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Impaired spatial selectivity and intact phase
precession in two-dimensional virtual reality

Zahra M Aghajan!->7, Lavanya Acharyal>7, Jason ] Moorel*4, Jesse D Cushman'2, Cliff Vuong!? &

Mayank R Mehtal-2:4-6

During real-world (RW) exploration, rodent hippocampal activity shows robust spatial selectivity, which is hypothesized to be
governed largely by distal visual cues, although other sensory-motor cues also contribute. Indeed, hippocampal spatial selectivity is
weak in primate and human studies that use only visual cues. To determine the contribution of distal visual cues only, we measured
hippocampal activity from body-fixed rodents exploring a two-dimensional virtual reality (VR). Compared to that in RW, spatial
selectivity was markedly reduced during random foraging and goal-directed tasks in VR. Instead we found small but significant
selectivity to distance traveled. Despite impaired spatial selectivity in VR, most spikes occurred within ~2-s-long hippocampal
motifs in both RW and VR that had similar structure, including phase precession within motif fields. Selectivity to space and
distance traveled were greatly enhanced in VR tasks with stereotypical trajectories. Thus, distal visual cues alone are insufficient to
generate a robust hippocampal rate code for space but are sufficient for a temporal code.

Dorsal hippocampal neurons fire at elevated rates in restricted regions
of spacel? when subjects forage randomly in a two-dimensional
space, termed a spatial rate code. Distal visual cues are thought to
reliably determine this spatial selectivity because changing or rotating
them causes corresponding large changes in the spatial tuning of
place cells?3. However, the activity of place cells is also influenced
by other sensory and motor cues, including specific and nonspe-
cific proximal cues, such as olfactory and somatosensory cues*-1°,
and locomotion cues such as optic flow and proprioception, which
together with vestibular cues are thought to provide self-motion infor-
mation for path integration!!-13. Consistently, lesions of vestibular
nuclei disrupt angular tuning of head-direction cells!# and spatial
tuning of hippocampal place cells'®, although lesions of the head-
direction cell network, which is thought to provide vestibular input
to the hippocampus, do not substantially alter hippocampal spatial
selectivity!®. Additionally, the output of vestibular nuclei suppresses
self-motion signals and depends on multisensory stimuli!”. Indeed,
in all the experiments described above, it is difficult to dissociate the
contribution of distal visual cues from the contributions of other cues.
Thus, the contribution of distal visual cues alone—which are the only
spatially informative stimuli in typical human and primate studies
of hippocampal activity—to the spatial selectivity of place cells in
normal rats remains to be fully explained.

Neural activity is also modulated jointly by theta rhythm and the rat’s
position within the place field, called theta-phase precession or tem-
poral code!®-21, which is thought to be linked closely to hippocampal
spatial selectivity!8. Nevertheless, phase precession is also seen when

rats run in a running wheel without any systematic change in visual
cues?2. Hence, to understand the mechanisms of the hippocampal
spatial rate and temporal codes, it is important to determine whether
the two can be dissociated during spatial exploration. In addition,
dorsal hippocampal neurons are typically active for sustained periods
lasting more than 1 second!?, even under a variety of conditions?2-25,
and this sustained nature of activity has received little attention.

These questions are particularly important to address, as neural
mechanisms of navigation in humans and nonhuman primates are
studied in stationary subjects for the most part, often in VR?6-28, with
only distal visual cues and no vestibular or proximal cues. Under these
conditions, hippocampal neurons show only weak spatial selectiv-
ity?’-2%, an observation that is at apparent odds with the high spa-
tial selectivity seen in studies in freely behaving rodents. Further, an
increasing number of functional imaging studies in rodents are being
done in head-fixed animals in VR0,

VR allows for the elimination of spatially informative multisen-
sory, nonspecific cues and minimization of vestibular cues, leaving
only distal visual cues to provide reliable spatial information?!-31-33,
All previous neurophysiological studies in rodents in VR have been
done in one-dimensional mazes and have found largely intact spatial
selectivity. In these environments, visual cues are paired repeatedly
with the same set of locomotion cues, such as speed of optic flow and
proprioception, which have been hypothesized to have a major role
in driving neural responses!1-13:21.34 a5 evidenced by disto-coding
in one-dimensional VR paths?!. This consistency is removed in
random foraging in two-dimensional VR environments where the
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same physical location in space can be approached from multiple
different directions at different speeds. We thus investigated the
contribution of distal visual cues only in determining selectivity in
such an experimental setup.

RESULTS

Nature of spatial selectivity of hippocampal responses

We measured hippocampal activity during a two-dimensional random-
foraging task in RW and VR3>-37 with similar distal visual cues (Fig. 1a).
In VR, the rats were body-fixed, i.e., their bodies were held in place,
with a harness on a floating ball, allowing for head movements but
precluding full-body turns, thus minimizing vestibular cues (Online
Methods)?!3%. Rats quickly learned to avoid the virtual edges entirely
on the basis of visual cues*® and spent a similar amount of time away
from the edges and in the center of the platform (Fig. 1a) compared
to in RW. We measured the activity of 1,066 and 1,238 principal
neurons in RW and VR, respectively, in the dorsal CA1 of four rats
under a variety of conditions (Online Methods). Neurons fired vig-
orously in restricted regions of space in RW, as expected (Fig. 1b,c,
Supplementary Fig. 1a and Supplementary Video 1)!. In contrast,
the neurons showed little spatial selectivity in VR during random
foraging (Fig. 1b,d and Supplementary Fig. 1b).

Across the ensemble, neurons had moderately reduced (25%)
mean firing rates but greatly reduced (68%) peak firing rates in
VR (Fig. 2a and Supplementary Fig. 2a). Neurons in VR also had
greatly reduced spatial information content (75%), stability (59%),
sparsity (42%) and coherence (40%) (Fig. 2b-d and Supplementary
Fig. 2b,c) compared to spatially localized, stable and sparse RW rate
maps (Fig. 2c). Although the mean firing rate was inversely cor-
related with information content (Supplementary Fig. 2d), this

Figure 1 Similar rat behavior but different a
neural rate maps in two-dimensional RW and
VR. (a) Top left, top-down schematic view of the
RW and VR mazes showing a 200-cm-diameter
elevated platform centered in a 300 cm x 300 cm
room with distinct visual cues on the walls.

Top right, mean running speed at the time

of occurrence of spikes (excluding speeds

<5 cm s~1) was slightly reduced (3%, P=0.0005) in
VR (22.40+0.13 cm s}, red, n= 719 cells from
4 rats) compared to RW (23.27 £ 0.16 cm 51,
blue, n= 1,066 cells from 4 rats). Bottom,
percentage of time spent in all parts of the
maze averaged across all rats, showing that

rats spent comparable time away from

the edges in RW (left) and VR (right).

(b) Top, scatter plots of the peak amplitude

of a spike (gray dots) measured simultaneously
on two channels (channels 3 and 4) of a

tetrode in RW and VR. Colored dots are

spikes from the same isolated neuron

recorded on the same day in the two worlds.
Bottom, position of the rat in RW and VR at

the time of occurrence of the spikes (darker
dots) from the corresponding neurons (top)
overlaid on the trajectory of the rat (lighter
trace). (c) Spatial rate maps of four neurons

in RW. (d) Same as ¢ but in VR. All data
throughout all figures and figure legends

are expressed as the mean £ s.e.m., unless ~100
otherwise noted. Throughout all figures, -100
dashed vertical lines in histograms indicate

y (cm)

X (cm)

large reduction in spatial selectivity cannot be accounted for by
differences in mean firing rates in VR and RW, as neurons with similar
firing rates had substantially lower spatial selectivity and stability in
VR (Supplementary Figs. 2d,e and 3). Analysis of relative spatial
dynamics between cells measured simultaneously showed that neu-
rons did not maintain consistent spatial relationships with each other
in VR, in contrast to in RW (Online Methods and Supplementary
Fig. 4a-d). We further confirmed this observation using analysis of
the cross-covariance of firing rates in time and in distance, which
showed little evidence of coactivation or reliable pairing of groups of
neurons in VR, in contrast to in RW (Supplementary Fig. 4e). These
results demonstrate that in VR, neurons did not have place fields that
drifted together, nor were they activated in a sequential fashion, in
some unknown reference frame.

