
UCLA
UCLA Previously Published Works

Title
Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality

Permalink
https://escholarship.org/uc/item/0dn3g05j

Journal
Nature Neuroscience, 18(1)

ISSN
1097-6256

Authors
Aghajan, ZM
Acharya, L
Moore, JJ
et al.

Publication Date
2015

DOI
10.1038/nn.3884
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0dn3g05j
https://escholarship.org/uc/item/0dn3g05j#author
https://escholarship.org
http://www.cdlib.org/


NATURE NEUROSCIENCE VOLUME 18 | NUMBER 1 | JANUARY 2015 121

A R T I C L E S

Dorsal hippocampal neurons fire at elevated rates in restricted regions 

of space1,2 when subjects forage randomly in a two-dimensional 

space, termed a spatial rate code. Distal visual cues are thought to 

reliably determine this spatial selectivity because changing or rotating  

them causes corresponding large changes in the spatial tuning of 

place cells2,3. However, the activity of place cells is also influenced 

by other sensory and motor cues, including specific and nonspe-

cific proximal cues, such as olfactory and somatosensory cues4–10, 

and locomotion cues such as optic flow and proprioception, which 

together with vestibular cues are thought to provide self-motion infor-

mation for path integration11–13. Consistently, lesions of vestibular 

nuclei disrupt angular tuning of head-direction cells14 and spatial 

tuning of hippocampal place cells15, although lesions of the head-

direction cell network, which is thought to provide vestibular input 

to the hippocampus, do not substantially alter hippocampal spatial 

selectivity16. Additionally, the output of vestibular nuclei suppresses 

self-motion signals and depends on multisensory stimuli17. Indeed, 

in all the experiments described above, it is difficult to dissociate the 

contribution of distal visual cues from the contributions of other cues. 

Thus, the contribution of distal visual cues alone—which are the only 

spatially informative stimuli in typical human and primate studies 

of hippocampal activity—to the spatial selectivity of place cells in 

normal rats remains to be fully explained.

Neural activity is also modulated jointly by theta rhythm and the rat’s 

position within the place field, called theta-phase precession or tem-

poral code18–21, which is thought to be linked closely to hippocampal  

spatial selectivity18. Nevertheless, phase precession is also seen when 

rats run in a running wheel without any systematic change in visual 

cues22. Hence, to understand the mechanisms of the hippocampal 

spatial rate and temporal codes, it is important to determine whether 

the two can be dissociated during spatial exploration. In addition, 

dorsal hippocampal neurons are typically active for sustained periods 

lasting more than 1 second1,2, even under a variety of conditions22–25, 

and this sustained nature of activity has received little attention.

These questions are particularly important to address, as neural 

mechanisms of navigation in humans and nonhuman primates are 

studied in stationary subjects for the most part, often in VR26–28, with 

only distal visual cues and no vestibular or proximal cues. Under these 

conditions, hippocampal neurons show only weak spatial selectiv-

ity27–29, an observation that is at apparent odds with the high spa-

tial selectivity seen in studies in freely behaving rodents. Further, an 

increasing number of functional imaging studies in rodents are being 

done in head-fixed animals in VR30.

VR allows for the elimination of spatially informative multisen-

sory, nonspecific cues and minimization of vestibular cues, leaving 

only distal visual cues to provide reliable spatial information21,31–33. 

All previous neurophysiological studies in rodents in VR have been 

done in one-dimensional mazes and have found largely intact spatial 

selectivity. In these environments, visual cues are paired repeatedly 

with the same set of locomotion cues, such as speed of optic flow and 

proprioception, which have been hypothesized to have a major role 

in driving neural responses11–13,21,34, as evidenced by disto-coding  

in one-dimensional VR paths21. This consistency is removed in  

random foraging in two-dimensional VR environments where the 
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Impaired spatial selectivity and intact phase 
precession in two-dimensional virtual reality

Zahra M Aghajan1,2,7, Lavanya Acharya1,3,7, Jason J Moore1,4, Jesse D Cushman1,2, Cliff Vuong1,2 &  
Mayank R Mehta1,2,4–6

During real-world (RW) exploration, rodent hippocampal activity shows robust spatial selectivity, which is hypothesized to be 

governed largely by distal visual cues, although other sensory-motor cues also contribute. Indeed, hippocampal spatial selectivity is 

weak in primate and human studies that use only visual cues. To determine the contribution of distal visual cues only, we measured 

hippocampal activity from body-fixed rodents exploring a two-dimensional virtual reality (VR). Compared to that in RW, spatial 

selectivity was markedly reduced during random foraging and goal-directed tasks in VR. Instead we found small but significant 

selectivity to distance traveled. Despite impaired spatial selectivity in VR, most spikes occurred within ~2-s-long hippocampal 

motifs in both RW and VR that had similar structure, including phase precession within motif fields. Selectivity to space and 

distance traveled were greatly enhanced in VR tasks with stereotypical trajectories. Thus, distal visual cues alone are insufficient to 

generate a robust hippocampal rate code for space but are sufficient for a temporal code.
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same physical location in space can be approached from multiple 

different directions at different speeds. We thus investigated the  

contribution of distal visual cues only in determining selectivity in 

such an experimental setup.

RESULTS

Nature of spatial selectivity of hippocampal responses

We measured hippocampal activity during a two-dimensional random- 

foraging task in RW and VR35–37 with similar distal visual cues (Fig. 1a).  

In VR, the rats were body-fixed, i.e., their bodies were held in place, 

with a harness on a floating ball, allowing for head movements but 

precluding full-body turns, thus minimizing vestibular cues (Online 

Methods)21,36. Rats quickly learned to avoid the virtual edges entirely 

on the basis of visual cues36 and spent a similar amount of time away 

from the edges and in the center of the platform (Fig. 1a) compared 

to in RW. We measured the activity of 1,066 and 1,238 principal 

neurons in RW and VR, respectively, in the dorsal CA1 of four rats 

under a variety of conditions (Online Methods). Neurons fired vig-

orously in restricted regions of space in RW, as expected (Fig. 1b,c, 

Supplementary Fig. 1a and Supplementary Video 1)1. In contrast, 

the neurons showed little spatial selectivity in VR during random 

foraging (Fig. 1b,d and Supplementary Fig. 1b).

Across the ensemble, neurons had moderately reduced (25%) 

mean firing rates but greatly reduced (68%) peak firing rates in 

VR (Fig. 2a and Supplementary Fig. 2a). Neurons in VR also had 

greatly reduced spatial information content (75%), stability (59%), 

sparsity (42%) and coherence (40%) (Fig. 2b–d and Supplementary 

Fig. 2b,c) compared to spatially localized, stable and sparse RW rate 

maps (Fig. 2c). Although the mean firing rate was inversely cor-

related with information content (Supplementary Fig. 2d), this 

large reduction in spatial selectivity cannot be accounted for by  

differences in mean firing rates in VR and RW, as neurons with similar 

firing rates had substantially lower spatial selectivity and stability in 

VR (Supplementary Figs. 2d,e and 3). Analysis of relative spatial 

dynamics between cells measured simultaneously showed that neu-

rons did not maintain consistent spatial relationships with each other 

in VR, in contrast to in RW (Online Methods and Supplementary 

Fig. 4a–d). We further confirmed this observation using analysis of 

the cross-covariance of firing rates in time and in distance, which 

showed little evidence of coactivation or reliable pairing of groups of 

neurons in VR, in contrast to in RW (Supplementary Fig. 4e). These 

results demonstrate that in VR, neurons did not have place fields that 

drifted together, nor were they activated in a sequential fashion, in 

some unknown reference frame.

We also characterized the activity of 258 neurons recorded in both 

worlds on the same day (Fig. 1b). Of these neurons, only 109 (42%) 

had a mean firing rate above a minimal activity threshold of 0.2 Hz 

in both worlds. For these neurons, there was a significant correlation  

between the mean firing rates (r = 0.21, P = 0.03), but not the peak 

firing rates (r = 0.12, P = 0.23), in RW and VR (Supplementary  

Fig. 5a,b), although they showed spatial selectivity in RW but not in 

VR and had uncorrelated rate maps (Supplementary Fig. 5c,d).

