

1 Caveolin-1 Autonomously Regulates Hippocampal Neurogenesis Via  
2 Mitochondrial Dynamics

3

4 Terilyn K. L. Stephen<sup>1</sup>, Luis Aponte Cofresi<sup>1</sup>, Elvis Quiroz<sup>1</sup>, Kofi Owusu-Ansah<sup>1</sup>, Yomna  
5 Ibrahim<sup>1</sup>, Ellis Qualls<sup>1</sup>, Jeffery Marshall<sup>1</sup>, Wenping Li<sup>2</sup>, Aashutosh Shetti<sup>1</sup>, Jacqueline A Bonds <sup>3</sup>,  
6 Richard D. Minshall<sup>4,5</sup>, Stephanie M. Cologna<sup>2</sup>, Orly Lazarov<sup>1,6,\*</sup>

7

8 <sup>1</sup>Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA

9 <sup>2</sup>Department of Chemistry, University of Illinois at Chicago, IL, USA

10 <sup>3</sup>Departmet of Anesthesiology, University of California San Diego, CA, USA

11 <sup>4</sup>Deparment of Pharmacology and Regenerative Medicine, University of Illinois at Chicago,  
12 IL,USA

13 <sup>5</sup>Department of Anesthesiology, University of Illinois at Chicago, IL USA

14 <sup>6</sup>Lead Contact

15 \*Correspondence: olazarov@uic.edu

16

17

18

19

20 **Keywords**

21 Caveolin-1, Adult Hippocampal Neurogenesis, Neural Stem Cells, Neuronal Differentiation,

22 Mitochondria Dynamics

23

24

25

26

27 **Summary**

28 The mechanisms underlying adult hippocampal neurogenesis (AHN) are not fully understood.  
29 AHN plays instrumental roles in learning and memory. Understanding the signals that regulate  
30 AHN has implications for brain function and therapy. Here we show that Caveolin-1 (Cav-1), a  
31 protein that is highly enriched in endothelial cells and the principal component of caveolae,  
32 autonomously regulates AHN. Conditional deletion of Cav-1 in adult neural progenitor cells  
33 (nestin +) led to increased neurogenesis and enhanced performance of mice in contextual  
34 discrimination. Proteomic analysis revealed that Cav-1 plays a role in mitochondrial pathways in  
35 neural progenitor cells. Importantly, Cav-1 was localized to the mitochondria in neural progenitor  
36 cells and modulated mitochondrial fission-fusion, a critical process in neurogenesis. These  
37 results suggest that Cav-1 is a novel regulator of AHN and underscore the impact of AHN on  
38 cognition.

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54 **Introduction**

55 The dentate gyrus (DG) of the adult hippocampus is a dynamic brain region where newly  
56 born granule neurons are generated throughout life via the process of adult hippocampus  
57 neurogenesis (AHN). Radial glia-like neural stem cells (NSC) and neural progenitor cells (NPCs,  
58 together referred to NSPC) reside in the subgranular zone of the DG and undergo proliferation  
59 and differentiation to produce new granule neurons <sup>1</sup>. New neurons integrate into hippocampal  
60 circuitry and function in context-dependent spatial learning and memory behavioral tasks <sup>2-5</sup>.  
61 Neurogenesis declines with age and aging. In mice, significant reductions in NSPC proliferation  
62 and newborn neuron generation were documented as early as 5 to 6 months of age <sup>6-8</sup>.  
63 Increasing evidence shows that in both humans and rodent models, adult hippocampal  
64 neurogenesis is impaired in several brain diseases and disorders including Alzheimer's Disease  
65 (AD) <sup>9-12</sup>. In human studies, it has been shown that a reduction in the levels of neuroblasts in the  
66 DG associates with worsen cognitive performance in patients diagnosed with mild cognitive  
67 impairments or AD compared to healthy aging controls <sup>11</sup>. Interesting, augmentation of  
68 hippocampal neurogenesis through either genetic and pharmacologic modulation,  
69 environmental enrichment, or voluntary physical activity has been shown to restore hippocampal  
70 memory deficits in AD mouse models <sup>13-15</sup>. Despite numerous studies identifying intrinsic and  
71 extrinsic cellular modulators of hippocampal neurogenesis <sup>16-20</sup>, the mechanisms underlying  
72 maintenance of NSPC and neurogenesis-dependent memory function are still not fully  
73 understood.

74 Caveolin-1 (Cav-1) is a 21-24 kDa scaffolding and signaling protein that belongs to the  
75 caveolin gene family<sup>21</sup>. Cav-1 generates and maintains caveolae, distinct flask shape  
76 invaginations on the plasma membrane, which govern various cellular functions including  
77 endocytosis <sup>22,23</sup>. Cav-1 protein expression is found to be highly abundant in the brain

78 vasculature<sup>24,25</sup> and is essential for blood brain barrier integrity and neurovascular coupling<sup>26-29</sup>.  
79 Previously, we showed that Cav-1 protein expression is depleted in the hippocampus of a Type  
80 II diabetes mouse model and that rescue of Cav-1 protein expression improved hippocampal  
81 memory performance<sup>30</sup>. Global Cav-1 knockout (gCav-1 KO) mice exhibit a wide range of  
82 neurological deficits including impairments in cholinergic function and hippocampal plasticity  
83 compared to wildtype (WT) controls<sup>31-33</sup>. Moreover, Cav-1 overexpression in hippocampal  
84 primary neurons and brain tissue show that Cav-1 promotes dendritic growth and arborization  
85 through the enhancement of lipid raft formation and localization of synaptic receptors to lipid  
86 rafts on the plasma membrane<sup>34,35</sup>. Few studies exist examining Cav-1 in neurogenic cell types.  
87 It has been reported that in the developing cortex, Cav-1 expression is essential for  
88 internalization of cell adhesion proteins that regulate proper migration and dendritic pruning in  
89 immature neurons<sup>36</sup>. Additionally in early stages of neuronal differentiation from NPCs derived  
90 from human iPSCs, Cav-1 phosphorylation at its tyrosine 14 site is needed for axonal growth<sup>37</sup>.  
91 However, a role for Cav-1 in AHN has never been described.

92 Here, we show that Cav-1 is expressed in hippocampal NSPC. Cell - specific deletion of  
93 Cav-1 in AHN in mice, resulted in significant reductions in NSC proliferation, increased neuronal  
94 differentiation and enhanced performance of mice in the AHN - dependent contextual  
95 discrimination behavior task. Proteomic analysis revealed that Cav-1 regulates AHN via  
96 mitochondria-related protein pathways. Importantly, we observed that Cav-1 localizes to the  
97 mitochondria in NSPCs and regulates their fission-fusion dynamics, critical for neuronal  
98 differentiation. This study determines that Cav-1 is a novel regulator of AHN and a new  
99 therapeutic target for age-related cognitive decline disorders.

100  
101  
102  
103

## Results

104 **Cav-1 expression in adult hippocampal neural stem cells**

105 We first examined the expression of Cav-1 in hippocampal NSPC by isolating them from  
106 adult wild type (WT) mice. We confirmed Cav-1 protein expression by immunostaining (**Figure**  
107 **1A**). Interestingly, we found that Cav-1 has heterogenous expression in Nestin+ NSPC cells  
108 with Cav-1 immunoreactivity characterized by fluorescent puncta distributed throughout the  
109 cytoplasm. We show a significant correlation between expression levels of Cav-1 and Nestin  
110 where NSPC with elevated Cav-1 expression associate with cells displaying higher levels of  
111 Nestin expression and area of Nestin per cell (**Figure 1B-C**). Nestin expression is typically high  
112 in actively proliferating NSPC and downregulated as cells exit the cell cycle during differentiation  
113<sup>38,39</sup>. To further investigate the role of Cav-1 in AHN, we generated a NSPC - specific inducible  
114 Cav-1 knockout model, where we bred a Cav-1 floxed mice (Cav-1<sup>flox/flox</sup>)<sup>40,41</sup> with a tamoxifen  
115 inducible Cre recombinase driven by a Nestin promoter (NestinCre<sup>ERT2/+</sup>)<sup>2,13</sup> (**Figure 1D**).  
116 NestinCre<sup>ERT2/+</sup>;Cav-1<sup>flox/flox</sup> mice were injected at 4-5 weeks of age with either tamoxifen (TAM) to  
117 conditionally delete Cav-1 from NSPCs (iNSC Cav-1 KO) or with corn oil (Corn) to generate  
118 control mice (iNSC Cav-1 WT). We confirmed Cav-1 recombination in hippocampal NSPC  
119 isolated from iNSC Cav-1 KO and iNSC Cav-1 WT mice by quantitative real-time PCR (qPCR)  
120 and immunoblotting (**Figure 1E-G**). We found that isolated hippocampal NSPC from iNSC Cav-  
121 1 WT mice had similar Cav-1 expression pattern as WT NSPC with Cav-1 displaying fluorescent  
122 puncta (**Figure 1H**). Ultrastructural transmission electron microscopy was used to determine if  
123 Cav-1 expression in NSPC correlated with the presence of caveolae. Flask-shaped  
124 invaginations and vesicles resembling caveolae were identified in the iNSC Cav-1 WT NSPC,  
125 whereas larger (>150 nm) electron dense vesicles resembling clathrin-coated vesicles were  
126 predominantly found in the iNSC Cav-1 KO NSPC (**Figure 1I**). Together, this indicates that Cav-  
127 1 is expressed in adult hippocampal NSPCs and correlated with the presence of caveolae, and  
128 that tamoxifen-induced recombination leads to a complete deletion of Cav-1 in iNSC Cav-1 KO  
129 mice.

130

131 **Deletion of Cav-1 in NSC leads to reduced NSC proliferation in adult hippocampal**  
132 **neurogenesis**

133 Next, we asked whether the deletion of Cav-1 in NSCs would affect their proliferation.  
134 NSCs were identified by the co-expression of glial fibrillary acidic protein (GFAP) and Nestin in  
135 the subgranular layer (SGL) of the DG. In contrast to quiescent, proliferating NSCs also  
136 expressed the mitosis-linked minichromosome maintenance complex component 2 (MCM2).  
137 Quantitative stereology at 3 months (**Figure 2A**, 60 dpi of Tam) of age revealed no significant  
138 difference in the total NSC population (GFAP<sup>+</sup>Nestin<sup>+</sup>) and the quiescent NSC sub-population  
139 (GFAP<sup>+</sup>Nestin<sup>+</sup>MCM2<sup>-</sup>) between iNSC Cav-1 KO vs iNSC Cav-1 WT mice (**Figure 2B-D**).  
140 However, a significant reduction in the number of proliferating NSC (GFAP<sup>+</sup>Nestin<sup>+</sup>MCM2<sup>+</sup>) was  
141 observed in the iNSC Cav-1 KO mice (**Figure 2E**). Similarly at 6 months of age, no differences  
142 in the total NSC population (GFAP<sup>+</sup>Nestin<sup>+</sup>) and quiescent sub-population  
143 (GFAP<sup>+</sup>Nestin<sup>+</sup>MCM2<sup>-</sup>) was observed, yet the number of proliferating NSC  
144 (GFAP<sup>+</sup>Nestin<sup>+</sup>MCM2<sup>+</sup>) was significantly reduced in the iNSC Cav-1 KO mice compared to iNSC  
145 Cav-1 WT controls (**Figure 2F-I**). In support of these results, neurosphere cultures isolated from  
146 the iNSC Cav-1 KO mice showed reduction in clone formation, clone diameter and cell number  
147 compared to iNSC Cav-1 WT mice (**Figure 2J-M**). In addition, we examined the level of  
148 proliferation of neurosphere cultures derived from iNSC Cav-1 WT and iNSC Cav-1 KO NSPC  
149 using 1 hr pulse with EdU (5-ethynyl-2'-deoxyuridine). We found that the number of EdU+ cells  
150 was significantly lower in iNSC Cav-1 KO NSPC compared to iNSC Cav-1 WT NSPC (**Figure**  
151 **2N-O**). Interestingly, we observed that EdU fluorescence intensity, previously shown to correlate  
152 with length of S-phase <sup>42</sup>, was significantly higher in EdU+ cells in iNSC Cav-1 KO (**Figure 2P**),  
153 suggesting that Cav-1 may regulate cell cycle kinetics. Taken together, these findings show that  
154 Cav-1 deletion affects the extent of proliferation of hippocampal NSC in the DG.

155

156 **iNSC Cav-1 KO mice display increased differentiation of hippocampal NSPC**

157        Given that reduced proliferation of NSPC can influence levels of neurogenesis, we  
158    sought to determine whether Cav-1 deletion in NSPC leads to alterations in the formation of  
159    new granule neurons in the adult DG. At 3-months of age, the iNSC Cav-1 KO and iNSC Cav-1  
160    WT mice showed no significant changes in the number of neuroblasts or immature neurons in  
161    the DG (**Figure S1**). However, at 6 months of age the iNSC Cav-1 KO mice exhibited a  
162    significant increase in total number of DCX<sup>+</sup> NPCs, neuroblasts (DCX+NeuN-) and immature  
163    neurons (DCX+NeuN+) compared to iNSC Cav-1 WT mice (**Figure 3A-D**). The effect of Cav-1  
164    deletion on differentiation was also examined in hippocampal neurosphere cultures isolated  
165    from iNSC Cav-1 WT and iNSC Cav-1 KO mice as similarly described<sup>43,44</sup> (**Figure 3E**).  
166    Interestingly, Cav-1 transcript and protein expression were significantly decreased as iNSC  
167    Cav-1 WT NSPC underwent differentiation for 5-7 days (**Figure 3F, I, J**). The progression of  
168    differentiation was validated by reduced expression of nestin and Sox2 (**Figure 3G,I,K**) and  
169    increased expression of Map2 and β-III-tubulin (**Figure 3H,I,L**). In support of the observations in  
170    brain sections, the expression of Map2 and β-III-tubulin was significantly higher in differentiating  
171    NSPC iNSC Cav-1 KO, compared to WT (**Figure 3H,I,L**).

172        We next investigated whether Cav-1 deletion in NSPCs altered the early stages of  
173    differentiation leading to the increase in immature granule neurons we observed in iNSC Cav-1  
174    KO mice. We utilized a 5-bromo-2'-deoxyuridine (BrdU) pulse labeling paradigm where mice  
175    received a daily BrdU injection for 12-days and sacrificed 24 hr after the last injection (**Figure**  
176    **4A**). A trending reduction ( $p = 0.05$ ) in the total level of BrdU positive cells in the DG was  
177    observed in the iNSC Cav-1 KO mice compared to the iNSC Cav-1 WT mice (**Figure 4B,C**).  
178    Consistent with our proliferation analysis, BrdU<sup>+</sup> NSCs (GFAP<sup>+</sup>Sox2<sup>+</sup>) were significantly  
179    decreased in the iNSC Cav-1 KO mice compared to iNSC Cav-1 WT (**Figure 4D,E**). A trending  
180    decrease ( $p=0.07$ ) in the total number of BrdU<sup>+</sup> NPCs (GFAP<sup>+</sup>Sox2<sup>+</sup>) was also observed in the

181 iNSC Cav-1 KO compared to iNSC Cav-1 WT mice (**Figure 4F**). Notably, a significant increase  
182 in the ratio of BrdU retaining non-NSPCs (BrdU+GFAP<sup>-</sup>Sox2<sup>-</sup>) to total levels of BrdU was  
183 observed in the iNSC Cav-1 KO mice (**Figure 4G**). To examine if this enhanced proliferation is  
184 of neuroblasts, we examined co-expression of BrdU, DCX and NeuN (Figure 3H). There was no  
185 change in the number of BrdU+DCX<sup>+</sup>NeuN<sup>-</sup> NPC/neuroblasts (**Figure 4I**). Yet, the number of  
186 BrdU<sup>+</sup>DCX<sup>+</sup>NeuN<sup>+</sup> immature neurons was significantly increased in the iNSC Cav-1 KO mice  
187 compared to iNSC Cav-1 WT (**Figure 4J-K**). Taken together, this data confirms that Cav-1 is a  
188 negative regulator of neuron differentiation and Cav-1 loss drives adult hippocampal  
189 neurogenesis.

190

191 **Conditional deletion of Cav-1 in NSC improves context discrimination learning and**  
192 **memory**

193 Hippocampal neurogenesis is essential for the discrimination of similar contexts (pattern  
194 separation), where newborn granule neurons (4-6 weeks post-mitotic) become selectively  
195 activated during memory formation<sup>2,45,46</sup>. To test whether the increase in immature neurons in  
196 the iNSC Cav-1 KO mice results in improved learning and memory, iNSC Cav-1 KO and iNSC  
197 Cav-1 WT mice underwent a modified fear conditioning test<sup>47</sup> (**Figure 5A**). Both iNSC Cav-1 KO  
198 and iNSC Cav-1 WT mice displayed higher freezing levels in Context A (Cxt A) compared to  
199 Context B (Cxt B) at 30 mins post-shock (**Figure 5B**). No difference in the discrimination index  
200 between each group was observed at 30 mins post-shock on Day 2 (**Figure 5C**). Interestingly,  
201 the iNSC Cav-1 KO mice had a significantly higher level of freezing in Cxt A compared to Cxt B  
202 at 24 hr post-shock whereas the iNSC Cav-1 WT mice exhibited the equal amount of freezing in  
203 both Cxt A and Cxt B (**Figure 5D**). Analysis of the discrimination index revealed a trending  
204 increase in the iNSC Cav-1 KO mice compared to iNSC Cav-1 WT mice (**Figure 5E**),  
205 suggesting that enhanced generation of newborn neurons in the iNSC Cav-1 KO mice improved  
206 neurogenesis-dependent learning and memory.

207 We then examined whether the iNSC Cav-1 KO mice displayed enhanced context  
208 generalization compared to the iNSC Cav-1 WT mice 24 hr post-shock. Studies show that  
209 significant alterations in context geometry are sufficient to induce generalization behavior<sup>48,49</sup>  
210 and that newborn granule neurons in the hippocampus are found to maintain generalization  
211 behavior<sup>50</sup>. iNSC Cav-1 KO and iNSC Cav-1 WT mice underwent the same context  
212 discrimination paradigm at 6 months of age except Cxt B was exchanged for Context C (Cxt C)  
213 in which the geometry had been changed from a square to a circle and the floor covered with a  
214 plastic sheet (**Figure 5F**). Interestingly on Day 2, iNSC Cav-1 WT mice were unable to  
215 discriminate Cxt A from Cxt C 30 min post-shock whereas iNSC Cav-1 KO mice had a  
216 significantly higher level of freezing in Cxt A compared to Cxt C with a trending significant  
217 discrimination index (**Figure 5G-H**). On Day 3, both groups of mice were able to equally  
218 discriminate Cxt A from Cxt C 24 hr post-shock with no difference in the discrimination ratio  
219 (**Figure 5I-J**). No differences in level of anxiety-like behavior (**Figure S2A-D**) nor performance  
220 in the spatial novel object location (NOL) task (**Figure S2E-G**) were observed between the iNSC  
221 Cav-1 KO and iNSC Cav-1 WT mice. These findings suggest that Cav-1 deletion in NSPCs  
222 results in an increase in the number of immature neurons, which in turn, leads to improved  
223 neurogenesis-dependent context discrimination.

224

225 **Proteomic analysis indicates that Cav-1 regulates mitochondrial and cellular metabolism**  
226 **pathways in hippocampal NSPCs**

227 Building on our findings that Cav-1 deletion in NSPCs enhances hippocampal  
228 neurogenesis, we hypothesized that Cav-1 regulates pathways involved cell cycle and  
229 differentiation in NSPCs. We used quantitative proteomics to assess the molecular mechanisms  
230 by which Cav-1 regulates neurogenesis (**Figure 6A**). A total of 4730 proteins were identified in  
231 the iNSC Cav-1 KO and iNSC Cav-1 WT NSPC with 326 proteins identified as differentially  
232 expressed (DEP) (**Figure 6B, Table S1, ANOVA, p < 0.05**). Of the 326 DEPs, 228 proteins

233 were downregulated, and 98 proteins were upregulated in the iNSC Cav-1 KO NSPCs  
234 compared to WT NSPCs. Next, we performed functional enrichment analysis of DEPs using  
235 Ingenuity Pathway Analysis (IPA) and Gene Ontology (GO) pathway and cluster mapping.  
236 Interestingly, the top 4 significantly altered IPA pathways included Mitochondrial Dysfunction,  
237 TCA Cycle II (Eukaryotic), Superpathway of Cholesterol Biosynthesis, and Oxidative  
238 Phosphorylation (**Figure 6C, Table S2**). GO analysis revealed significantly altered pathways  
239 related to the ATP biosynthesis, electron transport chain (ETC), mitochondria and ribosome  
240 subunits and lipid oxidation (**Figure 6D, Table S3**).