We also characterized the activity of 258 neurons recorded in both
worlds on the same day (Fig. 1b). Of these neurons, only 109 (42%)
had a mean firing rate above a minimal activity threshold of 0.2 Hz
in both worlds. For these neurons, there was a significant correlation
between the mean firing rates (r = 0.21, P = 0.03), but not the peak
firing rates (r = 0.12, P = 0.23), in RW and VR (Supplementary
Fig. 5a,b), although they showed spatial selectivity in RW but not in
VR and had uncorrelated rate maps (Supplementary Fig. 5¢,d).

Contribution of task type and locomotion cues

In RW, rats might use a goal-directed strategy to navigate to a food
pellet, whereas in VR, there are no reward-predicting cues; such a
difference in task type could influence hippocampal activity!2. To
control for this difference, we did a separate experiment in which we
measured the activity of 195 neurons from three rats while they ran
toward a reward-indicating suspended pillar appearing at random
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the mean values of the corresponding distributions. In all figures, blue indicates RW and red indicates VR, numbers above images indicate the ranges,
and lighter shades indicate higher values. In all figures, statistical significance was calculated by Wilcoxon rank-sum test, unless otherwise noted.
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Figure 2 Reduced activity, spatial selectivity and stability of rate maps

in VR. (a) The peak firing rates of neurons were 68% (P = 1.1 x 10-161)
smaller in VR (3.19 £ 0.07 Hz, n= 719 cells from 4 rats) compared

to RW (9.90 £ 0.18 Hz, n= 1,066 cells from 4 rats). (b) The spatial
information content in VR (0.33 + 0.01 bits) was 75% (P= 1.1 x 10-183)
lower than that in RW (1.35 + 0.02 bits). (c) Rate maps of a neuron
during the first and second halves of a session in RW and VR. (d) The
stability of rate maps in VR (0.26 £ 0.01) was significantly reduced
(difference = 0.37, P=1.2 x 10-124) compared to in RW (0.63 + 0.01).

locations in VR (Fig. 3a and Online Methods)3¢. The excess path
length of the rats’ trajectory between rewards was significantly shorter
during this random-pillar task (69%, P = 6.1 x 107%) than during the
random-foraging task, which is indicative of a goal-directed strategy
(Supplementary Fig. 6a,b). There was no substantial difference
in spatial selectivity between the two types of task in VR (Fig. 3b
and Supplementary Video 2), which argues that the loss of spatial
selectivity was not due to differences in task type. Hence, for subse-
quent comparisons between RW and VR, we combined data from the
random-foraging and random-pillar tasks.

The loss of spatial selectivity in two-dimensional VR is in stark
contrast to not only that in two-dimensional RW but also to that in
previous studies in one-dimensional VR21:31-33 in which clear spatial
selectivity was found. To test whether spatial selectivity could exist
in the same two-dimensional VR environment without the vestibular
cues present in RW, we did another experiment in which the task
type was similar to the random-pillar task but the reward-indicating
pillars appeared systematically at fixed locations (Fig. 3¢,d and
Online Methods). In the first variant, pillars appeared at two fixed but
alternating positions in VR (Supplementary Fig. 6a). Because rats
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ran in more stereotyped trajectories, locomotion cues—such as step
counting from the previous reward and speed of optic flow—were
made spatially informative, as the same cues occurred repeatedly at
the same positions across the task. Consequently, unique locomotion
cues were paired repeatedly with distinct distal visual cues at each
position (Fig. 3c). Spatially selective neural responses appeared in this
systematic-pillar task with significantly enhanced spatial information
content and rate map sparsity compared to random foraging in VR
(Fig. 3e,f). Although some neurons had a focused place field in only
one direction of movement, or arm, similarly to place cells in RW,
others spiked on both arms (Fig. 3e and Supplementary Fig. 7a),
which we investigated in detail and describe below.

To rule out the possibility that spatial selectivity arose simply
from alternating contexts in two movement directions or that the
rat did not traverse a large portion of the maze, we did another vari-
ant of the systematic-pillar task in which the reward-indicating pil-
lars appeared sequentially at the vertices of an equilateral triangle
(Online Methods). Here the rats walked repeatedly along the same
paths while covering a greater fraction of the two-dimensional maze,
and because adjacent arms were rotated 120° with respect to each
other rather than 180°, the visual scene was more similar along dif-
ferent arms than in the two-pillar task (Supplementary Fig. 6a).

Figure 3 Dependence of spatial selectivity on task type and locomotion
cues. (a) Schematic of a maze in which the reward location is indicated by
a pillar suspended in VR (VR random pillar). (b) The spatial information
content in VR random pillar (0.39 + 0.02 bits, n = 195 cells from 3 rats)
was only slightly (16%, P= 1.6 x 10-4) larger than in VR random

(0.33 +0.01 bits) and was still substantially smaller (71%, P=1.1 x 10-55)
than in RW (1.35 £ 0.02 bits). (c) Top, trajectory of the rat (light green
trace) and position of the rat at the time of occurrence of spikes (darker
dots) for two example neurons during consistent paths between two fixed
reward locations on a two-pillar task. Bottom, rate maps corresponding to
the neurons shown above. (d) Same as ¢ but on a three-pillar task. Gray
regions indicate positions the rat did not sample for a sufficient amount
of time. (e) The spatial information content in VR with systematic pillars
(1.11 + 0.03 bits, n =324 cells from 3 rats) was significantly larger than
in VR random (70%, P= 1.0 x 10-101) and was only slightly smaller than
in RW (17%, P=5.3 x 10-8). (f) The spatial sparsity in VR systematic
pillar (0.63 + 0.01) was significantly greater (34%, P= 4.7 x 10-3) than
in VR random (0.42 + 0.01) and was close (12% less, P=4.6 x 10-20) to
that in RW (0.72 £ 0.01).
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Figure 4 Selectivity to distance traveled in VR a ] o

goal-directed tasks. (a) Firing rate (FR) of cells 50 - VA random pilar 5 VR systematic pillar

as a function of normalized distance traveled . .
across trials. In the VR random-pillar task, many § 25_\/J\/\N\/\’\-1 ; é ;
cells exhibited random firing (top left), whereas . ¥ F &
some had elevated firing at the beginnings and T 0

ends of trials (bottom left). In the VR systematic- 60 r4

pillar task, neurons had focused firing at specific P I I
distances along the different arms (right). E 30 1 r2 E: E E
AU, arbitrary units. (b) Left, information content . - =

in linearized paths in the VR random-pillar task
(0.24 £ 0.01 bits, n= 127 cells from 3 rats)
was significantly lower (49%, P=1.2 x 10-17)
than in the VR systematic-pillar task (0.47 + 407
0.02 bits, n =310 cells from 3 rats). Center,
similarly, sparsity of the linearized firing rate
maps in the VR random-pillar task (0.23 + 0.01)
was significantly reduced (36%, P= 5.9 x 10-16)
compared to in the VR systematic-pillar task
(0.36 £ 0.01). Right, peak firing rates were 36%

(=2

30 1

20

Cells (%)
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— VR systematic pillar
VR random pillar

Distance (AU)

25+ 40 -

30
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systematic-pillar task (4.55 + 0.15 Hz). (c) PVO in Information content (bits) Sparsity Peak rate(Hz)

the VR random-pillar (top left) and VR systematic- c VR random pillar VR systematic pillar d 20 -

pillar (top right) tasks. The range of overlap is
indicated by the numbers at the top left corners.
The bottom row depicts the significance levels for
the corresponding PVO presented in the top row.
The significant diagonal area indicates selectivity
to distance on an ensemble level. (d) Top, for
different arm pairs with minimal activity on at

Distance (AU)

Arm pairs (%)

least one arm (mean rate >0.5 Hz, n =625 arm
pairs from 3 rats), the arm selectivity index
(0.37 £ 0.01) quantifies the likelihood of firing
on one arm (index >0.5) compared to on multiple
arms (index <0.5). X and X’ refer to distinct arms
in the arm pair of interest. Bottom, PVO for

arm pairs with arm selectivity index below

0.5 (n=431 arm pairs from 3 rats).

