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Abstract

Motivation: The increasing availability of complete genomes demands for models to study genomic
variability within entire populations. Pangenome graphs capture the full genetic diversity between multiple
genomes, but their layouts may exhibit complex structures due to common, nonlinear patterns of genome
variation and evolution. These structures hamper downstream analyses, visualization, and interpretation.
Results: In response, we introduce a novel graph layout algorithm: the Path-Guided Stochastic Gradient
Descent (PG-SGD). PG-SGD uses the genomes, represented in the pangenome graph as paths, to move
pairs of nodes in parallel applying a modified HOGWILD! strategy. We show that our implementation
efficiently computes the layout of gigabase-scale pangenome graphs, unveiling their biological features.
Availability: We integrated PG-SGD in ODG/ which is released as free software under the MIT open
source license. Source code is available at https://github.com/pangenome/odgi.

Contact: egarriss@uthsc.edu

1 Introduction variation graph model (Garrison et al., 2018), genomes are encoded as
paths traversing the nodes in the graph.

A pangenome graph layout is the arrangement of nodes and edges
in an N-dimensional space to produce a human-readable visualization of

Reference genomes are widely used in genetics, serving as a foundation
for a variety of analyses, including gene annotation, read mapping, and
variant detection (Singh er al., 2022). However, this linear model is

becoming obsolete given the accessibility to hundreds or even thousands genetic variation between multiple genomes. Layout algorithms aim to find

optimal node coordinates in order to minimize overlapping nodes or edges,

of high-quality genomes. A single genome can not fully represent the
reduce edge crossings, and promote an intuitive graph understanding.

genetic diversity of any species, resulting in reference bias (Ballouz
One popular approach is force-directed graph drawing (Cheong and Si,

2022) which produces aesthetic layouts. This is prone to get stuck in local
minima, but stochastic gradient descent (SGD) implementations alleviate
such a problem (Zheng et al., 2019). SGD uses the gradient of its individual
terms to approximate the gradient of a sum of functions.

Typically, force-directed layouts are hard to compute (Wang et al.,
2014), but the lock-free HOGWILD! method offers a highly parallelizable

et al., 2019). In contrast, a pangenome models the entire set of genomic
elements of a given population (Tettelin et al., 2008; Computational Pan-
Genomics Consortium, 2018; Eizenga et al., 2020; Sherman and Salzberg,
2020). Pangenomes can be represented as a sequence graph incorporating
sequences as nodes and their relationships as edges (Hein, 1989). In the
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and thus scalable SGD approach that can be applied when the optimization
problem is sparse (Recht et al., 2011).

In practice, multidimensional scaling (MDS) is applied to minimize
the difference between the visual distance and theoretical graph distance.
This can be accomplished by using pairwise node distances to minimize
an energy function. Since pangenome graphs represent genomes as paths
in the graph, a reasonable distance metric would be the nucleotide distance
between a pair of nodes traversed by the same path.

Here, we present a new pangenome graph layout algorithm which
applies a path-guided stochastic gradient descent (PG-SGD) to move
pairs of nodes in parallel with a modified HOGWILD! strategy. The
algorithm computes the pangenome graph layout that best reflects the
nucleotide sequences in the graph. To our knowledge, no algorithm takes
into account such biological information to compute the graph layouts. PG-
SGD can be extended in any number of dimensions. In the ODGI toolkit
(Guarracino et al., 2022), we provide implementations for 1-dimensional
(1D) and 2-dimensional (2D) layouts. These algorithms have already been
successfully applied to construct and visualize large-scale pangenome
graphs of the Human Pangenome Reference Consortium (HPRC) (Liao
et al., 2023; Guarracino et al., 2023).

2 Algorithm

While PG-SGD is inspired by Zheng er al. (2019), we designed the
algorithm to work on the variation graph model (Definition 2.1).

Definition 2.1. Variation graphs are a mathematical formalism to
represent pangenome graphs (Garrison, 2019). In the variation graph
G = (V,&,P), nodes (or vertices) V = vy ... v}y contain nucleotide
sequences. Each node v; has a unique identifier ¢ and an implicit reverse
complement v;. The node strand o represents the node orientation. Edges
E=e€... e|g| connect ordered pairs of node strands (e; = (0a,0p)),
defining the graph topology. Paths P = p1 ... p|p) are series of connected
steps s; that refer to node strands in the graph (p; = s1 ... 5|, |); the paths
represent the genomes embedded in the graph.