241 To further investigate the role of Cav-1 in regulating mitochondria proteins, we compared  
242 the DEPs to the MitoCarta3.0 gene dataset<sup>51</sup>. MitoCarta3.0 is a curated inventory based on  
243 genomic data, mass spectrometry, and microscopy data of 1140 mouse genes localized to  
244 mitochondria. We identified 84 of the 326 DEPs (24% of total DEP) in the MitoCarta 3.0 gene  
245 dataset (**Figure 6E**). We found that proteins involved in mitochondrial DNA (mtDNA)  
246 maintenance, mitochondrial RNA (mtRNA) and translation pathways were downregulated in the  
247 iNSC Cav-1 KO NSPCs compared to Cav-1 WT (**Figure 6F,G, Table S4**). Similarly, proteins  
248 involved in mitochondria protein import, sorting and homeostasis, and signaling and molecule  
249 transport were downregulated in the iNSC Cav-1 KO compared to iNSC Cav-1 WT NSPC  
250 (**Figure 6E,F, Table S4**). Several DEPs categorized in metabolism pathways including  
251 glycolysis, TCA, OXPHOS, carbohydrate, lipid, nucleotide, amino acid, vitamin, and metal  
252 metabolism pathways were also downregulated in the iNSC Cav-1 KO NSPCs compared to  
253 iNSC Cav-1 WT NSPCs (**Figure 6F,G, Table S4**). Noticeably, we found that mitochondrial  
254 dynamics and surveillance associated proteins including Metaxin-2 (MTX2) and Voltage-  
255 dependent Anion-selective Channel (Vdac1) were downregulated, whereas Mitochondrial Rho  
256 GTPase 2 (Rhot2, also called Miro2) was significantly enriched in the iNSC Cav-1 KO NSPCs  
257 compared to iNSC Cav-1 WT NSPCs (**Figure 6E,G, Table S4**). Miro2 interacts with mitofusion-  
258 2 (Mfn-2) to coordinate fission/fusion events<sup>52</sup> and in neurons, Miro2 is required for retrograde

259 trafficking of mitochondria<sup>53,54</sup>. Taken together, our proteomic findings show that Cav-1 may play  
260 a role in pathways involved in mitochondria homeostasis, metabolism, and dynamics in  
261 hippocampal NSPC.

262

263 Next, to validate the proteomics data and establish the specific signals regulated by Cav-  
264 1, we examined the expression of glycolytic and TCA cycle proteins including lactate  
265 dehydrogenase (LDHA), hexokinase 2 (HK2), pyruvate dehydrogenase (PDH), and aconitase 2  
266 (ACO2) in hippocampal NSPC isolated from iNSC Cav-1 KO and iNSC Cav-1 WT mice using  
267 Western blot analysis. Expression levels of LDHA, HK2, PDH were comparable in NSPCs  
268 isolated from iNSC Cav-1 KO compared to iNSC Cav-1 WT mice (**Figure S3A-F**). However,  
269 expression of ACO2 was significantly decreased in hippocampal NSPC lacking Cav-1  
270 expression. Next, we examined oxidative phosphorylation in NSPC extracts using a total  
271 OXPHOS antibody cocktail that detects proteins in Complex I (CI-NDUF8a), Complex II (CII-  
272 SDHB), Complex III (CIII-UQCR2), Complex IV (CIV-MTCO) and Complex V (CV-ATP5a)  
273 (**Figure S3G**). iNSC Cav-1 KO NSPCs showed significant reductions in CIII-UQCR2 and CIV-  
274 MTCO1 compared to iNSC Cav-1 WT NSPCs (**Figure S3H**). No significant changes in CII-  
275 SDHB were found, however, a trending upregulation ( $p = 0.05$ ) of CV-ATP5a expression was  
276 detected in iNSC Cav-1 KO NSPCs compared to iNSC Cav-1 WT NSPCs (**Figure S3I-K**).  
277 Interestingly, expression of CI-NDUF8a was not detected in NSPCs isolated from either iNSC  
278 Cav-1 KO or iNSC Cav-1 WT mice. Furthermore, using the Agilent Seahorse Real-Time ATP  
279 Rate Assay we measured changes in glycolysis and mitochondrial (oxidative phosphorylation)  
280 ATP production (**Figure S3L-M**). Extracellular acidification (ECAR) and basal oxygen  
281 consumption rate (OCR) (**Figure S3L-O**), as well as glycolysis and mitochondrial ATP  
282 production (**Figure S3M**) were comparable in iNSC Cav-1 KO and iNSC Cav-1 WT NSPCs.  
283 Next, we examined the expression of mitochondrial dynamics and surveillance including Drp-1,  
284 the primary regulator of fission, and mfn-2, a main regulator of fusion in the iNSC Cav-1 KO and

285 iNSC Cav-1 WT NSPCs via immunoblotting (**Figure S4A-D**). We observed a significant  
286 increase in Drp-1 expression, yet no alterations in Mfn-2 expression in the iNSC Cav-1 KO  
287 NSPCs compared to WT (**Figure S4C,D**). Expression levels of Miro2 and VDAC1 were also  
288 assessed as these proteins function in mitochondria calcium signaling and trafficking, which are  
289 necessary for mitochondria homeostasis and balanced fission and fusion<sup>55</sup>. A trending increase  
290 was observed in Miro2 expression in the iNSC Cav-1 KO cells where no differences in VDAC  
291 expression was found (**Figure S4E,F**). Together this data suggests that Cav-1 is a critical  
292 regulator of proteins involved in mitochondrial fission/fusion dynamics in hippocampal NSPCs.

293

#### 294 **Cav-1 regulates mitochondrial morphology in hippocampal NSPC**

295 In hippocampal neurogenesis, changes in mitochondrial morphology and dynamics have been  
296 found to govern self-renewal and cell fate<sup>56</sup>. To begin investigating the role of Cav-1 in  
297 mitochondrial morphology and dynamics in NSPCs, we first examined the co-localization of  
298 Cav-1 to mitochondria. Caveolae and caveolin-1 were previously shown to localize to the outer  
299 membrane of mitochondria<sup>57,58</sup>. We show that Cav-1 co-localizes with Mitochondrial import  
300 receptor subunit TOM20 homolog (Tom-20), a translocase located on the mitochondrial outer  
301 membrane mitochondria, in WT hippocampal NSPCs by utilizing 3D confocal microscopy (**Figure**  
302 **7A**). The average Mander's Correlation Coefficient between Cav-1 and Tom-20 was 0.2513  
303 implying that ~25% of the Cav-1 fluorescence signal overlaps with Tom-20 (**Figure 7A**). In light  
304 of this result, we examined Cav-1 protein expression in isolated mitochondrial membranes from  
305 WT hippocampal NSPCs (**Figure 7B**). The majority of Cav-1 expression was observed in the  
306 mitochondrial fraction (**Figure 7B**). Interestingly, the majority of Drp-1 was found in the cytosolic  
307 rather than the mitochondrial fraction (**Figure 7B**). The mitochondrial and cytosol enriched  
308 fractions were confirmed by Tom-20 and Drp-1. Drp-1 and Mfn-2 are recruited to the outer  
309 membrane of the mitochondria to induce morphological changes and movement by alteration of  
310 fission-fusion events through contact sites between mitochondria, the endoplasmic reticulum,

311 and the cytoplasm<sup>59</sup>. Taken together with the observation that total levels of Drp-1 were  
312 increased in protein lysates of iNSC Cav-1KO compared to WT (**Figure S4**), we asked whether  
313 Drp-1 and Mfn-2 have altered recruitment to the mitochondria in hippocampal NSPCs lacking  
314 Cav-1 expression. Mitochondria and cytosol enriched fractions were isolated from iNSC Cav-1  
315 KO and iNSC Cav-1 WT NSPCs (**Figure 7C**). iNSC Cav-1 KO NSPCs had elevated Drp-1  
316 expression in the cytosol fraction and reduced Drp-1 expression in the mitochondrial fraction  
317 compared to WT (**Figure 7D,E**). In contrast, iNSC Cav-1 KO cells had reduced Mfn-2  
318 expression in the cytosol fraction and elevated expression in the mitochondria fraction compared  
319 to WT (**Figure 7B-E**). In light of these results, we examined whether Cav-1 deletion in  
320 hippocampal NSPCs alters mitochondrial morphology by ultrastructural electron microscopy.  
321 We show that the number of mitochondria per cell imaged was significantly reduced in the iNSC  
322 Cav-1 KO NSPC compared to iNSC Cav-1 WT NSPC yet, the mitochondrial area and perimeter  
323 was significantly increased in the iNSC Cav-1 KO NSPCs (**Figure 7F, S5A-C**). A reduction in a  
324 circularity was also observed in the iNSC Cav-1 KO NSPCs (**Figure S5D**), which is indicative of  
325 elliptical shape compared to the iNSC Cav-1 WT NSPC. To further build on our findings, live cell  
326 imaging with the fluorescent dye tetramethyl rhodamine methylester (TMRM) was utilized to  
327 observe mitochondrial morphology, membrane potential and velocity in live NSPCs (**Figure 7G**).  
328 Similar to our ultrastructural findings, mitochondria in iNSC Cav-1 KO NSPC exhibited a  
329 significant increase in area (**Figure 7H**), perimeter per cell (**Figure 7I**) and elliptical shape  
330 (**Figure 7J**) compared to the iNSC Cav-1 WT NSPCs. Further, mitochondria in the iNSC Cav-1  
331 KO NSPC had an increase in branch length compared to WT NSPCs (**Figure 7K**). iNSC Cav-1  
332 KO NSPCs exhibited higher levels of TMRM fluorescence intensity suggesting a higher,  
333 hyperpolarized, mitochondrial membrane potential compared to WT NSPCs (**Figure 7L**). Time-  
334 lapse imaging of mitochondria was analyzed using the Trackmate plugin in ImageJ<sup>60</sup> (**Figure**  
335 **7M, Video S1, Video S2**). Mitochondria in the iNSC Cav-1 KO NSPC had a significant increase  
336 in velocity and total distance traveled compared to iNSC Cav-1 WT NSPCs (**Figure 7N,O**).

337 Taken together with previous reports that mitochondrial fusion takes place during neuronal  
338 differentiation<sup>61</sup>, our results suggest that the deletion of Cav-1 in NSPCs facilitates neuronal  
339 differentiation by inducing mitochondrial fusion.

340

341

342

### 343 **Discussion**

344 This study revealed several significant observations. First, we observed that Cav-1 is  
345 expressed in hippocampal NSPCs. Levels of Cav-1 correlated with nestin expression and were  
346 downregulated upon neuronal differentiation. Second, we showed evidence that Cav-1 has a  
347 cell-autonomous role in regulating NSPC differentiation in the adult DG. Cav-1 deletion in  
348 NSPCs resulted in reduced number of proliferating NSPCs and enhanced number of  
349 neuroblasts and immature neurons in the DG, which is suggestive that Cav-1 expression in  
350 NSPCs negatively regulates differentiation. This finding was further supported by increased  
351 expression of Map2 and β-III-tubulin in differentiating iNSC Cav-1 KO NSPCs compared to WT.  
352 The increase in number of immature neurons was manifested as improved context  
353 discrimination performance. Third, we showed that Cav-1 regulates mitochondrial protein  
354 networks in NSPCs. Additionally, we observed that deletion of Cav-1 in NSPCs resulted in  
355 elongated mitochondria, suggesting enhanced fusion, as well as increased mitochondria  
356 velocity and distance traveled. In support of enhanced fusion, we observe that deletion of Cav-1  
357 led to increased Mfn-2 in mitochondria isolated from NSPCs. Our results suggest that Cav-1  
358 plays a role in the recruitment of Drp-1 and Mfn-2 to the mitochondria, providing evidence that  
359 Cav-1 may be a key determinate of mitochondrial dynamics in hippocampal NSPCs.

360 The balance of quiescence, proliferation, and differentiation of NSCs is essential for the  
361 maintenance of hippocampal neurogenesis. NSCs integrate a variety of extrinsic and intrinsic  
362 signals to determine cell fate and lineage<sup>62</sup>. Cav-1 is enriched in endothelial cells, and thus, may

363 have a non-cell autonomous role in regulation of hippocampal neurogenesis. Our studies show  
364 that Cav-1 acts as an intrinsic signal regulating the differentiation of NSPCs in the DG. The  
365 transition of NSC from quiescence to proliferation (activation) or vice versa, is closely linked to  
366 the G<sub>0</sub>-G<sub>1</sub>-S checkpoints of the cell cycle<sup>63</sup>. In fibroblasts, studies show that expression of Cav-1  
367 induces arrest at the G<sub>0</sub>-G<sub>1</sub> phase and inhibits proliferation through p53/p21-dependent  
368 signaling<sup>64</sup>. In contrast, cancer studies reveal that Cav-1 depletion causes G<sub>0</sub>-G<sub>1</sub> cell cycle arrest  
369 and impaired proliferation<sup>65</sup>. Cav-1 function in hematopoietic stem cells also regulates cell cycle  
370 progression at the G<sub>2</sub>-M phase and deletion impairs quiescence and differentiation<sup>66</sup>. Our  
371 observations showed that the deletion of Cav-1 resulted in reduced number of BrdU+ NSPCs,  
372 while it increased the number of BrdU+ immature neurons. This could be the result of a few  
373 mechanisms, including an elongated S phase or reduced division events per cell. Our *in vitro*  
374 studies showing a reduction in the number of EdU positive cells, but a higher signal intensity in  
375 iNSC Cav-1KO support these options. In addition, the increase in BrdU+ committed cells may  
376 suggest a faster exit from the cell cycle. Our studies show that the quiescent NSC pool is  
377 preserved in the iNSC Cav-1 KO mouse at 6 months of age. While Cav-1 deletion causes a  
378 decrease in the number of proliferating NSCs, the total number of NSCs is comparable between  
379 the iNSC Cav-1 KO or WT. This phenotype has also been documented in studies ablating  
380 BMPRII receptors in NSC where the rate of immature neuron generation is increased but no  
381 alterations in the NSC pool were observed<sup>67</sup>. That said, we cannot exclude the possibility that  
382 with time the NSC pool becomes exhausted. Additional studies are warranted to examine the  
383 effect of Cav-1 deletion in NSC on cell cycle progression as well as the transition between  
384 quiescent to proliferative NSCs.

385 Augmentation of neurogenesis improves context discrimination<sup>2</sup>. Thus, we examined  
386 whether the increase in number of immature neurons in iNSC Cav-1 KO mice improved learning  
387 and memory. We observed that the iNSC Cav-1 KO mice exhibit enhanced discrimination when  
388 contexts are similar but preformed equally to WT mice in spatial recognition memory and

389 context generalization. These results support the notion that increased neurogenesis improves  
390 neurogenesis-dependent contextual discrimination<sup>68</sup>.

391       Recent studies suggest that changes in mitochondrial morphology impact stem cell  
392 identity and cell fate, and that mitochondrial fusion drives neuronal differentiation<sup>56,61,69</sup>. NSC in  
393 the adult DG exhibit fragmented and globular mitochondria that become more elongated as cells  
394 progress into committed NPCs and immature neurons<sup>70</sup>. *In vivo* and *in vitro* studies show that  
395 when NSPC differentiate into neurons a metabolic switch occurs from glycolysis to  
396 OXPHOS<sup>70,71</sup>. Fragmented morphology is often exhibited when cells utilize glycolysis for ATP  
397 generation whereas elongated mitochondria signify OXPHOS dependence and the electron  
398 transport chain<sup>69</sup>. We observed that NSPC lacking Cav-1 have elongated mitochondria and  
399 increased mitochondria membrane potential compared to controls which is suggestive of a  
400 neuronal phenotype. However, our findings did not show a robust downregulation of glycolytic  
401 proteins LDHA and HK2 or upregulation of OXPHOS proteins. This result could be the result of  
402 the asynchronous nature of cultures grown in proliferative media lacking factors for bulk  
403 neuronal induction. Future experiments should address mitochondria morphology, glycolysis  
404 rate and ATP rate in both NSPC lacking Cav-1 and WT under differentiation conditions.  
405 Additionally, less is known about the metabolic profile and mitochondrial dynamics of quiescent  
406 or non-dividing NSPCs. Protocols inducing quiescence in primary hippocampal NSPCs have  
407 been developed<sup>72</sup> warranting the evaluation of Cav-1 in the regulation of metabolism and  
408 morphology in various stages of cell fate. Intriguingly, elongation of mitochondria observed in  
409 iNSC Cav-1KO NSPCs coincided with upregulated translocation of Mfn-2 to the mitochondria,  
410 while the majority of Drp-1 that facilitates fission was found in the cytosol. Taken together, this  
411 suggests that loss of Cav-1 in NSPCs facilitates mitochondrial fusion. Our results are in  
412 agreement with another study that shows that downregulation of Cav-1 inhibits Drp-1 function  
413 by increasing phosphorylation at Ser637 and thus, promoting mitochondrial fusion<sup>73</sup>. We  
414 observed that Drp-1 was significantly upregulated in the cytosol of iNSC Cav-1 KO NSPC yet no

415 changes in Drp-1 mitochondrial localization were observed compared to control NSPCs.  
416 Upregulation of Drp-1 expression has been observed during neuronal differentiation<sup>74</sup> but it is  
417 undetermined if this is a result of Cav-1 downregulation or if this alteration impairs Drp-1  
418 function to regulate mitochondrial morphology. A recent study shows that Cav-1 is a negative  
419 regulator of mitochondria endoplasmic reticulum remodeling leading to interference of Drp1  
420 phosphorylation and cellular distribution<sup>75</sup>. It is unknown whether Cav-1 deletion in hippocampal  
421 NSPCs alters phosphorylation dependent activation or inhibition of Drp-1 or interactions with  
422 other fission/fusion related proteins such as mitochondrial fission factor (Mff) or mitochondrial  
423 fission protein 1 (Fis1). Future studies should examine these proteins in iNSC Cav-1 KO and  
424 iNSC Cav-1 WT NSPCs as well as determine whether rescue of Cav-1 restores Drp-1 signaling  
425 and balance of mitochondria dynamics.

426 In conclusion, this study shows that Cav-1 is a novel autonomous regulator of adult  
427 hippocampal neurogenesis that resides in the outer membrane of mitochondria where it  
428 regulates morphology and dynamics.

429

### 430 **Acknowledgments**

431 We thank Dr. Trongha Phan for his expertise and guidance on behavioral experiments  
432 and scientific discussion. We thank Dr. Pavan Kumar, Dr. Muskan Gupta, Abhi Ramakrishnan,  
433 Stephanie Dunning for help with animal husbandry, genotyping, and IP injections. We thank  
434 Karen Rakowiecki for assistance with cell culture experiments. We thank Dr. Christian Peters  
435 and Shana Netherton for use of Elevated Plus Maze equipment. We thank Dr. Ying Jiang for  
436 expertise and guidance on the mitochondrial assays. We also thank Dr. Peter Toth and Dr. Ke  
437 Ma at the UIC Fluorescence Imaging Core for guidance on microscopy imaging, Figen Seiler at  
438 the UIC Electron Microscopy Core for TEM imaging, and Dr. Balaji Ganesh at the UIC Flow  
439 Cytometry Core for assistance with the Mitochondria Seahorse Assay. Graphical abstract,  
440 Figure 2A, 3A, and 4E were created Biorender.com. This work was financially supported by

441 National Institutes of Health, National Institution on Aging (NIA) F30AG071144 (TKLS),  
442 T32AG067468, AG033570, AG076940, AG062251, AG060238 (OL),  
443 NINDS/NIA:R01NS114413 (SMC) and Together Strong NPC Foundation (SMC).

444

445 **Author Contributions**

446 TKLS performed the experiments, analyzed the data and wrote the manuscript. LA, EQ,  
447 YI, KO, EQ, JM and WL assisted with data collection and analysis. AS and JB assisted with the  
448 design of the studies and generation of the mouse models used. RDM and SMC assisted with  
449 the data analysis, interpretation, and revision of the manuscript. OL supervised the project,  
450 assisted with the data analysis, interpretation and revised the manuscript. All authors  
451 contributed to the review of the manuscript.

452

453 **Declarations of Interests**

454 The authors declare no conflict of interests.

455

456 **Figure Titles and Legends**

457 **Figure 1. Characterization of Cav-1 expression in adult hippocampal NSPC.**

458 (A) Expression of Cav-1 in WT hippocampal NSPC shown by confocal imaging of Cav-1  
459 (green), Nestin (red), and DAPI (blue). Scale bar, 20  $\mu$ m.  
460 (B-C) Correlation plot of Cav-1 fluorescence intensity per cell by nestin signal intensity per cell  
461 (B) and nestin area per cell (C). Each dot represents the fluorescence intensity of an individual  
462 cell analyzed from WT mice (n=26 cells).

