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ABSTRACT

Although toxin/antitoxin (TA) systems are ubiquitous, beyond phage inhibition and mobile element
stabilization, their role in host metabolism is obscure. One of the best-characterized TA systems is
MqsR/MgsA of Escherichia coli, which has been linked previously to protecting this gastrointestinal
species during the stress it encounters from the bile salt deoxycholate as it colonizes humans. However,
some recent whole-population studies have challenged the role of toxins such as MqsR in bacterial
physiology, since the mgsRA locus is induced over a hundred-fold during stress, but a phenotype was not
found upon its deletion. Here, we investigate further the role MqsR/MgsA by utilizing single cells and
demonstrate that upon oxidative stress, the TA system MqsR/MqgsA has a heterogeneous effect on the
transcriptome of single cells. Furthermore, we discovered that MqsR activation leads to induction of the
poorly-characterized yfjXY ypjJ yfjZF operon of cryptic prophage CP4-57. Moreover, deletion of yfj ¥ makes
the cells sensitive to H,O», acid, and heat stress, and this phenotype was complemented. Hence, we
recommend yfjY be renamed to /fgB (less fatality gene B). Critically, MqsA represses /fgB by binding the
operon promoter, and LfgB is a protease that degrades MgsA to derepress rpoS and facilitate the stress
response. Therefore, the MqsR/MgsA TA system facilitates the stress response through cryptic phage

protease LfgB.
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INTRODUCTION

Toxin/antitoxin systems are encoded in the genomes of nearly all archaea and bacteria and are classified
as eight main types based on how the antitoxin inactivates the toxin®>>. We discovered that phage inhibition
is one of the primary physiological roles of TA systems and determined the mechanism is toxin induction
via host transcription shutdown by the attacking phage’’; these results were confirmed 25 years later'®. TA
systems also stabilize mobile genetic elements'® 3% 4658 Beyond these two functions, there is controversy
regarding the physiological roles of TA systems*.

The MqsR/MgsA TA system was discovered as induced in a biofilm transcriptome study?® and shown
to be a TA system using the structures of the toxin (MgsR) and antitoxin (MgsA)*. MgsR degrades mRNA
with the 5°-GCU site®?, and MgsA was found to regulate not only its own promoter but to repress the
oxidative stress response via DNA binding at a palindrome upstream of the stress response sigma factor
RpoS>! and to repress curli synthesis by binding to the promoter of the gene that encodes the master biofilm
regulator CsgD*. Moreover, MqsR/MgsA controls the TA system GhoT/GhoS as a cascade®* and helps
Escherichia coli colonize the gastrointestinal tract by surviving bile acid stress?’; activation of toxin MgsR
during bile stress leads to degradation of YgiS mRNA, and this transcript encodes a periplasmic protein
that promotes bile uptake. Furthermore, several groups have linked MqsR/MgsA to antibiotic tolerance
based upon deletion of mgsR**3%, and MqsR/MgsA have been linked to heat shock*’, biofilm formation*?,
nitrogen starvation'2, and nitric oxide’® in E. coli, and copper stress**, vesicles*?, and biofilm formation? in
Xylella fastidiosa as well as biofilm formation in Pseudomonas fluorescens 3° and persistence and biofilm
formation in P. putida®’.

In contrast to these myriad results with MqsR/MgsA, a report based on negative results claimed that
the E. coli MqsR/MgsA TA system has no role in stress resistance, based on a lack of induction of the
mgsRA locus and a lack of phenotype upon deleting mgsRA'3. Strikingly, these transcription results were
invalidated within a few months as mgsRA transcription in the wild-type strain was shown to increase by
over 181-fold during amino acid stress and 90-fold during oxidative stress*. This work?? also claimed there

was no physiological effect of deleting mgsRA, but, unfortunately, they utilized a TA deletion strain that
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has substantial non-related mutations, including large chromosomal inversions'’; utilization of TA deletion
strains with many coding errors beyond those of the TA systems has led to notorious retractions in the TA
field, as we have summarized previously®’. Critically, their clam®® of a lack of a physiological role of
MqsR/MgsA was undercut by their later results which showed MgsR/MqsA/MqsC inhibited T2 phage*.
We have confirmed these results and shown that phage inhibition by MqsRAC induces persistence rather
than abortive infection'!. Furthermore, these groups'*3° used strains with both MqsR and MgsA inactivated
rather than studying the effect of either the toxin or antitoxin alone; i.e., MqsR/MqgsA work together during
the oxidative stress response.

