed by Tukey's post-test comparisons (depicted with asterisks). In A and B, n = 4 – 6 animals per group or timepoint. In C, n = 24. In D, n = 4 and 5 for CON and MMI groups, respectively. In E and F, n = 4 for each group. *, **, ***, **** represent a p value of < 0.05, 0.01, 0.001, and 0.0001, respectively.

Figure 2: Lowering thyroid hormone state has subtle effects on liver transcriptome rhythms. A) Global DEG analysis (disregarding sampling time) is represented as a Venn diagram. B) Upset plots represent DEG analysis for each ZT separately. C) Venn diagram represents all temporal DEGs (i.e., showing different expression levels of at least one ZT) identified in MMI and T₃ groups versus CON mice. D) Selected examples of robust DEGs previously identified in T₃-treated mice. Absolute fold change comparison of all 37 DEGs in T₃ and MMI mice are shown. E) Selective TH output genes and fold change of these genes. Comparisons were performed using two-way ANOVA (main treatment effect, $p < 0.05$). $n = 3 - 4$ for all ZTs and groups. Pair-wise comparisons were performed by Student's t test with Welch correction. Presence (R) or absence (NR) of circadian rhythm by JTK cycle (p value < 0.05). ***, **** represents a p value of < 0.001 , and 0.0001 , respectively.