463 (D) Schematic of NestinCre<sup>ERT2/+</sup>;Cav-1<sup>fl/fl</sup> mice, where mice were injected at 4-5 weeks of age  
464 with either corn oil (Corn) or tamoxifen (TAM) for 5 consecutive days to generate control mice  
465 (iNSC Cav-1 WT) and Cav-1 knockout mice (iNSC Cav-1 KO), respectively.

466 (E) RT-qPCR quantification of Cav-1 transcript expression from NSPC isolated from the iNSC  
467 Cav-1 KO and iNSC Cav-1 WT mice.  
468 (F-G) Cav-1 immunoblot and quantification normalized to  $\beta$ -actin of protein lysate from NSPC  
469 isolated from the iNSC Cav-1 KO and iNSC Cav-1 WT mice.  
470 (H) Immunocytochemistry of Cav-1 and confocal imaging of Cav-1 (green) and DAPI (blue) in  
471 hippocampal NSPC isolated from iNSC Cav-1 WT and iNSC Cav-1 KO mice shown. Scale bar,  
472 20  $\mu$ m.  
473 (I) Ultrastructural electron micrographs of caveolae and clathrin coated vesicles in hippocampal  
474 NSPC isolated from iNSC Cav-1 WT and iNSC Cav-1 KO mice. Solid green arrowhead indicate  
475 caveolae. Open green arrowhead indicate clathrin coated vesicle. Scale bar, 200 nm.  
476 Data represented as mean  $\pm$  SEM. Data analyzed by Spearman Correlation Analysis (B-C) \*\*p  
477  $< 0.01$  and unpaired two-tailed Student's t-test (D-G). \*\*p  $< 0.01$ , \*\*\*\*p  $< 0.0001$ .  
478

479 **Figure 2. iNSC Cav-1 KO mice have reduced levels of proliferating NSC in the dentate  
480 gyrus.**

481 (A) Strategy to quantify NSC populations in dentate gyrus (DG) of iNSC Cav-1 WT and iNSC  
482 Cav-1 KO mice at 3 and 6 months of age.  
483 (B) Representative confocal images of GFAP (white), Nestin (red), MCM2 (green) and DAPI  
484 (blue) markers in the DG of iNSC Cav-1 WT and iNSC Cav-1 KO mice at 3 months of age.  
485 Yellow arrowheads indicate GFAP $^+$ Nestin $^+$ MCM2 $^+$  cells. Scale bar, 25  $\mu$ m.  
486 (C-E) Quantification of total NSC (GFAP $^+$ Nestin $^+$ ), quiescent NSC (GFAP $^+$ Nestin $^+$ MCM2 $^-$ ) and  
487 proliferating NSC (GFAP $^+$ Nestin $^+$ MCM2 $^+$ ) in the DG of iNSC Cav-1 WT and iNSC Cav-1 KO  
488 mice at 3 months of age. n=5 mice per group.  
489 (F) Representative confocal images of GFAP (white), Nestin (red), MCM2 (green) and DAPI  
490 (blue) positive cells in the DG of iNSC Cav-1 WT and iNSC Cav-1 KO mice at 3 months of age.  
491 Yellow arrowheads indicate GFAP $^+$ Nestin $^+$ MCM2 $^+$  cells. Scale bar, 25  $\mu$ m.

492 (G-I) Quantification of total NSC (GFAP<sup>+</sup>Nestin<sup>+</sup>), quiescent NSC (GFAP<sup>+</sup>Nestin<sup>+</sup>MCM2<sup>-</sup>) and  
493 proliferating NSC (GFAP<sup>+</sup>Nestin<sup>+</sup>MCM2<sup>+</sup>) in the DG of iNSC Cav-1 WT and iNSC Cav-1 KO  
494 mice at 6 months of age. n=5 mice per group.

495 (J-M) Clonogenic proliferation assay in NSPC isolated from iNSC Cav-1 WT and iNSC Cav-1  
496 KO mice. The number of clones (neurospheres) (L), average clone diameter (M) and number of  
497 cells after dissociation of clones (N) on day 5 of the assay were quantified per well. Scale bar,  
498 100  $\mu$ m.

499 (N-P) EdU uptake assay in NSPC isolated from iNSC Cav-1 WT and iNSC Cav-1 KO mice. (O)  
500 Quantification of the percentage of EdU+ cells to the total DAPI between NSPC isolated from  
501 iNSC Cav-1 WT and iNSC Cav-1 KO mice. (P) EdU fluorescence intensity per DAPI nuclei  
502 between NSPC isolated from iNSC Cav-1 WT and iNSC Cav-1 KO mice. Scale bar, 20  $\mu$ m.

503 Data represented as mean  $\pm$  SEM. Data analyzed by unpaired two-tailed Student's t-test. ns p>  
504 0.05, \*p< 0.05, \*\*p < 0.01, \*\*\*p < 0.001 \*\*\*\*p < 0.0001.

505

506 **Figure 3. Cav-1 regulates differentiation of hippocampal NSPCs.**

507 (A) Confocal images of DCX and NeuN immunostaining in the DG of iNSC Cav-1 WT and iNSC  
508 Cav-1 KO mice at 6 months of age. Scale bar, 25  $\mu$ m.

509 (B-D) Quantification of NPCs and neuroblasts (DCX<sup>+</sup>NeuN<sup>-</sup>) and immature neurons  
510 (DCX+NeuN+) and total DCX expressing cells in the DG of iNSC Cav-1 WT and iNSC Cav-1  
511 KO mice. n=4 mice per group.

512 (E) Schematic representation of the protocol used for neural differentiation of primary  
513 hippocampal NSPCs.

514 (F-H) Quantification of Cav-1, Nestin, and MAP2 transcript expression by RT-qPCR between  
515 iNSC Cav-1 WT and iNSC Cav-1 KO NSPCs undergoing differentiation for 5 days. Expression  
516 level normalized to d0 of iNSC Cav-1 WT NSPC (n=3 replicates).

517 (I) Immunoblot of Cav-1, Sox2 and  $\beta$ -III-Tubulin in NSPC isolated from iNSC Cav-1 KO and  
518 iNSC Cav-1 WT mice undergoing differentiation for 7 days.

519 (J-L) Quantification of Cav-1, Sox2 and  $\beta$ -III-Tubulin normalized to GAPDH expression and then  
520 normalized to d0 iNSC Cav-1 WT NSPC (n=3 replicates).

521 Data represented as mean  $\pm$  SEM. Data analyzed by unpaired two-tailed Student's t-test (B-D)  
522 and two-way ANOVA with Tukey multiple comparisons correction (F-G and J-L). ns p > 0.05, \*p  
523 < 0.05, \*\*p < 0.01, \*\*\*p < 0.001, and \*\*\*\*p < 0.0001.

524

525 **Figure 4. Deletion of Cav-1 in NSC causes premature differentiation of newborn neurons  
526 in the dentate gyrus.**

527 (A) 5-bromo-2'-deoxyuridine (BrdU) pulse strategy to quantify changes in NSC fate and  
528 differentiation in DG of iNSC Cav-1 WT and iNSC Cav-1 KO mice at 6 months of age. Mice  
529 were injected daily for 12 consecutive days and sacrificed 24 hr after the last injection.

530 (B-C) Confocal images of BrdU immunostaining and quantification total number of BrdU<sup>+</sup> cells in  
531 the DG of 6-month-old iNSC Cav-1 KO and iNSC Cav-1 WT mice. Scale bar, 25  $\mu$ m. n=4 mice  
532 per group.

533 (D) Representative confocal images of BrdU (red), Sox2 (white), GFAP (green) and DAPI (blue)  
534 markers in the DG of iNSC Cav-1 WT and iNSC Cav-1 KO mice at 6 months of age. Solid  
535 yellow arrowheads indicate BrdU<sup>+</sup>GFAP<sup>+</sup>Sox2<sup>+</sup> cells. Outlined yellow arrowheads indicate  
536 BrdU<sup>+</sup>GFAP<sup>-</sup>Sox2<sup>-</sup> cells. Scale bar, 25  $\mu$ m.

537 (E-G) Quantification of total BrdU<sup>+</sup> NSCs (GFAP<sup>+</sup>Sox2<sup>+</sup>), BrdU<sup>+</sup> NPCs (GFAP<sup>+</sup>Sox2<sup>-</sup>) and  
538 percentage of BrdU<sup>+</sup> cell phenotypes normalized to total number of BrdU<sup>+</sup> cells in the DG of  
539 iNSC Cav-1 WT and iNSC Cav-1 KO mice. n=4 mice per group.

540 (H) Representative confocal images of BrdU (white), DCX (Green), NeuN (red) and DAPI (blue)  
541 markers in the DG of iNSC Cav-1 WT and iNSC Cav-1 KO mice at 6 months of age. Outlined  
542 yellow arrowheads indicate BrdU<sup>+</sup>DCX<sup>+</sup>NeuN<sup>+</sup> cells. Scale bar, 25  $\mu$ m.

543 (I-K) Quantification of BrdU<sup>+</sup> DCX expressing NPCs and neuroblasts (DCX<sup>+</sup>NeuN<sup>-</sup>), immature  
544 neurons (DCX<sup>+</sup>NeuN<sup>+</sup>), and percentage of BrdU<sup>+</sup> immature neurons (DCX<sup>+</sup>NeuN<sup>+</sup>) normalized  
545 to total number of BrdU<sup>+</sup> cells in the DG of iNSC Cav-1 WT and iNSC Cav-1 KO mice. n=4 mice  
546 per group.

547 Data represented as mean  $\pm$  SEM. Data analyzed by unpaired two-tailed Student's t-test,  
548 except (G) which was analyzed by two-way ANOVA with Tukey multiple comparisons  
549 correction. ns p > 0.05, \*p < 0.05, and \*\*p < 0.01.

550

551 **Figure 5. iNSC Cav-1 KO mice display enhanced contextual discrimination learning and**  
552 **memory.**

553 (A) Schematic of contextual fear discrimination paradigm between Context A and B. See  
554 Materials and methods for details.

555 (B-C) Quantification of percent freeze (30 min post-shock) and discrimination index in context A  
556 and B on Day 2 between the NSC Cav-1 WT and iNSC Cav-1 KO mice. n=12 per genotype.

557 (D-E) Quantification of percent freeze (24 hr post-shock) and discrimination index in context A  
558 and B on Day 3 between the NSC Cav-1 WT and iNSC Cav-1 KO mice. n=12 per genotype.

559 (F) Schematic of contextual fear generalization paradigm between Context A and C. See  
560 Materials and methods for details.

561 (G-H) Quantification of percent freeze (30 min post-shock) and discrimination index in context A  
562 and C on Day 2 between the NSC Cav-1 WT and iNSC Cav-1 KO mice. n=12 iNSC Cav-1 WT  
563 and n=8 iNSC Cav-1 KO.

564 (H-I) Quantification of percent freeze (24 hr post-shock) and discrimination index in context A  
565 and C on Day 3 between the NSC Cav-1 WT and iNSC Cav-1 KO mice. n=12 iNSC Cav-1 WT  
566 and n=8 iNSC Cav-1 KO.

567 Data represented as mean  $\pm$  SEM. Data analyzed in by two-way ANOVA with Tukey's multiple  
568 comparisons correction expect for data in C,E,H,J which was analyzed by unpaired two-tailed  
569 Student's t-test. ns p > 0.05, \*p < 0.05, \*\*p < 0.01 and \*\*\*p < 0.001.

570

571 **Figure 6. Expression of mitochondria and metabolism related proteins are altered in**  
572 **hippocampal NSPCs lacking Cav-1.**

573 (A) Schematic of proteomic workflow for hippocampal NSPCs isolated from iNSC Cav-1 KO  
574 and iNSC Cav-1 WT mice. See Materials and methods for details.

575 (B) Volcano plot of proteins identified in iNSC Cav-1 KO vs iNSC Cav-1 WT cells. Significantly  
576 upregulated proteins in red and significantly downregulated proteins in blue. Data represented  
577 as Log<sub>2</sub>FoldChange (FC) of mean abundance of proteins normalized to iNSC Cav-1 WT (n=3  
578 iNSC Cav-1 KO and n=3 iNSC Cav-1 WT). DEP determined by a one-way ANOVA with a p-  
579 value of < 0.05.

580 (C) Bar chart showing the top 10 Ingenuity Pathway Analysis (IPA) altered pathways in the  
581 iNSC Cav-1 KO compared to iNSC Cav-1 WT hippocampal NSPCs (ANOVA, p < 0.05).

582 (D) Cytoscape cluster mapping of altered GO pathways in hippocampal NSPCs isolated from  
583 iNSC Cav-1 KO and iNSC Cav-1 WT mice. Analysis based on Log<sub>2</sub>FC ratio of DEPs with a  
584 significant cut off value of p < 0.05.

585 (E) Weighted Venn diagram depicting overlap of DEP with genes encoding proteins localizing to  
586 mitochondria based on Mitocarta 3.0 curation<sup>51</sup>.

587 (F) Volcano plot and (G) Table of Mitocarta 3.0<sup>51</sup> proteins identified in iNSC Cav-1 KO vs iNSC  
588 Cav-1 WT cells. Metabolism related protein in orange; Protein Import, Sorting & Homeostasis in  
589 green; Signaling and Molecule Transport in blue, Mitochondria Central Dogma in purple; and  
590 Mitochondria Dynamics and Surveillance in pink.

591

592 **Figure 7. Cav-1 regulates mitochondrial morphology and dynamics in hippocampal  
593 NSPCs.**

594 (A) Representative confocal image of Caveolin-1 (Cav-1, Green), Mitochondrial import receptor  
595 subunit TOM20 homolog (Tom-20, green) and DAPI (blue) immunostaining in WT hippocampal  
596 NSPCs. Scale bar 10  $\mu$ m. Mander's Correlation Coefficient of co-localization of Cav-1 with Tom-  
597 20 determined with ImageJ.

598 (B) Immunoblot of Cav-1, Dynamin-related protein 1 (Drp-1) and Tom-20 in total cell lysate,  
599 cytosol fraction and mitochondrial enriched fraction of WT hippocampal NSPCs. Data  
600 represented as mean  $\pm$  SEM.

601 (C) Immunoblot of Drp-1, mitofusion-2 (Mfn-2) and Tom-20 in total cell lysate (TC), cytosol  
602 fraction (Cyto) and mitochondrial enriched fraction (Mito) of iNSC Cav-1 WT and iNSC Cav-1  
603 KO hippocampal NSPCs.

604 (D) Normalization of iNSC Cav-1 KO Drp-1 and Mfn-2 in cytosol enriched fraction to iNSC Cav-1  
605 WT expression.

606 (E) Normalization of iNSC Cav-1 KO Drp-1 and Mfn-2 expression in mitochondrial enriched  
607 fraction to iNSC Cav-1 WT expression. Data representative of n=1 T-75 flask of NSPC per  
608 genotype.

609 (F) Representative transmission electron microscopy (TEM) images of NSPCs isolated from  
610 iNSC Cav-1 KO and iNSC Cav-1 WT mice. Mitochondria are shaded in green; scale bar = 1  $\mu$ m  
611 with zoomed image scale bar = 500 nm.

612 (G) Representative live-cell images of TMRM staining in NSPCs isolated from iNSC Cav-1 KO  
613 and iNSC Cav-1 WT mice. NSPCs were incubated with 50 nM TMRM for 30 min followed by  
614 confocal microscopy visualization. Mitochondria were skeletonized in ImageJ. Scale bar, 10  $\mu$ m.

615 (H-J) Quantification of mitochondria area per cell, mitochondria perimeter per cell, and circularity  
616 per cell in iNSC Cav-1 WT and iNSC Cav-1 KO NSCPs. N=25 cells per group.

617 (K) Quantification of skeletonized mitochondria branch length per mitochondria in iNSC Cav-1  
618 WT and iNSC Cav-1 KO NSCPs. N=25 cells per group.

619 (L) Quantification of TMRM fluorescence in iNSC Cav-1 WT and iNSC Cav-1 KO NSPC. N=25  
620 cells per group.

621 (M) Representative images of mitochondria trafficking per minute using Trackmate<sup>60</sup> in iNSC  
622 Cav-1 WT and iNSC Cav-1 KO NSPCs. Scale bar 10  $\mu$ m.

623 (N) Quantification of mitochondria velocity. n=10 cells per genotype with n=948 particles  
624 (mitochondria) for iNSC Cav-1 WT and n=1259 particles (mitochondria) for iNSC Cav-1 KO  
625 analyzed.

626 (O) Quantification of mitochondria total distanced traveled. n=10 cells per genotype with n=948  
627 particles (mitochondria) for iNSC Cav-1 WT and n=1259 particles (mitochondria) for iNSC Cav-1  
628 KO analyzed.

629 Data represented as mean  $\pm$  SEM. Data analyzed in by unpaired two-tailed Student's t-test  
630 except in (N,O) was analyzed by two-way ANOVA with Tukey's multiple comparisons correction.  
631 ns p > 0.05, \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001 and \*\*\*\*p < 0.0001.

632

## 633 **Methods**

### 634 **Mouse Models**

635 All mouse experiments were approved by the University of Illinois at Chicago Institutional  
636 Animal Care and Use Committee. Mice were housed on a 12-hour light/dark cycle and provided  
637 food and water ad libitum. C57Bl/6J wildtype (WT) and global Cav-1 knockout (gCav-1 KO)  
638 used in experiments were from Jackson Laboratories (Strain #:000664 and Strain #: 007083,  
639 respectively). Inducible NSPC specific-Cav-1 knockout mice (NestinCre<sup>ERT2/+</sup>;Cav-1<sup>f/f</sup>) were  
640 generated by crossing NestinCre<sup>ERT2/+</sup> mice <sup>2,13</sup> with Cav-1<sup>f/f</sup> mice <sup>40,41</sup>. The NestinCre<sup>ERT2/+</sup>  
641 transgene was maintained as hemizygous and the Cav-1<sup>f/f</sup> homozygous. Male mice were used  
642 in experiments unless otherwise stated in text.

643

644 **Tamoxifen Injections**

645 Tamoxifen (TAM, Sigma-Aldrich) was dissolved in corn oil (Sigma-Aldrich) at 20 mg/mL  
646 at 37°C and then stored at 4°C for 5 days. To induce recombination, 4–5-week-old mice were  
647 intraperitoneally injected at a dose of 130 mg/kg TAM or equal volume of corn oil once a day for  
648 5 consecutive days.

649

650 **NSPC Isolation and Culture**

651 Primary hippocampal NSPCs were isolated from 6–8-week-old mice similarly as  
652 described <sup>43,76</sup>. Hippocampi were dissected in ice-cold HBSS and pooled from 4-6 mice.  
653 Hippocampi were transferred to a tissue culture hood, minced using a sterile scalpel until no  
654 visible pieces remained (3-5 mins) and transferred to 3-5 mL of warm culture media (DMEM/F-  
655 12 with 20 mM KCl, 2 µg/mL heparin, 1% penicillin–streptomycin, 20% B27 supplement, 10%  
656 N2 supplement). Tissue was spun at 200g for 2 mins and dissociated with 0.1% Trypsin-EDTA  
657 (diluted in DMEM/F12) at 37°C for 10 mins. After incubation, tissue was triturated 5 times with a  
658 P1000 pipette. Next, 3 mL of trypsin-inhibitor (0.139 mg/mL and 1U/mL DNase I in HBSS-/-)  
659 was added, triturated with a P1000 pipette 5 times and centrifuged at 300g for 5 mins. The cell  
660 pellet was singly resuspended in 1 mL of culture media by pipetting an additional 25 times with  
661 a P1000 pipette followed by filtration through a 40 µm cell strainer and filter washed with 15-20  
662 mL of culture media. Cells were centrifuged 300g for 5 mins and resuspended in 1 mL of culture  
663 media plus growth factors (20 ng/mL EGF and 10 ng/mL bFGF) by pipetting 10 times with a  
664 P1000 pipette. Cells were plated in a 24-well plate (1 well per mouse) containing 2 mL of culture  
665 media plus growth factors. Half media changes were preformed every 48 hrs for 7-10 days with  
666 growth factors added to culture media immediately prior to use.