Based on these inconsistencies, we hypothesized that a better approach, due to heterogeneous gene
expression?®, would be to investigate the impact of MgsR/MgsA on cell physiology by monitoring the
transcriptome of single cells since all previous studies have been based on population averages. Single cell
transcriptomic studies have been initiated by several labs* 0 20-26. 33 and here, we utilized the high-
throughput microfluidic approach that relies on labeling each transcript with unique 50 nt single strand
DNA probes to determine the impact of inactivation of MgsR/MgsA during oxidative stress**. We chose
oxidative stress as the representative insult to cells since both anaerobes and aerobes must deal with this
nearly-universal stress??, and MgsA has been shown to negatively regulate the oxidative stress response’’.
Using this approach, we determined that the [fgd BCDE operon (formerly the uncharacterized operon yfjXY
ypjJ yfiZF) of cryptic prophage CP4-57 is induced in single cells and that LfgB is a protease that is repressed

by antitoxin MqsA and degrades MqgsA to activate the E. coli stress response through sigma factor RpoS.

RESULTS
Antitoxin MqsA reduces the population stress response. We first investigated whether deleting an
unmarked mgsRA mutation affected the response of E. coli to oxidative stress (20 mM H,O, for 10 min)
and found that, for the whole population, the wild-type cells were more sensitive to H>O» (85 + 15% death
for the wild-type vs. 55 + 10% for mgsRA). Similar population-wide results were seen with acid stress (pH

2.5 for 10 min for four cycles) where the wild-type strain was 64 times more sensitive. These results agree
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well with our previous results showing antitoxin MgsA represses 7poS by binding at a palindrome to help
regulate stress resistance®!. Moreover, our results suggest that inactivating toxin MqsR should reduce
viability by elevating MgsA concentrations, since the additional antitoxin MgsA will repress 7poS, and as
expected, when mgsR is deleted, cells are 14 = 6 times more sensitive than the wild-type to oxidative stress.
Therefore, the mgsRA mutant is better prepared to withstand oxidative and acid stress as its stress response
via RpoS is activated due to the absence of the repressor MgsA.

Single-cell analysis reveals LfgB increases cell viability during oxidative stress. Using single cells, we
then investigated further the role of MgsR/MgsA during oxidative stress by comparing the wild-type strain
vs. the unmarked mgsRA mutant in single cells. Utilizing 20 mM H,O, for 10 min, we found (Table 1) that
several cryptic prophage genes are induced in the wild-type strain relative to the mgsRA4 mutant, including
lfgA of the I[fgABCDE operon; previously LfgD (YfjZ) of this operon was shown by us to enhance MqgsR
toxicity!®. Furthermore, the induction of two genes that encode heat-shock proteins (ibpAB) and one gene
that encodes an osmotic stress response protein (yciF) served as positive controls for our single-cell
analysis.

Based on the single-cell transcriptome results, we tested 10 knockouts of the most highly-induced genes
and found the /fg4 deletion nearly completely prevented cells from surviving 20 mM H,0O; for 10 min
(99.990 £ 0.004% death) whereas the wild-type strain had only 14 + 13% death. Since we were unable to
complement this phenotype by producing LfgA in a /fg4 deletion mutant, we investigated whether a polar
mutation was involved via kanamycin insertion into /fg4 by investigating the next gene downstream of
IlfgA, lfgB (Figure S1 and Table S1), and found deletion of /fgB also prevents survival with 20 mM H,O;
for 10 min (91 + 8% death); this phenotype could be completely complemented by producing LfgB from
pCA24N-IfgB (Table 2). Moreover, since RpoS positively controls KatG/KatE catalase activity’!, these
results were confirmed by observing the oxygen bubbles produced from catalase activity after incubating
the /fgB mutant and complemented strain for 10 minutes with 20 mM of H,O, (Supplementary Figure
S2); quantifying the catalase results, the /fgB mutation reduced catalase activity by 62 + 12% and producing

LfgB from pCA24N-IlfgB nearly completely restored catalase activity (94 + 9%, Fig. S2). Hence, we
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focused on LfgB to determine its role with MqsR/MgsA.