Contribution of task type and locomotion cues

In RW, rats might use a goal-directed strategy to navigate to a food 

pellet, whereas in VR, there are no reward-predicting cues; such a 

difference in task type could influence hippocampal activity12. To 

control for this difference, we did a separate experiment in which we 

measured the activity of 195 neurons from three rats while they ran 

toward a reward-indicating suspended pillar appearing at random 

Figure 1 Similar rat behavior but different 

neural rate maps in two-dimensional RW and 

VR. (a) Top left, top-down schematic view of the 

RW and VR mazes showing a 200-cm-diameter 

elevated platform centered in a 300 cm × 300 cm  

room with distinct visual cues on the walls.  

Top right, mean running speed at the time  

of occurrence of spikes (excluding speeds  

<5 cm s−1) was slightly reduced (3%, P = 0.0005) in 

VR (22.40 ± 0.13 cm s−1, red, n = 719 cells from  

4 rats) compared to RW (23.27 ± 0.16 cm s−1,  

blue, n = 1,066 cells from 4 rats). Bottom, 

percentage of time spent in all parts of the  

maze averaged across all rats, showing that  

rats spent comparable time away from  

the edges in RW (left) and VR (right).  

(b) Top, scatter plots of the peak amplitude  

of a spike (gray dots) measured simultaneously 

on two channels (channels 3 and 4) of a  

tetrode in RW and VR. Colored dots are  

spikes from the same isolated neuron  

recorded on the same day in the two worlds. 

Bottom, position of the rat in RW and VR at  

the time of occurrence of the spikes (darker  

dots) from the corresponding neurons (top)  

overlaid on the trajectory of the rat (lighter  

trace). (c) Spatial rate maps of four neurons  

in RW. (d) Same as c but in VR. All data  

throughout all figures and figure legends  

are expressed as the mean ± s.e.m., unless  

otherwise noted. Throughout all figures,  

dashed vertical lines in histograms indicate  

the mean values of the corresponding distributions. In all figures, blue indicates RW and red indicates VR, numbers above images indicate the ranges, 

and lighter shades indicate higher values. In all figures, statistical significance was calculated by Wilcoxon rank-sum test, unless otherwise noted.
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locations in VR (Fig. 3a and Online Methods)36. The excess path 

length of the rats’ trajectory between rewards was significantly shorter 

during this random-pillar task (69%, P = 6.1 × 10−4) than during the 

random-foraging task, which is indicative of a goal-directed strategy  

(Supplementary Fig. 6a,b). There was no substantial difference 

in spatial selectivity between the two types of task in VR (Fig. 3b 

and Supplementary Video 2), which argues that the loss of spatial 

selectivity was not due to differences in task type. Hence, for subse-

quent comparisons between RW and VR, we combined data from the  

random-foraging and random-pillar tasks.

The loss of spatial selectivity in two-dimensional VR is in stark 

contrast to not only that in two-dimensional RW but also to that in 

previous studies in one-dimensional VR21,31–33 in which clear spatial 

selectivity was found. To test whether spatial selectivity could exist 

in the same two-dimensional VR environment without the vestibular 

cues present in RW, we did another experiment in which the task 

type was similar to the random-pillar task but the reward-indicating  

pillars appeared systematically at fixed locations (Fig. 3c,d and  

Online Methods). In the first variant, pillars appeared at two fixed but 

alternating positions in VR (Supplementary Fig. 6a). Because rats 

ran in more stereotyped trajectories, locomotion cues—such as step 

counting from the previous reward and speed of optic flow—were 

made spatially informative, as the same cues occurred repeatedly at 

the same positions across the task. Consequently, unique locomotion 

cues were paired repeatedly with distinct distal visual cues at each 

position (Fig. 3c). Spatially selective neural responses appeared in this 

systematic-pillar task with significantly enhanced spatial information 

content and rate map sparsity compared to random foraging in VR 

(Fig. 3e,f). Although some neurons had a focused place field in only 

one direction of movement, or arm, similarly to place cells in RW, 

others spiked on both arms (Fig. 3e and Supplementary Fig. 7a), 

which we investigated in detail and describe below.

To rule out the possibility that spatial selectivity arose simply 

from alternating contexts in two movement directions or that the 

rat did not traverse a large portion of the maze, we did another vari-

ant of the systematic-pillar task in which the reward-indicating pil-

lars appeared sequentially at the vertices of an equilateral triangle 

(Online Methods). Here the rats walked repeatedly along the same 

paths while covering a greater fraction of the two-dimensional maze,  

and because adjacent arms were rotated 120° with respect to each 

other rather than 180°, the visual scene was more similar along dif-

ferent arms than in the two-pillar task (Supplementary Fig. 6a). 
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to RW (9.90 ± 0.18 Hz, n = 1,066 cells from 4 rats). (b) The spatial  
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during the first and second halves of a session in RW and VR. (d) The  

stability of rate maps in VR (0.26 ± 0.01) was significantly reduced  

(difference = 0.37, P = 1.2 × 10−124) compared to in RW (0.63 ± 0.01). 
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Figure 3 Dependence of spatial selectivity on task type and locomotion 

cues. (a) Schematic of a maze in which the reward location is indicated by 

a pillar suspended in VR (VR random pillar). (b) The spatial information 

content in VR random pillar (0.39 ± 0.02 bits, n = 195 cells from 3 rats) 

was only slightly (16%, P = 1.6 × 10−4) larger than in VR random  

(0.33 ± 0.01 bits) and was still substantially smaller (71%, P = 1.1 × 10−55) 

than in RW (1.35 ± 0.02 bits). (c) Top, trajectory of the rat (light green 

trace) and position of the rat at the time of occurrence of spikes (darker 

dots) for two example neurons during consistent paths between two fixed 

reward locations on a two-pillar task. Bottom, rate maps corresponding to  

the neurons shown above. (d) Same as c but on a three-pillar task. Gray 

regions indicate positions the rat did not sample for a sufficient amount 

of time. (e) The spatial information content in VR with systematic pillars 

(1.11 ± 0.03 bits, n = 324 cells from 3 rats) was significantly larger than 

in VR random (70%, P = 1.0 × 10−101) and was only slightly smaller than 

in RW (17%, P = 5.3 × 10−8). (f) The spatial sparsity in VR systematic 

pillar (0.63 ± 0.01) was significantly greater (34%, P = 4.7 × 10−63) than 

in VR random (0.42 ± 0.01) and was close (12% less, P = 4.6 × 10−20) to 

that in RW (0.72 ± 0.01).
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Spatially selective, stable responses also 

appeared in this task, which were significantly 

greater than those in the two-dimensional  

random-foraging tasks in VR but were  

comparable to those in two-dimensional random foraging in RW  

(Fig. 3d–f and Supplementary Figs. 6c and 7b). Here too, some neu-

rons spiked on only one arm of the triangle (Supplementary Video 3),  

similarly to RW place cells, whereas others spiked along multiple 

arms (Supplementary Fig. 8a,b and Supplementary Video 4).

In both of the systematic-pillar experiments, vestibular cues 

remained minimal and spatially uninformative during turns, yet 

spatial selectivity was comparable to that in random foraging in 

RW. Further, in systematic-pillar tasks and the random-pillar task, 

the path between two successive reward locations was not always 

direct but instead often deviated from the optimal, straight-line 

path (Supplementary Fig. 6a). This departure, or excess path 

length, was comparable in both the systematic- and random-pillar 

tasks (Supplementary Fig. 6b), indicating similar levels of goal-

directed behavior and demonstrating that differences in departure 

from the shortest paths do not underlie the observed differences 

in spatial selectivity. Thus, task type cannot explain the differ-

ences in spatial selectivity observed under different conditions in  

RW and VR.

