

1 **Serial dilution shapes genetic variation and defines conservation units in**  
2 **Asian elephants**

3 Anubhab Khan<sup>\*1,2,&</sup>, Maitreya Sil<sup>\*1,3</sup>, Tarsh Thekaekara<sup>1,4</sup>, Ishani Sinha<sup>1</sup>, Rupsy  
4 Khurana<sup>5</sup>, Raman Sukumar<sup>5,&</sup>, Uma Ramakrishnan<sup>1,&</sup>

5 <sup>1</sup> National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India

6 <sup>2</sup> School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow,  
7 Glasgow, UK

8 <sup>3</sup> National Institute of Science Education and Research, Bhubaneshwar, India

9 <sup>4</sup> The Shola Trust, Gudalur, India

10 <sup>5</sup> Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India

11 \*These authors contributed equally

12 <sup>&</sup> Corresponding authors: [anubhabkhan@gmail.com](mailto:anubhabkhan@gmail.com), [rsuku@iisc.ac.in](mailto:rsuku@iisc.ac.in),  
13 [uramakri@ncbs.res.in](mailto:uramakri@ncbs.res.in)

14 Keywords: Genomics, genetic load, extinction, megaherbivores, South Asia

15

16 **Abstract**

17 Megaherbivores are primary consumers who provide unique ecosystem services.  
18 Given their body size, they are disproportionately threatened in the Anthropocene.  
19 Asian elephants are the largest extant terrestrial megaherbivores native to Asia, with  
20 60% of the population found in India. Despite their ecological and cultural  
21 importance, the management/conservation units, genetic history, diversity and  
22 threats remain understudied. We re-sequenced 31 whole genomes (between 11X -  
23 32X) from all known elephant landscapes in India and identified five  
24 management/conservation units corresponding to elephants in northern India, central  
25 India and three in southern India. The genetic data reveal signatures of serial  
26 colonisation, and a dilution of diversity from north to south of India. The northern  
27 populations diverged from other populations more than 70,000 years ago, and have  
28 higher genetic diversity, with low inbreeding/high effective size ( $P_i = 0.0016 \pm 0.0001$ ;  
29  $F_{ROH>1MB} = 0.09 \pm 0.03$ ). Two of three populations in southern India have low diversity  
30 and are inbred with much lower effective sizes than current populations sizes ( $P_i =$   
31  $0.0014 \pm 0.00009$  and  $0.0015 \pm 0.0001$ ;  $F_{ROH>1MB} = 0.25 \pm 0.09$  and  $0.17 \pm 0.02$ ).  
32 Additionally, future generations are expected to be more inbred since pairs of extant  
33 elephants have large tracts of the genome that are already identical. Analyses of  
34 genetic load reveals purging of potentially high-effect deleterious alleles in the  
35 southern populations and potential dilution of all deleterious alleles from north to  
36 south in India. However, southern Indian elephants are highly homozygous for all the  
37 deleterious alleles that persist, despite dilution and purging. High homozygosity of  
38 deleterious alleles, coupled with low neutral genetic diversity make them high priority  
39 for conservation and management attention. Most surprisingly, our study suggests  
40 that patterns of genetic diversity and genetic load can correspond to geographic  
41 signatures of serial founding events even in large mobile endangered species.

42

43

#### 44      **Introduction**

45      Megaherbivores are ecological engineers responsible for maintaining several  
46      ecosystem functions (Owen-Smith 1987, Waldram et al. 2008, Coverdale et al. 2016,  
47      Berzaghi et al. 2023). They are uniquely responsible for nutrient distribution, seed  
48      dispersal and germination, and vegetation/habitat modification (Le Roux et al. 2018,  
49      Harich et al. 2016). In the Anthropocene they have been affected disproportionately  
50      and face various threats across their range (Enquist et al. 2020). In Asia,  
51      megaherbivores have lost 56% (for gaur, *Bos gaurus*) to near 100% (for Javan rhino,  
52      *Rhinoceros sondaicus*) of their historic range (Mahmood et al. 2021). They are more  
53      inbred and lack genetic diversity compared to their small-bodied counterparts  
54      (Brüniche-Olsen et al. 2018), and several megaherbivores have gone extinct in the  
55      last few centuries. While megaherbivore genomes are being extensively studied in  
56      African landscapes, such investigations for Asian counterparts have been lagging,  
57      leading to challenges in identification of genetic threats relevant to their conservation  
58      and management.

59      Asian elephants (*Elephas maximus*) are charismatic megaherbivores distributed  
60      across South and Southeast Asia but are culturally important across the globe  
61      (Sukumar 2011). They are found in a variety of natural ecosystems from tropical  
62      evergreen forests to grasslands at various elevations. India harbours at least 60% of  
63      the population of wild Asian elephants (Sukumar 2011, Menon and Tiwari 2019).  
64      Increase in human footprint and land use change over the past two centuries has  
65      impacted elephants significantly, resulting in population isolation even at regional  
66      scales. Today, Asian elephant habitats are extremely fragmented and interspersed  
67      with farmland, human settlement, commercial plantations and linear transport  
68      infrastructure throughout their range (Liu et al., 2017; Padalia et al., 2020) leading to  
69      extensive and, often, intense human-elephant conflicts (Sukumar, 1989, 2003; Gubbi  
70      et al., 2014). Despite these challenges, camera trap data (Srinivasaiah et al., 2022;  
71      Srinivasaiah et al., 2021) and radiotelemetry studies (Baskaran et al. 1995,  
72      Venkataraman et al. 2005, Sukumar 2003, Sukumar et al. 2003) show that elephants  
73      have annual home ranges of several hundreds of kilometres in India, often  
74      encompassing dense human habitation. Such movement through human-dominated  
75      areas might offset impacts of fragmentation, and the associated loss of genetic

76 variation and inbreeding (Parida et al. 2022). Hence, understanding their  
77 phylogeographic history and current population genetic structuring, coupled with  
78 possible effects of recent fragmentation could be useful in defining population units  
79 for conservation and management.

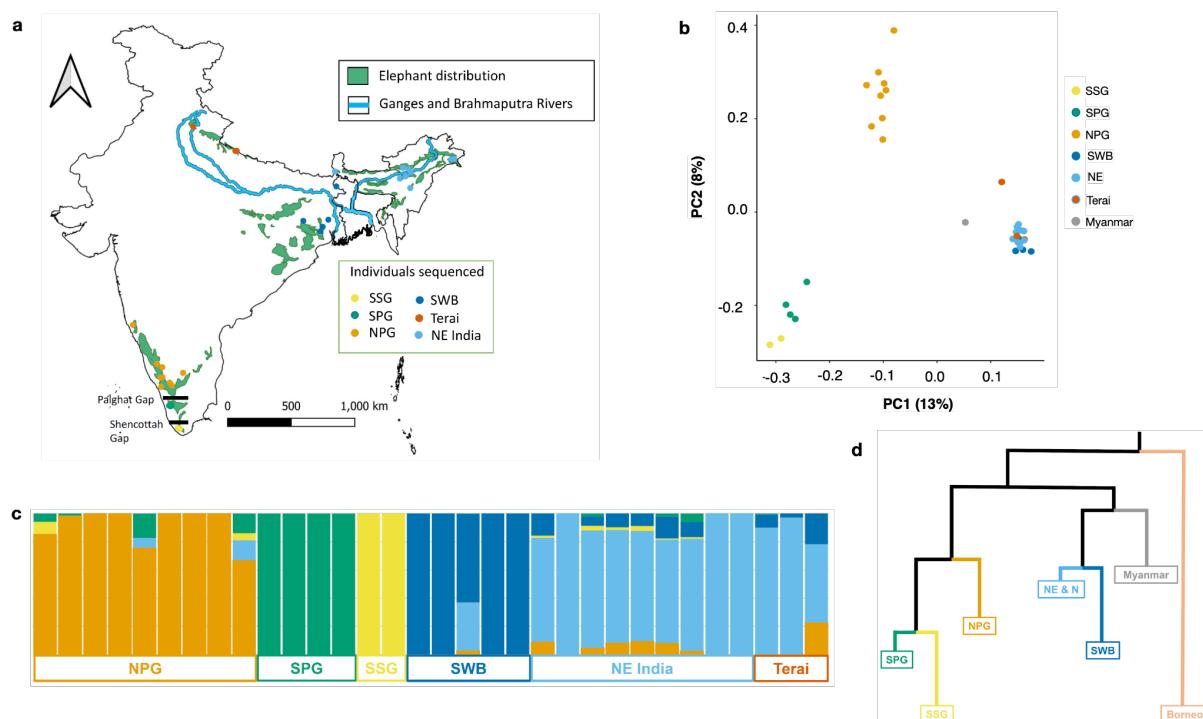
80 Phylogeographic studies of elephants point towards a tangled history of  
81 demographic change, range expansion/contraction, as well as population admixture  
82 (Vidya et al., 2009). Using a few microsatellite and mitochondrial markers, Vidya et  
83 al. (2005) reported four Indian elephant population genetic clusters, one each in  
84 North-Northeastern India and Central India, and two in Southern India separated by  
85 the Palghat gap, broadly corresponding to their regional population distributions.  
86 However, a more recent study by De et al. (2021) suggest only three major genetic  
87 clusters corresponding to Northern India, Northeastern India, and a combined  
88 Southern and Central Indian population (with the Northern population appearing to  
89 be admixed). The patterns of genetic diversity also varied across different  
90 ecoregions. Vidya et al. (2005) showed that the Southern populations harboured  
91 lower genetic diversity (haplotype diversity) than the other populations, while  
92 according to De et al. (2021), the Northeast Indian populations showed low  
93 heterozygosity. The only genome-wide study of elephants globally (Palkopoulou et  
94 al., 2018), without range-wide sampling of Asian elephants, show old divergence  
95 between populations in southern India across the Palghat Gap and also between  
96 northern and the southern populations. The limited published genomic data from  
97 Asian elephants, hence, does not allow unequivocal inference of population  
98 structure, divergence times, conservation units and conservation challenges.