667            After the first 7-10 days, cells were collected and centrifuged 300g for 5 mins. The cell  
668    pellet was singly dissociated by pipetting 20 times with a P1000 pipette in 1 mL of culture media  
669    containing growth factors. The cell suspension was filtered through a 40  $\mu$ m cell strainer and  
670    filter washed with 15-20 mL of culture media. Cells were centrifuged 300g for 5 mins,  
671    resuspended in 1 mL of culture media plus growth factors and plated in 2-3 wells of 6-well plate  
672    containing 3 mL of culture media plus growth factors per well. Half media changes were  
673    preformed every 48 hrs until ~100  $\mu$ m in diameter neurospheres are formed (7-10 days). All  
674    experiments were performed using NSPCs between passage numbers 3 to 8, where  
675    neurospheres were dissociated using Accutase (StemCell Technologies) at 37°C for 7 mins  
676    followed by the addition of 5 mL culture media and centrifuged 300g for 5 mins. Cells were  
677    counted and plated at 10,000 cells/cm<sup>2</sup> for floating neurosphere cultures. For experiments  
678    requiring monolayers, singly dissociated NSPCs were grown on poly-L-orthinine/laminin  
679    (PLO/laminin) coated plastic dishes or acid washed coverslips. Briefly, plastic dishes and  
680    coverslips were incubated at 37°C with 15  $\mu$ g/mL PLO diluted in 1X PBS for 24-48 hr, washed  
681    with 1X PBS and incubated at 37°C with 10  $\mu$ g/mL laminin in 1X PBS for 24 hr. PLO/laminin  
682    coated dishes or coverslips were washed 1 time with 1X PBS prior to plating of cells.

683

#### 684 **BrdU and EdU Labeling**

685            For the 12-day *in vivo* experiments, 5-bromo-2'-deoxyuridine (BrdU, Sigma) was  
686    prepared fresh daily by dissolving BrdU at 20 mg/mL in 1X PBS at 37°C and then sterile filtered  
687    via 0.22 $\mu$ m syringe filter. Mice were intraperitoneally injected at a dose of 100 mg/kg once daily  
688    for 12 consecutive days and tissue collected 24 hr after the last injection. Mice were sacrificed  
689    and tissue collected 4 weeks after the last injection. For *in vitro* BrdU and EdU experiments,  
690    NSPCs were seeded on PLO/laminin coated coverslips at a density of 50,000 cells/cm<sup>2</sup> and  
691    incubated overnight in culture media containing growth factors. A 5 mM EdU stock was

692 prepared in DMSO and stored at -20°C until use. EdU stock solutions were diluted to 5  $\mu$ M in  
693 culture media, sterile filtered via 0.22 $\mu$ m syringe filter and growth factors added immediately  
694 prior to the start of the experiment.

695

#### 696 **Clonogenic Proliferation Assay**

697 Hippocampal NSPCs were singly dissociated and plated as floating cultures in 96-well  
698 plates at 1000 cells per well. Cells were grown in culture media containing growth factors (20  
699 ng/mL EGF and 10 ng/mL bFGF) and growth factors were added to media every 48 hr. On day  
700 6, cultures were imaged using a Keyence BZ-X800 followed by dissociation with Accutase to  
701 count the number of cells per well. The number and diameter of neurospheres (clones) per well  
702 was quantified using ImageJ.

703

#### 704 **Differentiation Assay**

705 Hippocampal NSPCs were seeded on PLO/laminin coated plastic dishes or coverslips at  
706 a density of 50,000 cells/cm<sup>2</sup>. Cells were grown in culture media containing growth factors (20  
707 ng/mL EGF and 10 ng/mL bFGF) overnight (8-12 hours). Media was then changed to  
708 differentiation media consisting of culture media (DMEM/F-12 with 20 mM KCl, 2  $\mu$ g/mL heparin,  
709 1% penicillin-streptomycin, 20% B27 supplement, 10% N2 supplement) with 1  $\mu$ M retinoic acid  
710 (Sigma) and 5  $\mu$ M forskolin (Sigma). Half of the media was changed every 48-72 hours. Cells  
711 were fixed or collected after 3 or 7 days of differentiation.

712

#### 713 **Immunohistochemistry and Immunocytochemistry**

714 Mice were transcardially perfused with ice cold PBS followed by 4% PFA in 1X PBS.  
715 Brains were post-fixed for 24 hr in 4% PFA followed by immersion in 10% sucrose in 1X PBS for  
716 24 hr, 20% sucrose in 1X PBS for 24 hr and 30% sucrose 1X PBS for 24 hr. Brains were  
717 sectioned at 40  $\mu$ m using a sliding microtome and floating coronal sections were stored in

718 cryoprotectant consisting of glycerol (20% v/v) and ethylene glycol (24% v/v) in 1X PBS at -  
719 20°C. Sections were washed with 1X PBS, incubated with 1% sodium borohydride in 1X PBS  
720 for 10 mins at RT and washed 3 times with 1X PBS for 10 min per wash. For antibodies  
721 requiring heat induced antigen retrieval, sections were incubated in 10 mM sodium citrate buffer  
722 containing 0.05% Tween 20, pH 6.0 at 99°C for 15 mins in a vegetable steamer. For BrdU  
723 immunodetection, sections were washed with 1X PBS, treated in pre-warmed 1N HCl for 40 min  
724 at 37°C followed by incubation with 0.1 M sodium borate buffer pH 8.5 for 10 min at RT.  
725 Following, antigen retrieval or HCl pre-treatment, sections were washed 3 times with 1X PBS for  
726 10 min per wash. Sections were blocked in 1X PBS containing 0.3 M Glycine, 0.2% Triton X-  
727 100 and 5% normal donkey serum (NDS) for 1 hr at RT. After blocking, sections were incubated  
728 with primary antibodies diluted in block solution for 48 hr at 4°C. After primary incubation,  
729 sections were washed 3 times in PBS containing 0.1% Tween-20 (PBST) for 15 mins per wash.  
730 Sections were incubated with secondary antibodies diluted in block solution for 1.5-2 hr at RT.  
731 Sections were washed 3 times in PBST for 15 mins per wash, counterstained with DAPI, and  
732 mounted on Superfrost Plus slides (ThermoFisher) with Prolong Gold Antifade Mountant  
733 (Invitrogen).

734 For immunocytochemistry (ICC), culture media was removed, coverslips containing cells  
735 were washed two times with 1X PBS and fixed in 4% PFA in 1X PBS for 20 min at RT. Cells  
736 were washed two times with 1X PBS and blocked in 1X PBS containing 0.3 M Glycine, 0.2%  
737 Triton X-100 and 5% NDS for 30 minutes at RT. For EdU detection, cells were processed  
738 according to the Click-iT EdU Cell Proliferation Kit (Invitrogen) instructions prior to blocking step.  
739 For BrdU immunodetection, cells were treated in pre-warmed 1N HCl for 40 min at 37°C followed  
740 by incubation with 0.1 M sodium borate buffer pH 8.5 for 10 min at RT prior to blocking step.  
741 Primary antibodies were diluted in blocking solution and incubated 24 hr at 4°C. After primary  
742 incubation, cells were washed 3 times in PBST for 5 mins per wash and incubated with

743 secondary antibodies diluted in blocking solution for 45 min at RT. Cells were then washed 3  
744 times in PBST for 5 mins per wash, counterstained with DAPI and mounted with Prolong Gold  
745 Antifade Mountant (Invitrogen). All antibodies used in experiments are listed in Key Resource  
746 Table. Images were acquired at 40x or 63x magnification using confocal microscopy (Zeiss LSM  
747 710).

748

#### 749 **Transmission Electron Microscopy**

750 Cells were washed 3 times with 1X PBS and centrifuged at 300g for 5 min to form  
751 pellets. Cell pellets were fixed in 1.6% glutaraldehyde in 100 mM sodium phosphate, pH 7.4 for  
752 1 hr at room temperature as similarly described<sup>77</sup>. Samples were post-fixed with 1% osmium  
753 tetroxide for 1 hr and dehydrated using an ascending series of ethanol (through 100% absolute).  
754 Sample were then embedded in LX112 epoxy resin and polymerized at 60°C for 3  
755 days. Ultrathin sections (~75 nm) were collected onto copper grids and stained with uranyl  
756 acetate and lead citrate, respectively. Specimens were examined using a JEOL JEM-1400F  
757 transmission electron microscope at 80 kV. Micrographs were acquired using an AMT Side-  
758 Mount Nano Sprint Model 1200S-B and Biosprint 12M-B cameras, loaded with AMT Imaging  
759 software V.7.0.1.

760

#### 761 **RNA Isolation**

762 To isolate RNA, cells were washed 2 times with 1X PBS and RNA was isolated using a  
763 RNAeasy Plus Mini Kit (Qiagen).

764

#### 765 **Quantitative Real-Time PCR**

766 Quantitative real-time PCR (qRT-PCR) was used to measure RNA with Luna Universal  
767 One-Step RT-qPCR Kit (New England Biolabs) via CFX Connect Real-Time PCR Detection

768 System (Bio-Rad). Target gene expression was normalized to gene expression of GAPDH or  $\beta$ -  
769 Actin.

770

771 **Western blotting**

772 Cells were washed 3 times with 1X PBS and lysed on ice for 10 mins in RIPA buffer  
773 containing protease and phosphatase inhibitor cocktails (ThermoFisher). Lysed samples were  
774 sonicated on ice at 20% power 3 times for 15 s with 5 s rest between sonication. Samples were  
775 centrifuged at 10,000g for 15 mins to remove insoluble material and cellular debris. The  
776 supernatant was collected and protein concentration determined by BCA Protein Assay Kit  
777 (ThermoFisher). Samples were prepared in sample buffer consisting of NuPAGE LDS Sample  
778 Buffer and NuPAGE reducing agent followed by boiling for 5 mins at 95°C. Protein were  
779 separated on Bolt Bis-Tris Plus SDS-PAGE gels (Invitrogen) with MES SDS running buffer  
780 (Invitrogen) and transferred to 0.2  $\mu$ m nitrocellulose membranes via the iBlot 2 Dry Blotting  
781 System (Invitrogen). Membranes were blocked for 1 hr at RT in 5% non-fat dry milk (milk) diluted  
782 in TBS containing 0.1% Tween-20 (TBST). Primary antibodies were diluted in 5% milk in TBST  
783 and membranes incubated overnight at 4°C. Membranes were washed 3 times for 15 mins per  
784 wash with TBST followed by incubation with HRP conjugated secondary antibodies diluted in  
785 5% milk in TBST for 2 hr at RT. Membranes were washed 3 times for 15 mins per wash and  
786 developed with ECL Super Signal Kit via Kodak RP X-OMAT developer or Azure Biosystems  
787 300q Image Western Blot Imaging System. Band intensities were quantified in Fiji (NIH) from  
788 scanned images and total protein expression was normalized to GAPDH or  $\beta$ -Actin protein  
789 expression.

790

791 **Cell Quantification**

792 For *in vivo* experiments, every sixth section of brain tissue was quantified using  
793 unbiased stereology (StereolInvestigator, MBF Biosciences). Under the optical fractionator  
794 workflow, contours of the DG were traced under 10x magnification and cells counted under 63x  
795 magnification. A 120  $\mu\text{m}$  x 120  $\mu\text{m}$  counting frame with a 2  $\mu\text{m}$  guard zone on both sides of the  
796 section and a counting grid size determined by sampling 35% or 50% of the contour was used.  
797 The volume of DG ( $\mu\text{m}^3$ ) was determined by multiplying the area of contour by the measured  
798 mounted thickness of the section. Total cell counts were normalized to volume of DG ( $\mu\text{m}^3$ )  
799 counted per mouse. Alternatively for DCX and NeuN cell quantification, 30  $\mu\text{m}$  z-stacks of the  
800 DG were acquired at 25x magnification using confocal microscopy (Zeiss LSM 710) and positive  
801 cells counted from maximum projection images in Fiji (NIH). For *in vitro* experiments, 10  $\mu\text{m}$  z-  
802 stacks were acquired at 40x or 63x magnification using confocal microscopy (Zeiss LSM 710)  
803 and positive cells counted from maximum projection images in Fiji (NIH).

804

#### 805 **Behavior Tests**

806 All mice were handled 3-5 days for 2 min per mouse per day prior to the start of behavior  
807 testing.

##### 808 *Elevated Plus Maze*

809 The elevated plus maze (EPM) test was used to examine anxiety-like behavior. The  
810 EPM apparatus consisted of two open arms without walls and two closed arms with opaque  
811 walls. Mice were placed at the center of the apparatus facing an open arm and allowed to freely  
812 explore for 5 mins. The EPM apparatus was cleaned with 70% ethanol between mice. Video  
813 recordings were analyzed by Ethovision XT v16 software (Noldus) and the time spent in the  
814 open and closed arms as well as frequency of entries into the arms was calculated.

815

##### 816 *Novel Object Location*

817           The novel object location (NOL) test was used to examine spatial learning and memory  
818           behavior as similarly described in X. A 38 cm x 51 cm x 30 cm opaque white plastic chamber  
819           box with one short end containing a black circle wall print and the other short end containing a  
820           black vertical line wall print was utilized. On day 1 of the test, mice were habituated in the empty  
821           box for 10 mins followed by placement of 2 identical objects equal distance a part on the short  
822           end of the box containing the black circle wall print for 10 mins. Objects were removed for 5 min  
823           and then replaced in same locations for another 10 min session. Mice were placed back in  
824           home cages for 24 hrs. On day 2, mice were habituated in the empty box for 10 mins and tested  
825           by placing one of the objects in a novel location diagonally to the other one along the short end  
826           of the box with black vertical line wall print. Mice were allowed to explore the objects for 5 mins.  
827           Video was captured for every trial and exploration time with each object was manually scored  
828           blinded. Chambers were cleaned with 70% ethanol between mice. The discrimination index (DI)  
829           was calculated as  $DI = (T_N - T_o) / (T_N + T_o)$ , where  $T_N$  is the exploration time with the object in the  
830           new location and  $T_o$  the exploration time with the object in the old location.

831

832           *Contextual Fear Discrimination*

833           This contextual fear discrimination test was conducted similarly as described<sup>47</sup>. All  
834           contexts consisted of 17.8 cm x 17.8 cm x 30.5 cm chamber housed in a sound isolation cubicle  
835           (Coulbourn Instruments). Context A consisted of two translucent plexiglass walls, two walls  
836           comprised of alternating black and white metal tiles and a stainless-steel rod floor. Context A  
837           also had a 28V exhaust fan. Context B had no fan and consisted of two walls comprised of  
838           alternating black and white metal tiles, two walls of black vertical line print and a stainless-steel  
839           rod floor. To test fear generalization, Context B was exchanged with Context C that had no fan,  
840           a circular wall insert made of up of a black and white plastic sheet and a black plastic floor  
841           covering. On day 1 of the test, mice were exposed to Context A for 10 mins. On day 2, mice  
842           were placed in Context A, received a 2s foot shock (0.7mA) immediately upon entry and

843 remained in Context A for an additional 28s (a total of 30s in Context A). Thirty mins later, mice  
844 were placed back in Context A for a 3 min exposure trial followed by placement in Context B for  
845 3 min exposure trial. On day 3 (24 hr post-shock), mice were placed in Context A for 3 mins or  
846 Context B for 3 mins in a counter-balanced order. For a less difficult discrimination test, mice  
847 followed the same sequence as stated but were placed in Context C instead of Context B on  
848 day 2 and 3. FreezeFrame software (Actimetrics) was used for video recording and analysis of  
849 freezing behavior in each context. Chamber walls and floor were cleaned with 70% ethanol  
850 between mice. The discrimination index (DI) was calculated as  $DI = (F_A - F_x) / (F_A + F_x)$ , where  $F_A$  is  
851 the percentage of freezing in Context A and  $F_x$  is the percentage of freezing in either Context B  
852 or Context C.

853

#### 854 **Nano-LC-MS/MS analysis**

855 Cells were isolated as described in Section 2.2.4 and washed 3 times in 1X PBS prior to  
856 freezing in liquid nitrogen. Cell pellets were lysed in 10% sodium dodecyl sulfate (SDS)  
857 containing 100 mM triethylammonium bicarbonate (TEAB) with Pierce protease inhibitor  
858 (ThermoFisher Scientific) supplemented, sonicated, and centrifuged at 14,000 rpm for 10  
859 minutes. Protein supernatant was collected and quantified using a BCA Protein Assay Kit  
860 (ThermoFisher). 100 ug of protein per sample was processed, trypsin digested in S-Trap  
861 microcolumns (Protifi), and peptides labeled according to the TMT10plex Isobaric Label  
862 Reagent Set (ThermoFisher) manufacture instructions. 100 fmol green fluorescent protein  
863 (GFP) per  $\mu$ g of protein was spiked in each sample before digestion. Each individual isobaric  
864 labeled sample was combined, lyophilized, and resuspended in 10 mM ammonium hydroxide  
865 prior to fractionation by high pH reversed-phase liquid chromatography. 60 fractions were  
866 collected and further concatenated into 20 fractions by combining 3 fractions for every 20  
867 fractions apart<sup>78</sup>. All fractions were dried down completely then resuspended in 0.1% formic  
868 acid. Peptide chromatographic separations and mass detection occurred with an Agilent 1260

869 nano/capillary HPLC system (Agilent Technologies) coupled to an Q-Exactive Orbitrap mass  
870 spectrometer (MS, ThermoFisher Scientific). Peptides were loaded onto an Acclaim PepMap  
871 100 trap column (75  $\mu$ m  $\times$  2 cm nanoViper, C18, 3  $\mu$ m 100  $\text{\AA}$ , ThermoFisher Scientific) at flow  
872 rate of 2  $\mu$ L/min. Peptides were further separated using a Zorbax 300SB-C18 column  
873 (0.075 $\times$ 150 mm, 3.5  $\mu$ m 300  $\text{\AA}$ ) (Agilent Technologies) at a flow rate of 0.25  $\mu$ L/min, and eluted  
874 using a 5-30% mobile phase B gradient consisting of 0.1% formic acid in acetonitrile over 90  
875 minutes. Data was collected in the data-dependent acquisition (DDA) mode at a mass resolution  
876 of 70,000 and scan range 375-2000 m/z. Automatic gain control (AGC) target was set at  $1 \times 10^6$   
877 for a maximum injection time (IT) of 100 ms. The top 10 most abundant precursors (charge  
878 state between 2 and 5) were selected for MS/MS analysis. MS/MS spectra were acquired at a  
879 resolution of 35,000, AGC target at  $1 \times 10^6$ , and maximum IT of 50 ms. All raw mass  
880 spectrometry data is publicly available on MassIVE with project ID MSV000090289  
881 (<ftp://massive.ucsd.edu/MSV000090289/>).

882 The raw MS/MS data for each sample was searched against the curated SwissProt *Mus*  
883 *musculus* database in Proteome Discoverer software (v2.3.0.523, ThermoFisher Scientific),  
884 where trypsin was selected as the protease with 2 or less missed cleavage sites, precursor and  
885 fragment mass error tolerances set to 10 ppm and  $\pm 0.02$  Da, and only peptide precursors of +2,  
886 +3, +4 were analyzed. Peptide variable modifications allowed during the search were: oxidation  
887 ((+15.995 Da; M), TMT6 (+229.163 Da; S, T), and acetylation (+42.011 Da; N-terminus),  
888 whereas carbamidomethyl (+57.021 Da; C) and TMT (+229.163 Da; any N-terminus) were set  
889 as static modifications. Samples were grouped as iNSC Cav-1 KO (n=3) and iNSC Cav-1 WT  
890 (n=3). Protein identifications were accepted if they contained at least 2 unique peptides and  
891 abundances normalized to total peptide abundance. Differentially expressed proteins (DEP) for  
892 the iNSC Cav-1 KO NSPCs relative to the iNSC Cav-1 WT NSPCs were determined by applying  
893 ANOVA with a p-value of < 0.05.

894

895 **Protein pathway and mitochondria protein analysis**

896 Protein pathway analysis was conducted on DEP using Ingenuity Pathway Analysis  
897 (IPA, Qiagen) and Gene Ontology (GO) enrichment analysis<sup>77,79</sup> using g:Profiler<sup>80</sup>  
898 (ve107\_eg54\_p17\_bf42210). Functional enrichment maps were constructed in Cytoscape<sup>81</sup> with  
899 EnrichmentMap pipeline collection applications<sup>82</sup>. Mitochondria pathways and functional groups  
900 were determined by manual curation using the MitoCarta 3.0 dataset<sup>51</sup>.

901

902 **Mitochondria Isolation**

903 Cells were washed 3 times with 1X PBS and mitochondria were isolated according to the  
904 manufacturer instructions using the Mitochondria Isolation Kit (ThermoFisher). Briefly, cells were  
905 pelleted by centrifugation at 300g for 5 mins at 4°C. Reagent A containing protease and  
906 phosphatase inhibitor cocktails (ThermoFisher) was added to the cell pellet and placed on ice  
907 for 2 mins. Cells were then lysed by 100 strokes using a Dounce tissue homogenizer. Following  
908 the addition of Reagent C, the lysate was centrifuged at 700g for 10 mins at 4°C. The  
909 supernatant was then collected and centrifuged at 3000g for 15 min at 4°C to pellet  
910 mitochondria from the cytosol. The cytosol containing supernatant was collected and the  
911 mitochondria enriched pellet was washed with Reagent C and then centrifuged for 12000g for 5  
912 mins at 4°C. The mitochondria enriched pellet was lysed in 1% CHAPS in TBS and processed  
913 for BCA protein estimation and western blotting as described.