95 Since RpoS also controls the heat*’ and acid response? in E. coli, we hypothesized that inactivating
LfgB should reduce viability after heat and acid treatments. Consistent with the reduction in the oxidative
stress response, we found that the /fgB deletion reduces survival during acid stress (pH 4.0 for 10 min)
stress (39 £+ 5% death for lfgB vs. wild-type 28 + 4% death for wild-type), as well as during heat (30 minutes
at 50°C) stress (18% = 12% death for [fgB vs. 0 = 7% death for wild-type). Both phenotypes were

100  complemented by producing LfgB from pCA24N-/fgB (Table 2).
Note that LfgB does not play a role in persister cell formation since survival after three hours with
ampicillin at 10x the minimum inhibitory concentration there was little difference in cell viability (0.8 +
0.4% viable for wild-type vs. 0.4 = 0.2% viable for /[fgB). Hence, LfgB is important for the stress response
rather than antibiotic persistence. Also, deleting /fgB reduces the growth rate in LB medium by 25% (1.2 +
105  0.1/h vs. 1.6 = 0.2/h), so the dramatic reduction in viability of the /fgB mutant in the presence of H,O, is
not a result of poor growth.
LfgB is a poorly-characterized protein of cryptic prophage CP4-57 whose production previously led to
a mutator phenotype LfgB®. To understand the relationship of this protein with the MgsR/MgsA TA
system, we analyzed the RNA structure of the operon, finding two possible 5’-GCU sites accessible to toxin
110  MgsR for /fgB? in the predicted minimum free energy (MFE) structure for whole operon mRNA (Figure
S3A), which are not available in the MFE predicted structure of only the transcript containing just /fgB
mRNA (Figure S3B). Hence, MqsR may degrade the mRNA containing /fgB.
MgsA binds the IfgA promoter. We also considered the possibility that MgsA regulates the /fg operon by
binding at its palindromic sequence 5’-ACCT N(2,6) AGGT upstream of the promoter as shown previously
115  for the mgsRA, csgD, and rpoS promoters® 431, We found a probable MgsA palindromic sequence, 5’-
ACCG (N5) CGGT, (grey highlight) 162 bp upstream of the start codon of /fg4 (Figure S4). Thus, we
hypothesized that MqsA represses transcription of the operon and overproduced MgsA from pCA24N-
mgsA and observed that /[fg4 and [fgB are repressed 4 = 1 and 3 + 0.6-fold, respectively (Table S2).

However, using EMSA, we found that mutating the /fg4 promoter to interrupt this MgsA palindrome did
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120 not affect MgsA binding (Fig. SSAB). Hence, we conducted a DNA footprinting assay (Fig. S6) and
determined the MgsA binding site is 245 bp upstream of the start codon, with a putative palindromic
sequence 5’-ACAT (N2) ACAT (green highlight) (Fig. S4). Inactivating this MqsA-binding site in the /fgA
promoter region via mutation confirmed the DNA footprinting results in that MgsA binding was abolished
(Fig. S5C). Hence, MqsA, a known regulator, binds the promoter of the operon containing /fgB.

125  LfgB controls the H,O; response through MqsA degradation. To gain further insights into how LfgB
interacts with the MqsR/MqgsA TA system, we analyzed the protein structure of /fgB. Critically, LfgB is a
putative zinc protease based on its predicted structure (UniProtKB - P52140), with a MPN domain (residues
38 —160) and a JAMM motif (metalloprotease like zinc site)*° (Figure 1). Based on this predicted structure,
we purified LfgB and tested its protease activity against purified MgsA and found that LfgB degrades MqsA

130  after overnight incubation at 37 °C (Figure 2). Unfortunately, the solubility of LfgB is extremely low, and
we were unable to improve its solubility after many attempts, including purification under denaturing

conditions and fusing SUMO and GST tags to LfgB.