99 To address these gaps, we used whole genome sequences of wild-caught Asian  
100 elephants from all the major landscapes, encompassing the known biogeographic  
101 barriers in India, to assess their genetic structure, demographic history and genetic  
102 variation. We infer the predominant factors that have shaped the observed genetic  
103 diversity and its structuring across the country. Further, we use this information to  
104 suggest population management units and challenges that could be important to  
105 elephant conservation.

107 **Results and Discussion**

108 **Population structure**

109 We collected 31 blood samples from wild born captive elephants of known origin  
110 from almost all known elephant landscapes in India (Supplementary Table 1, Parida  
111 et al. 2022) and re-sequenced whole genomes (figure 1a). A set of 2,675,655 SNP  
112 markers revealed distinct population structure within elephant landscapes in India.  
113 The PCA plot revealed that populations separate from the south to north direction  
114 along PC1 axis (figure 1b). Elephants from Northern India (Terai) and Northeastern  
115 India (Ne & N) form a single cluster (figure 1b and c). Populations from Central India  
116 and Northern India cluster together in the PCA but resolve into separate clusters in  
117 the STRUCTURE plot (figure 1c) with the most optimum support for five population  
118 clusters (North-Northeast, Central and three clusters in the Western Ghats: North of  
119 the Palghat gap (NPG), South of the Palghat gap (SPG) and South of Shencottah  
120 gap (SSG), EvalAdmix, Supplementary figures 1 and 2). The admixture graph that  
121 includes a Bornean elephant (ERR2260499) as an outgroup with branch lengths  
122 qualitatively adjusted to the drift parameter (figure 1d) suggests that the central  
123 Indian lineage (SWB) derive their ancestry from a lineage of elephants in northern  
124 India (N&NE) and Myanmar. Similarly, in southern India (NPG, SPG and SSG) the  
125 populations derive their ancestry from a lineage closely related to the NPG  
126 population and the SSG population derives its ancestry from a lineage closely  
127 related to the SPG population. These patterns suggest a North-northeastern  
128 ancestry of elephants in India and colonisation of Central India, with a deeply  
129 diverged lineage and sequential colonisation of the Western Ghats and adjoining  
130 Eastern Ghats of Southern India.


131 Our results support previous conclusions that the North and Northeast Indian  
132 populations of elephants are different from other Indian populations (Vidya et al.  
133 2005a,b; De et al. 2021) and that the Ganges river has acted as a potential barrier to  
134 gene flow (figure 1a). Consistent with movement ecology inferences (Koirala et al.  
135 2016) the elephants in the Northern population (described as Northwest Indian  
136 population in De et al. 2021) are connected to the Northeast Indian elephants. This is  
137 a large landscape running west to east along the Himalayan foothills and potentially  
138 the elephant habitat connectivity here is fragile (Koirala et al. 2016) or even

139 completely broken in recent times (Sukumar 2011, Menon and Tiwari 2019). Our  
140 genetic data also suggest that the Brahmaputra river acts as a barrier to geneflow in  
141 the Northeast population. Previous studies suggested that the river acts only as an  
142 incomplete barrier, with female-led family groups unable to cross except perhaps at  
143 the higher reaches, but not a barrier to adult male elephants (Vidya et al., 2005).  
144 Anecdotal information suggests that male elephants swimming across the  
145 Brahmaputra (RS and AK independent personal observations), suggesting it is not a  
146 barrier to dispersal and movement. De et al., 2021 suggest that the Torsa river is  
147 also a barrier to elephant movement. However, radio-telemetry and observational  
148 studies in this region have shown that elephants certainly cross the river (Sukumar et  
149 al. 2003). We were unable to explicitly investigate the role of the Torsa river as a  
150 barrier because of inadequate geographic sampling. While geographically  
151 proximate, we find that Central Indian populations are genetically distinct as  
152 suggested previously (Vidya et al. 2005).

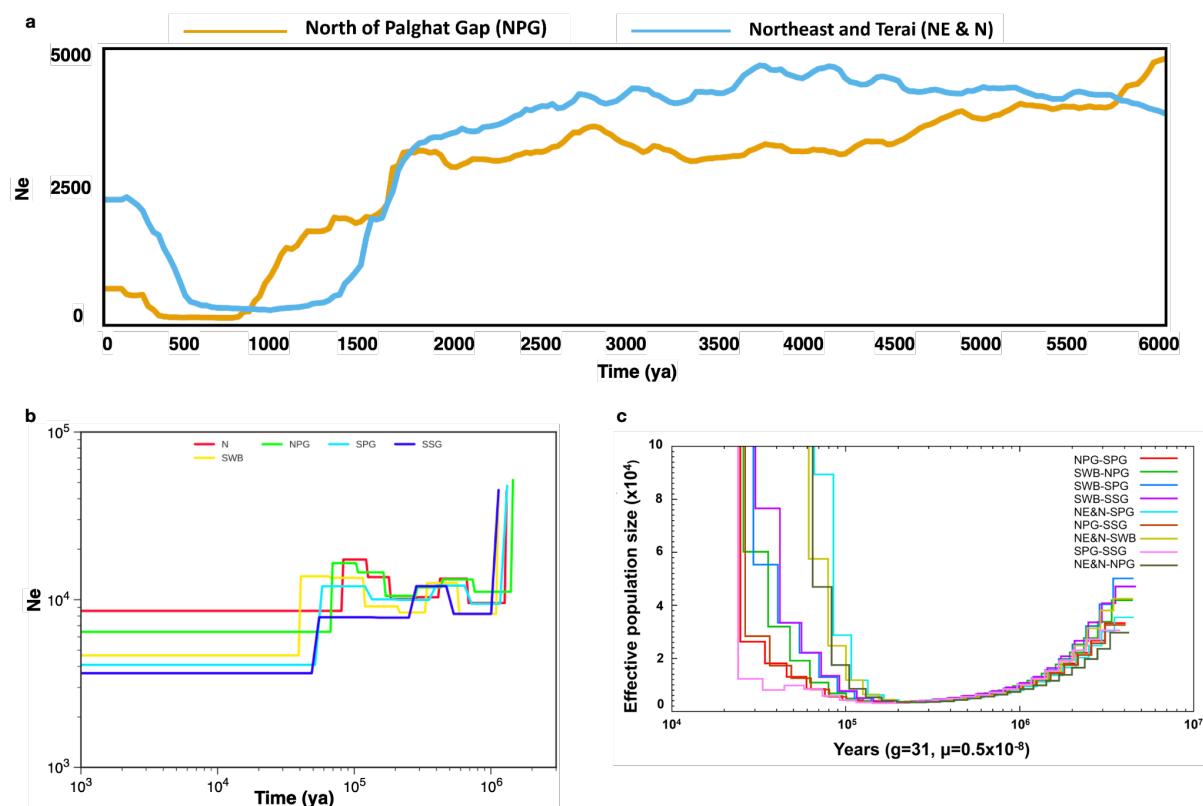
153 Our data and analyses allow identification of a novel genetic cluster in Southern  
154 India and suggest three genetically differentiated populations in the Western Ghats.  
155 Along the Western Ghats, certain mountain passes divide the elephant population  
156 with the Palghat gap being the most prominent barrier to elephant dispersal. Further  
157 south, the Shencottah Gap also acts as a previously unknown impediment to  
158 elephant movement (though anecdotal information suggests that elephants moved  
159 across this gap until a few decades ago). Interestingly the population south of  
160 Shencottah Gap (SSG) is indistinguishable from the population north of Shencottah  
161 (SPG) when SNPs are filtered for LD (Supplementary figures 3-4). This probably  
162 shows that the differentiation is potentially because of founder effects and inbreeding  
163 combined with recent isolation and small population size (Khan et al. 2022).  
164 Geneflow between north and south of the Shencottah Gap may have reduced further  
165 recently (compared to across the Palghat gap) largely due to a railway line, a  
166 highway and associated development along these transportation infrastructures.  
167 While nested biogeographic implications of these gaps on population structure and  
168 phylogeography has been highlighted for smaller species (e.g. montane birds, Robin  
169 et al., 2015; bush frogs, Vijaykumar et al., 2017, geckoes, Chaitanya et al., 2019)  
170 and some mammals (e.g. Lion Tailed Macaque, Ram et al., 2015), that they result in  
171 such deeply divergent lineages in large, mobile species like the elephant is

172 surprising. Alternatively, founding events followed by minimal geneflow might have  
173 resulted in the observed patterns of divergence. Additionally, elephant numbers and  
174 densities south of the Shencottah Gap have always remained small (on the order of  
175 100 individuals). Such small populations are subject to genetic drift, which could  
176 accentuate the observed patterns. Pairwise  $F_{ST}$  supports these inferences  
177 (Supplementary Table 2) and we find no significant geneflow between the clusters  
178 based on F3 statistics (Supplementary Table 3).