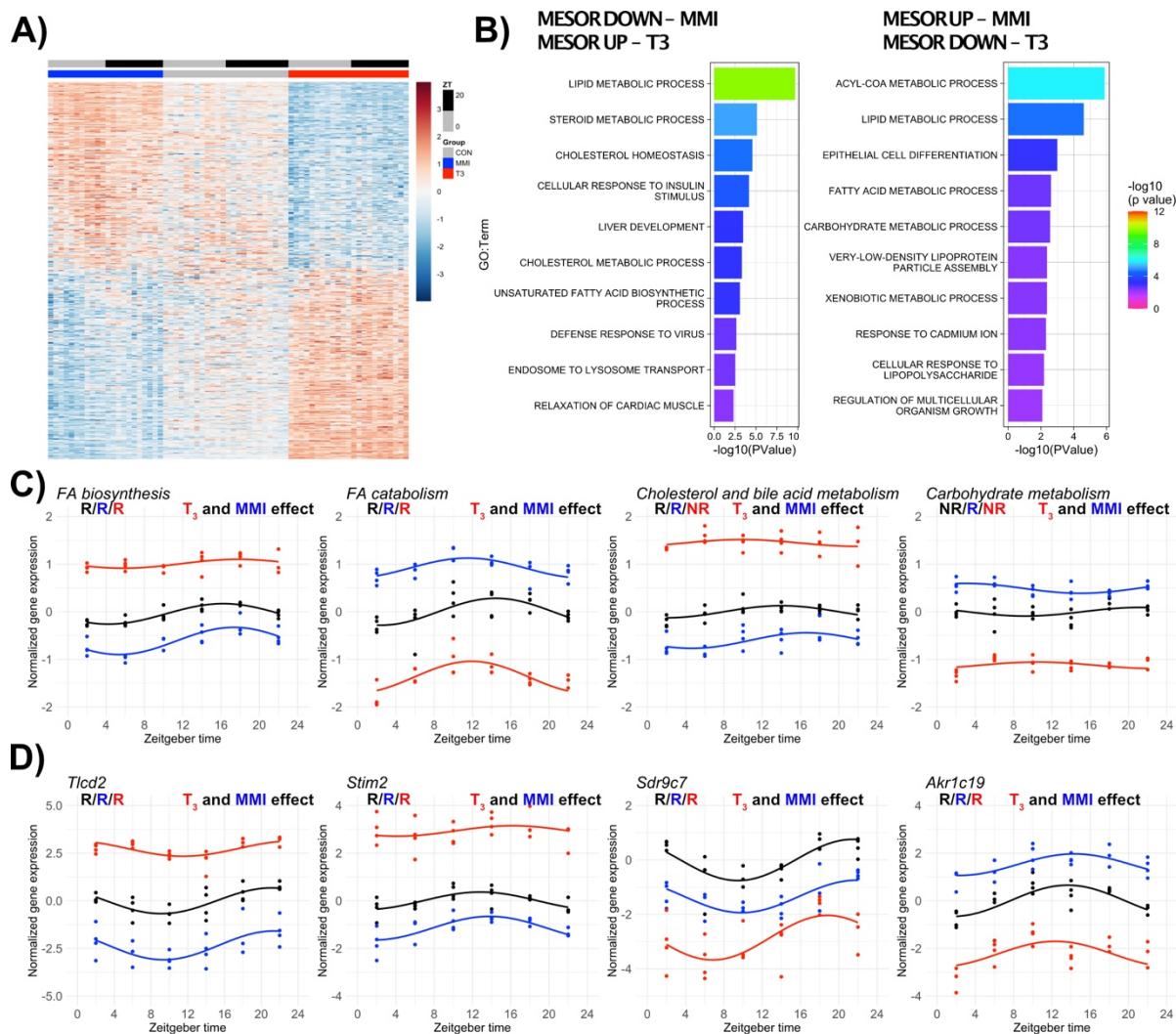


Figure 3: Lowering thyroid hormone state does not affect the rhythmic expression of core clock genes and has a slight phase effect on robustly rhythmic genes. A) Diurnal expression profile of core clock genes is shown. Presence (R) or absence (NR) of significant circadian rhythm by JTK cycle (p value < 0.05) is depicted. B) Rose plot and heatmap of robustly rhythmic genes are shown. A minor phase delay of 0.24 h was identified in the MMI group compared to CON (test against zero, $p < 0.001$). $n = 3 - 4$ for all ZTs and groups.