DISCUSSION

Here, using the single cell transcriptome for the first time to study TA systems, we determined
135  additional insights into how the MqsR/MgsA type Il TA system is physiologically important for the growth
of E. coli during exposure to H,O, stress. Specifically, we (i) identified the /fg operon of cryptic prophage
CP4-57 is induced during oxidative stress in single cells, (i) found MgsA represses the /fg operon, and (iii)
characterized LfgB as a protease that degrades antitoxin MgsA. Remarkably, our results demonstrate that
the cell combines the tools of its former enemy, prophage CP4-57, with that of the MqsR/MgsA TA system,

140  to regulate its stress response.
Cryptic prophage CP4-57 has been linked to E. coli cell growth, biofilm formation, motility, and
carbohydrate metabolism>?, and we found previously that the /fgB and Ifg4 deletions increase biofilm
formation 6-fold and 2-fold, respectively>. In addition, we found the IfgD mutation reduces MgsR

toxicity!S. Therefore, by characterizing protease LfgB, our results provide additional proof that cryptic
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145  prophages are beneficial and are involved in the stress response®.
Our results also increase add another facet to MgsA regulation by finding a new protease that degrades
MgsA. As previously demonstrated, Lon protease can degrade MgsA as well as other antitoxins under
oxidative stress®!. In addition, ClpXP degrades MgsA in the absence of the zinc that is used to stabilize the
structure of MgsA; i.e., when it is unfolded™. It was proposed that the ClpX recognition site is accessible
150  under non-stress conditions; however, under oxidative conditions, cysteine residues are oxidized preventing
the correct folding and the binding of zinc, allowing CIlpXP to degrade MgsA>’. Hence, our results with
protease LfgB provide additional evidence for the selective degradation of free antitoxins under stress
conditions’® 3051,
Our proposed mechanism is shown in Figure 3. In the absence of stress, one physiological role of
155  MgsA is to inhibit rpoS transcription’!, which is important for rapid growth. However, under stress
conditions (H>O», acid, heat), Lon protease’!, ClpXP protease®®, and LfgB protease degrade antitoxin
MgsA, facilitating the formation of RpoS and activation of the stress response. This also shifts the balance
to MqsR3% 3!, which then performs differential mRNA decay?’, based on the presence of single-stranded,
5’-GCU sites®. One example of the differential mRNA decay is the degradation of the transcript for
160  antitoxin GhoS, which results in activation of toxin GhoT (whose transcript lacks 5°-GCU sites)**; this then
allows toxin GhoT to reduce ATP and growth’.
Therefore, the type I TA system MqsR/MgsA is a multi-faceted regulator that facilitates growth of E.
coli populations residing in the gut during exposure to bile (oxidative) stress. Since bile plays an important
role as an interkingdom signal in the GI tract?!, our results also illustrate how a TA system can play an

165  important role in host-microbe interactions by ensuring the survival of a commensal bacterium.

EXPERIMENTAL PROCEDURES
Bacterial strains and growth conditions. The E. coli K-12 strains and plasmids used in this study are
listed in Table 3. All cultures were grown in lysogeny broth (LB) medium*' at 37°C with 30 pg/ml of

chloramphenicol to maintain the pCA24N plasmids.
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170  Single-cell transcriptome analysis. BW25113 and its unmarked isogenic mutant AmgsRA were harvested
during exponential growth (turbidity 0.8 nm at 600 nm), treated with 20 mM H,O, for 10 min, fixed with
formaldehyde (1%) for 30 min. After centrifugation, cell pellets were washed with PBS and resuspended
in 4:1 vol% methanol:glacial acetic acid, and analyzed at the single-cell level as described previously™.
Viability assays with hydrogen peroxide, acid, and heat. Cells were cultured in LB to a turbidity of 0.8

175  at 600 nm, then exposed to 20 mM H,O, for 10 min, to acid conditions (pH 4) for 10 min, or to heat (50 °C)
for 30 minutes. For cyclic exposure to acid (pH 2.5), cells were exposed in four times for 10 min/cycle with
one hour growth in between each treatment.