179 Interestingly, the results obtained from the haplotype network analysis based on the  
180 mitogenome paints a slightly different picture (Supplementary figure 5). Similar to the  
181 nuclear genome, the Northern populations were embedded within the Northeastern  
182 populations. However, the Central population was allied to the Southern populations,  
183 unlike the results obtained from the nuclear data, more in line with some previous  
184 studies (Vidya et al., 2009, De et al., 2021).



185  
186 **Figure 1 Population structure (a) sampling locations and the geographic**  
187 **barriers to dispersal (b) PCA (c) ADMIXTURE plot at K=5 and (d) qpgraph with**  
188 **no admixture events with the branch length qualitatively adjusted to the drift**  
189 **parameter. NE&N (n=12) indicates samples from Northeastern India (n=9) and**  
190 **Northern India (n=3), CI (n=5) from Central India, NPG (n=9) from north of**


191 **Palghat Gap, SPG (n=4) from south of Palghat Gap but north of Shencottah**  
192 **Gap, and SSG (n=2) from south of Shencottah Gap.**

193 **Demographic History**

194 We investigated recent demographic history for clusters with more than nine  
195 samples (N&NE and NPG), and we find that they had undergone a recent bottleneck  
196 around 1500-1000 years ago (figure 2a). Since the taming of elephants in the  
197 subcontinent during Harappan times, at least four millennia ago, there has been  
198 regular exploitation of wild stocks of the species for military and domestic use  
199 (Sukumar 2011). The historical accounts suggest that the armies of ancient  
200 kingdoms and republics in the north (the Gangetic basin) maintained several  
201 thousand captive elephants since as early as the 3<sup>rd</sup> century BCE, suggestive of  
202 overexploitation of wild populations for several hundred years (Sukumar 2011). This  
203 is the first report of a bottleneck in Asian elephant populations in recent historical  
204 times, mediated perhaps by human exploitation, unlike earlier bottlenecks of a  
205 variety of larger mammals globally during Pleistocene glaciations (e.g. Menotti-  
206 Raymond and O'Brien 1993, Dalui et al. 2021). Our results also suggest that both  
207 populations (N&NE and NPG) may have started recovering from the bottlenecks  
208 around 300-500 years ago. Often population structure can dictate the models of  
209 demographic history (Mazet et al. 2016). Additionally, we find signatures of  
210 population bottlenecks around 100,000 years ago (figure 2b). However, further  
211 investigation with hPSMC (Cahill et al. 2016) suggests that this coincides with  
212 populations differentiating from each other (figure 2c). We find that the Northern  
213 elephant population (NE&N) separated from all other populations about 70,000-  
214 100,000 years ago. Central Indian elephants separated from the rest around 50,000-  
215 80,000 years ago, while the Southern Indian populations separated from each other  
216 only around 20,000-30,000 years ago.

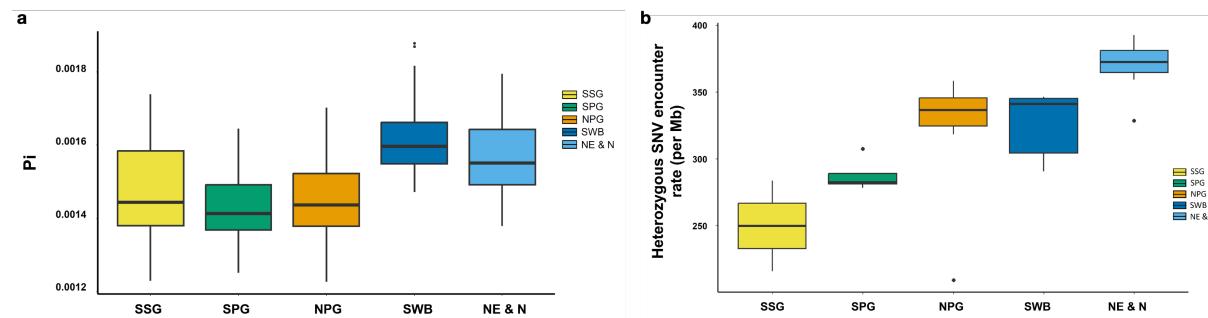
217 Additionally, our results emphasise the antiquity of the Northern populations of  
218 elephants consistent with Vidya et al. (2005, 2009). Palkopoulou et al. (2018) had  
219 suggested more recent divergence which could be due to the differences in the  
220 mutation rates used for making inferences (Prado et al. 2023). Vidya et al. (2005,  
221 2009) made inferences based on mitochondrial sequences which are expected to  
222 provide older estimates of divergence times (Moriyama & Powell 1997, Hugall et al.

223 2007). However, consistent with Palkopoulou et al. (2018) we find that the Southern  
224 populations of elephants split from each other only around 20,000 years ago, or the  
225 time of the Last Glacial Maximum when southern India, in particular the Western  
226 Ghats, was more arid (Sukumar et al. 1993, Rajagopalan et al. 1997). These findings  
227 further support the recognition of five elephant *Mus* in India, emphasising their  
228 antiquity and unique evolutionary histories.



229  
230 **Figure 2 Demographic history (a) recent demographic history within in the last**  
231 **100 generations from GONE (b) old demographic history from 100 generations**  
232 **to 40,000 generations from SMC++ and (c) population divergence estimated**  
233 **from hPSMC. The point where population sizes start increasing exponentially**  
234 **is the time to population split in hPSMC plot.**

## 235 **Genetic Diversity**

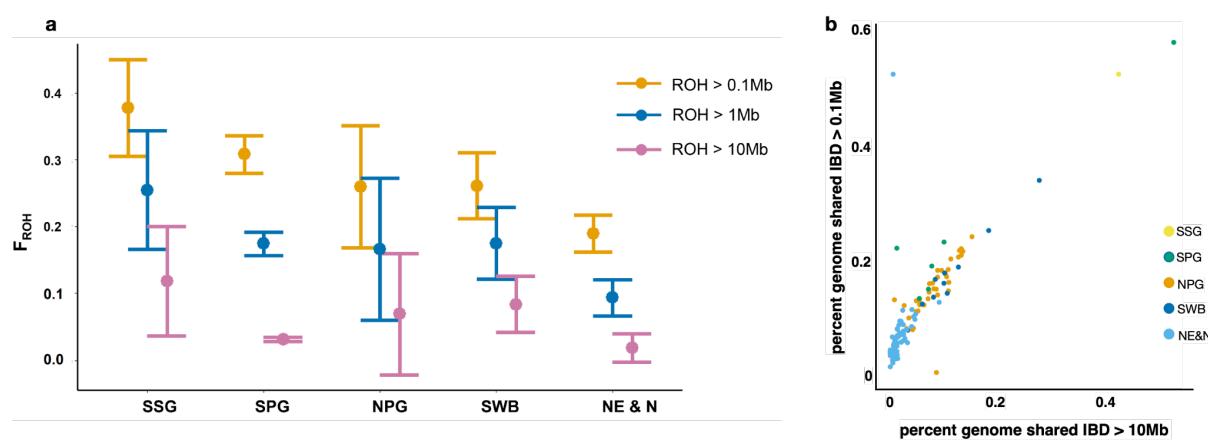

236 But how do these management units compare with each other? Within each cluster  
237 we estimated the genetic diversity as the number of average pairwise differences in  
238 sequences ( $\pi$ ). We find that the clusters that are from southern India (SPG, SSG  
239 and NPG) have lower average  $\pi$  than the northern Indian and central Indian  
240 clusters. Interestingly, there is no visible difference in  $\pi$  within the southern and

241 between the northern and central (N&NE and SWB) clusters (figure 3a)  
242 (Supplementary Table 4). This suggests that all the clusters within southern have a  
243 similar number of haplotypes and the central and Northern cluster have a similar  
244 number of haplotypes. About 75% of the discovered SNPs are shared, or present in  
245 all populations (Supplementary table 5). However, the number of heterozygous sites  
246 encountered per Mb is the highest for the northern population (NE&N) while it is  
247 lowest for the southernmost population (SSG) (figure 3b). We find no difference in  
248 heterozygous SNV per Mb for NPG and SWB. Overall, our results suggest that most  
249 populations of elephants have similar nucleotide diversity (pi) but, in the population  
250 south of Shencottah gap (SSG), similar nucleotides are often paired together  
251 indicating lower effective population size, a pattern not investigated earlier, while in  
252 the populations in Northern India (NE&N) most of the nucleotides pair with a different  
253 one indicative of higher effective size.