914

915 **TMRM Live Cell Imaging**

916 Tetramethylrhodamine, methyl ester (TMRM) live cell imaging was conducted similarly  
917 as described<sup>83</sup>. Singly dissociated NSPCs were grown on PLO/laminin coated 35mm glass  
918 bottom live cell imaging dishes at a density of 50,000 cells/well. 24 hrs after plating, media was  
919 replaced with proliferation media containing 50 nM TMRM. Cells were incubated with TMRM for  
920 30 mins at 37°C. Immediately prior to imaging, cells were washed 2 times with PBS followed by

921 replacement of proliferation media lacking phenol red. 2D images were captured with a 63X  
922 objective using a Zeiss LSM880 META confocal microscope with heated stage and a DPSS  
923 561-10 laser set at 0.1% laser power with GaAsP detection. For quantification of mitochondria  
924 morphology, images were analyzed with ImageJ as described<sup>84</sup>. For 2D time lapse videos,  
925 images were captured with 3x digital zoom for 120 s at frame rate of 3 Hz. Mitochondria velocity  
926 and total distance traveled were measured using the Trackmate<sup>60</sup> plugin in ImageJ.

927

## 928 **Statistics**

929 In all graphs, data is shown as mean  $\pm$  SEM. Prism (Graphpad) was used for statistical  
930 analysis with tests indicated in figure legends. The following was used for p values: ns > 0.05,  
931 \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001, and \*\*\*\*p < 0.0001.

932

## 933 **References**

- 934 1. Toda, T., Parylak, S.L., Linker, S.B., and Gage, F.H. (2019). The role of adult  
935 hippocampal neurogenesis in brain health and disease. *Mol Psychiatry* 24, 67-87.  
936 10.1038/s41380-018-0036-2.
- 937 2. Sahay, A., Scobie, K.N., Hill, A.S., O'Carroll, C.M., Kheirbek, M.A., Burghardt, N.S.,  
938 Fenton, A.A., Dranovsky, A., and Hen, R. (2011). Increasing adult hippocampal  
939 neurogenesis is sufficient to improve pattern separation. *Nature* 472, 466-470.  
940 10.1038/nature09817.
- 941 3. Miller, S.M., and Sahay, A. (2019). Functions of adult-born neurons in hippocampal  
942 memory interference and indexing. *Nat Neurosci* 22, 1565-1575. 10.1038/s41593-019-  
943 0484-2.
- 944 4. Niibori, Y., Yu, T.S., Epp, J.R., Akers, K.G., Josselyn, S.A., and Frankland, P.W. (2012).  
945 Suppression of adult neurogenesis impairs population coding of similar contexts in  
946 hippocampal CA3 region. *Nat Commun* 3, 1253. 10.1038/ncomms2261.

947 5. Masachs, N., Charrier, V., Farrugia, F., Lemaire, V., Blin, N., Mazier, W., Tronel, S.,  
948 Montaron, M.F., Ge, S., Marsicano, G., et al. (2021). The temporal origin of dentate  
949 granule neurons dictates their role in spatial memory. *Mol Psychiatry* 26, 7130-7140.  
950 10.1038/s41380-021-01276-x.

951 6. Britton, R., Liu, A.T., Rege, S.V., Adams, J.M., Akrapongpisak, L., Le, D., Alcantara-Lee,  
952 Estrada, R.A., Ray, R., Ahadi, S., et al. (2022). Molecular and histological correlates  
953 of cognitive decline across age in male C57BL/6J mice. *Brain Behav* 12, e2736.  
954 10.1002/brb3.2736.

955 7. Encinas, J.M., Michurina, T.V., Peunova, N., Park, J.H., Tordo, J., Peterson, D.A.,  
956 Fishell, G., Koulakov, A., and Enikolopov, G. (2011). Division-coupled astrocytic  
957 differentiation and age-related depletion of neural stem cells in the adult hippocampus.  
958 *Cell Stem Cell* 8, 566-579. 10.1016/j.stem.2011.03.010.

959 8. Demars, M.P., Hollands, C., Zhao Kda, T., and Lazarov, O. (2013). Soluble amyloid  
960 precursor protein-alpha rescues age-linked decline in neural progenitor cell proliferation.  
961 *Neurobiol Aging* 34, 2431-2440. 10.1016/j.neurobiolaging.2013.04.016.

962 9. Terreros-Roncal, J., Moreno-Jimenez, E.P., Flor-Garcia, M., Rodriguez-Moreno, C.B.,  
963 Trinchero, M.F., Cafini, F., Rabano, A., and Llorens-Martin, M. (2021). Impact of  
964 neurodegenerative diseases on human adult hippocampal neurogenesis. *Science* 374,  
965 1106-1113. 10.1126/science.abl5163.

966 10. Moreno-Jimenez, E.P., Flor-Garcia, M., Terreros-Roncal, J., Rabano, A., Cafini, F.,  
967 Pallas-Bazarr, N., Avila, J., and Llorens-Martin, M. (2019). Adult hippocampal  
968 neurogenesis is abundant in neurologically healthy subjects and drops sharply in  
969 patients with Alzheimer's disease. *Nat Med* 25, 554-560. 10.1038/s41591-019-0375-9.

970 11. Tobin, M.K., Musaraca, K., Disouky, A., Shetti, A., Bheri, A., Honer, W.G., Kim, N.,  
971 Dawe, R.J., Bennett, D.A., Arfanakis, K., and Lazarov, O. (2019). Human Hippocampal

972                   Neurogenesis Persists in Aged Adults and Alzheimer's Disease Patients. *Cell Stem Cell*  
973                   24, 974-982 e973. 10.1016/j.stem.2019.05.003.

974   12. Demars, M., Hu, Y.S., Gadadhar, A., and Lazarov, O. (2010). Impaired neurogenesis is  
975                   an early event in the etiology of familial Alzheimer's disease in transgenic mice. *J*  
976                   *Neurosci Res* 88, 2103-2117. 10.1002/jnr.22387.

977   13. Mishra, R., Phan, T., Kumar, P., Morrissey, Z., Gupta, M., Hollands, C., Shetti, A.,  
978                   Lopez, K.L., Maienschein-Cline, M., Suh, H., et al. (2022). Augmenting neurogenesis  
979                   rescues memory impairments in Alzheimer's disease by restoring the memory-storing  
980                   neurons. *J Exp Med* 219. 10.1084/jem.20220391.

981   14. Choi, S.H., Bylykbashi, E., Chatila, Z.K., Lee, S.W., Pulli, B., Clemenson, G.D., Kim, E.,  
982                   Rompala, A., Oram, M.K., Asselin, C., et al. (2018). Combined adult neurogenesis and  
983                   BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. *Science* 361.  
984                   10.1126/science.aan8821.

985   15. Hu, Y.S., Xu, P., Pigino, G., Brady, S.T., Larson, J., and Lazarov, O. (2010). Complex  
986                   environment experience rescues impaired neurogenesis, enhances synaptic plasticity,  
987                   and attenuates neuropathology in familial Alzheimer's disease-linked  
988                   APPswe/PS1DeltaE9 mice. *FASEB J* 24, 1667-1681. 10.1096/fj.09-136945.

989   16. Zhou, Y., Su, Y., Li, S., Kennedy, B.C., Zhang, D.Y., Bond, A.M., Sun, Y., Jacob, F., Lu,  
990                   L., Hu, P., et al. (2022). Molecular landscapes of human hippocampal immature neurons  
991                   across lifespan. *Nature* 607, 527-533. 10.1038/s41586-022-04912-w.

992   17. Artegiani, B., Lyubimova, A., Muraro, M., van Es, J.H., van Oudenaarden, A., and  
993                   Clevers, H. (2017). A Single-Cell RNA Sequencing Study Reveals Cellular and  
994                   Molecular Dynamics of the Hippocampal Neurogenic Niche. *Cell Rep* 21, 3271-3284.  
995                   10.1016/j.celrep.2017.11.050.

996 18. Vicedomini, C., Guo, N., and Sahay, A. (2020). Communication, Cross Talk, and Signal  
997 Integration in the Adult Hippocampal Neurogenic Niche. *Neuron* **105**, 220-235.  
998 10.1016/j.neuron.2019.11.029.

999 19. Gadadhar, A., Marr, R., and Lazarov, O. (2011). Presenilin-1 regulates neural progenitor  
1000 cell differentiation in the adult brain. *J Neurosci* **31**, 2615-2623.  
1001 10.1523/JNEUROSCI.4767-10.2011.

1002 20. Demars, M.P., Bartholomew, A., Strakova, Z., and Lazarov, O. (2011). Soluble amyloid  
1003 precursor protein: a novel proliferation factor of adult progenitor cells of ectodermal and  
1004 mesodermal origin. *Stem Cell Res Ther* **2**, 36. 10.1186/scrt77.

1005 21. Williams, T.M., and Lisanti, M.P. (2004). The caveolin proteins. *Genome Biol* **5**, 214.  
1006 10.1186/gb-2004-5-3-214.

1007 22. Parton, R.G. (2018). Caveolae: Structure, Function, and Relationship to Disease. *Annu  
1008 Rev Cell Dev Biol* **34**, 111-136. 10.1146/annurev-cellbio-100617-062737.

1009 23. Parton, R.G., McMahon, K.A., and Wu, Y. (2020). Caveolae: Formation, dynamics, and  
1010 function. *Curr Opin Cell Biol* **65**, 8-16. 10.1016/j.ceb.2020.02.001.

1011 24. Ikezu, T., Ueda, H., Trapp, B.D., Nishiyama, K., Sha, J.F., Volonte, D., Galbiati, F., Byrd,  
1012 A.L., Bassell, G., Serizawa, H., et al. (1998). Affinity-purification and characterization of  
1013 caveolins from the brain: differential expression of caveolin-1, -2, and -3 in brain  
1014 endothelial and astroglial cell types. *Brain Res* **804**, 177-192. 10.1016/s0006-  
1015 8993(98)00498-3.

1016 25. Virgintino, D., Robertson, D., Errede, M., Benagiano, V., Tauer, U., Roncali, L., and  
1017 Bertossi, M. (2002). Expression of caveolin-1 in human brain microvessels.  
1018 *Neuroscience* **115**, 145-152. 10.1016/s0306-4522(02)00374-3.

1019 26. Blochet, C., Buscemi, L., Clement, T., Gehri, S., Badaut, J., and Hirt, L. (2020).  
1020 Involvement of caveolin-1 in neurovascular unit remodeling after stroke: Effects on

1021 neovascularization and astrogliosis. *J Cereb Blood Flow Metab* 40, 163-176.

1022 10.1177/0271678X18806893.

1023 27. Filchenko, I., Blochet, C., Buscemi, L., Price, M., Badaut, J., and Hirt, L. (2020).  
1024 Caveolin-1 Regulates Perivascular Aquaporin-4 Expression After Cerebral Ischemia.  
1025 *Front Cell Dev Biol* 8, 371. 10.3389/fcell.2020.00371.

1026 28. Knowland, D., Arac, A., Sekiguchi, K.J., Hsu, M., Lutz, S.E., Perrino, J., Steinberg, G.K.,  
1027 Barres, B.A., Nimmerjahn, A., and Agalliu, D. (2014). Stepwise recruitment of  
1028 transcellular and paracellular pathways underlies blood-brain barrier breakdown in  
1029 stroke. *Neuron* 82, 603-617. 10.1016/j.neuron.2014.03.003.

1030 29. Chow, B.W., Nunez, V., Kaplan, L., Granger, A.J., Bistrong, K., Zucker, H.L., Kumar, P.,  
1031 Sabatini, B.L., and Gu, C. (2020). Caveolae in CNS arterioles mediate neurovascular  
1032 coupling. *Nature* 579, 106-110. 10.1038/s41586-020-2026-1.

1033 30. Bonds, J.A., Shetti, A., Bheri, A., Chen, Z., Disoukey, A., Tai, L., Mao, M., Head, B.P.,  
1034 Bonini, M.G., Haus, J.M., et al. (2019). Depletion of Caveolin-1 in Type-2 Diabetes  
1035 Model Induces Alzheimer's disease Pathology Precursors. *J Neurosci*.  
1036 10.1523/JNEUROSCI.0730-19.2019.

1037 31. Trushina, E., Du Charme, J., Parisi, J., and McMurray, C.T. (2006). Neurological  
1038 abnormalities in caveolin-1 knock out mice. *Behav Brain Res* 172, 24-32.  
1039 10.1016/j.bbr.2006.04.024.

1040 32. Gioiosa, L., Raggi, C., Ricceri, L., Jasmin, J.F., Frank, P.G., Capozza, F., Lisanti, M.P.,  
1041 Alleva, E., Sargiacomo, M., and Laviola, G. (2008). Altered emotionality, spatial memory  
1042 and cholinergic function in caveolin-1 knock-out mice. *Behav Brain Res* 188, 255-262.  
1043 10.1016/j.bbr.2007.11.002.

1044 33. Head, B.P., Peart, J.N., Panneerselvam, M., Yokoyama, T., Pearn, M.L., Niesman, I.R.,  
1045 Bonds, J.A., Schilling, J.M., Miyano, A., Headrick, J., et al. (2010). Loss of caveolin-

1046 1 accelerates neurodegeneration and aging. PLoS One 5, e15697.

1047 10.1371/journal.pone.0015697.

1048 34. Head, B.P., Hu, Y., Finley, J.C., Saldana, M.D., Bonds, J.A., Miyano, A., Niesman, I.R., Ali, S.S., Murray, F., Insel, P.A., et al. (2011). Neuron-targeted caveolin-1 protein enhances signaling and promotes arborization of primary neurons. J Biol Chem 286, 33310-33321. 10.1074/jbc.M111.255976.

1051 35. Egawa, J., Zemljic-Harpf, A., Mandyam, C.D., Niesman, I.R., Lysenko, L.V., Kleschevnikov, A.M., Roth, D.M., Patel, H.H., Patel, P.M., and Head, B.P. (2018). Neuron-Targeted Caveolin-1 Promotes Ultrastructural and Functional Hippocampal Synaptic Plasticity. Cereb Cortex 28, 3255-3266. 10.1093/cercor/bhx196.

1055 36. Shikanai, M., Nishimura, Y.V., Sakurai, M., Nabeshima, Y.I., Yuzaki, M., and Kawauchi, T. (2018). Caveolin-1 Promotes Early Neuronal Maturation via Caveolae-Independent Trafficking of N-Cadherin and L1. iScience 7, 53-67. 10.1016/j.isci.2018.08.014.

1059 37. Wang, S., Zhang, Z., Almenar-Queralt, A., Leem, J., DerMardirossian, C., Roth, D.M., Patel, P.M., Patel, H.H., and Head, B.P. (2019). Caveolin-1 Phosphorylation Is Essential for Axonal Growth of Human Neurons Derived From iPSCs. Front Cell Neurosci 13, 324. 10.3389/fncel.2019.00324.

1063 38. Frederiksen, K., and McKay, R.D. (1988). Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. J Neurosci 8, 1144-1151.

1065 39. Wilhelmsson, U., Lebkuechner, I., Leke, R., Marasek, P., Yang, X., Antfolk, D., Chen, M., Mohseni, P., Lasic, E., Bobnar, S.T., et al. (2019). Nestin Regulates Neurogenesis in Mice Through Notch Signaling From Astrocytes to Neural Stem Cells. Cereb Cortex 29, 4050-4066. 10.1093/cercor/bhy284.

1069 40. Oliveira, S.D.S., Castellon, M., Chen, J., Bonini, M.G., Gu, X., Elliott, M.H., Machado, R.F., and Minshall, R.D. (2017). Inflammation-induced caveolin-1 and BMPRII depletion

1071 promotes endothelial dysfunction and TGF-beta-driven pulmonary vascular remodeling.

1072 Am J Physiol Lung Cell Mol Physiol 312, L760-L771. 10.1152/ajplung.00484.2016.

1073 41. Cao, G., Yang, G., Timme, T.L., Saika, T., Truong, L.D., Satoh, T., Goltsov, A., Park, S.H., Men, T., Kusaka, N., et al. (2003). Disruption of the caveolin-1 gene impairs renal

1074 calcium reabsorption and leads to hypercalciuria and urolithiasis. Am J Pathol 162,

1075 1241-1248. 10.1016/S0002-9440(10)63920-X.

1076

1077 42. Pereira, P.D., Serra-Caetano, A., Cabrita, M., Bekman, E., Braga, J., Rino, J., Santus, R., Filipe, P.L., Sousa, A.E., and Ferreira, J.A. (2017). Quantification of cell cycle

1078 kinetics by EdU (5-ethynyl-2'-deoxyuridine)-coupled-fluorescence-intensity analysis.

1079 Oncotarget 8, 40514-40532. 10.18632/oncotarget.17121.

1080

1081 43. Ahmed, A., Isaksen, T.J., and Yamashita, T. (2021). Protocol for mouse adult neural

1082 stem cell isolation and culture. STAR Protoc 2, 100522. 10.1016/j.xpro.2021.100522.

1083 44. Palmer, T.D., Takahashi, J., and Gage, F.H. (1997). The adult rat hippocampus contains

1084 primordial neural stem cells. Mol Cell Neurosci 8, 389-404. 10.1006/mcne.1996.0595.

1085 45. Clelland, C.D., Choi, M., Romberg, C., Clemenson, G.D., Jr., Fragniere, A., Tyers, P.,

1086 Jessberger, S., Saksida, L.M., Barker, R.A., Gage, F.H., and Bussey, T.J. (2009). A

1087 functional role for adult hippocampal neurogenesis in spatial pattern separation. Science

1088 325, 210-213. 10.1126/science.1173215.

1089 46. Nakashiba, T., Cushman, J.D., Pelkey, K.A., Renaudineau, S., Buhl, D.L., McHugh, T.J.,

1090 Rodriguez Barrera, V., Chittajallu, R., Iwamoto, K.S., McBain, C.J., et al. (2012). Young

1091 dentate granule cells mediate pattern separation, whereas old granule cells facilitate

1092 pattern completion. Cell 149, 188-201. 10.1016/j.cell.2012.01.046.

1093 47. Clemenson, G.D., Lee, S.W., Deng, W., Barrera, V.R., Iwamoto, K.S., Fanselow, M.S.,

1094 and Gage, F.H. (2014). Enrichment rescues contextual discrimination deficit associated

1095 with immediate shock. Hippocampus 25, 385-392. 10.1002/hipo.22380 PMID -

1096 25330953.

1097 48. Huckleberry, K.A., Ferguson, L.B., and Drew, M.R. (2016). Behavioral mechanisms of  
1098 context fear generalization in mice. *Learn Mem* 23, 703-709. 10.1101/lm.042374.116.

1099 49. Gonzalez, F., Quinn, J.J., and Fanselow, M.S. (2003). Differential effects of adding and  
1100 removing components of a context on the generalization of conditional freezing. *J Exp  
1101 Psychol Anim Behav Process* 29, 78-83.

1102 50. Guo, N., Soden, M.E., Herber, C., Kim, M.T., Besnard, A., Lin, P., Ma, X., Cepko, C.L.,  
1103 Zweifel, L.S., and Sahay, A. (2018). Dentate granule cell recruitment of feedforward  
1104 inhibition governs engram maintenance and remote memory generalization. *Nat Med* 24,  
1105 438-449. 10.1038/nm.4491.

1106 51. Rath, S., Sharma, R., Gupta, R., Ast, T., Chan, C., Durham, T.J., Goodman, R.P.,  
1107 Grabarek, Z., Haas, M.E., Hung, W.H.W., et al. (2021). MitoCarta3.0: an updated  
1108 mitochondrial proteome now with sub-organelle localization and pathway annotations.  
1109 *Nucleic Acids Res* 49, D1541-D1547. 10.1093/nar/gkaa1011.

1110 52. Saotome, M., Safiulina, D., Szabadkai, G., Das, S., Fransson, A., Aspenstrom, P.,  
1111 Rizzuto, R., and Hajnoczky, G. (2008). Bidirectional Ca<sup>2+</sup>-dependent control of  
1112 mitochondrial dynamics by the Miro GTPase. *Proc Natl Acad Sci U S A* 105, 20728-  
1113 20733. 10.1073/pnas.0808953105.

1114 53. Ruggiero, A., Aloni, E., Korkotian, E., Zaltsman, Y., Oni-Biton, E., Kuperman, Y., Tsoory,  
1115 M., Shachnai, L., Levin-Zaidman, S., Brenner, O., et al. (2017). Loss of forebrain MTCH2  
1116 decreases mitochondria motility and calcium handling and impairs hippocampal-  
1117 dependent cognitive functions. *Sci Rep* 7, 44401. 10.1038/srep44401.