The presence of firing on multiple arms in the systematic-pillar tasks 

(Fig. 3c and Supplementary Fig. 8a) suggests that neurons might be 

coding for the distance traveled along the paths. If this is the case, it 

raises the possibility that neurons in the random-pillar task might also 

exhibit similar coding despite their lack of two-dimensional spatial 

selectivity (Supplementary Fig. 8a). The fact that the beginning and 

end of a trial were clearly delineated by the visible pillars in all goal-

directed tasks allowed us to test these possibilities by quantifying the 

activity of neurons as a function of normalized distance traveled along 

each path, subsequently referred to as distance (Online Methods).

In the random-pillar task, many but not all neurons exhibited random  

firing both on linearized paths and in two-dimensional space  

(Fig. 4a and Supplementary Fig. 8a). In contrast, a majority of neurons  

in the systematic-pillar tasks often fired at the same distance (Fig. 4a 

and Supplementary Fig. 8a). Linearized rate maps in the random-pillar 

tasks had lower information content (49%), sparsity (36%) and peak 

rate (36%) compared to those in the systematic-pillar task (Fig. 4b),  

although a small number of neurons in the random-pillar task had 

measures comparable to those in the systematic-pillar task (Fig. 4b). 

We further characterized this selectivity on a population level by 

computing the population vector overlap (PVO) between the fir-

ing rates of two groups of randomly selected paths for each cell  

(Online Methods). Whereas the significant overlap in the random- 

pillar task was limited to regions near the beginnings and ends of trials, 

it was present at all distances in the systematic-pillar tasks (Fig. 4c).
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Figure 4 Selectivity to distance traveled in VR 

goal-directed tasks. (a) Firing rate (FR) of cells 

as a function of normalized distance traveled 

across trials. In the VR random-pillar task, many 

cells exhibited random firing (top left), whereas 

some had elevated firing at the beginnings and 

ends of trials (bottom left). In the VR systematic-

pillar task, neurons had focused firing at specific 

distances along the different arms (right).  

AU, arbitrary units. (b) Left, information content 

in linearized paths in the VR random-pillar task 

(0.24 ± 0.01 bits, n = 127 cells from 3 rats) 

was significantly lower (49%, P = 1.2 × 10−17) 

than in the VR systematic-pillar task (0.47 ± 

0.02 bits, n = 310 cells from 3 rats). Center, 

similarly, sparsity of the linearized firing rate 

maps in the VR random-pillar task (0.23 ± 0.01) 

was significantly reduced (36%, P = 5.9 × 10−16) 

compared to in the VR systematic-pillar task 

(0.36 ± 0.01). Right, peak firing rates were 36% 

(P = 3.1 × 10−15) smaller in the VR random-pillar 

task (2.89 ± 0.14 Hz) compared to in the VR 

systematic-pillar task (4.55 ± 0.15 Hz). (c) PVO in 

the VR random-pillar (top left) and VR systematic-

pillar (top right) tasks. The range of overlap is 

indicated by the numbers at the top left corners. 

The bottom row depicts the significance levels for 

the corresponding PVO presented in the top row. 

The significant diagonal area indicates selectivity 

to distance on an ensemble level. (d) Top, for 

different arm pairs with minimal activity on at 

least one arm (mean rate >0.5 Hz, n = 625 arm 

pairs from 3 rats), the arm selectivity index  

(0.37 ± 0.01) quantifies the likelihood of firing 

on one arm (index >0.5) compared to on multiple 

arms (index ≤0.5). X and X′ refer to distinct arms 

in the arm pair of interest. Bottom, PVO for  

arm pairs with arm selectivity index below  

0.5 (n = 431 arm pairs from 3 rats).
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We additionally tested whether the neurons spiked at the same 

distance on two different arms of the triangle located in different parts 

of the maze. We quantified the number of cells that fired on multiple 

arms by calculating the arm selectivity index (Fig. 4d and Online 

Methods). For cells that were active on multiple arms (index <0.5), 

which constituted a majority of the cells, PVO analysis between the 

rate maps of the two arms revealed significant overlap at all distances, 

indicative of a robust disto-code, notably on nonoverlapping paths 

(Fig. 4d and Supplementary Fig. 8b,c). These results, together with 

the differences in two-dimensional spatial selectivity presented above, 

suggest that repeated traversals along the same path, such as in the 

systematic-pillar task, are crucial for generating robust spatial selec-

tivity and selectivity to distance, a generalization of the disto-code.

Hippocampal motifs and phase precession

In RW, neurons generated long spike sequences lasting about 2 sec-

onds as rats traversed through well-defined place fields (Fig. 5a 

and Supplementary Fig. 1a). Surprisingly, despite having no 

clearly defined place fields, neurons in VR also fired similarly long 

spike sequences, which appeared as streaks of spikes (Fig. 5b and 

Supplementary Fig. 1b). We term these long spike sequences hippo-

campal motifs, identified as time periods in which a neuron achieved 

a peak firing rate of at least 5 Hz and maintained a firing rate above 

10% of that peak for at least 300 ms. We aligned all individual motifs 

from a cell around their center of mass and aggregated them to obtain 

the cell’s motif field (Fig. 5c,d and Online Methods).

Motif properties, including mean motif duration, fraction of 

spikes contained in motifs, mean firing rate and peak firing rate, 

were comparable in the two worlds (Fig. 5e and Supplementary 

Fig. 9a,b) and were far greater than expected by chance, particularly 

when accounting for the lower mean rates in VR (Supplementary  

Fig. 9c,i,j). Although for any given cell, the motif durations were 

quite variable in either world, (Fig. 5e), mean motif durations across 

all cells displayed small variability (Fig. 5e). Whereas the variability 

in motif durations in RW could be due to a varying amount of time 

spent within the place field in each traversal, the motif durations were 

equally variable in VR (Fig. 5e), with little spatial selectivity, suggestive  

of an intrinsic, network-wide mechanism for motif generation. 

Neurons with a larger fraction of spikes within motifs had greater 

information content (Supplementary Fig. 9d) and mean firing rates 

(Supplementary Fig. 9c), which is in contrast to the inverse correla-

tion between information content and mean firing rate seen across all 

cells when all spikes were included (Supplementary Fig. 2d). Spiking 

within motifs, as opposed to isolated spiking, may therefore serve 

to group otherwise random and noninformative spikes into more 

informative clusters.

Analysis of motif fields (Fig. 5c,d) showed similar results, with 

motif fields having similar durations, mean rates and peak rates in 

RW and VR (Fig. 5f and Supplementary Fig. 9e,f), in contrast to the 

smaller peak rates in spatial rate maps seen in VR (Fig. 2a). Neurons 

active in RW and VR on the same day also had motif fields with  

similar durations and peak firing rates (Supplementary Fig. 9g,h).

In spite of the impaired rate code, do the motifs show a temporal 

code18–21,31,33? Because of the absence of clear place fields in VR, 

we quantified the quality of phase precession within motif fields by 

computing the circular linear correlation (Online Methods) between 

the time spent within the motif field and the theta phase of spikes. 

In RW, 80% of neurons showed significant phase precession within 

motif fields (Fig. 6a,b). This number was reduced to 40% in VR but 

was still far greater than expected by chance (Fig. 6a,b and Online 

Methods). For cells with significant precession, the quality of preces-

sion was comparable in both worlds, although it was slightly reduced 

in VR (Fig. 6b). For all cells, we also computed the difference between 

the period of theta modulation of spikes and the local field potential 

(LFP) theta period18,20,38. A majority of cells in RW (83%) and VR 

(78%) had a longer LFP theta period than their spike theta period, 

which is indicative of intact temporal coding in VR (Fig. 6c). This is 

especially notable because the LFP theta had greater peak theta power 

and reduced theta frequency in VR (Supplementary Fig. 10a–c). The 

preferred theta phase of neurons was also significantly different and 

Figure 5 Similar hippocampal motifs and  

motif fields in RW and VR. (a) Spike positions 

of an example motif from a cell overlaid on a 

segment of the rat’s trajectory (left) and firing 

rate map (right) in RW. (b) Similar plot as those 

in a but in VR. (c) Left, motif firing rate as  

a function of time and individual spike times 

(vertical lines) for the same motif as in a.  