254 Genetic variation is related to effective population size which, in turn, is dependent  
255 not only on the total population size of a species but other variables such as the sex  
256 ratio (Frankel and Soulé 1981). Although we cannot speculate on the historical  
257 population sizes of Asian elephants across the various regions we have investigated,  
258 a cursory look at the recent population sizes of the five management/conservation  
259 units we have inferred from the genomic data shows that population size per se is  
260 not indicative of the observed genetic variation (pi and heterozygosity)  
261 (Supplementary Table 6). For instance, the genetic variation of the Northeastern  
262 population is much higher than that of the Southern population north of the Palghat  
263 Gap. Both these clusters have similar current population sizes on the order c. 10,000  
264 individuals. Central Indian elephants have higher variation than Southern populations  
265 even though the former has distinctly lower population numbers. This might be  
266 indicative of recent bottlenecks in central India, as heterozygosity decays slowly  
267 while southern populations, especially those south of Palghat gap may have had  
268 historically smaller populations. The highly female-biased sex ratios in Southern  
269 populations, especially those to the South of the Palghat Gap, in recent historical  
270 times (1970s-1990s) from selective poaching of male elephants for ivory (Sukumar  
271 1989, Ramakrishnan et al. 1998), could have decreased the effective population size  
272 (compared to census size), but this is unlikely to have decreased genetic variation to  
273 the extent observed. Elephants South of Shencottah Gap were also connected to the

274 SPG population in recent history. Overall, our results are thus also consistent with a  
275 serial dilution of variation that could be the result of sequential colonization  
276 (Hellenthal et al., 2008; Pierce et al., 2014; Pless et al., 2022) from north to south:  
277 N&NE, Central, Southern, with North of PG, South of PG and South of Shencottah,  
278 in that order.

279




280  
281 **Figure 3 Genetic diversity (a) boxplots of pairwise nucleotide differences per**  
282 **site (pi) in the populations (error bars are variance in mean pi/site across**  
283 **scaffolds) and (b) heterozygous SNV encounter rate per Mb of the genome.**

284 We further test this by estimating  $F_{ROH}$ , the proportion of the genome in homozygous  
285 stretches, length of which is an indicator of older inbreeding/recent bottlenecks. We  
286 observe that individuals from south of Shencottah gap (SSG) have high average  
287  $F_{ROH>0.1Mb}$  of 0.4 (40% of the genome is in homozygous stretches) while individuals  
288 from northern India (NE&N) have the least average  $F_{ROH>0.1Mb}$  of 0.2 (20% of the  
289 genome is in homozygous stretches, Figure 4a). There is no significant difference  
290 between individuals from SPG, NPG and SWB populations (average  $F_{ROH>0.1Mb}$  is  
291 0.25). Longer homozygous stretches are indicative of recent inbreeding (Curik et al.,  
292 2014; Sumreddee, 2021). ROH longer than 1Mb and 10Mb shows few differences  
293 between populations although, the northern population (NE&N) has the least recent  
294 inbreeding. Additionally, the SPG and NE&N populations have lower variance in  
295  $F_{ROH}$  compared to other populations, potentially indicating gene flow and connectivity  
296 within these large landscapes, which will result in lower variance in parental  
297 relatedness. We caution that these results do not directly imply choosing to mate  
298 between relatives, behavioral studies suggest ongoing inbreeding avoidance in  
299 elephants (Sukumar 2006), but more likely suggest founder effect induced drift and  
300 mating between relatives, especially south of the Shencottah gap. Founder effects

301 will result in a small set of individuals as founders, consequentially leading to the  
302 individuals in the population soon being related. Mating within this set of individuals  
303 then leads to inbreeding.

304 We measured the percent genome that is identical by descent (IBD) shared between  
305 pairs of individuals in each population (Figure 4b). We observe that elephants in the  
306 northern Indian cluster (NE&N) share very few IBD stretches of genome (on an  
307 average 1.6% in more than 10Mb long and 6.6% in more than 0.1Mb long IBD  
308 stretches) with each other while the two individuals we had from the south of  
309 Shencottah Gap (SSG) shared about 43% of their genome in stretches longer than  
310 10Mb and about 52% of their genome in stretches longer than 0.1Mb. Apart from the  
311 one outlier pair in the SPG sample set we observe very negligible difference in SPG,  
312 NPG and SWB population with regards to the proportion IBD stretches of genome  
313 shared between pairs of individuals. On an average these three clusters share more  
314 than 10% of their genome in IBD longer than 10Mb (NPG: 8%, SPG: 14%,  
315 SWB:12%) and 19% of their genome in IBD longer than 0.1Mb (NPG: 15%, SPG:  
316 25%, SWB:17%). These results indicate possible threats from loss of fitness due to  
317 inbreeding in upcoming generations. Since the present individuals already share  
318 large IBD stretches of genome, impacts on fitness will be maximal, especially if these  
319 individuals have higher numbers of deleterious alleles. However, since there are a  
320 few outlier pairs with lower amounts of shared genomic IBD stretches (figure 4b)  
321 there is hope that maintaining gene flow within these population clusters could  
322 sustain extant genetic variation in these populations into the future.

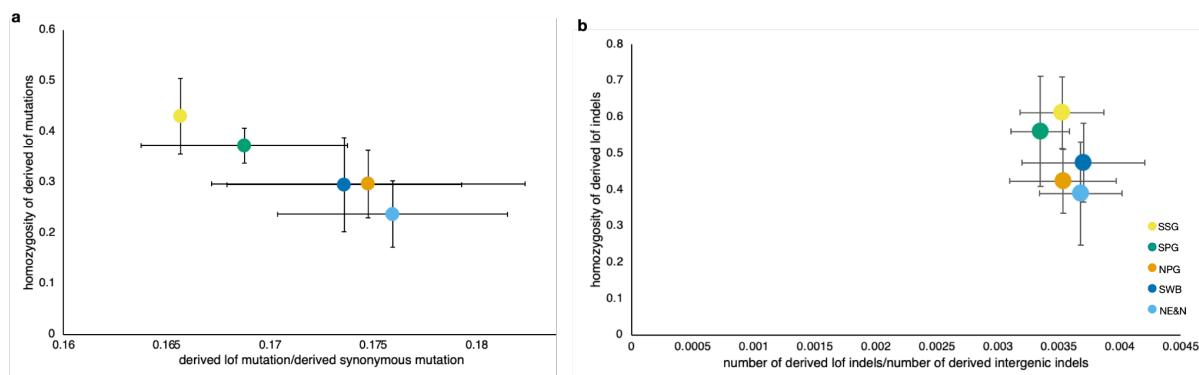


323  
324 **Figure 4 Present and future inbreeding (a) inbreeding measured as FROH of**  
325 **individuals in each population based on ROH stretches longer than 0.1, 1 and**

326 **10 Mb of genome and (b) identical by descent (IBD) stretches of genome**  
327 **longer than 0.1Mb vs 10Mb shared between pairs of individuals in each**  
328 **population.**

329 **Mutation load**

330 We attempted to understand whether individuals, from certain populations, that have  
331 high homozygosity could suffer fitness effects due to inbreeding depression by  
332 investigating mutation load, or putative deleterious mutations. This depends on the  
333 number of derived deleterious mutations harboured across the genome, how many  
334 are homozygous, and the putative magnitude of their fitness effects (indel Loss of  
335 function > Loss of function > missense mutation). We normalised this by derived  
336 SNPs in neutral/intergenic regions, to account for possible missingness/uneven  
337 coverage across genomes. As expected, populations with lowest genetic variation  
338 (SSG) had fewer LOF mutations (5a, x axis). This could be because of the serial  
339 founding demographic history from north to south (see Figure 1d). However, LOFs in  
340 SSG were not entirely a subset of those in N&NE, supportive of emergence of *de-*  
341 *novo* mutations in the SSG population due to long history of isolation between the  
342 two populations. SSG population has the highest homozygosity for the LOF  
343 mutations. Interestingly, SPG also had fewer homozygous LOF mutations (Figure  
344 5a), potentially due to purging and *de-novo* mutation accumulation due to historical  
345 isolation.


346 To better understand whether populations like SSG are endangered by imminent  
347 fitness effects, we compared indel LOFs. While the total indel LOFs did not vary  
348 considerably between populations (x axis, Figure 5b). The observation that all  
349 populations have a similar indel LOF load (compared to LOF load, Figure 5a, x axis)  
350 suggests that they are under strong purifying selection, and that these putative high  
351 negative effect mutations could have already been purged from these populations.  
352 In contrast, the homozygous indel LOFs remain higher in SSG. This suggests that  
353 despite purging, elephants south of the Shencottah Gap could experience negative  
354 fitness consequences of indel LOFs first. This population may be threatened with  
355 inbreeding depression, or lower fitness of individuals, ensuing negative feedback on  
356 population growth rates, and a potential for further increase in homozygosity due to  
357 inbreeding in the future generations (Robinson et al. 2023). However, African

358 elephant populations (such as at Addo National Park) grew rapidly with no apparent  
359 deleterious effects after a severe bottleneck only about a century ago (Whitehouse  
360 and Hall-Martin 2000). Genetically small populations are expected to be especially  
361 efficient at purging strongly deleterious alleles (Kyriazis et al. 2023, Khan et al.  
362 2021), this does seem to be happening in the isolated population south of the  
363 Shencottah Gap. But the question that remains is whether these endangered  
364 populations with long generation times and low population growth rates can tolerate  
365 the selection pressure brought about by highly deleterious alleles.