Distance (AU)

Spatially selective, stable responses also
appeared in this task, which were significantly
greater than those in the two-dimensional
random-foraging tasks in VR but were
comparable to those in two-dimensional random foraging in RW
(Fig. 3d-f and Supplementary Figs. 6¢ and 7b). Here too, some neu-
rons spiked on only one arm of the triangle (Supplementary Video 3),
similarly to RW place cells, whereas others spiked along multiple
arms (Supplementary Fig. 8a,b and Supplementary Video 4).

In both of the systematic-pillar experiments, vestibular cues
remained minimal and spatially uninformative during turns, yet
spatial selectivity was comparable to that in random foraging in
RW. Further, in systematic-pillar tasks and the random-pillar task,
the path between two successive reward locations was not always
direct but instead often deviated from the optimal, straight-line
path (Supplementary Fig. 6a). This departure, or excess path
length, was comparable in both the systematic- and random-pillar
tasks (Supplementary Fig. 6b), indicating similar levels of goal-
directed behavior and demonstrating that differences in departure
from the shortest paths do not underlie the observed differences
in spatial selectivity. Thus, task type cannot explain the differ-
ences in spatial selectivity observed under different conditions in
RW and VR.

The presence of firing on multiple arms in the systematic-pillar tasks
(Fig. 3c and Supplementary Fig. 8a) suggests that neurons might be
coding for the distance traveled along the paths. If this is the case, it

Distance (AU)

O+
0 0.5 1
Arm X and X’ selectivity index

Distance along arm X’ (AU)

Distance (AU)

Distance along arm X (AU)

raises the possibility that neurons in the random-pillar task might also
exhibit similar coding despite their lack of two-dimensional spatial
selectivity (Supplementary Fig. 8a). The fact that the beginning and
end of a trial were clearly delineated by the visible pillars in all goal-
directed tasks allowed us to test these possibilities by quantifying the
activity of neurons as a function of normalized distance traveled along
each path, subsequently referred to as distance (Online Methods).

In the random-pillar task, many but not all neurons exhibited random
firing both on linearized paths and in two-dimensional space
(Fig. 4a and Supplementary Fig. 8a). In contrast, a majority of neurons
in the systematic-pillar tasks often fired at the same distance (Fig. 4a
and Supplementary Fig. 8a). Linearized rate maps in the random-pillar
tasks had lower information content (49%), sparsity (36%) and peak
rate (36%) compared to those in the systematic-pillar task (Fig. 4b),
although a small number of neurons in the random-pillar task had
measures comparable to those in the systematic-pillar task (Fig. 4b).
We further characterized this selectivity on a population level by
computing the population vector overlap (PVO) between the fir-
ing rates of two groups of randomly selected paths for each cell
(Online Methods). Whereas the significant overlap in the random-
pillar task was limited to regions near the beginnings and ends of trials,
it was present at all distances in the systematic-pillar tasks (Fig. 4c).

124
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Figure 5 Similar hippocampal motifs and

motif fields in RW and VR. (a) Spike positions
of an example motif from a cell overlaid on a
segment of the rat’s trajectory (left) and firing
rate map (right) in RW. (b) Similar plot as those
inabut in VR. (c) Left, motif firing rate as

a function of time and individual spike times
(vertical lines) for the same motif as in a.

ARTICLES

X (cm)

d

Right, motif-field firing rate as a function C

of time. Spikes from individual motifs are 25

depicted in the raster plot, aligned around o)

the centers of mass of the motifs to form the g

motif field. In other words, each row of the o 0l ' |
raster plot represents an individual pass through ) 0

the motif field. (d) Same as ¢ but in VR.

(e) Left, mean motif durations of cells with
at least five motifs (1,064 out of 1,066 in
RW and 911 out of 914 in VR, comprising
719 cells from VR random from 4 rats and
195 cells from VR random pillar from 3 rats)
were comparable in RW (1.82 £ 0.02 s) and
VR (1.63 + 0.02 s) but were slightly smaller
in VR (7%, P= 2.2 x 10-12). The shortest

Time (s)
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RW VR
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Mean motif duration (s)
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Time (s)

1.5 0 1.5

Time (s) Time (s)
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Spikes in motifs (%) Motif-field peak rate (Hz)

0.5
CV motif duration

allowed motif duration (dashed vertical black line) was much smaller than the ensemble average. Center, the coefficients of variation (CV) of motif
durations within each cell were comparable in RW (0.69 + 0.00) and VR (0.63 + 0.01) but were slightly lower in VR (8%, P=5.7 x 10-20); both were
much greater than the CV of the distributions in the plot to the left (solid vertical lines). Right, although a majority of spikes were contained within
motifs in RW (75.90 + 0.47%) and VR (64.99 + 0.63%), there was a small reduction these numbers in VR (14%, P= 1.2 x 10-51). (f) The peak firing
rates of motif fields in VR (8.85 + 0.10 Hz) were only slightly smaller (13%, P= 2.1 x 10-17) than those in RW (10.22 + 0.11 Hz).

We additionally tested whether the neurons spiked at the same
distance on two different arms of the triangle located in different parts
of the maze. We quantified the number of cells that fired on multiple
arms by calculating the arm selectivity index (Fig. 4d and Online
Methods). For cells that were active on multiple arms (index <0.5),
which constituted a majority of the cells, PVO analysis between the
rate maps of the two arms revealed significant overlap at all distances,
indicative of a robust disto-code, notably on nonoverlapping paths
(Fig. 4d and Supplementary Fig. 8b,c). These results, together with
the differences in two-dimensional spatial selectivity presented above,
suggest that repeated traversals along the same path, such as in the
systematic-pillar task, are crucial for generating robust spatial selec-
tivity and selectivity to distance, a generalization of the disto-code.

Hippocampal motifs and phase precession

In RW, neurons generated long spike sequences lasting about 2 sec-
onds as rats traversed through well-defined place fields (Fig. 5a
and Supplementary Fig. la). Surprisingly, despite having no
clearly defined place fields, neurons in VR also fired similarly long
spike sequences, which appeared as streaks of spikes (Fig. 5b and
Supplementary Fig. 1b). We term these long spike sequences hippo-
campal motifs, identified as time periods in which a neuron achieved
a peak firing rate of at least 5 Hz and maintained a firing rate above
10% of that peak for at least 300 ms. We aligned all individual motifs
from a cell around their center of mass and aggregated them to obtain
the cell’s motif field (Fig. 5¢,d and Online Methods).