Persister cell formation?3. Overnight cultures were grown to a turbidity of 0.8 at 600 nm, then cells were
resuspended in LB-ampicillin (100 pg/mL, 10 MIC) and incubated for 3 h. Cells were washed twice with

180  PBS, and viable cells were quantified using serial dilution and spot plating onto LB agar plates. Experiments
were performed with at least three independent cultures.

RNA structure prediction and DNA palindrome search. The RNA predicted structures and palindrome
search were obtained using the NCBI E. coli BW25113 genome sequence (NZ_ CP009273.1), and the MFE
RNA structures were predicted by the RNAfold webserver (http://rna.tbi.univie.ac.at/cgi-

185  bin/RNAWebSuite/RNAfold.cgi).
qRT-PCR. Overnight cultures of AmgsRA/pCA24N and AmgsRA/pCA24N-mgsA were grown to a
turbidity of 0.1 at 600 nm in LB/chloramphenicol medium, then 1 mM of IPTG for 30 min was used to
induce expression of mgsA. Cells were rapidly cooled in ethanol/dry ice, centrifuged, and the pellets were
collected with RN ALater buffer (Applied Biosystems, Foster City, CA, USA), to stabilize RNA. The RNA

190  was purified using the RNA purification kit (Roche). qRT-PCR were performed following the
manufacturer’s instructions for the iTaq™ Universal SYBR® Green One-Step Kit (Bio-Rad) using 100 ng
of total RNA as template. Primers were annealed at 60°C and data were normalized against the
housekeeping gene r7sG*. The specificity of the qRT-PCR primers (Table S3) was verified via standard
PCR, and fold changes were calculated using the method of Pfaffl*® using the 2-44¢T,

195  Proteolytic assay. Purified MgsA and LfgB were mixed in enzyme reaction buffer (40 mM HEPES-KOH,
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25 mM Tris-HCl, 4% sucrose, 4 mM DTT, 11 mM magnesium acetate, and 4 mM ATP) and incubated
overnight at 37°C. SDS-PAGE was conducted using 5% stacking and 18% acrylamide resolving sections
and staining following the manufacturer’s instructions (Pierce Silver Stain kit, Thermo Scientific).

MgsA purification and electrophoretic mobility shift assay (EMSA). The mgs4 coding region was

200  amplified with primer pair pET28b-mgsA-F/R using MG1655 genomic DNA as the template. The amplified
DNA fragment was purified, quantified, and ligated into pET28b digested with Ncol/HindIIl. pET28b-
mgsA was used to purify MgsA using standard methods'®. For DNA probes to investigate MgsA binding,
the promoter region of yfjY was amplified with primer pair yfjY-P-F and y£jY-P-R, and the two mutant probes
were also amplified with primer pairs yfjY-MP-F/yfjY-P-F and yfjY-MP2-F/yfjY-P-F (Table S3). The probes

205  were purified and labelled with biotin by using the Biotin 30-End DNA Labeling Kit (Thermo Scientific,
Rockford, USA)f, and 0.25 pmol were used to assay the binding reaction with a series of concentrations of
MgsA3L The stopped reaction mixtures were run on a 6% polyacrylamide gel in Tris-borate EDTA and
were then transferred to nylon membranes. The Chemiluminescence Nucleic Acid Detection Module Kit
(Thermo Scientific) was used to observe the shift of the DNA probes on the membranes.

210  DNase I footprinting assay. This assay was conducted as reported previously®'.The FAM-labelled probe
covering the promoter region of yfjY was amplified with primer pair FAM-yfjY-P-F and yfjY-P-R, and the
products was purified with QIAEX II Gel Extraction Kit (Qiagen, Hilden, Germany). The labelled probes
(200 ng) were mixed with varying amounts of MgsA, and the mixtures were incubated for 30 min at 25°C.
An orthogonal combination of DNase I (NEB, M0303S) and incubation time were used to achieve the best

215  cutting efficiency. A final concentration of 200 mM EDTA was added to the reaction mixture to stop the
reaction. The DNA was purified again with a QIAEX II Gel Extraction Kit (Qiagen, Hilden, Germany),
and the generated products were screened and analyzed as reported?!.