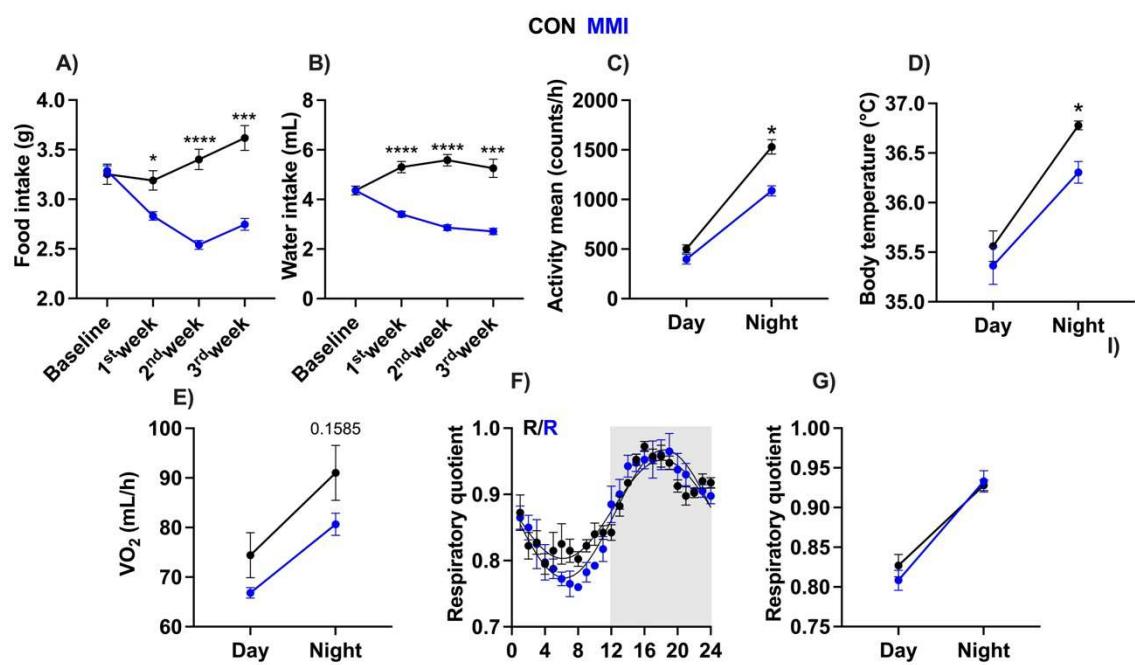
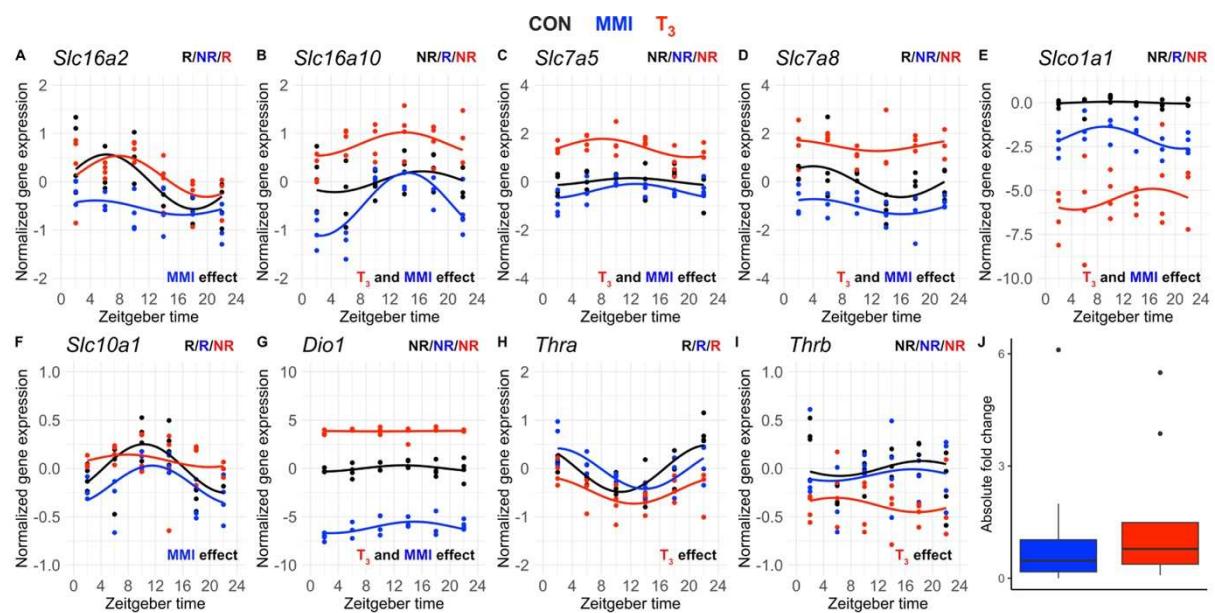
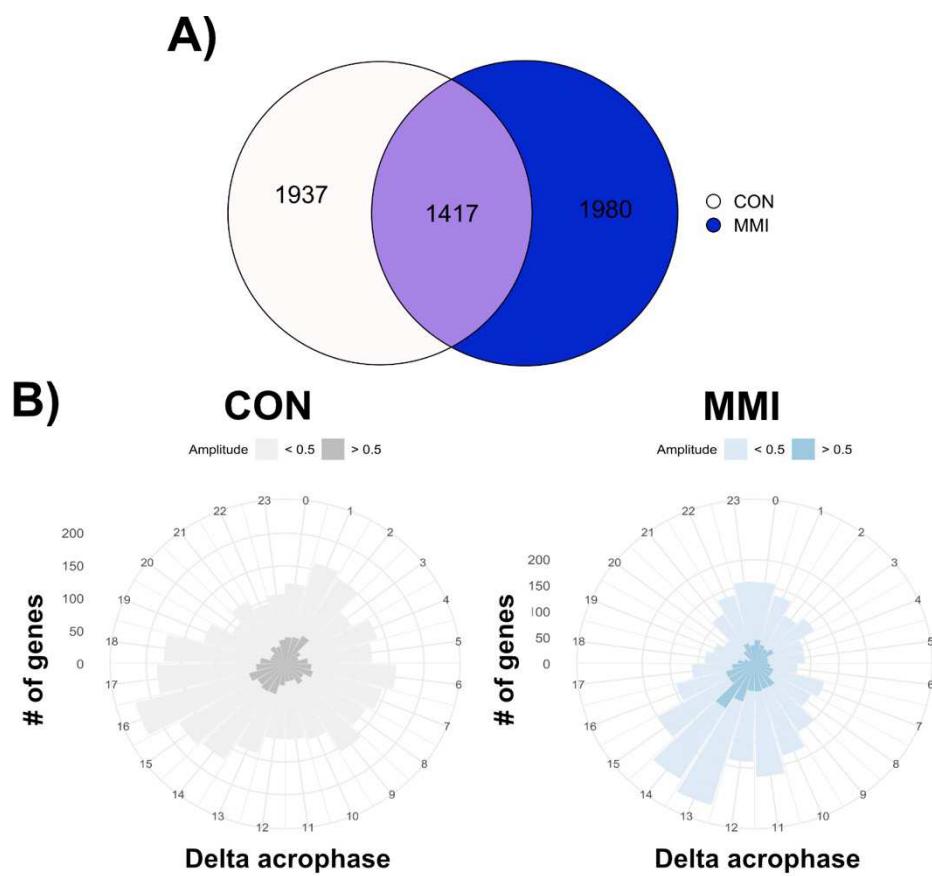