Right, motif-field firing rate as a function  

of time. Spikes from individual motifs are 

depicted in the raster plot, aligned around  

the centers of mass of the motifs to form the 

motif field. In other words, each row of the 

raster plot represents an individual pass through 

the motif field. (d) Same as c but in VR.  

(e) Left, mean motif durations of cells with  

at least five motifs (1,064 out of 1,066 in  

RW and 911 out of 914 in VR, comprising  

719 cells from VR random from 4 rats and  

195 cells from VR random pillar from 3 rats) 

were comparable in RW (1.82 ± 0.02 s) and  

VR (1.63 ± 0.02 s) but were slightly smaller  

in VR (7%, P = 2.2 × 10−12). The shortest 

allowed motif duration (dashed vertical black line) was much smaller than the ensemble average. Center, the coefficients of variation (CV) of motif 

durations within each cell were comparable in RW (0.69 ± 0.00) and VR (0.63 ± 0.01) but were slightly lower in VR (8%, P = 5.7 × 10−20); both were 

much greater than the CV of the distributions in the plot to the left (solid vertical lines). Right, although a majority of spikes were contained within 

motifs in RW (75.90 ± 0.47%) and VR (64.99 ± 0.63%), there was a small reduction these numbers in VR (14%, P = 1.2 × 10−51). (f) The peak firing 

rates of motif fields in VR (8.85 ± 0.10 Hz) were only slightly smaller (13%, P = 2.1 × 10−17) than those in RW (10.22 ± 0.11 Hz).
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more variable in VR compared to RW (Fig. 6d), yet neurons showed 

similar degrees of theta-phase locking in both worlds (Fig. 6e).

DISCUSSION

These results provide the first measurements, to our knowledge, of 

rodent hippocampal CA1 neuronal activity during random foraging 

in a two-dimensional body-fixed VR environment in which only distal  

visual cues provide reliable spatial information. We found five key 

results: a profound loss of spatial selectivity during random foraging 

in VR; intact spatial selectivity when both location-specific locomo-

tion cues and distal visual cues were repeatedly experienced together 

during the systematic-pillar tasks; weak but significant selectivity to 

distance traveled in the random-pillar task and strong distance selec-

tivity in the systematic-pillar tasks; comparable motif dynamics in RW 

and VR; and intact temporal code within motif fields in VR.

We speculate that the motif-generation mechanisms are intrinsic 

to the entorhinal-hippocampal network because, unlike most afferent 

sensory cortices showing punctate neural responses, hippocampal 

neurons showed ~2-s-long sustained responses in both RW and VR, 

despite the absence of spatial selectivity in the latter world. These 

sustained responses could enable the entorhinal-hippocampal system 

to predict the rat’s future location on the basis of recent experience39 

by exploiting the continuity of space and locomotion, thus reducing 

computational load.

The motif generation mechanism is probably network-wide rather 

than cell specific, as the variability in motif durations on a population  

level is small compared to the individual neuronal level, motif-field 

properties are correlated between RW and VR, and theta-scale dynam-

ics are intact in VR motif fields. Whereas previous studies have shown 

intact phase precession without a change in position-defining cues 

in a working memory task22, our results demonstrate instead that  

phase precession can exist without a rate code when spatially inform-

ative cues are changing with minimal memory demand. Increased 

preferred theta-phase variability could arise through a rate-phase 

transformation19 and a reduced excitatory drive in VR due to a lack 

of repeatedly paired sensory and motor cues, as described below.  

The underlying network mechanism could thus generate motif-like 

activity under a variety of conditions, including hippocampal place 

cells from normal subjects21,31,33 and transgenic mice with taupathy40, 

entorhinal cortical grid cells38, episode or time cells during wheel or 

treadmill running22,23, neural activity during rapid eye movement 

sleep41 and neural activity during free recall in humans42.

Motifs could originate from several parts of the entorhinal- 

hippocampal network. The recurrent CA3 network could generate  

motif-like activity, which might cause the observed ~2-s delayed 

responses of the hippocampal ensemble activity pattern to sudden 

changes in visual cues24. Alternatively, the motifs could arise in the 

medial entorhinal cortex, where neurons show motif-like activity  

lasting several seconds and robustly driving the CA1, even in  

anesthetized or sleeping animals43. Accordingly, sustained spiking 

in consecutive theta cycles was reduced, indicative of diminished 

motifs, in a GluA1 transgenic mouse with diminished distal dendritic 

inputs, which typically originate in the entorhinal cortex44. Motif-field  

durations could also be modulated by the temporal integration  

properties of the h current45 to generate a dorsoventral gradient of 

field sizes.

Although intact motifs and phase precession are present in VR with 

distal visual cues alone, we found a large reduction in spatial selectivity  

during two-dimensional random-foraging and random-pillar tasks 

in a body-fixed VR. This finding demonstrates that distal visual cues 

alone are not sufficient to generate spatially localized place fields2,3. In 

contrast, spatial selectivity was present in the systematic-pillar tasks 

but not the random-pillar task. Although diminished vestibular cues 

during random foraging in VR might account for reduced spatial selec-

tivity compared to during random foraging in RW, it is inconsistent 

with the presence of spatial selectivity in the systematic-pillar tasks, in 

which the nature of paths and resulting vestibular cues are similar to 

those in the random-pillar task. Further, vestibular lesions caused sub-

stantial behavioral deficits, reductions in theta power and unaltered 

peak firing rates15,46, all of which are in contrast to our data. These 

results suggest that the repeated pairing of cues, or lack thereof, is the 

key reason for the difference in two-dimensional spatial selectivity.  
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Figure 6 Intact but variable phase coding in VR. (a) Left, sample  

LFP theta traces filtered in the theta band (4–12 Hz) in RW (top)  

and VR (bottom) recorded from the same electrode on the same day.  

Spikes from the same cell (vertical lines) in RW and VR occur at earlier  

phases on subsequent theta cycles. Right, motif fields in RW and VR  

show clear phase precession. (b) 80.03% and 40.52% of cells showed  

significant phase precession in RW and VR, respectively. For these cells,  

the quality of phase precession in VR cells (0.185 ± 0.004, n = 365 cells 

from 4 rats) was slightly reduced (13%, P = 1.9 × 10−11) compared to  

in RW (0.221 ± 0.003, n = 852 cells from 4 rats). (c) Difference in  

LFP theta period and spiking theta period computed from the  

autocorrelation of LFP and spikes shows comparable but reduced  

(11%, P = 4.6 × 10−9) and more variable temporal coding in VR  

(11.38 ± 0.46 ms (mean ± s.d.)) compared to RW (12.85 ± 0.23 ms 

(mean ± s.d.)). (d) The preferred theta phase of spikes was shifted closer 

to the theta peak (6%, P = 0.001, Kuiper’s test) in VR (−103.70 ± 2.29°) 

and was also more variable (s.d. 61.40°) compared to in RW (−110.58 ± 

1.72°, s.d. 56.15°). (e) The degree of phase locking (depth of modulation) 

was similar in VR (0.15 ± 0.09) and RW (0.16 ± 0.09), although was  

slightly reduced (8%, P = 8.5 × 10−5) in VR.
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The difference in spatial selectivity between the random-pillar and 

systematic-pillar tasks is also consistent with previous studies dem-

onstrating that the precise nature of paths (random or systematic) can 

strongly affect the hippocampal spatial representation12,47.