Catalase assay. Catalase activity was determined spectrophotometrically by recording the decrease in the
absorbance of H>O» at 240 nm in a UV/VIS spectrophotometer as described previously'®. Briefly, five

220  independent cultures per strain were grown overnight, 1 mL aliquots were taken, cells were collected by

centrifugation for 1 min at 13,000 rpm, washed with sterile HEPES buffer (50 mM, pH 7.5), centrifuged
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again, frozen with liquid nitrogen, and stored at -70 °C. Thawed pellets were resuspended in 1 mL of sterile
cold HEPES buffer (50 mM, pH 7.5) with MgCl, 10 mM and 0.025% triton X-100 and disrupted by
sonication using 2 pulses of 20 sec with 1 minute pause between cycles. Catalase activity was determined
225  using 15 mM H>0O; as substrate and normalized based on the protein level in the cell extracts as determined

using the Bradford method.
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Table 1. Impact on gene expression after inactivating the MqsR/MqsA toxin/antitoxin system in E.
coli during oxidative stress. Genes with the highest and lowest expression in the single-cell
transcriptomic analysis are indicated after treating exponentially-growing cells were with 20 mM
H>0; for 10 min. WT is BW25113. Largest values indicated by bold text.

Gene Cluster WT AmgsRAANkan Gene Cluster WT AmgsRANkan
1 -0.7 -0.9 1 -0.26 -0.83
2 -4.4 1.5 2 -5.12 2.15
3 2.3 1.9 3 8.76 0.23
yneL 4 2.93 0.28 yeiF 4 3.39 0.39
5 3.08 0.43 5 3.54 0.54
6 9.21 0.53 6 3.89 0.64
7 3.54 7 4
1 -0.07 1.82 1 1.15 -1.57
2 -4.93 -0.51 2 -4.93 2.04
3 2.95 0.93 3 2.95 1.12
gatR 4 9.2 1.09 yoed 4 3.59 1.28
5 3.73 1.24 5 3.73 1.43
6 4.08 1.34 6 4.08 2.75
7 4.2 7 8.59
1 0.74 -0.57 1 0.74 0.38
2 -4.12 1.88 2 -4.12 0.56
3 3.76 1.93 3 3.76 0.02
IfeA 4 4.39 2.09 ydiL 4 4.39 0.19
5 4.54 2.24 5 8.54 0.33
6 4.89 2.34 6 4.89 1.53
7 9 7 5
1 0.15 -0.72 1 0.162 -0.068
2 -4.71 1.3 2 -0.166 -0.404
3 3.18 1.12 3 0.008 1.272
yagA 4 8.98 1.28 ibpA 4 0.16 1.218
5 422 2.65 5 0.196 0.106
6 4.57 1.53 6 0.11 -0.334
7 4.68 7 -0.092
1 -0.43 -2.31 1 0.632 -0.55
2 -4.12 3.62 2 -0.666 1.034
3 2.59 1.6 3 0.398 0.974
holE 4 3.22 1.77 ibpB 4 0.574 0.862
5 3.37 1.92 5 0.466 0.898
6 8.89 2.02 6 0.726 0.896
7 3.83 7 0.322
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Table 2. Phenotypes of BW25113 (WT) and BW25113 AlfgB under different stresses. STD is standard

deviation.
Condition Strain % death STD Ratio
WT 14 10 1
AlfeB 91 8 6.4
H202 Ve
AlfgB/pCA24N 64 20 4.6
AlfgB/pCA24N-lfgB 26 20 1.8
WT 28 4 1
AlfgB 39 5 1.4
Acid Ve
AlfgB/pCA24N 35 4 1.3
AlfgB/pCA24N-lfgB 25 2 0.9
WT -13 7 1
AlfgB 18 11 -1.4
Heat
AlfgB/pCA24N 21 3 -1.6
AlfgB/pCA24N-lfgB -14 3 1.0
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Table 3. Bacterial strains and plasmids used in this study. KmR® indicates kanamycin resistance and CmR®
indicates chloramphenicol resistance.