366 Southern populations (NPG, SPG and SSG) have fewer derived missense mutations  
367 than the central (SWB) and the northern (NE&N) populations (Supplementary figure  
368 6) but the populations south of Palghat Gap (SPG and SSG) have higher  
369 homozygous missense mutation load than the NPG, SWB and NE&N populations,  
370 suggesting lack of purging. The fewer number of mildly deleterious missense alleles  
371 in the southern Indian population north of Palghat Gap (NPG) compared to SWB and  
372 N&NE is counterintuitive, as current literature suggests larger populations host high  
373 numbers of mildly deleterious alleles (Kyriazis et al. 2023, Khan et al. 2021). We  
374 suggest serial dilution of missense variants combined with a long isolation from the  
375 larger and connected north Indian population (NE&N) may have led to restricted  
376 immigration of mild impact deleterious alleles in the NPG population while the LOF  
377 are selected out equally well in the large NPG, SWB and NE&N populations.  
378 Additionally, the low heterozygosity in the NPG, SWB and NE&N populations  
379 cautions that all populations have potential for inbreeding depression (Robinson et  
380 al. 2022).

381 Functionally, the derived missense mutations are related to sensory perception,  
382 detection of chemical stimulus and especially olfaction (Supplementary figure 7).  
383 This could also be due to independent evolution of olfactory genes in Asiatic  
384 elephants (Reddy et al. 2015); however, since we also polarized the alleles with  
385 Bornean elephant genome, the missense mutations can be confidently classified to  
386 be recently derived and maybe potentially deleterious. The loss-of-function mutations  
387 mostly affect protein, ions and nucleic acid binding abilities along with transferases  
388 and transporters (Supplementary figure 8). Given that elephants rely heavily on  
389 chemical signals, the deleterious mutations may impair crucial olfactory functions in

390 the elephants. Although inbred individuals are more homozygous for these mutations  
391 and maybe expected to be severely affected, it is possible that sociality and herd  
392 living allows reduced sensory abilities in individuals. However, this needs further  
393 investigation.



394  
395 **Figure 5 Mutation load measured as a function of homozygosity vs number of**  
396 **derived (a) indel mutations and (b) loss-of-function (lof) mutation. The number**  
397 **of derived deleterious alleles/number of derived neutral alleles is a proxy for**  
398 **number of deleterious alleles. The error bars indicate standard deviations.**

399 **Conservation implications**

400 Overall, our results support five management units of Asian elephants in India.  
401 Elephants in the Himalayan foothills from the Northern population (in the west) to the  
402 Northeast of India are a single cluster that diverged from other Indian populations  
403 more than 70,000 years ago. This makes the N&NE cluster the oldest and, hence,  
404 the most evolutionarily unique population. Elephant populations south of the  
405 Shencottah Gap need conservation attention through detailed genomic research at  
406 fine spatial scales, conservation action to protect remaining habitats and minimise  
407 conflict associated mortality, and serious consideration about translocations into and  
408 out of this population. Our results suggest that further decline in population numbers  
409 here could result in inbreeding depression. Long-term studies on inbreeding and  
410 possible associated phenotypes will be important to understand future fitness  
411 trajectories here. Populations north and south of the Palghat Gap are distinct  
412 management units, and animals should be moved across this biogeographic divide  
413 only after very careful evaluations of the consequences. Further, given the high  
414 missense mutation load in these two management units, connectivity must be  
415 maintained within these two landscapes. The Ganga and Brahmaputra river in West

416 Bengal function as biogeographic divides, making elephants south of these rivers a  
417 unique management/conservation unit. Elephants here are facing significant  
418 challenges because of negative human impacts, and their conservation must take  
419 into account their unique 50,000 year old evolutionary history.

420 Our descriptive population genomic approach allowed for unique and important  
421 conservation insights. To the best of our knowledge, elephants in India present one  
422 of the first clear examples of serial founding of a large landscape at a subcontinental  
423 scale, with decreasing founder size from the source. Our data allows us to detect  
424 recent declines, potentially mediated by historic elephant captures on a large scale.  
425 Further, elephants provide an excellent system to better understand the interplay  
426 between mutation load and inbreeding in a set of five populations, a rare set up in  
427 endangered species. While on-ground conservation challenges for elephants are  
428 mitigation of human-associated conflict and human infrastructure associated  
429 mortality, conservation genomics insights provide long term conceptual guidance for  
430 future survival of these populations.

## 431 **Methods**

432 **Sample collection:** State Forest Department databases of captive elephants were  
433 examined from 6 states, to locate individual elephants that were captured or rescued  
434 from all of the known four major disjunct populations across India. Within these  
435 populations, individuals representing habitats across major barriers such as Palghat  
436 and the Shencottah Gaps in Southern India and the Ganges and the Brahmaputra  
437 rivers in northern and Northeast India were also located. Blood samples and exact  
438 capture locations were collected from 28 such individuals and included in our final  
439 dataset (see Supplementary Table 1). Out of those samples, 12 were collected from  
440 the Southern eco-region, four were collected from the Central eco-region, three were  
441 collected from the Northern eco-region, and lastly nine were collected from the  
442 Northeastern eco-region. Out of the 12 samples collected from the Southern eco-  
443 region, six were collected from North of Palghat Gap, four from South of Palghat Gap  
444 (but north of Shencottah Gap), and two from South of Shencottah Gap. We  
445 additionally included genomic data from five more individuals obtained from online  
446 sources — one individual each from Borneo, Myanmar and Northeastern India, and

447 three individuals from Southern India (two North of Palghat Gap and one South of  
448 Palghat Gap) (See Supplementary Table 1).

449 **DNA extraction, library preparation and sequencing**

450 Genomic DNA was extracted from blood samples using Qiagen DNeasy Blood &  
451 Tissue Kit. The library preparation and whole genome resequencing was carried out  
452 at Medgenome INC. The DNA extraction and sequencing were carried out following  
453 Khan et al., 2020.

454 **Variant calling and filtering**

455 The raw sequencing reads were trimmed using the default settings in TrimGalore-  
456 0.4.5. The trimmed reads were mapped to the *Elephas maximus* reference genome  
457 ([https://dnazoo.s3.wasabisys.com/index.html?prefix=Elephas\\_maximus/](https://dnazoo.s3.wasabisys.com/index.html?prefix=Elephas_maximus/)) using  
458 default settings of BWA *mem* (<https://github.com/lh3/bwa>). The mapped reads were  
459 converted to binary format and sorted using Samtools-1.9 (Li et al. 2009). The PCR  
460 and optical duplicates were marked using Picardtools MarkDuplicates  
461 (<http://broadinstitute.github.io/picard>) or Samtools-markdup. SNPs were identified  
462 using Strelka variant caller 2.9.10 (Saunders et al. 2012). The variants were filtered  
463 using VcftoolsV13 (Danecek et al. 2011). We removed indels and retained only SNP  
464 loci with minimum phred scaled base quality 30, minimum genotype quality 30, a  
465 minimum minor allele count of 3, did not deviate from Hardy-Weinberg equilibrium  
466 with chi square p value of 0.05. All sites with the FILTER flag other than PASS were  
467 removed. Sites that showed mean depth across individuals more than the 97.5<sup>th</sup>  
468 percentile and less than 2.5<sup>th</sup> percentile or were missing in more than 20%  
469 individuals, were removed. We identified the sex chromosome scaffold as described  
470 in Armstrong et al. (2021) and removed the sex chromosome scaffolds.

471 **Population genetic structure:**

472 **PCA**

473 We first employed PCA to partition the data along their main axes of variation. The  
474 PCA was carried out using the *--pca* function in Plink (Purcell et al. 2007) based on  
475 the final filtered variants. The resulting eigenvectors were plotted in R using ggplot2.

476 **STRUCTURE**

477 Thereafter, a maximum likelihood-based method, ADMIXTURE (Alexander et al.  
478 2009) was employed to investigate the population genomic structure of Asian  
479 elephants. We estimated the number of clusters across  $K$  values ranging from 1 to 6,  
480 based on the number of clusters obtained from PCA. The evaluation of the most  
481 optimal number of clusters was carried out using EvalAdmix (Garcia-Erill et al. 2020).  
482 EvalAdmix estimates the correlation of the residual matrices of the individuals from  
483 the Admixture analyses. The resulting correlation matrices were plotted in R.

484 *qpgraph*

485 We assigned a population to each individual based on the results from admixture.  
486 We converted the .vcf file to .ped format using VCFtools and then .ped to .bed format  
487 using Plink. Employed the *find\_graphs* function in ADMIXTOOLS2  
488 (<https://github.com/uqrmaie1/admixtools>) to automatically find the optimum graphs  
489 using various values for the number of admixture events. The model with zero  
490 admixture had the best statistical support as tested using the protocol suggested in  
491 ADMIXTOOLS2 with functions *qpgraph\_resample\_multi* and *compare\_fits*.