Whereas two-dimensional spatial selectivity was equally poor in 

the random-foraging and random-pillar tasks in VR, the beginnings 

and ends of trials were well defined for the rats in the latter task, thus 

allowing for an analysis of selectivity to distance traveled. Neurons 

in the random-pillar task showed a small but significant degree of 

selectivity to the beginnings and ends of trials. In the systematic- 

pillar task, when we paired locomotion and visual cues repeatedly, this 

selectivity was strengthened and extended to the middle of the paths. 

Restricting the analysis to cells that fired on at least two nonoverlap-

ping arms on the three-pillar task revealed that these cells exhibited 

a disto-code21, which is a specific case of the more general distance 

selectivity observed in the goal-directed tasks.

We conjecture that repeated pairing of different streams of input 

could generate robust associations between them through rapid 

Hebbian synaptic plasticity, resulting in stable spatial representa-

tions48 and increased firing rates19,48–50. Under this model, during 

random foraging in RW, distal visual cues are paired repeatedly with 

the same constellation of proximal cues at each location, resulting in 

a place code. In contrast, in two-dimensional random foraging in VR 

with or without pillars, the distal visual cues are not paired repeatedly 

with any other cue, leading to a lack of spatial selectivity. Contrary 

to our VR system and results, a recent study found that during two-

dimensional random foraging in a VR system allowing full, 360° body 

rotation35,37, hippocampal neurons showed intact spatial selectivity37. 

This result could arise solely from the presence of a larger range of 

vestibular cues, which were diminished in our study; however, this 

explanation is incompatible with the presence of spatial selectivity in 

our tasks involving systematic paths. Two alternate possibilities are 

provided by our repeated pairing model. First, as rats turned their 

entire bodies in that study, they rotated with respect to both VR vis-

ual cues and RW multisensory cues, leading to a consistent pairing 

between the two. In agreement with this hypothesis, the activities of a 

large number of cells were influenced by the RW frame of reference in 

that study37. Second, consistent pairing between vestibular cue-based 

signals, such as the activity of head-direction cells, and visual cues 

could be sufficient but not necessary to generate spatial selectivity 

in VR. Once such a multisensory pairing–induced representation 

of space is established, it can then be governed by visual cues2,3,37. 

Further studies will be needed to dissociate these possibilities.

According to our model, spatial selectivity arises both in systematic- 

pillar tasks and on one-dimensional VR tracks because of the repeated 

pairing between distal visual cues and locomotion cues along  

systematic paths. Neurons with stronger inputs from distal visual cues 

would exhibit a place code, whereas those with stronger inputs from 

locomotion cues would exhibit a disto-code21. Further, the overall 

reduction in the number of sensory and motor cues that are systemati-

cally paired could contribute to the large reduction in neural activity 

in VR21. Alternatively, instead of pairing across multiple modalities, 

pairing in linear paths could potentially occur between adjacent  

elements within a repeated sequence of cues from a single modality. 

Consistently, systematic acceleration and deceleration at the begin-

nings and ends of linearized paths in the random-pillar task could 

give rise to selectivity in those regions.

Although we characterized distance selectivity as a function 

of position along the path, neural firing might be influenced by 

other factors as well. Selectivity near the end of the path could 

be driven by reward expectancy or the pillar; selectivity near the 

beginning of the path might be modulated by the recent delivery of 

reward. These salient episodes associated with entering or leaving 

a reward zone are present and repeated in all goal-directed tasks, 

which could result in selectivity to the beginnings and ends of paths 

even in the random-pillar task. We speculate that these episodes 

might become linked together by Hebbian synaptic plasticity in the 

systematic-pillar task by the same mechanism discussed above, thus 

extending selectivity to the entire length of the path. Further studies  

will be needed to fully determine the role of episodic memory in 

these tasks.

Our results may raise the concern that spatial selectivity is impaired 

during random foraging in VR because the rats are not paying atten-

tion to the visual cues present in VR. Although this factor cannot be 

ruled out entirely, we find it to be unlikely for a number of reasons. 

First, in both RW and VR, the rats are not required to pay attention 

to the distal visual cues, yet there is spatial selectivity in RW. Second, 

rats in VR avoid the edges of the virtual table, which is defined only 

visually. Third, many neurons in the systematic-pillar tasks fire in only 

a small portion of one segment of the path, which is differentiated 

from the other segments only by the direction-specific constellation 

of distal visual cues. Further, in the same virtual maze apparatus with 

qualitatively similar visual cues, the rats were able to navigate to a 

hidden reward zone from multiple starting locations, analogous to 

in the water maze navigation task36, using only distal visual cues, 

showing that rats could see the stimuli and navigate based on them. 

Additional studies will be needed to determine the nature of spatial 

selectivity in this task.

The repeated pairing model is compatible with many findings, 

including place cell remapping after a change in the relationship 

between locomotion cues and distal visual cues12, altered spatial  

selectivity after changes in distal3,6 or proximal cues4–9 and instability 

of place fields after maze cleaning between sessions7. In each of these 

cases, place cells remap but spatial selectivity remains intact, presumably  

because new associations are formed as cues are paired repeatedly in 

new configurations. It will be important for future studies to deter-

mine whether different pairings are equally viable or whether there 

is a hierarchy such that certain inputs are more or less effective at 

contributing to spatial selectivity.

In summary, internally generated and temporally coded motifs 

represent activity patterns on behavioral timescales and are local-

ized by the repeated experience of multiple location-specific sensory 

and motor cues. Some selectivity to distance traveled exists near the 

beginnings and ends of paths even in the absence of spatial selectiv-

ity, but repeated pairing strengthens this selectivity and extends it 

to the entire length of the path. The impaired spatial selectivity in 

rats in two-dimensional VR is similar to the weak spatial selectivity  

seen in human studies, in which such pairings are absent as 

well. Recent studies have shown that a sufficiently large pool of  

hippocampal neurons can provide accurate spatial information despite 

impaired spatial selectivity in one-dimensional environments44; such a  

distributed coding mechanism might also allow rodents and humans 

to solve spatial tasks in two-dimensional VR. Our results suggest that 

in human and primate studies in VR, repeated pairing of a rich variety 

of stimuli, especially between motor and visual cues, could enhance 

neural activity and spatial selectivity. These results bridge the gap 

between rodent and human studies by showing that distal visual 

cues alone are insufficient to generate robust spatial selectivity, but 

even with an impaired rate code, temporally coded motifs are intact,  

probably generated by intrinsic network mechanisms.
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METHODS

Methods and any associated references are available in the online 

version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Methods summary. The materials and methods used were similar to those 

described recently21,36. In brief, four adult male Long-Evans rats were trained 

to on a variety of tasks in RW and VR. All rats foraged for randomly scattered 

rewards in two-dimensional RW and VR environments. Additionally, three of 

these rats were trained to follow a goal-directed strategy by running toward  

randomly located reward-indicating pillars in VR. Further, the same three rats 

were trained to run toward consistently positioned reward locations in VR. There 

were either two or three fixed reward locations. The environments had identical 

dimensions (200-cm diameter circular platform at the center of a 300 cm × 300 cm 

room) and distal visual cues. Electrophysiological data from the dorsal CA1 were 

obtained using hyperdrives with 22 independently adjustable tetrodes21. Spike 

extraction and sorting were done offline using custom software. Spatial selectivity 

and phase precession were quantified using measures described previously21. Motifs 

were detected using custom analyses described in the main text. Further details 

are described below. Only data measured during locomotion (speed >5 cm s−1)  

were used for all analyses to ensure consistent hippocampal state51.

Subjects. Data were collected from four adult male Long-Evans rats (approxi-

mately 3.5 months old at the start of training) individually housed on a 12-h 

light, 12-h dark cycle and food restricted (15 g of food per day) to maintain 

body weight. The rats were allowed an unrestricted number of sugar-water 

rewards in VR but a restricted amount of water (~40 ml of water per day) 

after the behavioral session to maintain motivation. All experiments and data 

collection were performed during the light cycle. All experimental proce-

dures were approved by the University of California Los Angeles Chancellor’s  

Animal Research Committee and were conducted in accordance with US  

federal guidelines.