Motif properties, including mean motif duration, fraction of
spikes contained in motifs, mean firing rate and peak firing rate,
were comparable in the two worlds (Fig. 5e and Supplementary
Fig. 9a,b) and were far greater than expected by chance, particularly
when accounting for the lower mean rates in VR (Supplementary
Fig. 9¢,i,j). Although for any given cell, the motif durations were
quite variable in either world, (Fig. 5e), mean motif durations across
all cells displayed small variability (Fig. 5¢). Whereas the variability
in motif durations in RW could be due to a varying amount of time

spent within the place field in each traversal, the motif durations were
equally variable in VR (Fig. 5e), with little spatial selectivity, suggestive
of an intrinsic, network-wide mechanism for motif generation.
Neurons with a larger fraction of spikes within motifs had greater
information content (Supplementary Fig. 9d) and mean firing rates
(Supplementary Fig. 9¢), which is in contrast to the inverse correla-
tion between information content and mean firing rate seen across all
cells when all spikes were included (Supplementary Fig. 2d). Spiking
within motifs, as opposed to isolated spiking, may therefore serve
to group otherwise random and noninformative spikes into more
informative clusters.

Analysis of motif fields (Fig. 5¢,d) showed similar results, with
motif fields having similar durations, mean rates and peak rates in
RW and VR (Fig. 5f and Supplementary Fig. 9e,f), in contrast to the
smaller peak rates in spatial rate maps seen in VR (Fig. 2a). Neurons
active in RW and VR on the same day also had motif fields with
similar durations and peak firing rates (Supplementary Fig. 9g,h).

In spite of the impaired rate code, do the motifs show a temporal
code!8-21,31,332 Because of the absence of clear place fields in VR,
we quantified the quality of phase precession within motif fields by
computing the circular linear correlation (Online Methods) between
the time spent within the motif field and the theta phase of spikes.
In RW, 80% of neurons showed significant phase precession within
motif fields (Fig. 6a,b). This number was reduced to 40% in VR but
was still far greater than expected by chance (Fig. 6a,b and Online
Methods). For cells with significant precession, the quality of preces-
sion was comparable in both worlds, although it was slightly reduced
in VR (Fig. 6b). For all cells, we also computed the difference between
the period of theta modulation of spikes and the local field potential
(LFP) theta period!®20:38, A majority of cells in RW (83%) and VR
(78%) had a longer LFP theta period than their spike theta period,
which is indicative of intact temporal coding in VR (Fig. 6c). This is
especially notable because the LFP theta had greater peak theta power
and reduced theta frequency in VR (Supplementary Fig. 10a—c). The
preferred theta phase of neurons was also significantly different and
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Figure 6 Intact but variable phase coding in VR. (a) Left, sample

LFP theta traces filtered in the theta band (4-12 Hz) in RW (top)

and VR (bottom) recorded from the same electrode on the same day.
Spikes from the same cell (vertical lines) in RW and VR occur at earlier
phases on subsequent theta cycles. Right, motif fields in RW and VR
show clear phase precession. (b) 80.03% and 40.52% of cells showed
significant phase precession in RW and VR, respectively. For these cells,
the quality of phase precession in VR cells (0.185 + 0.004, n= 365 cells
from 4 rats) was slightly reduced (13%, P= 1.9 x 10-11) compared to

in RW (0.221 £ 0.003, n =852 cells from 4 rats). (c) Difference in

LFP theta period and spiking theta period computed from the
autocorrelation of LFP and spikes shows comparable but reduced

(11%, P= 4.6 x 1079) and more variable temporal coding in VR

(11.38 £ 0.46 ms (mean + s.d.)) compared to RW (12.85 + 0.23 ms
(mean £ s.d.)). (d) The preferred theta phase of spikes was shifted closer
to the theta peak (6%, P=0.001, Kuiper’s test) in VR (-=103.70 + 2.29°)
and was also more variable (s.d. 61.40°) compared to in RW (-110.58 +
1.72°,s.d. 56.15°). (e) The degree of phase locking (depth of modulation)
was similar in VR (0.15 £ 0.09) and RW (0.16 + 0.09), although was
slightly reduced (8%, P= 8.5 x 107°) in VR.

more variable in VR compared to RW (Fig. 6d), yet neurons showed
similar degrees of theta-phase locking in both worlds (Fig. 6e).

DISCUSSION

These results provide the first measurements, to our knowledge, of
rodent hippocampal CA1 neuronal activity during random foraging
in a two-dimensional body-fixed VR environment in which only distal
visual cues provide reliable spatial information. We found five key
results: a profound loss of spatial selectivity during random foraging
in VR; intact spatial selectivity when both location-specific locomo-
tion cues and distal visual cues were repeatedly experienced together
during the systematic-pillar tasks; weak but significant selectivity to
distance traveled in the random-pillar task and strong distance selec-
tivity in the systematic-pillar tasks; comparable motif dynamics in RW
and VR; and intact temporal code within motif fields in VR.

We speculate that the motif-generation mechanisms are intrinsic
to the entorhinal-hippocampal network because, unlike most afferent
sensory cortices showing punctate neural responses, hippocampal
neurons showed ~2-s-long sustained responses in both RW and VR,
despite the absence of spatial selectivity in the latter world. These
sustained responses could enable the entorhinal-hippocampal system
to predict the rat’s future location on the basis of recent experience®
by exploiting the continuity of space and locomotion, thus reducing
computational load.

The motif generation mechanism is probably network-wide rather
than cell specific, as the variability in motif durations on a population
level is small compared to the individual neuronal level, motif-field
properties are correlated between RW and VR, and theta-scale dynam-
ics are intact in VR motif fields. Whereas previous studies have shown
intact phase precession without a change in position-defining cues
in a working memory task??, our results demonstrate instead that
phase precession can exist without a rate code when spatially inform-
ative cues are changing with minimal memory demand. Increased
preferred theta-phase variability could arise through a rate-phase
transformation!® and a reduced excitatory drive in VR due to a lack
of repeatedly paired sensory and motor cues, as described below.
The underlying network mechanism could thus generate motif-like
activity under a variety of conditions, including hippocampal place
cells from normal subjects?13133 and transgenic mice with taupathy*?,
entorhinal cortical grid cells®®, episode or time cells during wheel or
treadmill running??23, neural activity during rapid eye movement
sleep*! and neural activity during free recall in humans*2.

a
= 180 1 0-33
IR T RRTAN B[ 11 NS
@
=)
o
T T T T ] —-180 —
0 0.4 0.8
. 180 =Y 029
AN VAREE [ IR
@
=
o
T T T T ] -180 —
0 0.4 0.8 -1.5 0 1.5
Time (s) Time (s)
b 4. C 40-
0 — Rw 0
— VR
0 204 » 204
® ®
(& [&]

0 S : ) 0
0 0.3 0.6 -20
Circular linear correlation coefficient LFP © period — spiking © period (ms)
d 201 € 20+

» » 104

o °

[$) [$)
0 . 0 A -
-180 0 180 0 0.25 0.5

Preferred © phase (°) Depth of © modulation

Motifs could originate from several parts of the entorhinal-
hippocampal network. The recurrent CA3 network could generate
motif-like activity, which might cause the observed ~2-s delayed
responses of the hippocampal ensemble activity pattern to sudden
changes in visual cues?%. Alternatively, the motifs could arise in the
medial entorhinal cortex, where neurons show motif-like activity
lasting several seconds and robustly driving the CAl, even in
anesthetized or sleeping animals#3. Accordingly, sustained spiking
in consecutive theta cycles was reduced, indicative of diminished
motifs, in a GluA1 transgenic mouse with diminished distal dendritic
inputs, which typically originate in the entorhinal cortex**. Motif-field
durations could also be modulated by the temporal integration
properties of the h current*> to generate a dorsoventral gradient of
field sizes.