Figure 4: Differential rhythm analysis reveals changes in liver transcriptome rhythms that affect lipid and cholesterol metabolism in MMI mice. A) Differential rhythm analysis was performed using CircaCompare and is represented as Venn diagrams. B) Upset plots show alterations in diurnal rhythm parameters (mesor, amplitude, phase). C) Gene set enrichment analysis (GSEA) of the genes with either mesor, amplitude, or phase alterations was performed. Top-5 biological processes for each category are shown. D) In-depth diurnal lipid metabolism analysis in response to low thyroid hormone state. Heatmaps show genes with mesor changes.


Volcano plot and rose plot show alterations in amplitude and phase, respectively. E) Normalized gene expression of selected genes participating in cholesterol uptake, biosynthesis, and degradation (bile acid secretion) in CON and MMI mice. F) Quantification of cholesterol and TAG in serum or liver. Presence (R) or absence (NR) of significant circadian rhythm by CircaCompare (p value < 0.05) is depicted. n = 3 – 4 for all ZTs and groups.


Figure 5: Identification of thyroid hormone-responsive genes by mesor comparison. A) Heatmap shows the 516 TH-dose responsive genes with differential mesor expression among each group. B) Gene set enrichment analysis (GSEA) of mesor-altered genes are shown for each condition. C) Genes pertaining to similar biological pathways identified in B were normalized by CON mesor and plotted. FA biosynthesis pathway comprises lipid metabolic process, unsaturated fatty acid biosynthetic process, long-chain fatty-acyl-CoA biosynthetic process, diacylglycerol biosynthetic process, negative regulation of fatty acid biosynthetic process, and lipid storage. FA catabolism pathway is comprised of acyl-CoA metabolic process, lipid metabolic process, fatty acid metabolic process, very-low-density lipoprotein particle assembly processes. Cholesterol and bile acid metabolism pathways comprise cholesterol homeostasis, cholesterol metabolic process, steroid metabolism, and bile acid signaling pathway. Carbohydrate metabolism pathways are comprised of carbohydrate metabolic process, glycogen metabolic process, ATP metabolic process, and glucose homeostasis. D) Selected biomarkers for TH state at all time points (additional genes can be found in Supplementary file 5). Presence (R) or absence (NR) of circadian rhythm by CircaCompare (p value < 0.05) is depicted. $n = 3 - 4$ for all ZTs and groups.

Supplementary figure 1: Evaluation of systemic metabolic parameters of CON and MMI mice. A – B) Assessment of food and water intake. C– E) Metabolic parameters (described in the y-axis) were obtained from the 3rd week of the experiment. Day and night data were plotted by averaging values from ZT 0 to 12 (day) and from ZT 12 to 24 (night). Asterisks depict significant differences between CON and MMI mice. F – G) 24-hour profiles of respiratory quotient and day and night comparisons. In A and B, n = 8 (per cage). In C, n = 4 and 5 for CON and MMI groups, respectively. In D – G, n = 4 for each group. *, ***, **** represent a p value of < 0.05, 0.001, and 0.0001, respectively.

Supplementary figure 2: Expression of thyroid hormone regulator genes is affected by low and high TH state. A – I) Diurnal expression profiles of selected classical TH regulator genes are shown. Presence (R) or absence of significant circadian rhythmicity (NR) by JTK cycle (p value < 0.05) is depicted. J) Average absolute fold change comparisons of all TH regulators (n = 9) are shown (non-significant). Effects of low- or high- TH states were estimated using two-way ANOVA (main treatment effects, (p < 0.05). n = 3 – 4 for all ZTs and groups.

Supplementary figure 3: Liver diurnal transcriptome characterization in low TH conditions. A) Venn diagram showing significantly rhythmic probes identified in CON and MMI groups (JTK cycle, $p < 0.05$). B) Rose plots (depicting peak phase) of rhythmic genes in CON and MMI are shown.