Random foraging in RW and VR. The experimental room, the VR apparatus 

and basic behavioral training were identical to those described recently21,36. In 

RW, a 200-cm-diameter and 50-cm-high platform was placed at the center of a 

300 cm × 300 cm room with distinct visual cues on the four walls (Fig. 1a). Rats 

were trained to forage for randomly scattered food rewards on the platform.  

The VR room had an identical size and distal visual cues as the RW room, and 

rats foraged for randomly located rewards on a platform of the same size as that 

in the RW room. Rewards in VR were in the form of sugar water dispensed 

through reward tubes placed directly in front of the rats. The reward locations 

were hidden and were 40–60 cm in diameter. Entry into the reward locations 

triggered the appearance of a white dot of the same size on the platform in  

addition to a reward tone and sugar-water delivery. At each reward location, rats 

could receive a maximum of five sugar-water rewards. Motion parallax between 

the virtual elevated table and the floor underneath indicated the virtual edge 

of the platform. Movement beyond the platform edge resulted in no change in 

visual scene. Rats quickly learned to avoid or turn away from the virtual edges 

(Fig. 1a). It took about 3 weeks of handling and pretraining and 2 weeks of VR 

training for rats to do the random-foraging task efficiently. Rats were trained on 

the RW task after implantation. Three rats were run in both RW and VR every 

day. To verify that exposure to both worlds on the same day did not have a role 

in neural responses, a fourth rat never ran in both RW and VR on the same day. 

Further, the order of running in VR and RW on the same days was randomized. 

No qualitative differences were found between these conditions, and hence all 

data were combined.

Goal-directed tasks in VR. We trained three rats to run in three different goal-

directed tasks: random pillar, two pillar and three pillar. In all of these tasks, the 

reward zone in VR space was indicated by a pillar suspended 50 cm above the 

table and a white dot on the table (Fig. 3a). All other variables, including the VR 

room, were identical to the one used for the random-foraging tasks. When rats 

reached the reward zone, the reward was dispensed, the pillar disappeared, and 

another pillar appeared elsewhere in the maze. Rats learned this task readily and 

ran toward the pillars reliably36. In the random-pillar task, a pillar appeared at 

a pseudorandom place in the two VR worlds. No qualitative differences were 

found between neural activity patterns in the random-pillar task and the random- 

foraging task, and hence these data were combined for subsequent analyses.  

In the two-pillar task, a pillar appeared alternately at one of two fixed places 

160 cm apart in the middle of the VR table. In the three-pillar task, the  

reward-indicating pillar appeared sequentially at the vertices of an equilateral 

triangle with 138-cm-long sides centered on the VR platform.

Surgery, electrophysiology and spike sorting. These procedures were identical 

to those described earlier21. Briefly, once the rats reached performance criterion, 

they were anesthetized using isoflurane. Custom-made hyperdrives containing up 

to 22 independently adjustable tetrodes that targeted both the left and right dorsal 

CA1 were implanted. Rats were allowed to recover from surgery for 1 week, after 

which the tetrodes were gradually advanced to area CA1, detected online by the 

clear presence of sharpwave-ripple complexes. Spike and LFP data were recorded 

at 40 kHz using the Neuralynx acquisition system. Spikes were extracted and 

sorted into individual units using custom software. Classification of single-unit 

cell type was performed using the same methods as described previously21. When 

rats ran in both VR and RW on the same day, the same cells were identified by 

overlaying cluster boundaries from both sessions and identifying clear overlaps. 

If cell identities were unclear because of electrode drift, the data were discarded 

from the same cell analysis.

Statistics. Offline analyses were performed using custom MATLAB codes. Tests 

of significance between linear variables (circular variables) were done using the 

two-sided nonparametric Wilcoxon rank-sum test (Kuiper test). Tests of sig-

nificance for the mean values of distributions being different from zero were 

performed using the two-sided nonparametric Wilcoxon signed-rank test.  

To compute circular statistics, the CircStat toolbox was used52. Tests of significance 

of correlation between two variables were done using a t test for correlation coeffi-

cients. All ensemble averages are in the form mean ± s.e.m. unless stated otherwise.  

All correlation values are reported as the linear correlation coefficient, r.  

A small number of single units were present in two different sessions, which could 

potentially inflate our estimate of the number of independent samples, thus alter-

ing the significance level of the statistical tests. Hence, as a conservative estimate, 

we did all tests of significance using only half as many cells in VR and RW. All 

significant results were still highly significant. No statistical methods were used 

to predetermine sample sizes, but our sample sizes are similar to those generally 

employed in the field. Data collection and analysis were not performed blind to 

the conditions of the experiments.

Quantification of rate maps. Theta rhythm is interrupted51 and behavior is 

uncontrolled when rats pause to consume rewards or to groom. Hence, these peri-

ods were excluded, and only data recorded during periods of active locomotion 

(running speed >5 cm s−1) were used. The durations of recording sessions were 

matched between RW and VR to remove possible sources of variability. A cell 

was considered active if its mean firing rate exceeded 0.2 Hz and it fired at least 

100 spikes during locomotion, and such cells were thus included in the analysis.  

Spatial firing rates were computed using occupancy and spike histograms with  

5 cm × 5 cm bins smoothed with a 7.5-cm two-dimensional Gaussian smoothing  

kernel. Bins with very low occupancy relative to the experimental session were 

excluded to avoid artificially high firing rates. The spatial information content, 

sparsity and coherence of the rate maps were computed using methods described 

previously21. To determine the stability of rate maps, firing rates were computed 

in the first and second halves of the session separately. The bin-by-bin correlation 

between the rate maps in the two halves provided a measure of rate map stability. 

To obtain the similarity of rate maps of the same cell in RW and VR, we computed 

the correlation of firing rates and computed statistical significance by comparing 

it against correlations when the cell identities were shuffled.

Computation of dynamic rate maps. The dynamic rate map53 for a pair of coac-

tive cells was constructed as follows: for each spike from the first cell, the rat 

trajectory and spikes from the second cell within the next 200 cm traveled were 

aggregated relative to the spike positions from the first cell. We used 15 cm ×  

15 cm spatial bins and computed the occupancy time and number of spikes in 

each bin. Dividing the number of spikes by the occupancy time in each spatial bin 

provided the dynamic rate map. The information content and sparsity of these 

rate maps were quantified as described above.

Computation of coactivation of cell pairs. To determine the degree of coactivity 

of pairs of cells active in a session, we first constructed the firing rate of neurons 

as a function of both time elapsed and distance traveled (200 ms (5 cm) time 
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(distance) bins, smoothed with a 400 ms (10 cm) Gaussian smoothing kernel). 

We then computed the cross-covariance of firing rates for pairs of active cells 

within a session. To obtain an estimate of chance level, we generated control 

data by time reversing the spike train of one of the cells in the cell pair and time 

shifting both of them by random amounts between 10 and 100 s. This procedure 

was repeated ten times. We detected the peak value in the cross-covariance of 

the original cell pairs and the control data in both distance and time domains  
peak , peakactual

distance
control
distance( ) and peak , peakactual

time
control
time( )  that occurred within  

50 cm or 2 s from 0. A peak was considered significant if it satisfied the  

following condition:

peak mean peak standard devactual
distance

control
distance≥ ( ) + ×2 iiation peakscontrol

distance( )

peak mean peak standard deviation peactual
time

control
time≥ ( ) + ×2 aakscontrol

time( )
We then calculated the fraction of cell pairs whose firing rate cross-covariance 

had a significant peak.

Characterizing selectivity to distances traveled in VR goal-directed tasks. 