Strain Genotype Source
BW25113 rrB3 AlacZ4787 hsdR514 A(araBAD)567 A(rhaBAD)568 rph-1 !
BW25113 AmgsRA Akan ~ BW25113 AmgsRA AKmR® 2
BW25113 Alfg4 BW25113 Alfg4d Q Km® !
BW25113 AgatR BW25113 AgatR Q Km® !
BW25113 AyneL BW25113 AyneL Q Km® !
BW25113 AynfP BW25113 AynfP Q Km® !
BW25113 AyagA BW25113 AyagA Q Km® !
BW25113 AholE BW25113 AholE Q KmR® !
BW25113 AyoeA BW25113 Ayoed  KmR® !
BW25113 AyidL BW25113 AyidL Q Km® !
BW25113 AibpA BW25113 AibpA Q KmR® 1
BW25113 AibpB BW25113 AibpB Q KmR® 1
BW25113 AlfeB BW25113 AlfgB Q KmR® !
BW25113 AypjJ BW25113 AypjJ Q Km®? !
Plasmid
pCA24N CmR; lacld, pCA24N =
pCA24N-IfgA CmR; lacld, pCA24N Prs.iac::lfgA =
pCA24N-ifgB CmR; lacld, pCA24N Prs.iac::lfgB =
pCA24N-mgsA Cm®; lacld, pCA24N Prs.jac::mgsA =
pET28b KmR, expression vector with T7 promoter Novagen
KmR, lacI9, pET28b Pry-iac:: mgsA with mgsA C-terminus His-tagged this study

pET28b-mgsA
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FIGURE LEGENDS
Fig. 1. Two views of the predicted L{gB structure (UniProtKB - P52140). The grey circle represents zinc-
binding residues His 109, His 111, and Asp 122.
Fig. 2. SDS-PAGE demonstrating degradation of MgsA by LfgB. Purified MgsA and LfgB were mixed
in enzyme reaction buffer and incubated overnight at 37°C. L indicates ladder.
Fig. 3. Scheme for the MqsR/MgsA toxin/antitoxin/LfgB protease stress response mechanism, and its

relationship with MqsA. Green arrows indicate activation, and red lines indicate inhibition.
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Table S1. Single cell expression levels for mgsRA vs. wild-type in the presence of 20 mM H,O; stress for
the /fg operon (/fgA is also in Table 1).

Gene Cluster WT AmgsRA Akan
1 1.5 -0.8
2 -2.0 1.9
3 3.7 1.8
lfgA 4 4.3 1.7
5 4.9 1.9
6 4.8 2.0
7 5.7
1 1.1 0.5
2 -0.5 0.01
3 4.1 2.6
lfgB 4 4.8 2.8
5 4.9 2.9
6 53 3.8
7 5.4
1 3.2 -1.3
2 -2.6 1.8
3 3.8 1.9
IfgC 4 4.4 2.9
5 4.6 2.2
6 4.9 2.3
7 5.0
1 1.8 1.3
2 -1.9 -0.2
3 3.1 1.2
lfeD 4 4.0 1.6
5 4.2 1.7
6 43 1.6
7 4.8
1 1.1 -0.8
2 -1.2 1.0
3 2.5 1.1
IfeE 4 3.1 1.4
5 3.8 1.3
6 3.8 1.9
7 3.6
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Table S2. Repression of lfgAB in the BW25113 mgsRA deletion mutant during production of MgsA. MgsA
was produced by 1 mM IPTG for 30 min.

Gene rrsG IfgA IfgB
Strain AmgsRA AmqgsRA AmqsRA AmqsRA AmgqsRA AmgsRA
pCA24N  pCA24N-mgsA pCA24N pCA24N-mqsA pCA24N pCA24N-mgsA
CT Mean 13.1+0.6 11.6 0.4 22.7+0.5 23 +1 24.7+0.9 247+ 0.4
ACt 9.6 11.7 11.6 13.1
AACt 2+1 1.5+£0.6
Fold change -4 -2.8
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Table S3. Primers used in this study. F indicates forward primer and R indicates reverse primer. P
indicates promoter, MP indicates mutant promoter.