We report PG-SGD'’s pseudocode in Algorithm 1 and its schematic in
Figure 1. In brief, the algorithm moves one pair of nodes (v;,v;) at a
time, minimizing the difference between the layout distance Id;; of the
two nodes and the nucleotide distance nd;; of the same nodes as calculated
along a path that traverses them. In the 2D layouts, nodes have two ends.
When moving a pair of nodes, we actually move one end of each node.
For clarification, an example is given in Figure 1. v; is the node associated
with the step s; sampled uniformly from all the steps in P. v; is the node
associated with the step s; sampled from the same path of s; by drawing
a uniform or a Zipfian distribution (Zipf, 1932). The difference between
nd;; and ld;; guides the update of the node coordinates in the layout. The
magnitude r of the update depends on the learning rate ;. The number of
iterations steers the annealing step size 7 which determines the learning
rate p. A large 7 in the first iterations leads to a globally linear (in 1D)
or planar (in 2D) layout. By decreasing 7, the layout adjustments become
more localized, ensuring that the nodes are positioned to best reflect the
nucleotide distances in the paths (i.e., in the genomes).

Originating from empirical inspection of word frequency tables, Zipf’s
law states that a word with rank n occurs 1/n times as the most frequent
one. This law is modeled by the Zipf distribution.Sampling s; from
a Zipf distribution fixed in the s;’s path position space increases the
possibility to draw a nucleotide position close to s;. So there is a high
chance to use small nucleotide distances nd;; to refine the layout of nodes
comprising a few base pairs. The Zipf distribution is also long-tailed,
with many occurrences of low frequency events. However, extremely
long-range correlations might not be captured sufficiently, resulting in

PG-SGD (G):

input: variation graph G = (V, &, P)

output: N-dimensional layout £ with [V| nodes

XP <+ PathIndex(§G) // for path position
lookup

L <+ LayoutInitialization(V,N)

Z 4+ Initzipf(G,XP)// Zipfian distribution

for n in annealing schedule:

for each planned term update:

$; < Unif(XP)// uniform sampling of a
step from P

p < Path(s;, XP) // path of s;

if (cooling || flip) then

$j < Unif(StepCount(p, XP)) // uniform
sampling of a step from p
else
sj < zipf(p) // Zipfian sampling of a

step from p

end

pi < StepPos(s;) // nuc. position
pj < StepPos(s;) // nuc. position
ndij < ||p; — pjl| // nuc. distance

ldij < ||l — ]| // layout distance

Wij 4~ % // term weight
ij

1< wi;n // learning rate

if o> 1:

| p1

end

dij—nd;;
]fn] // the actual delta

6 - L
if abs(§) <= 0 then

‘ STOP // we can’t optimize more
r<d—1ld;j // size of the update

li < 1l;+r-1ld;; // update v; coordinates
lj <~ 1j —r-ld;j // update w; coordinates

end

end

end
Algorithm 1: Pseudocode of PG-SGD in 1D.

collapsed layouts for structures that are otherwise linear. To provide
balance between global and local layout updates, in half of the updates
(flip flag in Algorithm 1), the s; is sampled uniformly instead from a
Zipf distribution, with uniform sampling being more favorable for global
updates. Furthermore, to enhance local linearity (in 1D) or planarity (in
2D) of the graph layout, a cooling phase skews the Zipfian distribution
after half of iterations have been completed. This increases the likelihood
of sampling smaller nucleotide distances for the layout updates.

3 Implementation

We implemented PG-SGD in ODGI (Guarracino et al., 2022): the 1D
version can be found in odgi sort and the 2D version in odgi layout. To
efficiently retrieve path nucleotide positions, we implemented a path index.
This index is a strict subset of the XG index (Garrison et al., 2018) where
we avoid to use succinct SDSL data structures (Gog et al., 2014). Instead,
we rely on bit-compressed integer vectors, enabling efficient retrieval
of path nucleotide positions to quickly compute nucleotide distances
without having to store all pairwise distances between nodes in memory.
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Fig. 1: 2D PG-SGD update operation sketches. (a) The path information
of the graph. pathl and path2 both visit the same first node. Then their
sequence diverges and they visit distinct nodes. (b-€) v;/v; or v;/vy is the
current pair of nodes to update. Id;;/ld;y, is the current layout distance.
r, —7 is the current size of the update. (b) Initial graph layout highlighting
the future update of the two nodes of pathli. (¢) The graph layout after the
first update. The nodes appear longer now, because we updated at the end
of the nodes. Highlighted is the future update of the two nodes of path2. (d)
The graph layout after the second update. Highlighted is the future update
of the two nodes of pathl. (e) Final graph layout after three updates using
the 2D PG-SGD.