To investigate the degree of selectivity to distance traveled in the goal-directed 

tasks (VR systematic-pillar and VR random-pillar tasks), we linearized the paths 

by measuring the distance traveled between two consecutive rewards. These  

distances were normalized to unity. To control for variability in the path lengths,  

we considered only trials for which the distance traveled was around the median 

path length (median ± 0.4 × median). This threshold value of 0.4 ensured that 

the number of trials and path-length variability were similar in the random-pillar 

and systematic-pillar tasks. The following analysis was also repeated when con-

sidering all trials regardless of the path lengths, and the results were qualitatively 

similar. For each cell, we constructed a linearized rate map as a function of the 

normalized distance traveled. For cells with a mean firing rate above 0.5 Hz, 

we then computed the information content, sparsity and peak value of the rate 

maps to quantify this selectivity. To examine the nature of this selectivity on an 

ensemble level, for each cell we partitioned the selected trials into two random 

groups. We computed the firing rate for each partition separately. The population 

vector overlap for the two partitions was calculated, and the significance values 

were obtained using methods described previously26.

Computation of disto-code in the VR three-pillar task. Here, a one-dimensional  

linearized rate map was constructed (distances were normalized to unity) for each 

arm separately. A given arm pair was used for analysis if the mean firing rate was 

higher than 0.5 Hz on at least one arm. We then computed the arm selectivity 

index for each two-arm combination as

Dij
l
L

l
i

l
j

l
L

l
i

l
j

=
∑ −

∑ −

( )

( )

l l

l l

where l
l

i  and ll
j

 are the rates in the lth bin along arms i and j. For the arm pairs 

with D < 0.5 (pairs with firing along both arms), we computed the population 

vector overlap, its significance level and disto-coding index similarly to methods 

described previously26.

Detection of motifs. To detect motifs, a method similar to the one used for 

detecting place fields on a one-dimensional track was used. We constructed a 

spike train, a vector of data whose length spanned the period of the experimental  

session, by binning the spikes for which the running speed was greater than  

5 cm s−1. This spike train was smoothed using a 200-ms Gaussian smoothing 

kernel and transformed to firing rate by dividing by the bin duration. Peaks where 

the firing rate exceeded 5 Hz were detected and marked as candidate motifs. 

The boundaries of a motif were defined as the points where the firing rate first 

dropped below 10% of the peak rate (within the motif) for at least 250 ms (two 

theta cycles). If the time lag between the first and last spike in the putative motif, 

called the duration of the motif, exceeded 300 ms, this sequence was considered 

a valid motif and was included in the analysis.

Construction of motif fields. The center of a motif was defined as the center 

of mass of the firing rate as a function of time within the motif. This value was 

subtracted from the spike times within the motif to center them around zero. This 

procedure was repeated for all motifs, and the centered motifs were aligned to 

obtain a motif field for a given neuron. The firing rate as a function of time within 

the motif field was calculated as the number of spikes within each temporal bin 

divided by the total amount of time in that bin, smoothed by a 200-ms Gaussian 

smoothing kernel. Motif-field duration was defined as twice the weighted s.d. of 

the motif firing rate, i.e., the width of the distribution.

Theta period and phase precession. Similar to the methods described pre-

viously21, each LFP was filtered between 4 and 12 Hz using a fourth order 

Butterworth filter. Theta period was computed by detecting the peak between  

50 and 200 ms in the filtered LFP autocorrelation for epochs during which 

the running speed was above 5 cm s−1. Spiking theta period was calculated by  

computing the spike train autocorrelation, smoothing by a 15-ms-wide Gaussian 

kernel and detecting the peak. Quality of phase precession within a motif field 

was defined as the circular linear correlation coefficient (CLCC)21 between spike 

phases and the latency of spike timing with respect to the motif center.

Control analysis for motifs. To estimate which motif properties can arise purely 

by chance, surrogate motifs for each neuron were generated as follows. The mean 

firing rate during locomotion and the depth of theta modulation were computed 

for each neuron. Surrogate activity was generated using a Poisson-distributed 

and theta-modulated spike train with the same mean firing rate and depth of 

theta modulation as the experimentally measured neuron. Motifs, motif fields 

and their properties were computed using the procedures described above. This 

procedure was repeated 50 times for each neuron to generate a null distribution.  

The mean value and s.d. of this null distribution were used to compute the  

z-scored values for each cell.

Control analysis for spatial selectivity. To determine the statistical significance 

of spatial selectivity, we generated control data by shifting the experimentally 

observed spike train with respect to behavioral data by random amounts between 

10 and 100 s. All of the measures used to quantify the spatial selectivity were 

expressed in the units of z score or s.d. around the control data.

A Supplementary Methods Checklist is available.

51. Vanderwolf, C.H. Hippocampal electrical activity and voluntary movement in the 

rat. Electroencephalogr. Clin. Neurophysiol. 26, 407–418 (1969).

52. Berens, P. CircStat: a MATLAB toolbox for circular statistics. J. Stat. Softw. 31, 

1–21 (2009).

53. Bonnevie, T. et al. Grid cells require excitatory drive from the hippocampus. Nat. 

Neurosci. 16, 309–317 (2013).
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Supplementary Figure 1 

Additional example cells in RW and VR showing lack of spatial selectivity in VR. 

a, Rat trajectory and spike positions for different neurons and corresponding firing ratemaps in RW. b, Same as (a) but in VR, showing 
long streaks of spikes, or putative motifs.  Numbers indicate firing rate range. Color conventions are the same as in Fig. 1. 

Nature Neuroscience: doi:10.1038/nn.3884



 

Supplementary Figure 2 

Reduced mean firing rates, rate map sparsity and coherence in VR. 

a, Mean firing rates were 25% (p=7.6x10
-20

) lower in VR (0.70±0.02Hz) than in RW (0.93±0.02Hz). b, Ratemap sparsity, a measure of 
spatial selectivity, was also greatly (42%, p=2.3x10

-162
) reduced in VR (0.42±0.01) compared to RW (0.72±0.01). c, Ratemap 

coherence computed using 10x10cm bins, was 40% (p=2.3x10
-157

) reduced in VR (0.45±0.01) compared to RW (0.75±0.01). d,  At all 
mean rates, spatial information content was negatively correlated with the mean firing rate of a cell in both worlds (RW r=-0.36, 
p=1.6x10

-27
 ; VR r=-0.48, p=3.2x10

-33 
). e, Spatial stability was lower in VR compared to RW. Stability was not correlated with mean 

firing rate in RW (r=0.02, p=0.54) and weakly positively correlated in VR (r=0.28, p=1.1x10
-11

). 
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Supplementary Figure 3 

Estimation of the significance levels of spatial selectivity showing VR results were near chance levels. 

To quantify spatial information content, ratemap sparsity and stability that are uninfluenced by the mean firing rate of a cell, these were 
computed in Z-scored units for each cell (see Methods). a, Z-scored spatial information content was only slightly greater than zero in 
VR (0.92±0.08, p=3.2x10

-27
) but the difference was far greater in RW (20.65±0.49, p=7.7x10

-140
), and the two distributions were 

significantly different (difference=19.73, p=7.4x10
-206

). b, Similar to information content, Z-scored ratemap sparsity was only slightly 
greater than zero in VR (0.91±0.07, p=3.4x10

-32
) but the difference was far greater in RW (10.26±0.20, p=7.7x10

-140
). These two 

distributions were significantly different (difference=9.35, p=9.5x10
-200

). c, The Z-scored stability was close to zero in VR (0.13±0.06, 
p=0.036) but significantly above chance in RW (3.99±0.09, p=1.0x10

-135
; difference=3.86, p=1.2x10

-155
). 
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Supplementary Figure 4 

Loss of spatial selectivity in dynamic rate maps and reduction in neuronal coactivation in VR. 

a, Spatial ratemaps of two pairs of neurons in RW (left) and their dynamic ratemap (right) (see Methods) showing spatially localized 
activity. Numbers on top right indicate firing rate range. b, Same as (a) but for two pairs of neurons in VR showing no spatial selectivity. 
c, Dynamic ratemap information content in RW (0.63±0.01bits, n=10831 pairs from 4 rats) was 65% greater (p<10