Primers Sequences

Probe amplification and mgsA cloning

yfjY-P-F GATTGCGTAGCAGGGCCACTGGTATC

yfiY-P-R CTGGCGTATGAGGTAATAAAGCGCG

yfjY-MP-F TTGGCGGGCATGGAACTTTGATAATGACGCAAAAGAAGGTTTTAACCGCTATATCCA

yfiY-MP-R TGGATATAGCGGTTAAAACCTTCTTTTGCGTCATTATCAAAGTTCCATGCCCGCCAA
GATTGCGTAGCAGGGCCACTGGTATCTGCCGGTATCACCGACATTAACATTGACACAAACCA

Vi Y-MP2-F GGGCATTCACGTCCGCCTG

FAM-yfjY-P-F GATTGCGTAGCAGGGCCACTGGTATC

pET28b-mqgsA-F TTAACTTTAAGAAGGAGATATACCATGGATGAAATGTCCGGTTTGC

CTCGAGTGCGGCCGCAAGCTTTTAGTGATGATGATGATGATGACGGATTTCATTCAATAGTTC
pET28b-mqsA-R TGGATGC

qRT-PCR

rrsG-F TATTGCACAATGGGCGCAAG
rrsG-R ACTTAACAAACCGCCTGCGT
IfgA-F GGATGGACCGCTTCTGTGAT
Ifgd-R CTCATTTCCGCACCATTGCC
IfgB-F GCTGAAGCTGAAAATGGCGG
IfgB-R TGAAATACAGGGCGCGTTTG
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Ifg operon

Figure S1. Scheme representing the organization of the /fg operon inside cryptic prophage CP4-57.
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Figure S2. Images of oxygen bubble formation from catalase activity during the hydrogen peroxide assay
for (A) BW25113 WT compared to BW25113 Alfgd, (B) BW25113 WT compared to
BW25113 AlfgB, (C) BW25113 pCA24N compared to BW25113 pCA24N-lfgB, (D)

quantified catalase activity.
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Figure S3. Predicted (MFE) RNA secondary structures for (A) the [fg operon and (B) /fgB indicating the
presence of MgsR cleavage sites (5’-GCU). Green circles indicate start codons, red and pink
circles indicate the termination codons, blue circles indicate 5’-GCU MgqsR cleavage sites
inside a stem-loop, purple circles indicate 5’-GCU sites outside stem-loops, and orange circles

indicate 5’-GCC sites. Arrows indicate likely MgsR single-stranded sites.
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Figure S4. Sequence of the first gene of the /fg operon (/fgA) along with the upstream region (200 bp).
MgsA-binding region identified from DNA footprinting (bold red), and previously described as 5°-ACCT
N(2,6) AGGT>! (highlighted in gray). Bold and underlined indicates the -35 and -10 promoter regions,
purple highlight indicates the ribosome binding site, and green highlight indicates the /fg4 start codon. The
actual binding palindrome is highlighted in green.
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Fig. S5. EMSA shows DNA-binding regulator MqsA binds the Ifg operon. (A) Purification of MgsA.
(B) Mutating the /fg4 promoter to interrupt the MgsA palindrome 5’-ACCG (N5) CGGT did not affect
MgsA binding (left and middle, mutant probe 1), but mutating the region identified by the DNA footprinting
assay (bold red in Fig. S6) 252 bp upstream of the start codon, with nearby putative palindromic sequence
5’-ACAT (N2) ACAT (green highlight in Fig. S6), abolishes MgsA binding (right).
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Fig. S6. DNA footprinting. DNA footprinting shows the MgsA binding site is 252 bp upstream of the start
codon of the /fg operon (bold red in Fig. S4), near the palindromic sequence 5’-ACAT (N2) ACAT (green
highlight in Fig. S4).
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