1118 54. Misko, A., Jiang, S., Węgorzewska, I., Milbrandt, J., and Baloh, R.H. (2010). Mitofusin 2  
1119 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton  
1120 complex. *J Neurosci* 30, 4232-4240. 10.1523/JNEUROSCI.6248-09.2010.

1121 55. Wai, T., and Langer, T. (2016). Mitochondrial Dynamics and Metabolic Regulation.  
1122 *Trends Endocrinol Metab* 27, 105-117. 10.1016/j.tem.2015.12.001.

1123 56. Khacho, M., Clark, A., Svoboda, D.S., Azzi, J., MacLaurin, J.G., Meghaizel, C., Sesaki, H., Lagace, D.C., Germain, M., Harper, M.E., et al. (2016). Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear Transcriptional Program. *Cell Stem Cell* 19, 232-247. 10.1016/j.stem.2016.04.015.

1127 57. Patel, H.H., and Insel, P.A. (2009). Lipid rafts and caveolae and their role in compartmentation of redox signaling. *Antioxid Redox Signal* 11, 1357-1372. 10.1089/ars.2008.2365.

1130 58. Fridolfsson, H.N., Kawaraguchi, Y., Ali, S.S., Panneerselvam, M., Niesman, I.R., Finley, J.C., Kellerhals, S.E., Migita, M.Y., Okada, H., Moreno, A.L., et al. (2012). Mitochondria-localized caveolin in adaptation to cellular stress and injury. *FASEB J* 26, 4637-4649. 10.1096/fj.12-215798.

1134 59. Tilokani, L., Nagashima, S., Paupe, V., and Prudent, J. (2018). Mitochondrial dynamics: overview of molecular mechanisms. *Essays Biochem* 62, 341-360. 10.1042/EBC20170104.

1137 60. Ershov, D., Phan, M.S., Pylvanainen, J.W., Rigaud, S.U., Le Blanc, L., Charles-Orszag, A., Conway, J.R.W., Laine, R.F., Roy, N.H., Bonazzi, D., et al. (2022). TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. *Nat Methods* 19, 829-832. 10.1038/s41592-022-01507-1.

1141 61. Khacho, M., and Slack, R.S. (2018). Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain. *Dev Dyn* 247, 47-53. 10.1002/dvdy.24538.

1144 62. Urban, N., Blomfield, I.M., and Guillemot, F. (2019). Quiescence of Adult Mammalian Neural Stem Cells: A Highly Regulated Rest. *Neuron* 104, 834-848. 10.1016/j.neuron.2019.09.026.

1147 63. So, W.K., and Cheung, T.H. (2018). Molecular Regulation of Cellular Quiescence: A  
1148 Perspective from Adult Stem Cells and Its Niches. *Methods Mol Biol* 1686, 1-25.  
1149 10.1007/978-1-4939-7371-2\_1.

1150 64. Galbiati, F., Volonte, D., Liu, J., Capozza, F., Frank, P.G., Zhu, L., Pestell, R.G., and  
1151 Lisanti, M.P. (2001). Caveolin-1 expression negatively regulates cell cycle progression  
1152 by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. *Mol Biol*  
1153 *Cell* 12, 2229-2244. 10.1091/mbc.12.8.2229.

1154 65. Wang, R., Li, Z., Guo, H., Shi, W., Xin, Y., Chang, W., and Huang, T. (2014). Caveolin 1  
1155 knockdown inhibits the proliferation, migration and invasion of human breast cancer  
1156 BT474 cells. *Mol Med Rep* 9, 1723-1728. 10.3892/mmr.2014.2018.

1157 66. Bai, L., Shi, G., Zhang, L., Guan, F., Ma, Y., Li, Q., Cong, Y.S., and Zhang, L. (2014).  
1158 Cav-1 deletion impaired hematopoietic stem cell function. *Cell Death Dis* 5, e1140.  
1159 10.1038/cddis.2014.105.

1160 67. Bond, A.M., Peng, C.Y., Meyers, E.A., McGuire, T., Ewaleifoh, O., and Kessler, J.A.  
1161 (2014). BMP signaling regulates the tempo of adult hippocampal progenitor maturation  
1162 at multiple stages of the lineage. *Stem Cells* 32, 2201-2214. 10.1002/stem.1688.

1163 68. Deng, W., Mayford, M., and Gage, F.H. (2013). Selection of distinct populations of  
1164 dentate granule cells in response to inputs as a mechanism for pattern separation in  
1165 mice. *eLife* 2, e00312. 10.7554/eLife.00312.

1166 69. Coelho, P., Fao, L., Mota, S., and Rego, A.C. (2022). Mitochondrial function and  
1167 dynamics in neural stem cells and neurogenesis: Implications for neurodegenerative  
1168 diseases. *Ageing Res Rev* 80, 101667. 10.1016/j.arr.2022.101667.

1169 70. Beckervordersandforth, R., Ebert, B., Schaffner, I., Moss, J., Fiebig, C., Shin, J., Moore,  
1170 D.L., Ghosh, L., Trinchero, M.F., Stockburger, C., et al. (2017). Role of Mitochondrial  
1171 Metabolism in the Control of Early Lineage Progression and Aging Phenotypes in Adult  
1172 Hippocampal Neurogenesis. *Neuron* 93, 560-573 e566. 10.1016/j.neuron.2016.12.017.

1173 71. Zheng, X., Boyer, L., Jin, M., Mertens, J., Kim, Y., Ma, L., Ma, L., Hamm, M., Gage, F.H.,  
1174 and Hunter, T. (2016). Metabolic reprogramming during neuronal differentiation from  
1175 aerobic glycolysis to neuronal oxidative phosphorylation. *Elife* 5. 10.7554/eLife.13374.

1176 72. Zhang, J., Uchiyama, J., Imami, K., Ishihama, Y., Kageyama, R., and Kobayashi, T.  
1177 (2021). Novel Roles of Small Extracellular Vesicles in Regulating the Quiescence and  
1178 Proliferation of Neural Stem Cells. *Front Cell Dev Biol* 9, 762293.  
1179 10.3389/fcell.2021.762293.

1180 73. Xiao, J., Zhao, T., Fang, W., Chen, Y., Wu, H., Li, P., Chen, X., Yan, R., Jiang, Y., Li, S.,  
1181 et al. (2022). Caveolin-1 signaling-driven mitochondrial fission and cytoskeleton  
1182 remodeling promotes breast cancer migration. *Int J Biochem Cell Biol* 152, 106307.  
1183 10.1016/j.biocel.2022.106307.

1184 74. Vantaggiato, C., Castelli, M., Giovarelli, M., Orso, G., Bassi, M.T., Clementi, E., and De  
1185 Palma, C. (2019). The Fine Tuning of Drp1-Dependent Mitochondrial Remodeling and  
1186 Autophagy Controls Neuronal Differentiation. *Front Cell Neurosci* 13, 120.  
1187 10.3389/fncel.2019.00120.

1188 75. Bravo-Sagua, R., Parra, V., Ortiz-Sandoval, C., Navarro-Marquez, M., Rodriguez, A.E.,  
1189 Diaz-Valdivia, N., Sanhueza, C., Lopez-Crisosto, C., Tahbaz, N., Rothermel, B.A., et al.  
1190 (2019). Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER-mitochondria  
1191 communication during the early phase of ER stress. *Cell Death Differ* 26, 1195-1212.  
1192 10.1038/s41418-018-0197-1.

1193 76. Bonds, J.A., Shetti, A., Stephen, T.K.L., Bonini, M.G., Minshall, R.D., and Lazarov, O.  
1194 (2020). Deficits in hippocampal neurogenesis in obesity-dependent and -independent  
1195 type-2 diabetes mellitus mouse models. *Sci Rep* 10, 16368. 10.1038/s41598-020-73401-  
1196 9.

1197 77. Sandhu JK, R.-L.M., Abulrob A. (2021). Molecular and Functional Characterization of  
1198 Caveolae in Mixed Cultures of Human NT-2 Neurons and Astrocytes. *Neuroglia* 2, 68-  
1199 88.

1200 78. Yang, F., Shen, Y., Camp, D.G., 2nd, and Smith, R.D. (2012). High-pH reversed-phase  
1201 chromatography with fraction concatenation for 2D proteomic analysis. *Expert Rev  
1202 Proteomics* 9, 129-134. 10.1586/epr.12.15.

1203 79. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,  
1204 Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology: tool for the  
1205 unification of biology. *The Gene Ontology Consortium*. *Nat Genet* 25, 25-29.  
1206 10.1038/75556.

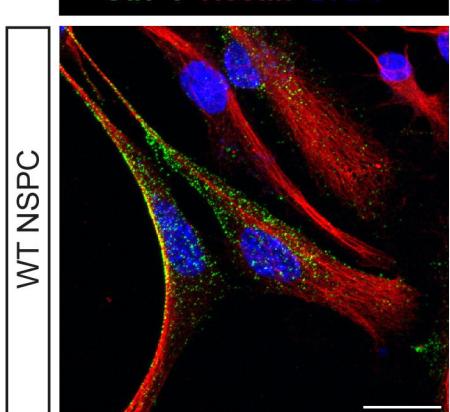
1207 80. Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo, J.  
1208 (2019). g:Profiler: a web server for functional enrichment analysis and conversions of  
1209 gene lists (2019 update). *Nucleic Acids Res* 47, W191-W198. 10.1093/nar/gkz369.

1210 81. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N.,  
1211 Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for  
1212 integrated models of biomolecular interaction networks. *Genome Res* 13, 2498-2504.  
1213 10.1101/gr.1239303.

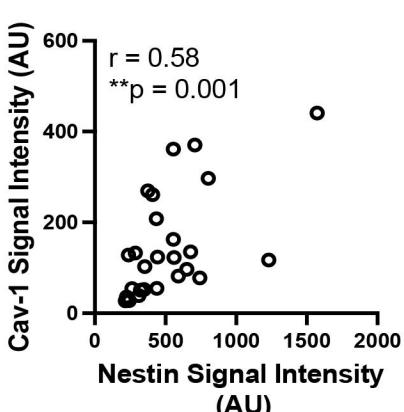
1214 82. Reimand, J., Isserlin, R., Voisin, V., Kucera, M., Tannus-Lopes, C., Rostamianfar, A.,  
1215 Wadi, L., Meyer, M., Wong, J., Xu, C., et al. (2019). Pathway enrichment analysis and  
1216 visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. *Nat  
1217 Protoc* 14, 482-517. 10.1038/s41596-018-0103-9.

1218 83. Jiang, Y., Krantz, S., Qin, X., Li, S., Gunasekara, H., Kim, Y.M., Zimnicka, A., Bae, M.,  
1219 Ma, K., Toth, P.T., et al. (2022). Caveolin-1 controls mitochondrial damage and ROS  
1220 production by regulating fission - fusion dynamics and mitophagy. *Redox Biol* 52,  
1221 102304. 10.1016/j.redox.2022.102304.

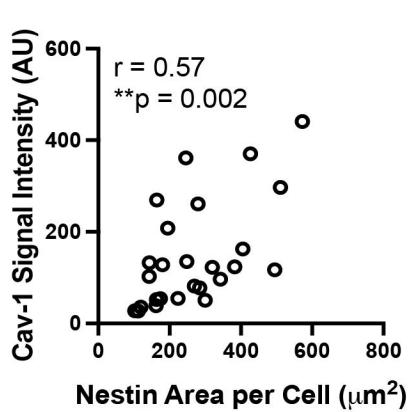
1222 84. Chaudhry, A., Shi, R., and Luciani, D.S. (2020). A pipeline for multidimensional confocal  
1223 analysis of mitochondrial morphology, function, and dynamics in pancreatic beta-cells.  
1224 *Am J Physiol Endocrinol Metab* 318, E87-E101. 10.1152/ajpendo.00457.2019.


1225 85. Xiong, Y., Wang, X.M., Zhong, M., Li, Z.Q., Wang, Z., Tian, Z.F., Zheng, K., and Tan,  
1226 X.X. (2016). Alterations of caveolin-1 expression in a mouse model of delayed cerebral  
1227 vasospasm following subarachnoid hemorrhage. *Exp Ther Med* 12, 1993-2002.  
1228 10.3892/etm.2016.3568.

1229 86. Kogo, H., and Fujimoto, T. (2000). Caveolin-1 isoforms are encoded by distinct mRNAs.  
1230 Identification Of mouse caveolin-1 mRNA variants caused by alternative transcription  
1231 initiation and splicing. *FEBS Lett* 465, 119-123. 10.1016/s0014-5793(99)01730-5.

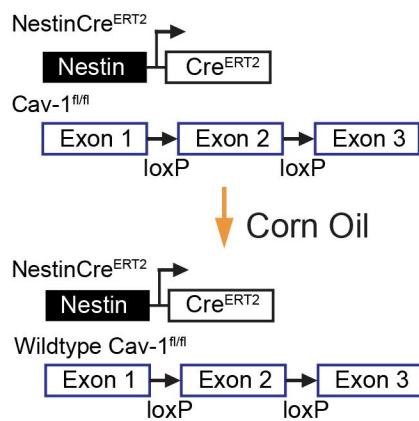

1232 87. Nikolakopoulou, A.M., Wang, Y., Ma, Q., Sagare, A.P., Montagne, A., Huuskonen, M.T.,  
1233 Rege, S.V., Kisler, K., Dai, Z., Korbelin, J., et al. (2021). Endothelial LRP1 protects  
1234 against neurodegeneration by blocking cyclophilin A. *J Exp Med* 218.  
1235 10.1084/jem.20202207.