This approach ensures to scale on large pangenome graphs representing
thousands of whole genomes.

Graph layout initialization can significantly influence the quality of the
final layout. In the 1D implementation, by default, nodes are placed in the
same order as they appear in the input graph, although we also provide
support for random layout initialization. In 2D, we offer several layout
initialization techniques. One approach places nodes in the first layout
dimension according to their order in the input graph, adding either uniform
or Gaussian noise in the second dimension. Another strategy arranges
nodes along a Hilbert curve, an approach that often favors the creation
of planar final layouts. We also support fixing node positions to keep
nodes in the same order as they are in a selected path, such as a reference
genome. This feature allows us to build reference-focused graph layouts
(Figure S1d).

Our implementation is multithreaded and uses shared memory for
storing the layout in a vector, according to the HOGWILD! strategy (Recht
et al., 2011). Threads perform layout updates without any locking for
additional speed up. This approach is feasible since pangenome graphs
are typically sparse (Guarracino et al., 2022), with low average node
degree. As a result, the updates only modify small parts of the entire
layout. While the HOGWILD! SGD algorithm writes the layout updates
to a shared non-atomic double vector, PG-SGD stores node coordinates
in a vector of atomic doubles. This vector prevents any potential memory
overwrites. Our tests revealed basically no performance loss with respect
to the non-atomic counterpart.

4 Results
4.1 Performance

We apply the 2D PG-SGD to the human pangenome (Liao et al., 2023)
from the Human Pangenome Reference Consortium (HPRC) to show the
scalability of the algorithm. Experiments were conducted on a cluster
with 24 Regular nodes (32 cores / 64 threads with two AMD EPYC
7343 processors with 512 GB RAM) and 4 HighMem nodes (64 cores
/ 128 threads with two AMD EPYC 7513 processors with 2048 GB
RAM). We downloaded pangenome graphs for each autosome (24 in
total) and for the mitochondrial DNA. Each graph represents 90 whole
human haplotypes: 44 diploid individuals plus the GRCh38 (Schneider
et al., 2017) and CHM13 (Nurk ef al., 2021) haploid human references
(see Supplementary Table S1 for graph statistics). When applied to these
pangenome graphs using one Regular node for each calculation, 2D PG-
SGD obtains the graph layouts in 50 minutes on average, with the highest
run time observed being chromosome 16 (Supplementary Table S1).
This is expected since chromosome 16 has one of the highest levels of
segmentally duplicated sequence among the human autosomes (Martin
et al., 2004). Repetitive sequences lead to graph nodes with a very high
number of path traversals, which are computationally expensive to work
with (Guarracino et al., 2022). Memory consumption is 29.66 GB of RAM
on average, with the memory peak again occurring with chromosome
16, due to the path index building phase. Given its scalability, we even
applied PG-SGD to the full graph with all chromosomes together using
a HighMem node (Supplementary Table S1). BandageNG (https://
github.com/asl/BandageNG, last accessed Jul 2023), the current
state-of-the-art for graph visualization, was not able to produce a layout
within 7 days, hitting the wall clock time limit of the cluster. On average,
PG-SGD is ~8X faster than BandageNG while using ~2X less memory.

4.2 Pangenome graph layouts reveal biology features

Graph visualization is essential for understanding pangenome graphs and
the genome variation they represent. We show how 2D PG-SGD allows
us gaining insight into biological data by looking at the graph layout
structure. In Figure 2a, the chromosomes of the HPRC graph show the
large scale structural variations in the centromeres. Focusing on the major
histocompatibility complex (MHC) of chromosome 6 (Figure 2b), the 2D
layout reveals the positions and diversity of all MHC genes (Figure 2c).
In Figure 2d the C4A and C4B genes are highlighted. Complementary, we
provide various 1D visualizations in Supplementary Figure S1.

5 Discussion

We presented Path-Guided Stochastic Gradient Descent (PG-SGD), the
first layout algorithm for pangenome graphs that leverages the biological
information available within the genomes represented in the graph. Our
implementation efficiently computes the layout of pangenome graphs
representing thousands of whole genomes.