492 **Demographic history**

493 *Recent Demographic History*

494 We used the LD based GONE (Santiago et al. 2020) for estimating recent  
495 demography history up to a couple of hundred generations ago. We used the default  
496 settings of the parameters and set *PHASE* as 0. We plotted the results assuming a  
497 generation time of 31 years. This is a multiple sample analysis and requires several  
498 samples for accurate estimates. Hence, we performed this analysis only for the  
499 NE&N and the NPG cluster which have at least nine samples. The results from this  
500 analysis better predict recent events but are not very reliable for estimating events  
501 older than a hundred generations (Santiago et al. 2020).

502 *Old demographic History*

503 We used the coalescent based SMC++ (Terhorst et al. 2017) method for estimating  
504 older demographic history. We used the protocol described for the implementation of

505 the method (<https://github.com/popgenmethods/smcpp>) as is. We set the mutation  
506 rate to  $5.3 \times 10^{-9}$ /base/generation (Prado et al. 2023) and a generation time of 31  
507 years. The estimates from this method are reliable for estimating demographic  
508 events between a hundred generations ago to forty thousand generations ago.

509 *Divergence time*

510 We estimate divergence times between populations using hPSMC (). We used a  
511 single individual selected at random from each population (Supplementary table 1).  
512 We created a pseudo-diploid individual using samples from two populations for each  
513 scaffold except for the sex chromosome scaffold (<https://github.com/jacahill/hPSMC>).  
514 Then performed PSMC with the default settings. We plotted the results assuming a  
515 mutation rate of  $5.3 \times 10^{-9}$ /base/generation (Prado et al. 2023) and a generation time  
516 of 31 years. The time point where the effective population size estimated from the  
517 pseudo-diploid individual rises exponentially is the point where the two haplotypes do  
518 not coalesce and hence signify population divergence.

519 **Genetic diversity**

520 *Nucleotide diversity: pi*

521 We randomly subsampled four individuals from N&NE, SWB, NPG and SPG sample  
522 set and retained the SSG dataset (n=2) as is. We estimated the average number of  
523 pairwise differences per site for each population cluster as described in Wang et al.  
524 (2020). Briefly, we set the function *dosaf* to 1 ANGSD (Korneliussen et al. 2014) to  
525 estimate allele frequency likelihood for each site. The we used the used the function  
526 *realSFS* and estimated a folded site frequency spectrum. We set the function  
527 *doThetas* to 1 and estimated pi per site and used the *ThetaStat* function the  
528 summarise the pi value for each scaffold. We used only the chromosomal scaffolds  
529 from this summary and divided the “tP” values by the number of sites for each  
530 scaffold to obtain the average pi per site. Furthermore, we statistically compared the  
531 significance of the estimated values between populations (see Supplement).

532 *Heterozygous SNV encounter rate*

533 We estimated the number of heterozygous SNPs for each individual using the  
534 `vcfstats` function of RTGtools (<https://github.com/RealTimeGenomics/rtg-tools>). We  
535 then divided the number of heterozygous sites by the total number of sites  
536 genotyped for the individual and multiplied by 10<sup>6</sup> to obtain SNV encounter rate/Mb.

537 **Inbreeding**

538 *FROH*

539 We estimated runs of homozygosity (ROH) using the `roh` function in BCFtools  
540 version 1.3 (Narasimhan et al. 2016) as described previously (Shukla et al. 2023).  
541 We classified the ROH stretches into three size classes: the more than 0.1 Mb (100  
542 Kb) stretches show cumulative inbreeding due to old and recent bottlenecks, the  
543 more than 1Mb stretches show cumulative inbreeding in the recent past and the  
544 more than 10Mb stretches show recent inbreeding. FROH was estimated as  
545 described previously (Khan et al. 2021).

546 *Shared IBD stretches*

547 We used IBDseq (Browning & Browning, 2013) to detect the stretches of genome  
548 that are identical-by-descent in pairs of individuals. For each pair of individuals in a  
549 population, we summed the lengths of IBD stretches longer than 0.1Mb and 10Mb  
550 and divided by the total autosomal length.

551 **Genetic load**

552 *Filtering variant sites*

553 We filtered the raw variants obtained from Strelka variant caller 2.9.10 again in  
554 VCFtools using the parameters with minimum phred scaled base quality 30,  
555 minimum genotype quality 30, minor allele count 1, FILTER flag as PASS. We also  
556 removed sites with  $-0.5 > Fis > 0.95$  as described previously (Khan et al. 2021) and  
557 removed sites missing in more than 20% of the individuals. We filtered out the sex  
558 chromosomes as well. We call this set of loci as `deleterious_allele_set`.

559 *Identifying ancestral alleles*

560 We defined the ancestral allele as the allele present most commonly in sister species  
561 of Asiatic elephants. For this we used the genome of African elephant (genbank  
562 accession: GCA\_000001905.1) and dugong (genbank accession: GCA\_015147995).  
563 We converted these assemblies to 100bp long FASTQ reads and mapped to the  
564 Asiatic elephant reference genome and removed reads mapping to multiple regions  
565 as described in Khan et al. (2021). We converted the mapped reads to consensus  
566 fasta files and estimated the majority allele at a locus. We further filtered these  
567 alleles with the genome of Bornean elephant (SRA accession: ERR2260499). Any  
568 loci where the Bornean elephant was not homozygous for the ancestral allele was  
569 removed from the analysis thus ensuring that the derived alleles are new to the  
570 population which is an important assumption for the identification of deleterious  
571 alleles (Khan 2023).

572 *Derived indel load*

573 We further filtered the loci in the deleterious\_allele\_set using the *--keep-only-indels*  
574 tag in VCFtools. We annotate this set of loci with the Asiatic elephant genome  
575 annotation ([https://dnazoo.s3.wasabisys.com/index.html?prefix=Elephas\\_maximus/](https://dnazoo.s3.wasabisys.com/index.html?prefix=Elephas_maximus/))  
576 using Ensembl Variant Effect Predictor (VEP, McLaren et al. 2016). For indels, the  
577 ancestral state cannot be determined using distant species. Hence, the indel allele  
578 that was homozygous in the Bornean elephant was referred to as the ancestral allele  
579 and any indel site where the Bornean elephant was not homozygous, was removed  
580 from the analysis. We then estimated the number of indels predicted to cause  
581 transcript\_ablation, splice\_donor\_variant, splice\_acceptor\_variant, stop\_gained,  
582 frameshift\_variant, inframe\_insertion, inframe\_deletion, splice\_region\_variant were  
583 classified as lof causing indels. We also counted the derived indels in the intergenic  
584 regions of the genome. We divided the number of lof indels with the number of  
585 intergenic indels to control for differences in depth leading to missingness in the  
586 data.

587 *Derived lof load*

588 We filtered the loci in the deleterious\_allele\_set to remove indels and that had mean  
589 depth across individuals more than the 97.5<sup>th</sup> percentile and less than 2.5<sup>th</sup>  
590 percentile. This set was annotated on VEP and lof mutations were identified as

591 described earlier. We then counted the number of derived lof alleles and divided  
592 them with the number of synonymous mutations.

593 *Derived missense load*

594 We used the same set of loci used for estimating the lof load but chose those set of  
595 loci that caused non-synonymous changes in the genome and followed the same  
596 procedure as described for the lof load.

597 **Acknowledgements**

598 This work was supported by a Department of Biotechnology grant  
599 [BT/PR23223/BCE/8/1490/2018] awarded to RS and UR. Permissions for sample  
600 collection were granted in letters C-66011/02/2019 dated 09/07/2019 (West Bengal),  
601 1729/5-6 dated 09/12/2020 (Uttarakhand), 4838/2019-CWW/WL10 dated 06/10/2019  
602 (Kerala), PCCF(WL)/E2/CR-79/2018-19 dated 26/05/2018 (Karnataka),  
603 WL/FG31/Technical Committee/2019 dated 26/08/2019 (Assam) and  
604 CWL/G/173/2018-19/Pt.VII/1695-702 dated 10/10/2019 (Arunachal Pradesh). We  
605 would like to thank the respective forest veterinary doctors of all the states,  
606 particularly Dr. Aditi Sharma, Dr. Arun Zachariah and Dr. Shweta Mandal. RS was  
607 supported as National Science Chair by Science and Engineering Research Board  
608 (SERB), Government of India. Gratitude to NCBS IT team support during data  
609 analysis; NCBS data cluster used is supported under project no. 12-R&D-TFR-5.04-  
610 0900, Department of Atomic Energy, Government of India). VV Robin and Ansil BR  
611 provided helpful comments on drafts of the manuscript. Gratitude to field assistants  
612 for their continuous presence in the field and assisting in sample collection for this  
613 work.

614

615 **Data availability**

616

617 All sequencing data have been deposited in BioProject SUB13810487 in NCBI.

618

619

620 **References**

621

622 Alexander, D.H., Novembre, J. and Lange, K., 2009. Fast model-based estimation of  
623 ancestry in unrelated individuals. *Genome research*, 19(9), pp.1655-1664.

624 Baskaran, N., Balasubramanian, M., Swaminathan, S. and Desai, A.A., 1995. Home  
625 range of elephants in the Nilgiri Biosphere Reserve, south India. *A week with*  
626 *elephants*. Bombay Natural History Society and Oxford University Press, Bombay,  
627 pp.296-313.