Although intact motifs and phase precession are present in VR with
distal visual cues alone, we found a large reduction in spatial selectivity
during two-dimensional random-foraging and random-pillar tasks
in a body-fixed VR. This finding demonstrates that distal visual cues
alone are not sufficient to generate spatially localized place fields?3. In
contrast, spatial selectivity was present in the systematic-pillar tasks
but not the random-pillar task. Although diminished vestibular cues
during random foraging in VR might account for reduced spatial selec-
tivity compared to during random foraging in RW, it is inconsistent
with the presence of spatial selectivity in the systematic-pillar tasks, in
which the nature of paths and resulting vestibular cues are similar to
those in the random-pillar task. Further, vestibular lesions caused sub-
stantial behavioral deficits, reductions in theta power and unaltered
peak firing rates!>4°, all of which are in contrast to our data. These
results suggest that the repeated pairing of cues, or lack thereof, is the
key reason for the difference in two-dimensional spatial selectivity.
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The difference in spatial selectivity between the random-pillar and
systematic-pillar tasks is also consistent with previous studies dem-
onstrating that the precise nature of paths (random or systematic) can
strongly affect the hippocampal spatial representation!?47,

Whereas two-dimensional spatial selectivity was equally poor in
the random-foraging and random-pillar tasks in VR, the beginnings
and ends of trials were well defined for the rats in the latter task, thus
allowing for an analysis of selectivity to distance traveled. Neurons
in the random-pillar task showed a small but significant degree of
selectivity to the beginnings and ends of trials. In the systematic-
pillar task, when we paired locomotion and visual cues repeatedly, this
selectivity was strengthened and extended to the middle of the paths.
Restricting the analysis to cells that fired on at least two nonoverlap-
ping arms on the three-pillar task revealed that these cells exhibited
a disto-code?!, which is a specific case of the more general distance
selectivity observed in the goal-directed tasks.

We conjecture that repeated pairing of different streams of input
could generate robust associations between them through rapid
Hebbian synaptic plasticity, resulting in stable spatial representa-
tions*® and increased firing rates!®#8-50. Under this model, during
random foraging in RW, distal visual cues are paired repeatedly with
the same constellation of proximal cues at each location, resulting in
a place code. In contrast, in two-dimensional random foraging in VR
with or without pillars, the distal visual cues are not paired repeatedly
with any other cue, leading to a lack of spatial selectivity. Contrary
to our VR system and results, a recent study found that during two-
dimensional random foraging in a VR system allowing full, 360° body
rotation3>37, hippocampal neurons showed intact spatial selectivity3”.
This result could arise solely from the presence of a larger range of
vestibular cues, which were diminished in our study; however, this
explanation is incompatible with the presence of spatial selectivity in
our tasks involving systematic paths. Two alternate possibilities are
provided by our repeated pairing model. First, as rats turned their
entire bodies in that study, they rotated with respect to both VR vis-
ual cues and RW multisensory cues, leading to a consistent pairing
between the two. In agreement with this hypothesis, the activities of a
large number of cells were influenced by the RW frame of reference in
that study®’. Second, consistent pairing between vestibular cue-based
signals, such as the activity of head-direction cells, and visual cues
could be sufficient but not necessary to generate spatial selectivity
in VR. Once such a multisensory pairing-induced representation
of space is established, it can then be governed by visual cues®337.
Further studies will be needed to dissociate these possibilities.

According to our model, spatial selectivity arises both in systematic-
pillar tasks and on one-dimensional VR tracks because of the repeated
pairing between distal visual cues and locomotion cues along
systematic paths. Neurons with stronger inputs from distal visual cues
would exhibit a place code, whereas those with stronger inputs from
locomotion cues would exhibit a disto-code?!. Further, the overall
reduction in the number of sensory and motor cues that are systemati-
cally paired could contribute to the large reduction in neural activity
in VR2?L. Alternatively, instead of pairing across multiple modalities,
pairing in linear paths could potentially occur between adjacent
elements within a repeated sequence of cues from a single modality.
Consistently, systematic acceleration and deceleration at the begin-
nings and ends of linearized paths in the random-pillar task could
give rise to selectivity in those regions.

Although we characterized distance selectivity as a function
of position along the path, neural firing might be influenced by
other factors as well. Selectivity near the end of the path could
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be driven by reward expectancy or the pillar; selectivity near the
beginning of the path might be modulated by the recent delivery of
reward. These salient episodes associated with entering or leaving
a reward zone are present and repeated in all goal-directed tasks,
which could result in selectivity to the beginnings and ends of paths
even in the random-pillar task. We speculate that these episodes
might become linked together by Hebbian synaptic plasticity in the
systematic-pillar task by the same mechanism discussed above, thus
extending selectivity to the entire length of the path. Further studies
will be needed to fully determine the role of episodic memory in
these tasks.

Our results may raise the concern that spatial selectivity is impaired
during random foraging in VR because the rats are not paying atten-
tion to the visual cues present in VR. Although this factor cannot be
ruled out entirely, we find it to be unlikely for a number of reasons.
First, in both RW and VR, the rats are not required to pay attention
to the distal visual cues, yet there is spatial selectivity in RW. Second,
rats in VR avoid the edges of the virtual table, which is defined only
visually. Third, many neurons in the systematic-pillar tasks fire in only
a small portion of one segment of the path, which is differentiated
from the other segments only by the direction-specific constellation
of distal visual cues. Further, in the same virtual maze apparatus with
qualitatively similar visual cues, the rats were able to navigate to a
hidden reward zone from multiple starting locations, analogous to
in the water maze navigation taskS, using only distal visual cues,
showing that rats could see the stimuli and navigate based on them.
Additional studies will be needed to determine the nature of spatial
selectivity in this task.

The repeated pairing model is compatible with many findings,
including place cell remapping after a change in the relationship
between locomotion cues and distal visual cues!?, altered spatial
selectivity after changes in distal®® or proximal cues*-? and instability
of place fields after maze cleaning between sessions’. In each of these
cases, place cells remap but spatial selectivity remains intact, presumably
because new associations are formed as cues are paired repeatedly in
new configurations. It will be important for future studies to deter-
mine whether different pairings are equally viable or whether there
is a hierarchy such that certain inputs are more or less effective at
contributing to spatial selectivity.

In summary, internally generated and temporally coded motifs
represent activity patterns on behavioral timescales and are local-
ized by the repeated experience of multiple location-specific sensory
and motor cues. Some selectivity to distance traveled exists near the
beginnings and ends of paths even in the absence of spatial selectiv-
ity, but repeated pairing strengthens this selectivity and extends it
to the entire length of the path. The impaired spatial selectivity in
rats in two-dimensional VR is similar to the weak spatial selectivity
seen in human studies, in which such pairings are absent as
well. Recent studies have shown that a sufficiently large pool of
hippocampal neurons can provide accurate spatial information despite
impaired spatial selectivity in one-dimensional environments*4; such a
distributed coding mechanism might also allow rodents and humans
to solve spatial tasks in two-dimensional VR. Our results suggest that
in human and primate studies in VR, repeated pairing of a rich variety
of stimuli, especially between motor and visual cues, could enhance
neural activity and spatial selectivity. These results bridge the gap
between rodent and human studies by showing that distal visual
cues alone are insufficient to generate robust spatial selectivity, but
even with an impaired rate code, temporally coded motifs are intact,
probably generated by intrinsic network mechanisms.
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ONLINE METHODS

Methods summary. The materials and methods used were similar to those
described recently?!-3°. In brief, four adult male Long-Evans rats were trained
to on a variety of tasks in RW and VR. All rats foraged for randomly scattered
rewards in two-dimensional RW and VR environments. Additionally, three of
these rats were trained to follow a goal-directed strategy by running toward
randomly located reward-indicating pillars in VR. Further, the same three rats
were trained to run toward consistently positioned reward locations in VR. There
were either two or three fixed reward locations. The environments had identical
dimensions (200-cm diameter circular platform at the center of a 300 cm x 300 cm
room) and distal visual cues. Electrophysiological data from the dorsal CA1 were
obtained using hyperdrives with 22 independently adjustable tetrodes?!. Spike
extraction and sorting were done offline using custom software. Spatial selectivity
and phase precession were quantified using measures described previously?!. Motifs
were detected using custom analyses described in the main text. Further details
are described below. Only data measured during locomotion (speed >5 cm s71)
were used for all analyses to ensure consistent hippocampal state>!.