1236

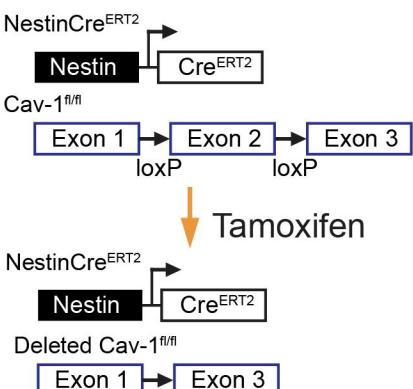

A



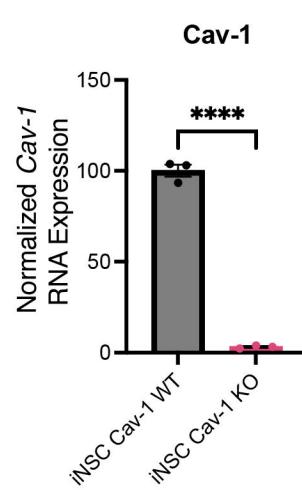
B



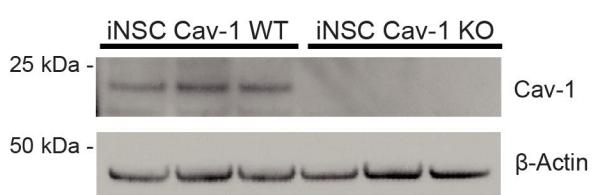

C



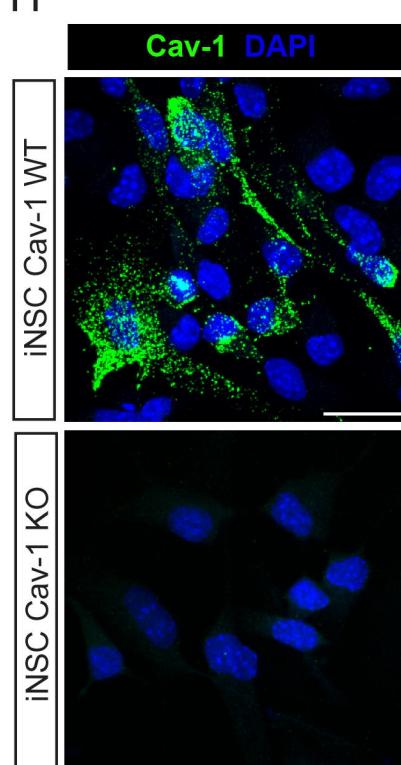

D


**iNSC Cav-1 WT**

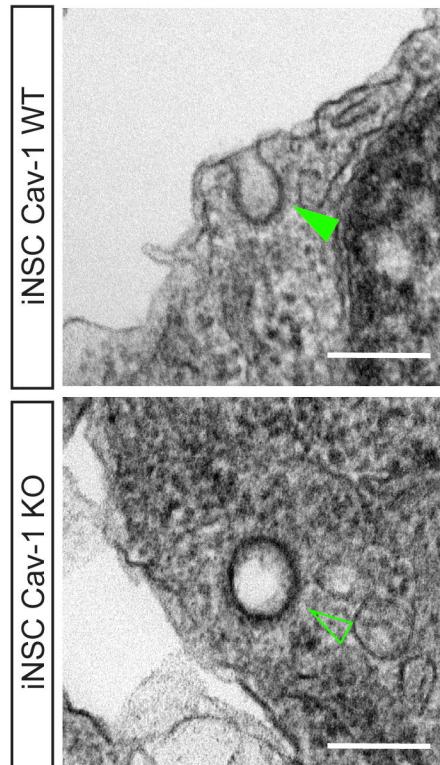



**iNSC Cav-1 KO**

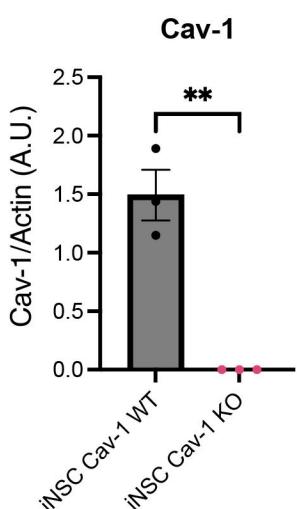


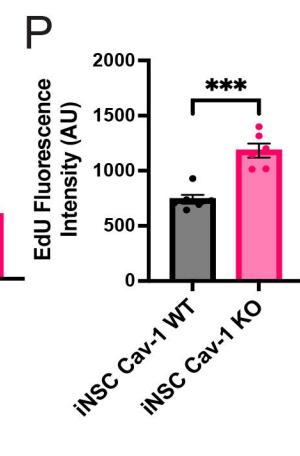
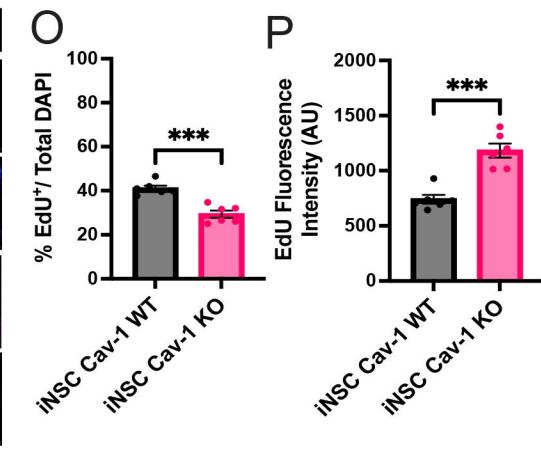
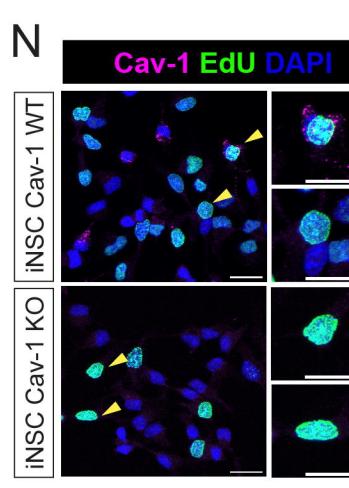
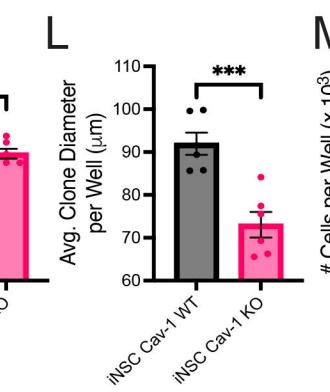
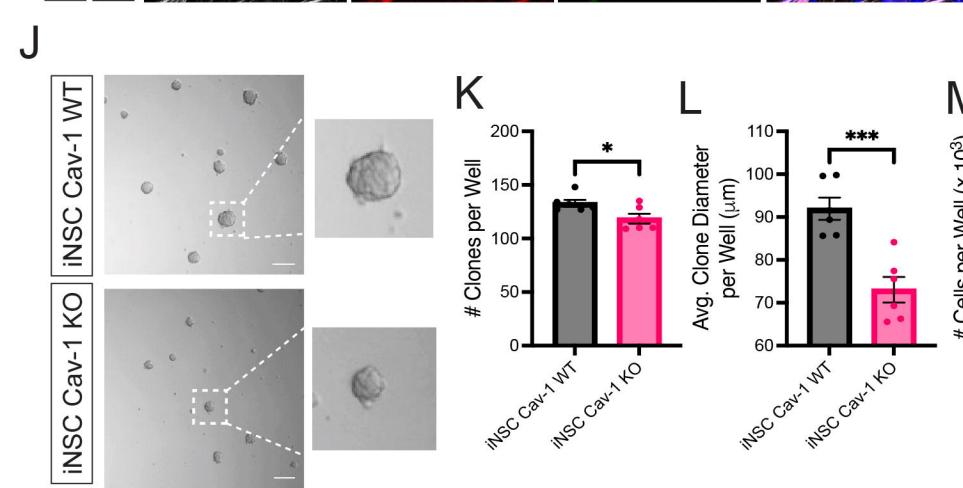
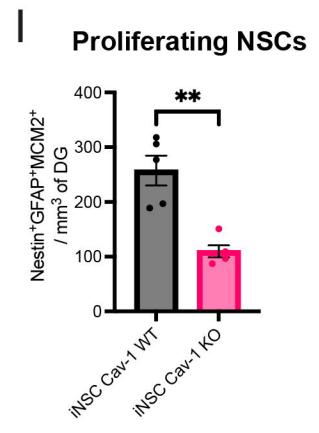
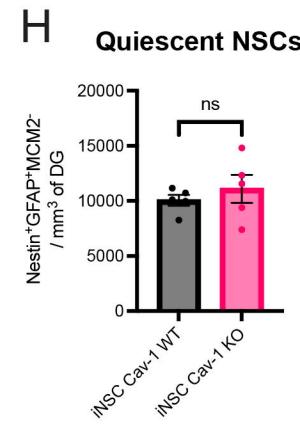
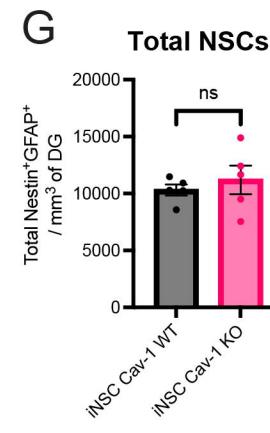
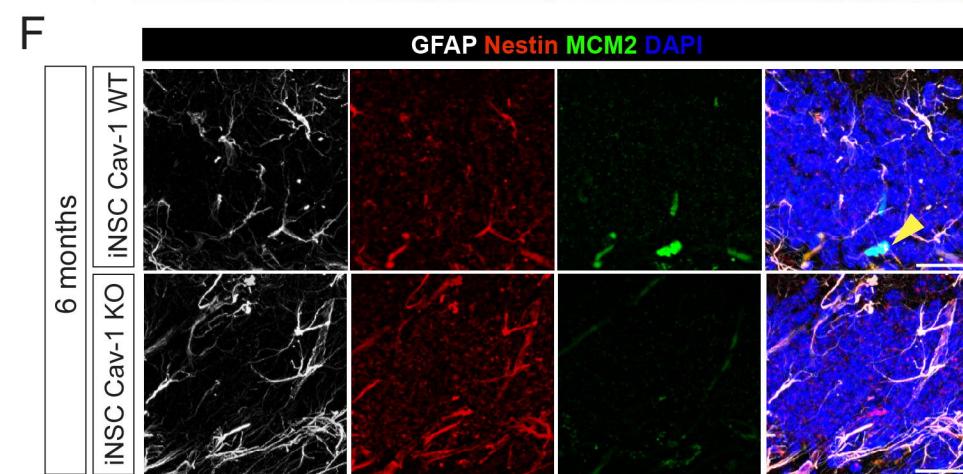
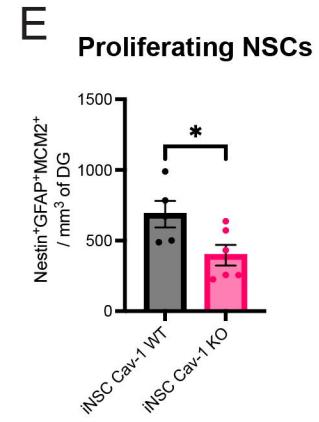
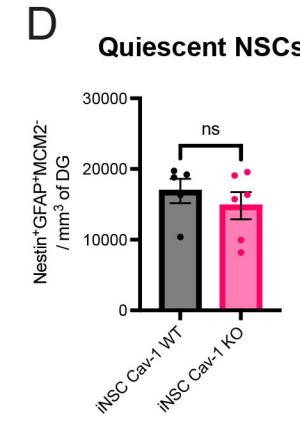
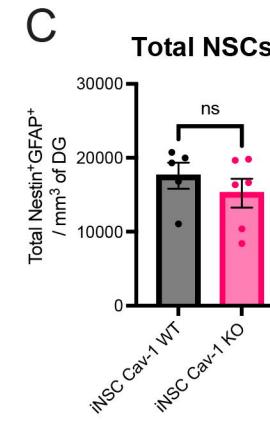
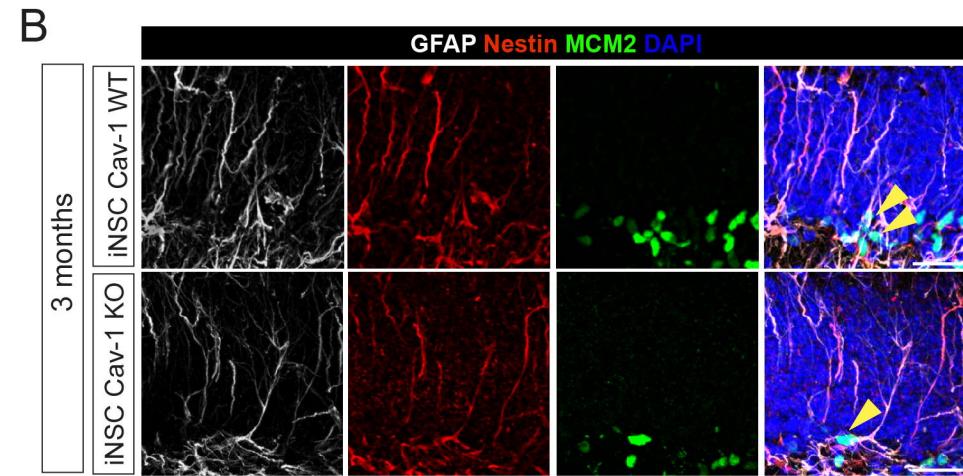
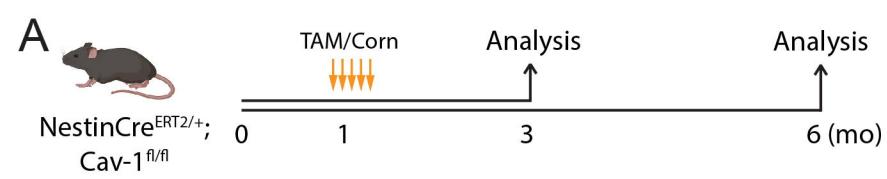

E



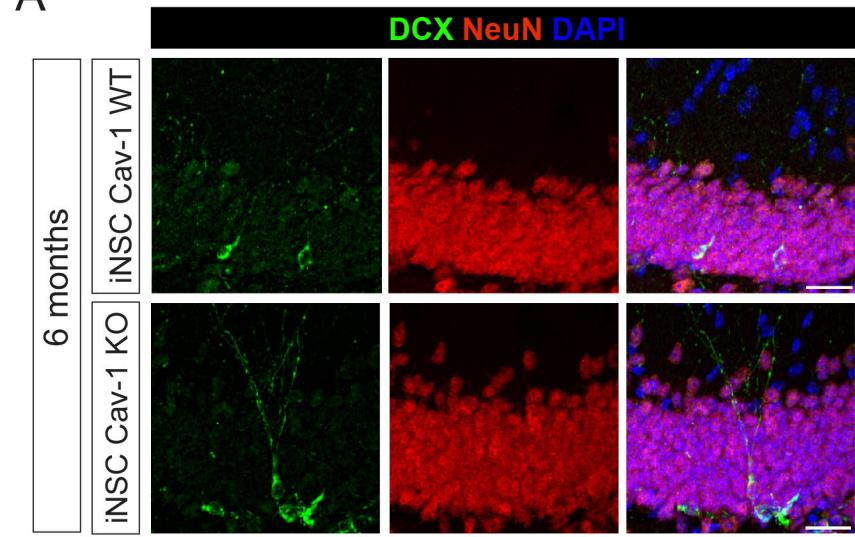

F



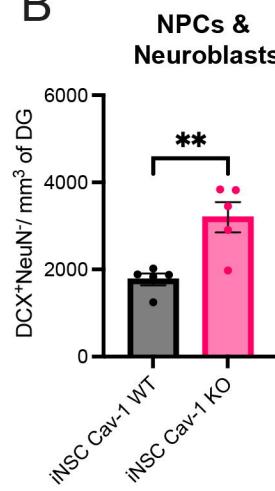

H

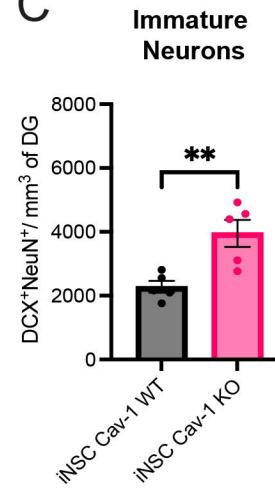

I



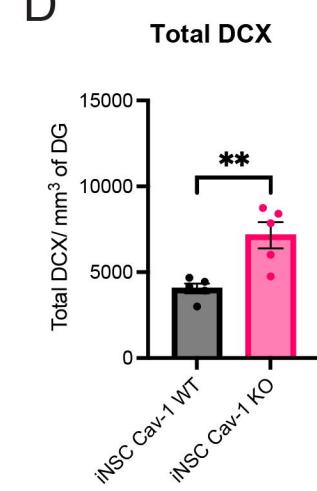

G



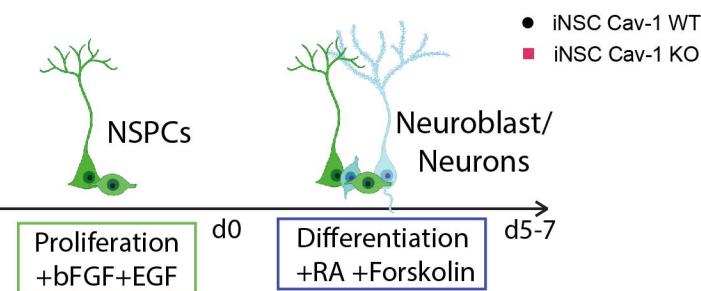




A

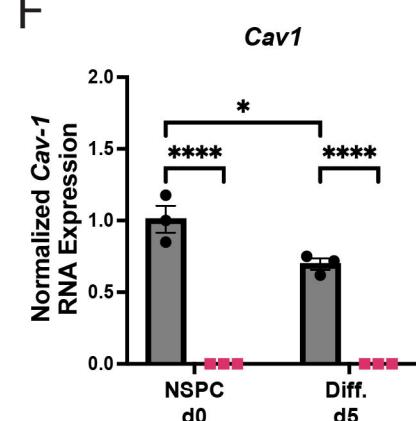



B

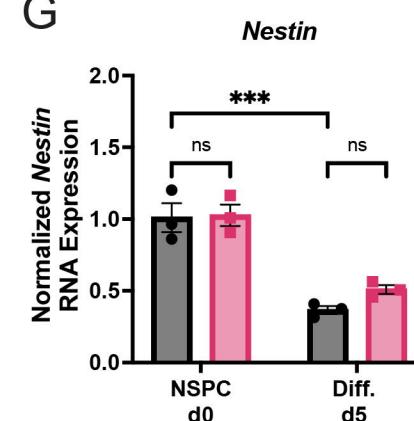



C

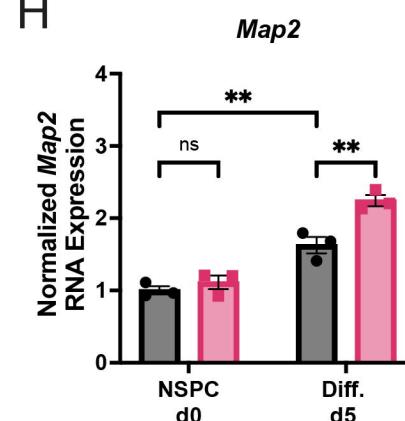



D

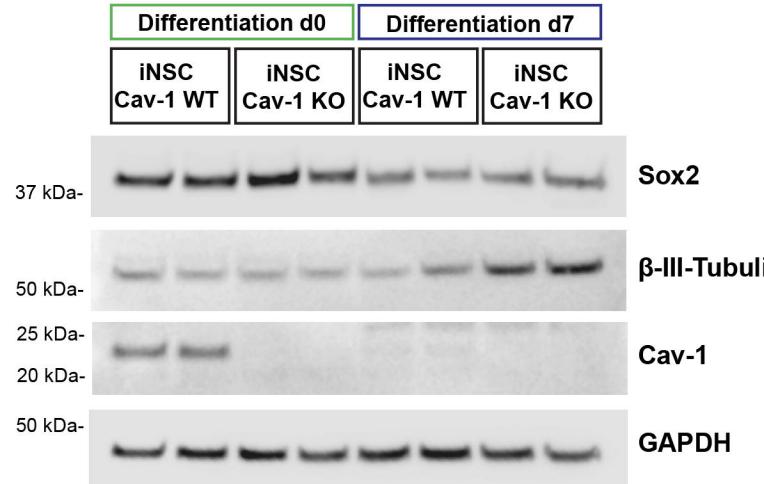



E

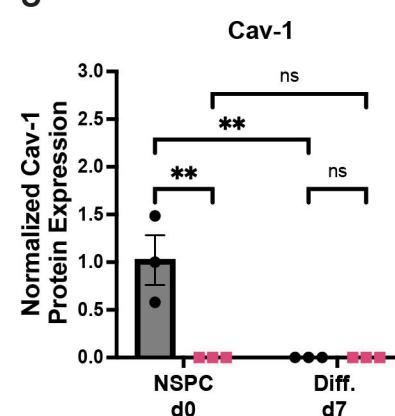



F




G

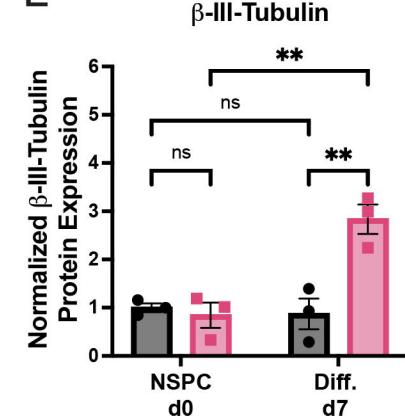



H



I

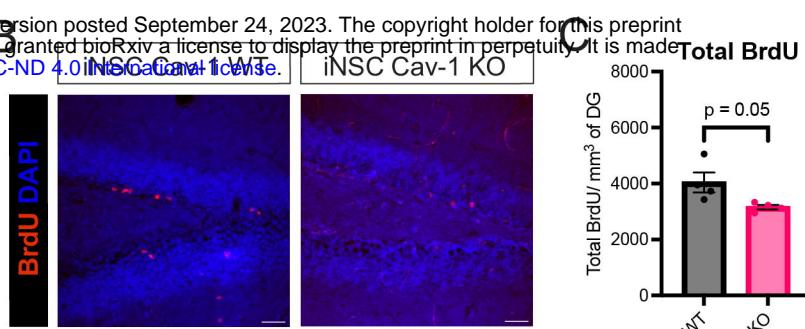



J

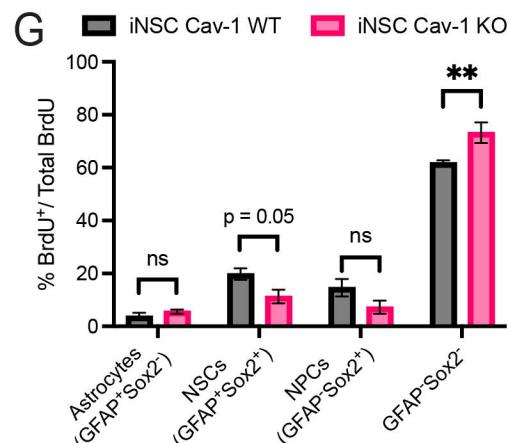
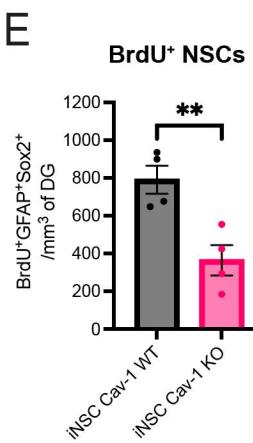
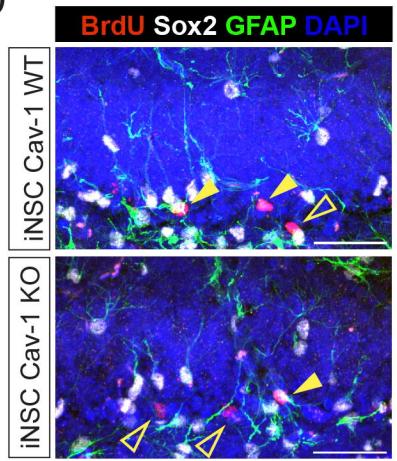