628 Berzaghi, F., Bretagnolle, F., Durand-Bessart, C. and Blake, S., 2023.  
629 Megaherbivores modify forest structure and increase carbon stocks through multiple  
630 pathways. *Proceedings of the National Academy of Sciences*, 120(5),  
631 p.e2201832120.

632

633 Browning, B.L. and Browning, S.R., 2013. Detecting identity by descent and  
634 estimating genotype error rates in sequence data. *The American Journal of Human*  
635 *Genetics*, 93(5), pp.840-851.

636

637 Brüniche-Olsen, A., Kellner, K.F., Anderson, C.J. and DeWoody, J.A., 2018. Runs of  
638 homozygosity have utility in mammalian conservation and evolutionary studies.  
639 *Conservation Genetics*, 19(6), pp.1295-1307.

640

641 Cahill, J.A., Soares, A.E., Green, R.E. and Shapiro, B., 2016. Inferring species  
642 divergence times using pairwise sequential Markovian coalescent modelling and low-  
643 coverage genomic data. *Philosophical Transactions of the Royal Society B:*  
644 *Biological Sciences*, 371(1699), p.20150138.

645

646 Chaitanya, R., Giri, V.B., Deepak, V., Datta-Roy, A., Murthy, B.H.C.K. and Karanth,  
647 P., 2019. Diversification in the mountains: a generic reappraisal of the Western  
648 Ghats endemic gecko genus *Dravidogecko* Smith, 1933 (Squamata: Gekkonidae)  
649 with descriptions of six new species. *Zootaxa*, 4688(1), pp.1-56.

650

651 Coverdale, T.C., Kartzinel, T.R., Grabowski, K.L., Shriver, R.K., Hassan, A.A.,  
652 Goheen, J.R., Palmer, T.M. and Pringle, R.M., 2016. Elephants in the understory:  
653 opposing direct and indirect effects of consumption and ecosystem engineering by  
654 megaherbivores. *Ecology*, 97(11), pp.3219-3230.

655 Curik, I., Ferenčaković, M. and Sölkner, J., 2014. Inbreeding and runs of  
656 homozygosity: A possible solution to an old problem. *Livestock Science*, 166, pp.26-  
657 34.

658 Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A.,  
659 Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T. and McVean, G., 2011. The  
660 variant call format and VCFtools. *Bioinformatics*, 27(15), pp.2156-2158.

661

662

663 De, R., Sharma, R., Davidar, P., Arumugam, N., Sedhupathy, A., Puyravaud, J.P.,  
664 Selvan, K.M., Rahim, P.A., Udayraj, S., Parida, J. and Digal, D.K., 2021. Pan-India  
665 population genetics signifies the importance of habitat connectivity for wild Asian  
666 elephant conservation. *Global Ecology and Conservation*, 32, p.e01888.

667

668 Enquist, B.J., Abraham, A.J., Harfoot, M.B., Malhi, Y. and Doughty, C.E., 2020. The  
669 megabiota are disproportionately important for biosphere functioning. *Nature  
670 Communications*, 11(1), p.699.

671 Frankel, O.H. and Soulé, M.E. 1981. Conservation and evolution. Cambridge  
672 University Press, Cambridge, U.K.

673

674 Harich, F.K., Treydte, A.C., Ogutu, J.O., Roberts, J.E., Savini, C., Bauer, J.M. and  
675 Savini, T., 2016. Seed dispersal potential of Asian elephants. *Acta Oecologica*, 77,  
676 pp.144-151.

677 Gubbi, S., Swaminath, M.H., Poornesha, H.C., Bhat, R. and Raghunath, R., 2014.  
678 An elephantine challenge: human–elephant conflict distribution in the largest Asian  
679 elephant population, southern India. *Biodiversity and conservation*, 23, pp.633-647.

680 Hedrick, P.W., 1999. Perspective: highly variable loci and their interpretation in  
681 evolution and conservation. *Evolution*, 53(2), pp.313-318.

682

683 Hellenthal, G., Auton, A. and Falush, D., 2008. Inferring human colonization history  
684 using a copying model. *PLoS genetics*, 4(5), p.e1000078.

685 Khan, A., Krishna, S.M., Ramakrishnan, U. and Das, R., 2022. Recapitulating whole  
686 genome based population genetic structure for Indian wild tigers through an ancestry  
687 informative marker panel. *Heredity*, 128(2), pp.88-96.

688 Khan, A., Patel, K., Shukla, H., Viswanathan, A., van der Valk, T., Borthakur, U.,  
689 Nigam, P., Zachariah, A., Jhala, Y.V., Kardos, M. and Ramakrishnan, U., 2021.  
690 Genomic evidence for inbreeding depression and purging of deleterious genetic  
691 variation in Indian tigers. *Proceedings of the National Academy of Sciences*, 118(49),  
692 p.e2023018118.

693 Khan, A., Patel, K., Bhattacharjee, S., Sharma, S., Chugani, A.N., Sivaraman, K.,  
694 Hosawad, V., Sahu, Y.K., Reddy, G.V. and Ramakrishnan, U., 2020. Are shed hair  
695 genomes the most effective noninvasive resource for estimating relationships in the  
696 wild?. *Ecology and Evolution*, 10(11), pp.4583-4594.

697 Khan, A., 2023. The year of the tiger and the year of tiger genomes!. *Molecular*  
698 *Ecology Resources*, 23(2), pp.327-329.

699 Koirala, R.K., Ji, W., Aryal, A., Rothman, J. and Raubenheimer, D., 2016. Dispersal  
700 and ranging patterns of the Asian Elephant (*Elephas maximus*) in relation to their  
701 interactions with humans in Nepal. *Ethology Ecology & Evolution*, 28(2), pp.221-231.  
702

703 Korneliussen, T.S., Albrechtsen, A. and Nielsen, R., 2014. ANGSD: analysis of next  
704 generation sequencing data. *BMC bioinformatics*, 15(1), pp.1-13.  
705

706 Kyriazis, C.C., Beichman, A.C., Brzeski, K.E., Hoy, S.R., Peterson, R.O., Vucetich,  
707 J.A., Vucetich, L.M., Lohmueller, K.E. and Wayne, R.K., 2023. Genomic  
708 underpinnings of population persistence in Isle Royale moose. *Molecular biology and*  
709 *evolution*, 40(2), p.msad021.  
710

711 Le Roux, E., Kerley, G.I. and Crome, J.P., 2018. Megaherbivores modify trophic  
712 cascades triggered by fear of predation in an African savanna ecosystem. *Current*  
713 *Biology*, 28(15), pp.2493-2499.  
714

715 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,  
716 Abecasis, G., Durbin, R. and 1000 Genome Project Data Processing Subgroup,  
717 2009. The sequence alignment/map format and SAMtools. *bioinformatics*, 25(16),  
718 pp.2078-2079.  
719

720 Liu, P., Wen, H., Harich, F.K., He, C., Wang, L., Guo, X., Zhao, J., Luo, A., Yang, H.,  
721 Sun, X. and Yu, Y., 2017. Conflict between conservation and development: cash  
722 forest encroachment in Asian elephant distributions. *Scientific Reports*, 7(1), p.6404.  
723 Mahmood, T., Vu, T.T., Campos-Arceiz, A., Akrim, F., Andleeb, S., Farooq, M.,  
724 Hamid, A., Munawar, N., Waseem, M., Hussain, A. and Fatima, H., 2021. Historical  
725 and current distribution ranges and loss of mega-herbivores and carnivores of Asia.  
726 *PeerJ*, 9, p.e10738.  
727

728 Mazet, O., Rodríguez, W., Grusea, S., Boitard, S. and Chikhi, L., 2016. On the  
729 importance of being structured: instantaneous coalescence rates and human  
730 evolution—lessons for ancestral population size inference?. *Heredity*, 116(4),  
731 pp.362-371.

732 McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R., Thormann, A., Flieck, P.  
733 and Cunningham, F., 2016. The ensembl variant effect predictor. *Genome biology*,  
734 17(1), pp.1-14.

735 Menon, V. and Tiwari, S.K., 2019. Population status of Asian elephants *Elephas*  
736 *maximus* and key threats. *International Zoo Yearbook*, 53(1), pp.17-30.  
737  
738  
739 Menotti-Raymond, M. and O'Brien, S.J., 1993. Dating the genetic bottleneck of the  
740 African cheetah. *Proceedings of the National Academy of Sciences*, 90(8), pp.3172-  
741 3176.

742 Narasimhan, V., Danecek, P., Scally, A., Xue, Y., Tyler-Smith, C. and Durbin, R.,  
743 2016. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity  
744 from next-generation sequencing data. *Bioinformatics*, 32(11), pp.1749-1751.