Subjects. Data were collected from four adult male Long-Evans rats (approxi-
mately 3.5 months old at the start of training) individually housed on a 12-h
light, 12-h dark cycle and food restricted (15 g of food per day) to maintain
body weight. The rats were allowed an unrestricted number of sugar-water
rewards in VR but a restricted amount of water (~40 ml of water per day)
after the behavioral session to maintain motivation. All experiments and data
collection were performed during the light cycle. All experimental proce-
dures were approved by the University of California Los Angeles Chancellor’s
Animal Research Committee and were conducted in accordance with US
federal guidelines.

Random foraging in RW and VR. The experimental room, the VR apparatus
and basic behavioral training were identical to those described recently?!:3¢. In
RW, a 200-cm-diameter and 50-cm-high platform was placed at the center of a
300 cm x 300 cm room with distinct visual cues on the four walls (Fig. 1a). Rats
were trained to forage for randomly scattered food rewards on the platform.
The VR room had an identical size and distal visual cues as the RW room, and
rats foraged for randomly located rewards on a platform of the same size as that
in the RW room. Rewards in VR were in the form of sugar water dispensed
through reward tubes placed directly in front of the rats. The reward locations
were hidden and were 40-60 cm in diameter. Entry into the reward locations
triggered the appearance of a white dot of the same size on the platform in
addition to a reward tone and sugar-water delivery. At each reward location, rats
could receive a maximum of five sugar-water rewards. Motion parallax between
the virtual elevated table and the floor underneath indicated the virtual edge
of the platform. Movement beyond the platform edge resulted in no change in
visual scene. Rats quickly learned to avoid or turn away from the virtual edges
(Fig. 1a). It took about 3 weeks of handling and pretraining and 2 weeks of VR
training for rats to do the random-foraging task efficiently. Rats were trained on
the RW task after implantation. Three rats were run in both RW and VR every
day. To verify that exposure to both worlds on the same day did not have a role
in neural responses, a fourth rat never ran in both RW and VR on the same day.
Further, the order of running in VR and RW on the same days was randomized.
No qualitative differences were found between these conditions, and hence all
data were combined.

Goal-directed tasks in VR. We trained three rats to run in three different goal-
directed tasks: random pillar, two pillar and three pillar. In all of these tasks, the
reward zone in VR space was indicated by a pillar suspended 50 cm above the
table and a white dot on the table (Fig. 3a). All other variables, including the VR
room, were identical to the one used for the random-foraging tasks. When rats
reached the reward zone, the reward was dispensed, the pillar disappeared, and
another pillar appeared elsewhere in the maze. Rats learned this task readily and
ran toward the pillars reliably®¢. In the random-pillar task, a pillar appeared at
a pseudorandom place in the two VR worlds. No qualitative differences were
found between neural activity patterns in the random-pillar task and the random-
foraging task, and hence these data were combined for subsequent analyses.
In the two-pillar task, a pillar appeared alternately at one of two fixed places
160 cm apart in the middle of the VR table. In the three-pillar task, the

reward-indicating pillar appeared sequentially at the vertices of an equilateral
triangle with 138-cm-long sides centered on the VR platform.

Surgery, electrophysiology and spike sorting. These procedures were identical
to those described earlier?!. Briefly, once the rats reached performance criterion,
they were anesthetized using isoflurane. Custom-made hyperdrives containing up
to 22 independently adjustable tetrodes that targeted both the left and right dorsal
CA1 were implanted. Rats were allowed to recover from surgery for 1 week, after
which the tetrodes were gradually advanced to area CA1, detected online by the
clear presence of sharpwave-ripple complexes. Spike and LFP data were recorded
at 40 kHz using the Neuralynx acquisition system. Spikes were extracted and
sorted into individual units using custom software. Classification of single-unit
cell type was performed using the same methods as described previously?!. When
rats ran in both VR and RW on the same day, the same cells were identified by
overlaying cluster boundaries from both sessions and identifying clear overlaps.
If cell identities were unclear because of electrode drift, the data were discarded
from the same cell analysis.

Statistics. Offline analyses were performed using custom MATLAB codes. Tests
of significance between linear variables (circular variables) were done using the
two-sided nonparametric Wilcoxon rank-sum test (Kuiper test). Tests of sig-
nificance for the mean values of distributions being different from zero were
performed using the two-sided nonparametric Wilcoxon signed-rank test.
To compute circular statistics, the CircStat toolbox was used>2. Tests of significance
of correlation between two variables were done using a t test for correlation coeffi-
cients. All ensemble averages are in the form mean *s.e.m. unless stated otherwise.
All correlation values are reported as the linear correlation coefficient, .
A small number of single units were present in two different sessions, which could
potentially inflate our estimate of the number of independent samples, thus alter-
ing the significance level of the statistical tests. Hence, as a conservative estimate,
we did all tests of significance using only half as many cells in VR and RW. All
significant results were still highly significant. No statistical methods were used
to predetermine sample sizes, but our sample sizes are similar to those generally
employed in the field. Data collection and analysis were not performed blind to
the conditions of the experiments.

Quantification of rate maps. Theta rhythm is interrupted®! and behavior is
uncontrolled when rats pause to consume rewards or to groom. Hence, these peri-
ods were excluded, and only data recorded during periods of active locomotion
(running speed >5 cm s7!) were used. The durations of recording sessions were
matched between RW and VR to remove possible sources of variability. A cell
was considered active if its mean firing rate exceeded 0.2 Hz and it fired at least
100 spikes during locomotion, and such cells were thus included in the analysis.
Spatial firing rates were computed using occupancy and spike histograms with
5 cm x 5 cm bins smoothed with a 7.5-cm two-dimensional Gaussian smoothing
kernel. Bins with very low occupancy relative to the experimental session were
excluded to avoid artificially high firing rates. The spatial information content,
sparsity and coherence of the rate maps were computed using methods described
previously?!. To determine the stability of rate maps, firing rates were computed
in the first and second halves of the session separately. The bin-by-bin correlation
between the rate maps in the two halves provided a measure of rate map stability.
To obtain the similarity of rate maps of the same cell in RW and VR, we computed
the correlation of firing rates and computed statistical significance by comparing
it against correlations when the cell identities were shuffled.

Computation of dynamic rate maps. The dynamic rate map3 for a pair of coac-
tive cells was constructed as follows: for each spike from the first cell, the rat
trajectory and spikes from the second cell within the next 200 cm traveled were
aggregated relative to the spike positions from the first cell. We used 15 cm x
15 cm spatial bins and computed the occupancy time and number of spikes in
each bin. Dividing the number of spikes by the occupancy time in each spatial bin
provided the dynamic rate map. The information content and sparsity of these
rate maps were quantified as described above.

Computation of coactivation of cell pairs. To determine the degree of coactivity
of pairs of cells active in a session, we first constructed the firing rate of neurons
as a function of both time elapsed and distance traveled (200 ms (5 cm) time
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(distance) bins, smoothed with a 400 ms (10 cm) Gaussian smoothing kernel).
We then computed the cross-covariance of firing rates for pairs of active cells
within a session. To obtain an estimate of chance level, we generated control
data by time reversing the spike train of one of the cells in the cell pair and time
shifting both of them by random amounts between 10 and 100 s. This procedure
was repeated ten times. We detected the peak value in the cross-covariance of
the original cell pairs and the control data in both distance and time domains
(peakggt;'l‘ce, peakf{‘)ﬁf?{‘(ﬁe and peakm¢  peak™® | that occurred within
50 cm or 2 s from 0. A peak was considered significant if it satisfied the

following condition:

distance
control

distance

actual )+ 2 xstandard deviation (peaksdimﬂce)

> mean(peak control

peak

time
>
>mean (peakcomrol

time

actual ) +2xstandard deviation (peakstime )

control

peak

We then calculated the fraction of cell pairs whose firing rate cross-covariance
had a significant peak.