-100
) than in VR 

(0.22±0.00bits, n=8202 pairs from 4 rats). d, Dynamic ratemap sparsity in RW (0.56±0.002) was also greater (36%, p<10
-100

) than in 
VR (0.36±0.002). The relative spiking of coactive neurons was spatially informative in RW but not in VR. e, In order to investigate 
coactivity of cell pairs (including sequential activity on intermediate time- and length scales) we computed cross-covariances between 
the firing rates of pairs of active cells in a session as a function of time elapsed or distance traveled (see methods). The fraction of 
coactive cells in RW (15.5(16.8)% in distance(time) domain)  was far greater than that in VR (8.3(8.9)% in distance(time) domain). 
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Supplementary Figure 5 

Comparison of activities of cells active in both RW and VR on the same day. 

a, For cells recorded in both worlds on the same day mean firing rate was correlated regardless of minimum firing rate (grey, r=0.32, 
p=1.7x10

-7
, n = 258 from 3 rats). This was also true for the subset of cells active at high rates in both worlds (purple, r=0.21, p=0.03, n = 

109 from 3 rats), used for all subsequent same-cell analyses. b, The peak firing rate of the same cell was reduced in VR compared to 
RW and the two were not significantly correlated (r=0.12, p=0.23), despite their correlated mean rates, due to lack of spatial selectivity 
in VR. c, Spatial ratemap sparsity of the same cell was also reduced in VR but correlated with RW (r=0.36, p=0.0001), which could be 
partially explained by correlated mean firing rates (Fig. 2e). d, Despite positive correlations in mean rate and sparsity, the distribution of 
correlation of ratemaps of the same cells between RW and VR is not significantly different from zero (p=0.39) and not different from the 
ratemap correlations obtained by shuffling the cell identities (p=0.97). 
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Supplementary Figure 6 

Quantification of behavior and neural responses during goal-directed VR tasks. 

a, Rats’ sample trajectories between two reward locations and the corresponding shortest path between them in the VR random-pillar 
task (left) and VR systematic-pillar tasks (center and right). b, We defined the excess path length as the difference between the 
shortest distance between two consecutive reward locations and the actual path length traveled by the rat. We then calculated the 
median value of this excess path length over an entire session. The rats’ behavior was more goal-directed during the VR random-pillar 
task because the median excess path length (56.3 ± 10.8 cm) was significantly smaller compared to random foraging task (178.2 ± 
13.9 cm, p = 6.1x10

-4
). A similar effect was observed in VR systematic-pillar where the median excess path length (77.3 ± 12.2 cm) was 

significantly shorter compared to random foraging (178.2 ± 13.9 cm, p = 1.4x10
-5

).  Further, VR random-pillar and VR systematic-pillar 
were equally goal-directed because the median excess path lengths were comparable in the two conditions (p = 0.44). c, Ratemap 
stability in the VR systematic-pillar task (0.34 ± 0.03, n = 282 cells with at least 100 spikes in each session half from 3 rats) is greater 
than VR random foraging (p = 2.4x10

-3
) and smaller than RW random foraging (p = 1.8x10

-18
). 
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Supplementary Figure 7 

Additional example cells in VR in systematic-pillar tasks. 

a, Rat trajectory and spike positions for different neurons (top row) and corresponding firing ratemaps (bottom row) for the two-pillar 
task. b, Same as (a) but for the three-pillar task.  Numbers indicate firing rate range. Color conventions are the same as in Fig. 3. Note 
that examples show elevated firing along only one or multiple arms of the triangle. 
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Supplementary Figure 8 

Selectivity to distance traveled in VR goal-directed tasks and presence of disto-code in the three-pillar task. 

a, Left: Trajectory of the rat (light brown) and spike positions (dark brown) during the VR random-pillar task on the two-dimensional 
platform for the same cells shown in Fig. 4a. Note that the cells fire randomly in two-dimensions although one of them (bottom panel) 
does exhibit selectivity to distance along the linearized path. Right: Same as left but for VR systematic-pillar task (trajectory and spikes 
are depicted in light and dark green respectively). The black dots indicate the reward locations and the arrows correspond to running 
direction.  b, Significance levels (p values) for population vector overlap in Fig. 4d. The significant diagonal is indicative of firing at the 
same distance along the two arms (disto-coding). c, Disto-coding index (see Methods) for the population of multi-arm selective arm 
pairs (n = 431 arm pairs from 3 rats) in the three-pillar task was also significantly positive (0.23±0.02 ,p=1.5x10

-31
), further supportive  of 

a disto-code. 
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Supplementary Figure 9 

Comparable spatiotemporal properties of individual motifs and motif fields in RW and VR. 

a, For each cell we computed the mean firing rate within individual motifs and calculated the mean of those values to obtain a single 
number for individual cells. Motif mean rates in VR (5.92±0.06Hz) were slightly smaller (10%, p=7.7x10

-10
) than in RW (6.52±0.06Hz). 

b, Similarly, motif peak rates in VR (23.39±0.24Hz) were smaller (21%, p=6.1x10
-21

) than in RW (28.32±0.69Hz). c, There was 
significant correlation between mean rate and the percentage of spikes that occurred within motifs in RW (r=0.54, p=4.1x10

-65
) and VR 

(r=0.41, p=1.2x10
-28

). This could explain the reduced motif duration and percentage of spikes contained in motifs in VR compared to 
RW (Fig. 5e). d, In both RW and VR, the percentage of spikes in motifs was significantly correlated with spatial information content of a 
neuron (RW r=0.28, p=4.2x10

-17
; VR r=0.26, p=6.5x10

-12
). e, Motif-field mean firing rates in VR (4.12±0.05Hz) were only slightly smaller 

(5%, p=9.2x10
-3

) than in RW (4.34±0.05Hz). f, Motif-field durations in VR (1.33±0.01s) were similar but slightly reduced (10%, 
p=1.1x10

-12
) compared to RW (1.48±0.01s). g, For cells active in both worlds on the same day, motif-field duration was correlated 

between RW and VR (r=0.31, p=1.2x10
-3

). h, Motif-field peak firing rate had a similar correlation (r=0.54, p=1.2x10
-9

). i, j,To estimate 
the percentage of spikes contained in motifs and motif durations, uninfluenced by the mean rate, we computed the Z-scored values for 
these two measures (see Methods). i, The Z-scored percentage of spikes in motifs was significantly above zero in VR (35.15±1.06, 
p=3.9x10

-83
) and RW (23.52±0.64, p=1.0x10

-26
). In fact larger Z-scored values in VR indicate greater propensity for motif generation 

compared to RW. j, The Z-scored mean motif duration was indeed similar in both worlds (8.02±0.25 in RW and 7.33±0.27 in VR, 
p=0.03) and greatly above zero (p=2.1x10

-96
 and p=1.4x10

-83
 in RW and VR respectively).  
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Supplementary Figure 10 

Increased theta power but reduced theta frequency in VR. 

To further examine the dynamics of LFP theta, we investigated the LFPs recorded from the same electrode on the same day in both 
worlds without any electrode movement between the two sessions. Analysis was further restricted only to data when rats ran at speeds 
greater than 5cm/s to eliminate contamination by variable periods of stopping when theta is reduced. In order to compare data from 
different sessions, the power spectrum from each electrode was normalized by the mean power on that electrode in RW and VR over 
the frequency range 1-100 Hz.  

a, Normalized power between 5-15 Hz, averaged over all the LFP (n=57 from 3 rats) in RW and VR shows a clear difference in theta 
power and frequency between the two environments. b, Peak theta power is significantly increased (p=0.002, paired Wilcoxon signed 
rank test) in VR (56.95±3.75) compared to RW (46.61±2.51). c, Theta frequency in VR (7.21±0.07Hz) is significantly lower (p=5.1x10

-11
) 

than in RW (8.32±0.06Hz). 

 

Nature Neuroscience: doi:10.1038/nn.3884


	nn.3884