745 Owen-Smith, N., 1987. Pleistocene extinctions: the pivotal role of megaherbivores.  
746 *Paleobiology*, 13(3), pp.351-362.  
747  
748 Padalia, H., Ghosh, S., Reddy, C.S., Nandy, S., Singh, S. and Kumar, A.S., 2019.  
749 Assessment of historical forest cover loss and fragmentation in Asian elephant  
750 ranges in India. *Environmental Monitoring and Assessment*, 191, pp.1-13.  
751  
752 Palkopoulou, E., Lipson, M., Mallick, S., Nielsen, S., Rohland, N., Baleka, S.,  
753 Karpinski, E., Ivancevic, A.M., To, T.H., Kortschak, R.D. and Raison, J.M., 2018. A  
754 comprehensive genomic history of extinct and living elephants. *Proceedings of the*  
755 *National Academy of Sciences*, 115(11), pp.E2566-E2574.  
756  
757 Parida, J., Sharma, R., De, R., Kalam, T., Sedhupathy, A., Digal, D.K., Reddy, P.A.,  
758 Goyal, S.P., Puyravaud, J.P. and Davidar, P., 2022. Genetic characterisation of  
759 fragmented Asian elephant populations with one recent extinction in its eastern-  
760 central Indian range. *Ecological Genetics and Genomics*, 24, p.100132.  
761  
762 Pierce, A.A., Zalucki, M.P., Bangura, M., Udawatta, M., Kronforst, M.R., Altizer, S.,  
763 Haeger, J.F. and de Roode, J.C., 2014. Serial founder effects and genetic  
764 differentiation during worldwide range expansion of monarch butterflies. *Proceedings*  
765 *of the Royal Society B: Biological Sciences*, 281(1797), p.20142230.  
766  
767 Pless, E., Powell, J.R., Seger, K.R., Ellis, B. and Gloria-Soria, A., 2022. Evidence for  
768 serial founder events during the colonization of North America by the yellow fever  
769 mosquito, *Aedes aegypti*. *Ecology and Evolution*, 12(5), p.e8896.  
770

771

772 Prado, N.A., Armstrong, E.E., Brown, J.L., Goldenberg, S.Z., Leimgruber, P.,  
773 Pearson, V.R., Maldonado, J.E. and Campana, M.G., 2023. Genomic Resources for  
774 Asian (*Elephas maximus*) and African Savannah Elephant (*Loxodonta africana*)  
775 Conservation and Health Research. *bioRxiv*, pp.2023-02.

776

777 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D.,  
778 Maller, J., Sklar, P., De Bakker, P.I., Daly, M.J. and Sham, P.C., 2007. PLINK: a tool  
779 set for whole-genome association and population-based linkage analyses. The  
780 American journal of human genetics, 81(3), pp.559-575.

781 Rajagopalan, G., Sukumar, R., Ramesh, R., Pant, R.K. and Rajagopalan, G., 1997.  
782 Late Quaternary vegetational and climatic changes from tropical peats in southern  
783 India—an extended record up to 40,000 years BP. *Current Science*, pp.60-63.

784 Ram, M.S., Marne, M., Gaur, A., Kumara, H.N., Singh, M., Kumar, A. and Umapathy,  
785 G., 2015. Pre-historic and recent vicariance events shape genetic structure and  
786 diversity in endangered lion-tailed macaque in the Western Ghats: implications for  
787 conservation. *PLoS one*, 10(11), p.e0142597.

788

789 Robin, V.V., Vishnudas, C.K., Gupta, P. and Ramakrishnan, U., 2015. Deep and  
790 wide valleys drive nested phylogeographic patterns across a montane bird  
791 community. *Proceedings of the Royal Society B: Biological Sciences*, 282(1810),  
792 p.20150861.

793 Robinson, J., Kyriazis, C.C., Yuan, S.C. and Lohmueller, K.E., 2023. Deleterious  
794 variation in natural populations and implications for conservation genetics. *Annual  
795 review of animal biosciences*, 11, pp.93-114.

796 Santiago, E., Novo, I., Pardiñas, A.F., Saura, M., Wang, J. and Caballero, A., 2020.  
797 Recent demographic history inferred by high-resolution analysis of linkage  
798 disequilibrium. *Molecular Biology and Evolution*, 37(12), pp.3642-3653.

799 Saunders, C.T., Wong, W.S., Swamy, S., Becq, J., Murray, L.J. and Cheetham, R.K.,  
800 2012. Strelka: accurate somatic small-variant calling from sequenced tumor–normal  
801 sample pairs. *Bioinformatics*, 28(14), pp.1811-1817.

802 Srinivasaiah NM, Vaidyanathan S, Sukumar R, Sinha A. (2021). Elephants on the  
803 move: Implications for human–elephant interactions. In: *The Crisis of Climate  
804 Change: Weather Report*. (eds. Agarwal R and Goyal O). Routledge, Abingdon,  
805 United Kingdom and New York, pp. 92-103

806 Srinivasaiah NM, Vaidyanathan S, Sukumar R, Sinha A. (2022). The rurban  
807 elephant: Behavioural ecology of Asian elephants in response to large-scale land  
808 use change in a human-dominated landscape in peri-urban southern India. In: *New  
809 Forms of Urban Agriculture: An Urban Ecology Perspective* (eds. Diehl J A and Kaur  
810 H). Springer Nature, Singapore, pp. 289-31

811 Sukumar, R. 1989. The Asian elephant: ecology and management. Cambridge  
812 University Press, Cambridge, U.K.  
813  
814 Sukumar, R., Ramakrishnan, U. and Santosh, J.A., 1998, November. Impact of  
815 poaching on an Asian elephant population in Periyar, southern India: a model of  
816 demography and tusk harvest. In *Animal Conservation forum* (Vol. 1, No. 4, pp. 281-  
817 291). Cambridge University Press.  
818  
819 Sukumar, R., Ramesh, R., Pant, R.K. and Rajagopalan, G., 1993. A  $\delta^{13}\text{C}$  record of  
820 late Quaternary climate change from tropical peats in southern  
821 India. *Nature*, 364(6439), pp.703-706.  
822  
823 Sukumar, R. 2003. *The Living Elephants: Evolutionary Ecology, Behavior and  
824 Conservation*. Oxford University Press, New York  
825  
826 Sukumar, R., 2006. A brief review of the status, distribution and biology of wild Asian  
827 elephants *Elephas maximus*. *International Zoo Yearbook*, 40(1), pp.1-8.  
828  
829 Sukumar, R., 2011. *The story of Asia's elephants*. Mumbai: MARG foundation.  
830  
831 Shukla, H., Suryamohan, K., Khan, A., Mohan, K., Perumal, R.C., Mathew, O.K.,  
832 Menon, R., Dixon, M.D., Muraleedharan, M., Kuriakose, B. and Michael, S., 2023.  
833 Near-chromosomal de novo assembly of Bengal tiger genome reveals genetic  
834 hallmarks of apex predation. *GigaScience*, 12, p.giac112.  
835  
836 Sumreddee, P., Hay, E.H., Toghiani, S., Roberts, A., Aggrey, S.E. and Rekaya, R.,  
837 2021. Grid search approach to discriminate between old and recent inbreeding using  
838 phenotypic, pedigree and genomic information. *BMC genomics*, 22, pp.1-17  
839

840 Terhorst, J., Kamm, J.A. and Song, Y.S., 2017. Robust and scalable inference of  
841 population history from hundreds of unphased whole genomes. *Nature genetics*,  
842 49(2), pp.303-309.

843

844 Venkataraman, A.B., Saandee, R., Baskaran, N., Roy, M., Madhivanan, A. and  
845 Sukumar, R., 2005. Using satellite telemetry to mitigate elephant–human conflict: an  
846 experiment in northern West Bengal, India. *Current Science*, pp.1827-1831.

847

848 Vidya, T.N.C., Fernando, P., Melnick, D.J. and Sukumar, R. 2005a. Population  
849 differentiation within and among Asian elephant (*Elephas maximus*) populations in  
850 southern India. *Heredity*, 94(1), pp.71-80.

851

852 Vidya, T.N.C., Fernando, P., Melnick, D.J. and Sukumar, R., 2005b. Population  
853 genetic structure and conservation of Asian elephant (*Elephas maximus*) across  
854 India. *Animal Conservation*, 8: 377-388.

855 Vidya, T.N.C., Sukumar, R. and Melnick, D.J., 2009. Range-wide mtDNA  
856 phylogeography yields insights into the origins of Asian elephants. *Proceedings of*  
857 *the Royal Society B: Biological Sciences*, 276(1658), pp.893-902.

858 Vijayakumar, S.P., Menezes, R.C., Jayarajan, A. and Shanker, K., 2016. Glaciations,  
859 gradients, and geography: multiple drivers of diversification of bush frogs in the  
860 Western Ghats Escarpment. *Proceedings of the Royal Society B: Biological*  
861 *Sciences*, 283(1836), p.20161011.

862 Whitehouse, A.M. and Hall-Martin, A.J., 2000. Elephants in Addo Elephant National  
863 Park, South Africa: reconstruction of the population's history. *Oryx*, 34(1), pp.46-55.

864 Waldram, M.S., Bond, W.J. and Stock, W.D., 2008. Ecological engineering by a  
865 mega-grazer: white rhino impacts on a South African savanna. *Ecosystems*, 11,  
866 pp.101-112.

867 Wang, X., Bernhardsson, C. and Ingvarsson, P.K., 2020. Demography and natural  
868 selection have shaped genetic variation in the widely distributed conifer Norway  
869 spruce (*Picea abies*). *Genome biology and evolution*, 12(2), pp.3803-3817.

870

871