Characterizing selectivity to distances traveled in VR goal-directed tasks.
To investigate the degree of selectivity to distance traveled in the goal-directed
tasks (VR systematic-pillar and VR random-pillar tasks), we linearized the paths
by measuring the distance traveled between two consecutive rewards. These
distances were normalized to unity. To control for variability in the path lengths,
we considered only trials for which the distance traveled was around the median
path length (median * 0.4 x median). This threshold value of 0.4 ensured that
the number of trials and path-length variability were similar in the random-pillar
and systematic-pillar tasks. The following analysis was also repeated when con-
sidering all trials regardless of the path lengths, and the results were qualitatively
similar. For each cell, we constructed a linearized rate map as a function of the
normalized distance traveled. For cells with a mean firing rate above 0.5 Hz,
we then computed the information content, sparsity and peak value of the rate
maps to quantify this selectivity. To examine the nature of this selectivity on an
ensemble level, for each cell we partitioned the selected trials into two random
groups. We computed the firing rate for each partition separately. The population
vector overlap for the two partitions was calculated, and the significance values
were obtained using methods described previously?°.

Computation of disto-code in the VR three-pillar task. Here, a one-dimensional
linearized rate map was constructed (distances were normalized to unity) for each
arm separately. A given arm pair was used for analysis if the mean firing rate was
higher than 0.5 Hz on at least one arm. We then computed the arm selectivity
index for each two-arm combination as

_|zFai-ah
Ioskai-a)

where /'Lli and ll] are the rates in the I bin along arms i and j. For the arm pairs
with D < 0.5 (pairs with firing along both arms), we computed the population
vector overlap, its significance level and disto-coding index similarly to methods
described previously?°.

Detection of motifs. To detect motifs, a method similar to the one used for
detecting place fields on a one-dimensional track was used. We constructed a
spike train, a vector of data whose length spanned the period of the experimental

session, by binning the spikes for which the running speed was greater than
5 cm s7L. This spike train was smoothed using a 200-ms Gaussian smoothing
kernel and transformed to firing rate by dividing by the bin duration. Peaks where
the firing rate exceeded 5 Hz were detected and marked as candidate motifs.
The boundaries of a motif were defined as the points where the firing rate first
dropped below 10% of the peak rate (within the motif) for at least 250 ms (two
theta cycles). If the time lag between the first and last spike in the putative motif,
called the duration of the motif, exceeded 300 ms, this sequence was considered
a valid motif and was included in the analysis.

Construction of motif fields. The center of a motif was defined as the center
of mass of the firing rate as a function of time within the motif. This value was
subtracted from the spike times within the motif to center them around zero. This
procedure was repeated for all motifs, and the centered motifs were aligned to
obtain a motif field for a given neuron. The firing rate as a function of time within
the motif field was calculated as the number of spikes within each temporal bin
divided by the total amount of time in that bin, smoothed by a 200-ms Gaussian
smoothing kernel. Motif-field duration was defined as twice the weighted s.d. of
the motif firing rate, i.e., the width of the distribution.

Theta period and phase precession. Similar to the methods described pre-
viously?!, each LFP was filtered between 4 and 12 Hz using a fourth order
Butterworth filter. Theta period was computed by detecting the peak between
50 and 200 ms in the filtered LFP autocorrelation for epochs during which
the running speed was above 5 cm s~1. Spiking theta period was calculated by
computing the spike train autocorrelation, smoothing by a 15-ms-wide Gaussian
kernel and detecting the peak. Quality of phase precession within a motif field
was defined as the circular linear correlation coefficient (CLCC)?! between spike
phases and the latency of spike timing with respect to the motif center.

Control analysis for motifs. To estimate which motif properties can arise purely
by chance, surrogate motifs for each neuron were generated as follows. The mean
firing rate during locomotion and the depth of theta modulation were computed
for each neuron. Surrogate activity was generated using a Poisson-distributed
and theta-modulated spike train with the same mean firing rate and depth of
theta modulation as the experimentally measured neuron. Motifs, motif fields
and their properties were computed using the procedures described above. This
procedure was repeated 50 times for each neuron to generate a null distribution.
The mean value and s.d. of this null distribution were used to compute the
z-scored values for each cell.

Control analysis for spatial selectivity. To determine the statistical significance
of spatial selectivity, we generated control data by shifting the experimentally
observed spike train with respect to behavioral data by random amounts between
10 and 100 s. All of the measures used to quantify the spatial selectivity were
expressed in the units of z score or s.d. around the control data.

A Supplementary Methods Checklist is available.
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Supplementary Figure 1

Additional example cells in RW and VR showing lack of spatial selectivity in VR.

a, Rat trajectory and spike positions for different neurons and corresponding firing ratemaps in RW. b, Same as (a) but in VR, showing
long streaks of spikes, or putative motifs. Numbers indicate firing rate range. Color conventions are the same as in Fig. 1.
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Supplementary Figure 2

Reduced mean firing rates, rate map sparsity and coherence in VR.

a, Mean firing rates were 25% (p=7. 6x10%°) lower in VR (0 70+0.02Hz) than in RW (0.932£0.02Hz). b, Ratemap sparsity, a measure of
spatial selectivity, was also greatly (42%, p= =2.3x107'%%) reduced in VR (0.42+0.01) compared to RW (0.72+£0.01). ¢, Ratemap|
coherence computed using 10x10cm bins, was 40% (p=2.3x10""*") reduced in VR (0.45+0.01) compared to RW (0.75+0.01). d, At all
mean rates spatial information content was negatively correlated with the mean firing rate of a cell in both worlds (RW r=-0.36,
p=1.6x10%"; VR r=-0.48, p=3.2x10"®). e, Spatial stability was lower in VR compared to RW Stability was not correlated with mean
firing rate in RW (r=0.02, p=0.54) and weakly positively correlated in VR (r=0.28, p=1.1x10"").
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Supplementary Figure 3

Estimation of the significance levels of spatial selectivity showing VR results were near chance levels.

To quantify spatial information content, ratemap sparsity and stability that are uninfluenced by the mean firing rate of a cell, these were
computed in Z-scored units for each cell (see Methods). a, Z-scored spatial information content was only slightly greater than zero in
VR (0.92+0.08, p=3.2x10%") but the difference was far greater in RW (20.65+0.49, p=7.7x10"*’), and the two distributions were
significantly different (difference=19.73, p=7.4x102%). b, Similar to information content, Z-scored ratemap sparsity was only slightly|
greater than zero in VR (0.91+0.07, p=3.4x10"%) but the difference was far greater in RW (10.26+0.20, p=7.7x10"*’). These two
distributions were significantly different (difference=9.35, p=9.5x10'2°°). ¢, The Z-scored stability was close to zero in VR (0.13+0.06,
p=0.036) but significantly above chance in RW (3.99+0.09, p=1.0x10"*; difference=3.86, p=1.2x10"%).
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Supplementary Figure 4

Loss of spatial selectivity in dynamic rate maps and reduction in neuronal coactivation in VR.