K

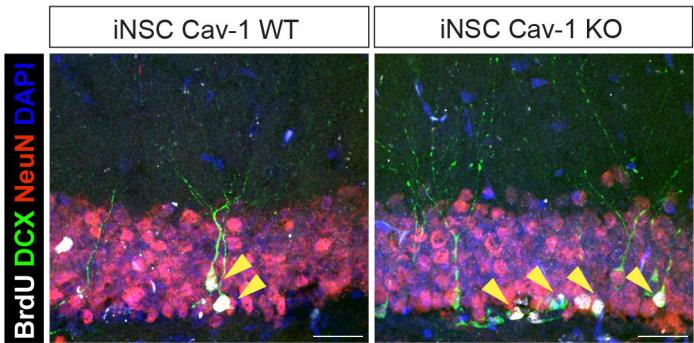



L

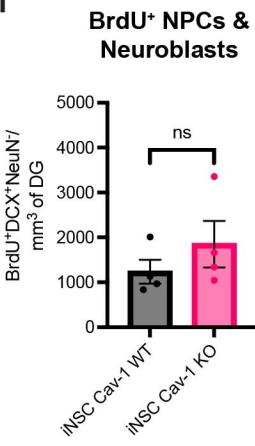





A

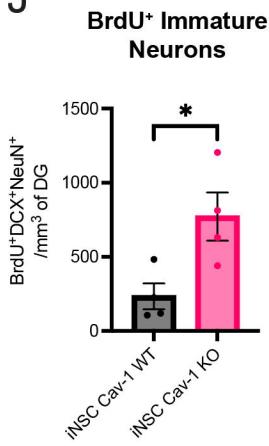



B

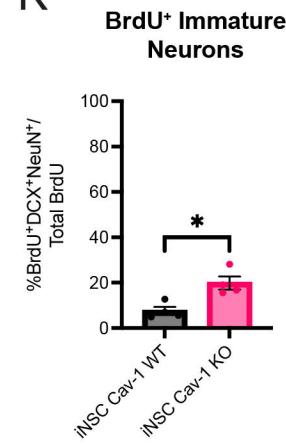



D



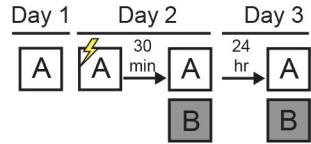

H




I

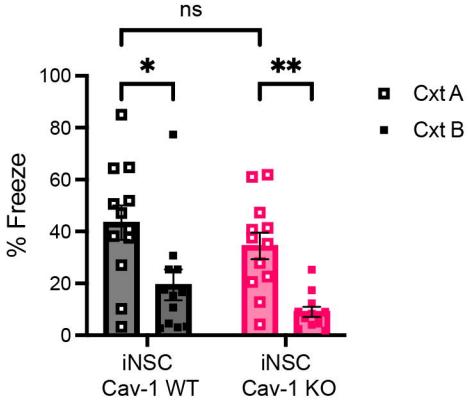


J



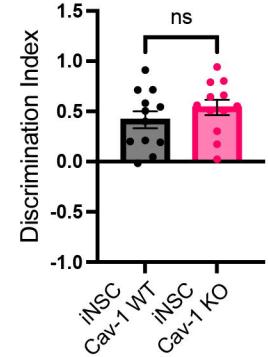

K




A

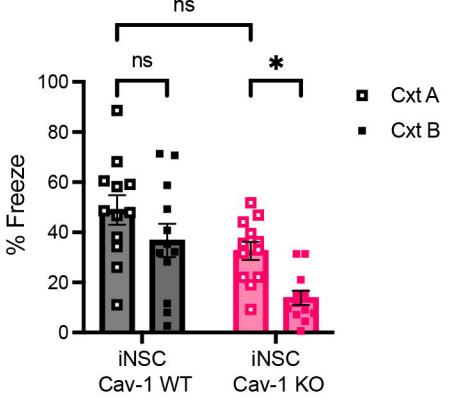
**Context Discrimination**




Day 2 Day 3

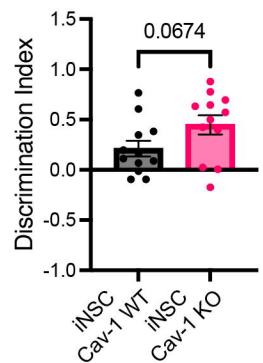
30 min Post-Shock




Day 2 Day 3

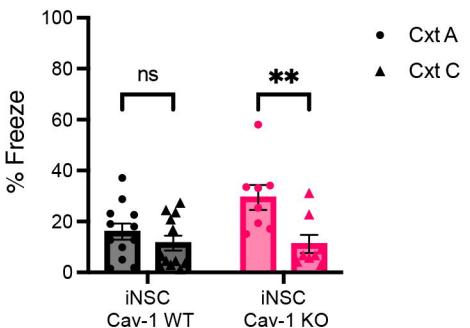
30 min Post-Shock




D

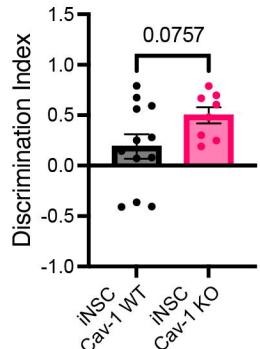
Day 3  
24 hr Post-Shock




E

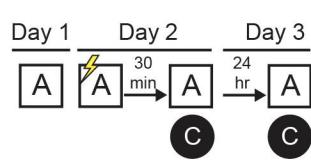
Day 3  
24 hr Post-Shock



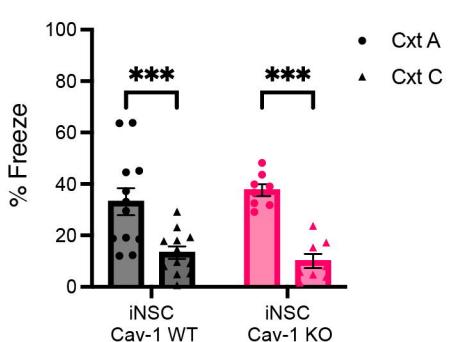

G

Day 2  
30 min Post-Shock



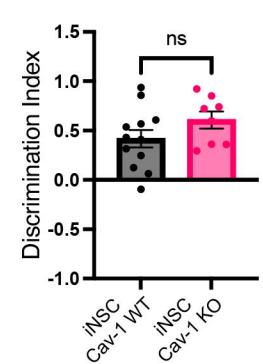

H

Day 2  
30 min Post-Shock

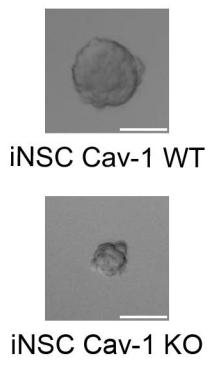



F

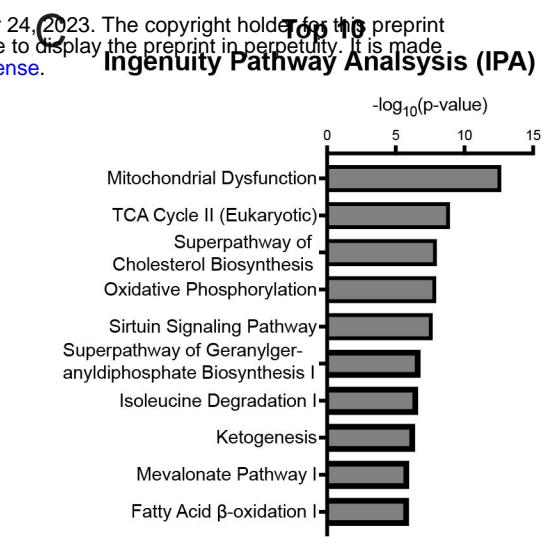
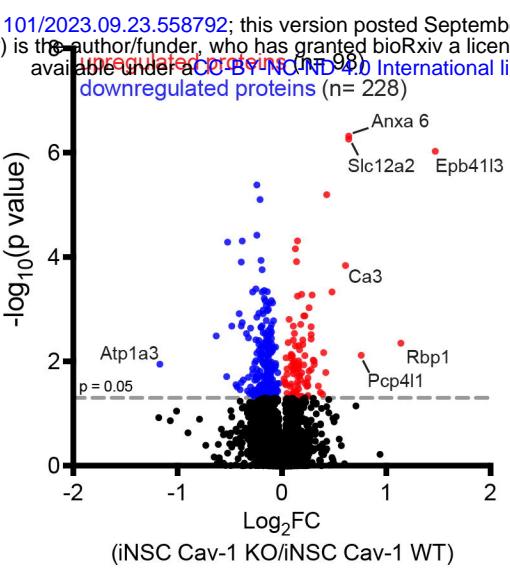
**Context Generalization**



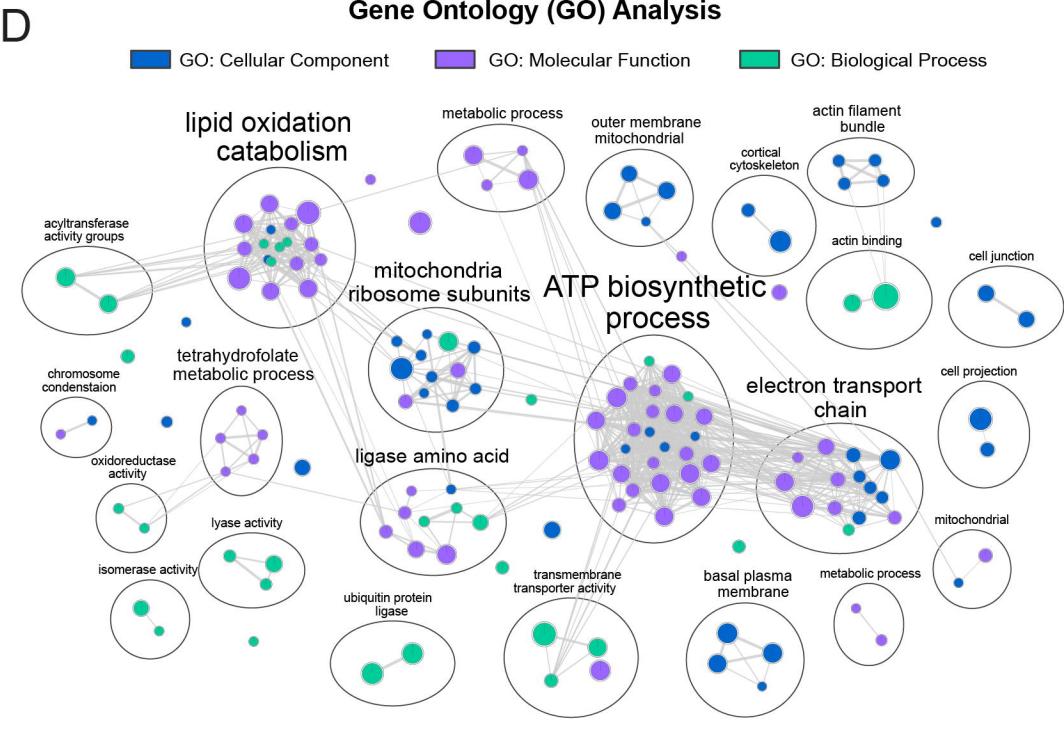

Day 3  
24 hr Post-Shock



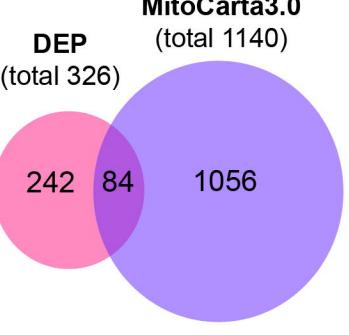

J



Day 3  
24 hr Post-Shock

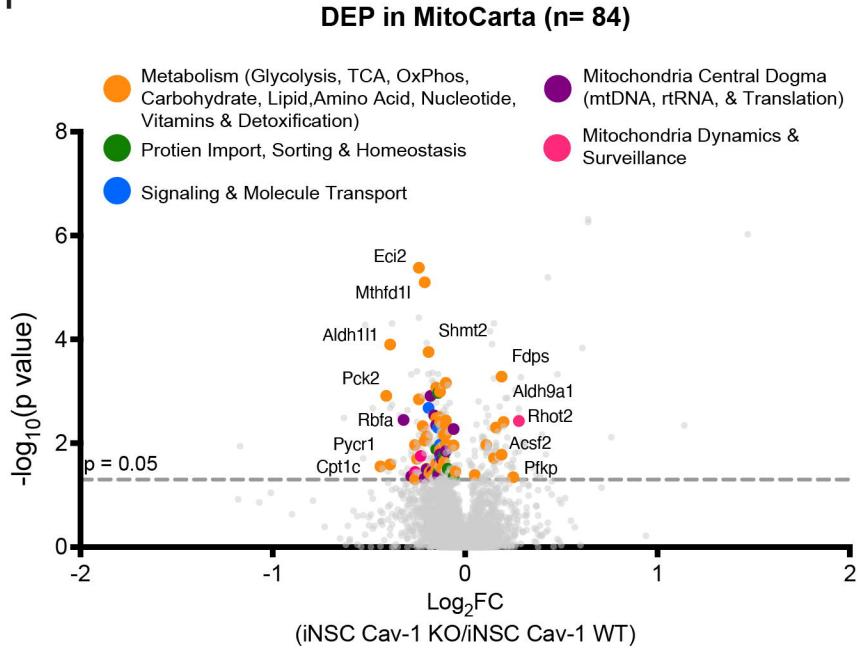



A




Protein Isolation & Trypsinization  
TMT Labeling  
Fractionation  
Nano-LC-MS/MS  
Data Analysis

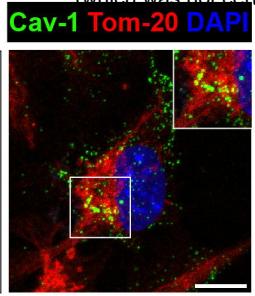



D



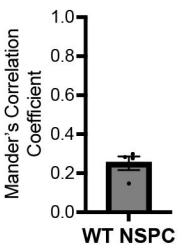
E



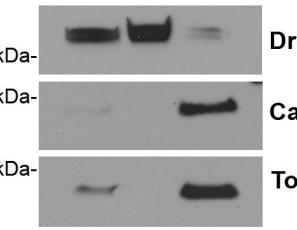

F



G


| Metabolism                     |                                       |                                      | Mitochondria Central Dogma |
|--------------------------------|---------------------------------------|--------------------------------------|----------------------------|
| Acaa2                          | Dlst                                  | Ndufb9                               | Gars                       |
| Acad11                         | Echs1                                 | Ndufs4                               | Lars2                      |
| Acadl                          | Eci2                                  | Pck2                                 | Mrp11                      |
| Aco2                           | Eno1                                  | Pfkp                                 | Mrp20                      |
| Acsf2                          | Efta                                  | Prx2a                                | Mrp39                      |
| Aifm1                          | Fdps                                  | Pycr1                                | Mrp41                      |
| Aldh18a1                       | Gpt2                                  | Sdha                                 | Mrp47                      |
| Aldh111                        | Hadha                                 | Sdhb                                 | Mrp9                       |
| Aldh9a1                        | Hadhb                                 | Shmt2                                | Mrps18a                    |
| Bckdk                          | Hccs                                  | Slc25a4                              | Mrps17                     |
| Cbr3                           | Hspa9                                 | Slc25a5                              | Mrps14                     |
| Cbyl                           | Idh3a                                 | Sucg1                                | Mrps22                     |
| Coq5                           | Idh3g                                 | Surf1                                | Mtif2                      |
| Cpt1a                          | Ldha                                  | Tmem70                               | Rbfa                       |
| Cpt1c                          | Maoa                                  | Uqcrc1                               | Tufm                       |
| Crot                           | Mthfd1l                               | Uqcrc2                               |                            |
| Dglucy                         | Naxe                                  |                                      |                            |
| Dld                            | Ndufaf7                               |                                      |                            |
| Signaling & Molecule Transport | Protein Import, Sorting & Homeostasis | Mitochondria Dynamics & Surveillance |                            |
| Rhot2                          | Aifm1                                 | Phb                                  | Aifm1                      |
| Slc25a4                        | Hspd1                                 | Phb2                                 | Ahcy1                      |
| Slc25a5                        | Mipep                                 | Trap1                                | Ghitm                      |
| Vdac1                          | Mtx2                                  | Uqcrc1                               | Mcl1                       |
| Vdac3                          | Pam16                                 | Uqcrc2                               | Mtx2                       |
|                                |                                       |                                      | Rhot2                      |
|                                |                                       |                                      | Vdac1                      |

A




B

Cav-1/Tom-20



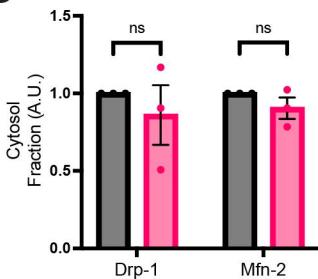
Total Cell Cyto Mito



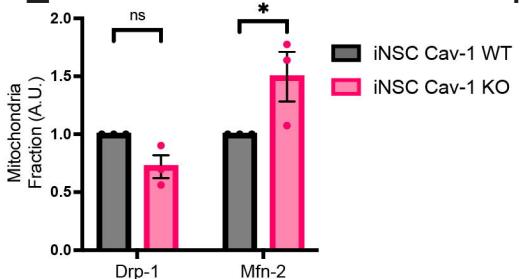
iNSC

iNSC Cav-1 WT

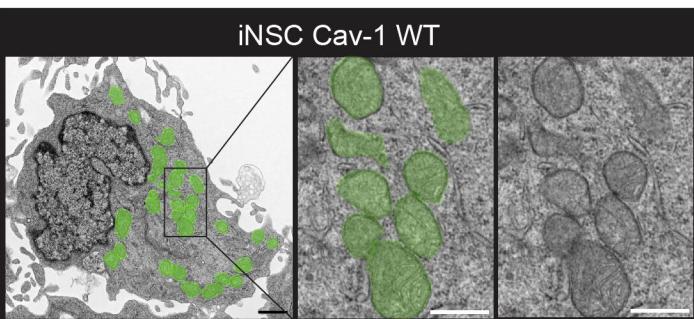
iNSC Cav-1 KO


Drp-1

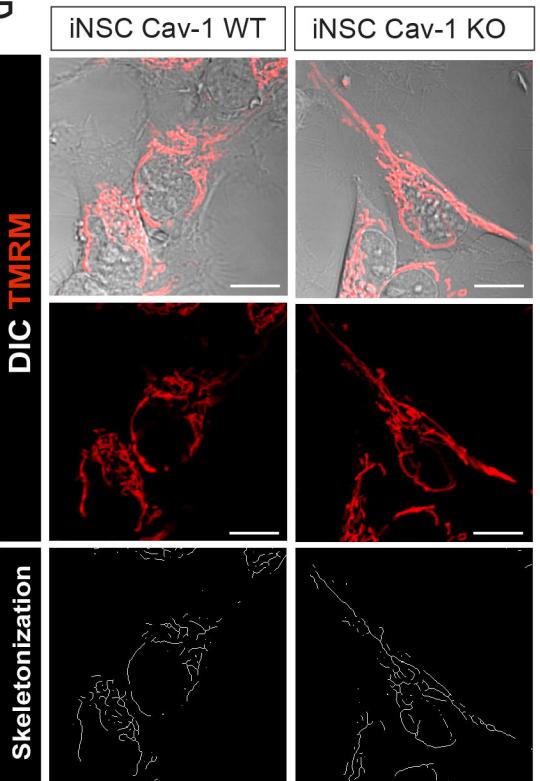
Mfn-2


Tom-20

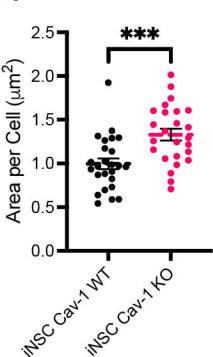
TC Cyto Mito TC Cyto Mito


D

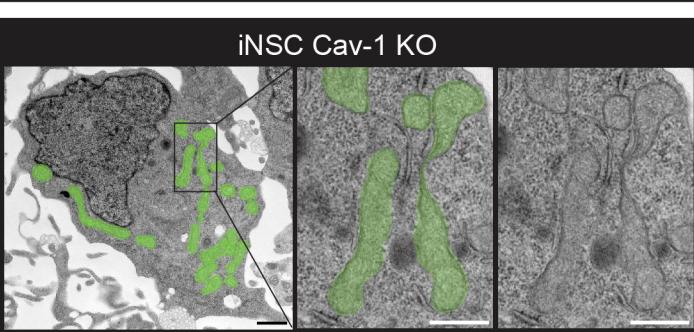



E

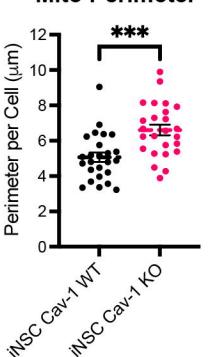



F

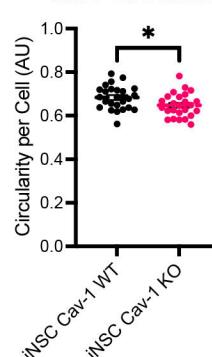



G

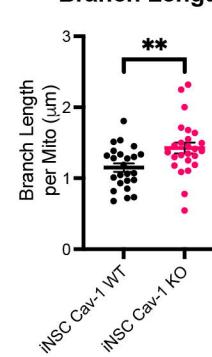



H Mito Area

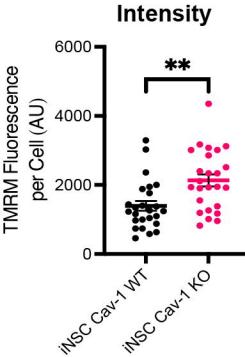



iNSC Cav-1 KO

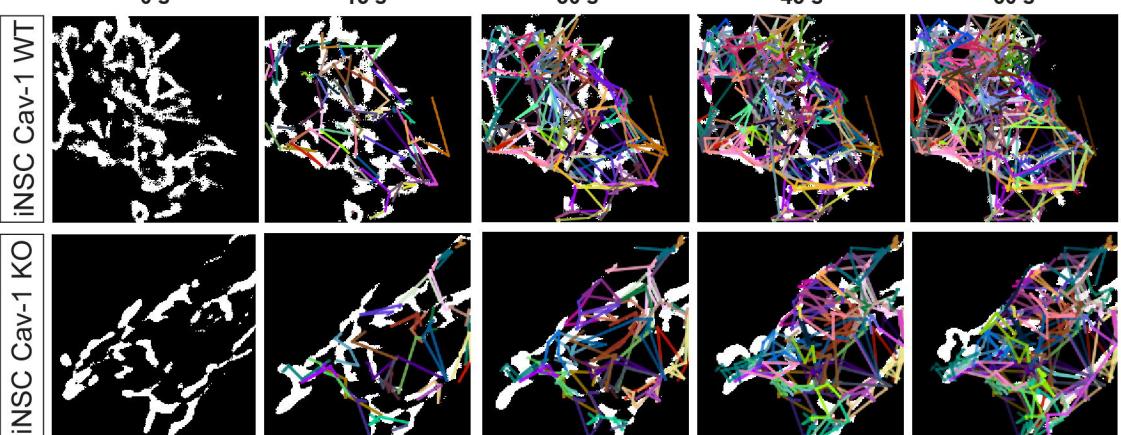



I Mito Perimeter

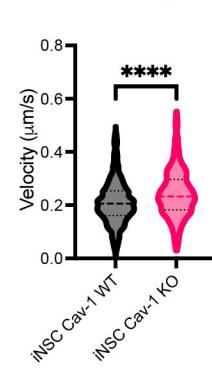



J Mito Circularity

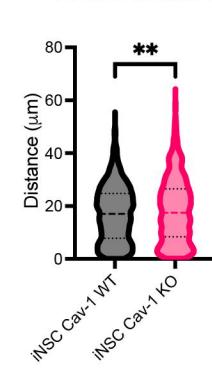



K Branch Length




L TMRM Fluorescence Intensity




M



N Average Velocity



O Average Total Distance