a, Spatial ratemaps of two pairs of neurons in RW (left) and their dynamic ratemap (right) (see Methods) showing spatially localized
activity. Numbers on top right indicate flrlng rate range. b, Same as (a) but for two pairs of neurons in VR showing no spatlal selectivity.
c, Dynamic ratemap information content in RW (0.63+0.01bits, n=10831 pairs from 4 rats) was 65% greater (p<10"'%) than in VR
(0.22+0.00bits, n=8202 pairs from 4 rats). d, Dynamic ratemap sparsity in RW (0.56+0.002) was also greater (36%, p<10"%) than in
VR (0.36+0.002). The relative spiking of coactive neurons was spatially informative in RW but not in VR. e, In order to investigate|
coactivity of cell pairs (including sequential activity on intermediate time- and length scales) we computed cross-covariances between
the firing rates of pairs of active cells in a session as a function of time elapsed or distance traveled (see methods). The fraction of]
coactive cells in RW (15.5(16.8)% in distance(time) domain) was far greater than that in VR (8.3(8.9)% in distance(time) domain).
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Supplementary Figure 5
Comparison of activities of cells active in both RW and VR on the same day.
a, For cells recorded in both worlds on the same day mean firing rate was correlated regardless of minimum firing rate (grey, r=0.32,
p=1.7x1 07, n =258 from 3 rats). This was also true for the subset of cells active at high rates in both worlds (purple, r=0.21, p=0.03, n =
109 from 3 rats), used for all subsequent same-cell analyses. b, The peak firing rate of the same cell was reduced in VR compared to|
RW and the two were not significantly correlated (r=0.12, p=0.23), despite their correlated mean rates, due to lack of spatial selectivity|
in VR. ¢, Spatial ratemap sparsity of the same cell was also reduced in VR but correlated with RW (r=0.36, p=0.0001), which could be
partially explained by correlated mean firing rates (Fig. 2e). d, Despite positive correlations in mean rate and sparsity, the distribution of
correlation of ratemaps of the same cells between RW and VR is not significantly different from zero (p=0.39) and not different from the
ratemap correlations obtained by shuffling the cell identities (p=0.97).
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Supplementary Figure 6

Quantification of behavior and neural responses during goal-directed VR tasks.

a, Rats’ sample trajectories between two reward locations and the corresponding shortest path between them in the VR random-pillar
task (left) and VR systematic-pillar tasks (center and right). b, We defined the excess path length as the difference between the
shortest distance between two consecutive reward locations and the actual path length traveled by the rat. We then calculated the
median value of this excess path length over an entire session. The rats’ behavior was more goal-directed during the VR random-pillar
task because the median excess path length (56.3 £ 10.8 cm) was significantly smaller compared to random foraging task (178.2 #
13.9 cm, p = 6.1x10™). A similar effect was observed in VR systematic-pillar where the median excess path length (77.3 + 12.2 cm) was
significantly shorter compared to random foraging (178.2 + 13.9 cm, p = 1.4x10'5). Further, VR random-pillar and VR systematic-pillar
were equally goal-directed because the median excess path lengths were comparable in the two conditions (p = 0.44). ¢, Ratemap
stability in the VR systematic-pillar task (0.34 £ 0.03, n = 282 cells with at least 100 spikes in each session half from 3 rats) is greater
than VR random foraging (p = 2.4x10’3) and smaller than RW random foraging (p = 1.8x1 0'18).
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Supplementary Figure 7

Additional example cells in VR in systematic-pillar tasks.

a, Rat trajectory and spike positions for different neurons (top row) and corresponding firing ratemaps (bottom row) for the two-pillar
task. b, Same as (a) but for the three-pillar task. Numbers indicate firing rate range. Color conventions are the same as in Fig. 3. Note
that examples show elevated firing along only one or multiple arms of the triangle.
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Supplementary Figure 8

Selectivity to distance traveled in VR goal-directed tasks and presence of disto-code in the three-pillar task.

a, Left: Trajectory of the rat (light brown) and spike positions (dark brown) during the VR random-pillar task on the two-dimensional
platform for the same cells shown in Fig. 4a. Note that the cells fire randomly in two-dimensions although one of them (bottom panel)
does exhibit selectivity to distance along the linearized path. Right: Same as left but for VR systematic-pillar task (trajectory and spikes
are depicted in light and dark green respectively). The black dots indicate the reward locations and the arrows correspond to running
direction. b, Significance levels (p values) for population vector overlap in Fig. 4d. The significant diagonal is indicative of firing at the
same distance along the two arms (disto-coding). ¢, Disto-coding index (see Methods) for the population of multi-arm selective arm

pairs (n = 431 arm pairs from 3 rats) in the three-pillar task was also significantly positive (0.23+0.02 ,p=1.5x10""), further supportive of
a disto-code.
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Supplementary Figure 9

Comparable spatiotemporal properties of individual motifs and motif fields in RW and VR.

a, For each cell we computed the mean firing rate within individual motifs and calculated the mean of those values to obtain a single|
number for individual cells. Motif mean rates in VR (5.92+0.06Hz) were slightly smaller (10%, p=7.7x10""°) than in RW (6.52+0.06Hz).
b, Similarly, motif peak rates in VR (23.39+0.24Hz) were smaller (21%, p=6.1x10?") than in RW (28.32+0.69Hz). ¢, There was
significant correlation between mean rate and the percentage of spikes that occurred within motifs in RW (r=0.54, p=4.1x10°°) and VR
(r=0.41, p=1.2x10"®%). This could explain the reduced motif duration and percentage of spikes contained in motifs in VR compared to
RW (Fig. 5e). d, In both RW and VR, the percentage of spikes in motifs was significantly correlated with spatial information content of a
neuron (RW r=0.28, p=4.2x10'17; VR r=0.26, p=6.5x10’12). e, Motif-field mean firing rates in VR (4.12+0.05Hz) were only slightly smaller,
(5%, p=9.2x10’3) than in RW (4.34+0.05Hz). f, Motif-field durations in VR (1.33+0.01s) were similar but slightly reduced (10%,
p=1.1x1 073 compared to RW (1.48+0.01s). g, For cells active in both worlds on the same day, motif-field duration was correlated
between RW and VR (r=0.31, p=1.2x10'3). h, Motif-field peak firing rate had a similar correlation (r=0.54, p=1.2x10'9). i, j,To estimate
the percentage of spikes contained in motifs and motif durations, uninfluenced by the mean rate, we computed the Z-scored values for|
these two measures (see Methods). i, The Z-scored percentage of spikes in motifs was significantly above zero in VR (35.15+1.06,
p=3.9x10"%) and RW (23.52+0.64, p=1.0x10%). In fact larger Z-scored values in VR indicate greater propensity for motif generation
compared to RW. j, The Z-scored mean motif duration was indeed similar in both worlds (8.02+0.25 in RW and 7.3310.27 in VR,
p=0.03) and greatly above zero (p=2.1x10"%® and p=1.4x10% in RW and VR respectively).
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Supplementary Figure 10

Increased theta power but reduced theta frequency in VR.

To further examine the dynamics of LFP theta, we investigated the LFPs recorded from the same electrode on the same day in both
worlds without any electrode movement between the two sessions. Analysis was further restricted only to data when rats ran at speeds|
greater than 5cm/s to eliminate contamination by variable periods of stopping when theta is reduced. In order to compare data from
different sessions, the power spectrum from each electrode was normalized by the mean power on that electrode in RW and VR over

the frequency range 1-100 Hz.
a, Normalized power between 5-15 Hz, averaged over all the LFP (n=57 from 3 rats) in RW and VR shows a clear difference in theta

power and frequency between the two environments. b, Peak theta power is significantly increased (p=0.002, paired Wilcoxon signed
rank test) in VR (56.95+3.75) compared to RW (46.61+2.51). ¢, Theta frequency in VR (7.21+0.07Hz) is significantly lower (p=5.1x10"")

than in RW (8.32+0.06Hz).
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