Graph visualization is key for understanding genome variations
and the layouts produced by PG-SGD offer an unprecedented high-
level perspective on pangenome variation. We implemented PG-SGD to
generate layouts in 1D and 2D. These graph projections have already been
employed in constructing and analyzing the first draft human pangenome
reference (Liao et al., 2023), as well as in the discovery of heterologous
recombination of human acrocentric chromosomes (Guarracino et al.,
2023). Furthermore, they are applied in the creation and analysis of
pangenome graphs for any species (Guarracino et al., 2022; Garrison
et al., 2023). Of note, there still remains a gap in interactive and scalable
solutions that merge layouts of large pangenome graphs with annotation.
Our algorithm will underpin new pangenome graph browsers for studying
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Fig. 2: 2D visualizations of all chromosomes of the Human Pangenome Reference Consortium (HPRC) 90 haplotypes pangenome graph, chromosome 6,
the major histocompatibility complex (MHC), and the complement component 4 (C4). (a) odgi draw layout of the HPRC pangenome graph 90 haplotypes.
Displayed are all 24 autosomes and the mitochondrial chromosome. A red rectangle highlights chromosome 6 which is shown in the subfigure below. (b)
gfaestus screenshot of the chromosome 6 layout. Colored in blue is the MHC. The hairball in the middle is the centromere. The black structures in the
centromere are edges. (c¢) gfaestus screenshot of the MHC. All MHC genes are color annotated and the names of the genes appear as a text overlay. (d)
gfaestus screenshot of the region around C4, specifically color highlighting genes C4A and C4B. The black lines are the edges of the graph.
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graph layouts and the genome variation they represent (https://
github.com/chfi/waragraph) last accessed Jul 2023).

The performance analysis shows that our 2D implementation
outperforms BandageNG when handling large, complex pangenome
graphs. While BandageNG was not able to deliver a layout of the whole
HPRC graph within 1 week, our 2D PG-SGD calculated one within one
day. There are some possible optimization approaches for future work
to further improve the performance of PG-SGD, making it possible for
interactive use. The data structure could be optimized to improve cache
performance. Moreover, the high-degree of parallelism could be further
exploited by using a GPU.

PG-SGD can be extended to any number of dimensions. It can be
seen as a graph embedding algorithm that converts high-dimensional,
sparse pangenome graphs into low-dimensional, dense, and continuous
vector spaces, while preserving its biologically relevant information.
This enables the application of machine learning algorithms that use
the graph layout for variant detection and classification. Our future
research involves leveraging these graph projections to detect structural
variants and to identify and correct assembly errors. Moreover, we are
considering extending the algorithm to RNA and protein sequences to
support pantranscriptome graphs (Sibbesen et al., 2023) and panproteome
graphs (Dabbaghie et al., 2023), respectively.
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Table S1: Performance evaluation of computing a 2D layout of all chromosomal HPRC pangenome graphs. From GFA to the actual layout. * BandageNG
did not finish within the job wall clock time limit of 7 days. Therefore, no layout was produced. 32T: Number of threads: 32. 64T: Number of threads: 64.

time in minutes memory in gigabytes
32T 64T 32T 64T
name len nodes edges paths steps pg —sgd bng pg—sgd bng pg—sgd bng pg—sgd bng
chrl 1.12e+09 1.11e+07 1.54e+07 2.26e+03 6.01e+08 110 1439 68 1427 55.73 14991 56.00 195.33
chr2 3.47e+08 6.68e+06 9.27e+06 1.65¢+03 3.89e+08 67 576 47 521 3731 8197 37.29 8197
chr3 4.06e+08 6.20e+06 8.62e+06 1.56e+03 4.55e+08 81 473 52 481 41.34 8141 4171 93.83
chr4 2.73e+08 5.91e+06 8.23e+06 1.35e+03 4.97e+08 88 422 56 423 44.90 79.40 45.02 79.48
chr5 3.35e+08 5.39e+06 7.51e+06 1.20e+03 4.04e+08 73 349 46 375 35.83 75.13 36.48 75.10
chr6 2.29e+08 4.70e+06 6.56e+06 1.41e+03 4.03e+08 70 270 46 271 36.74 7125 3722 71.26
chr7 2.71e+08 5.17e+06 7.25¢+06 1.22e+03 4.10e+08 70 328 46 346 37.39 73.70 37.88 73.81
chr8 1.93e+08 4.26e+06 5.95e+06 8.55e+02 4.29e+08 71 224 47 233 3773 5472 38.07 54.70
chr9 1.01e+09 8.80e+06 1.23e+07 8.67e+02 3.31e+08 44 931 38 957 31.76 131.93 31.79 131.96
chrl0  2.56e+08 4.50e+06 6.26e+06 8.79e+02 2.72e+08 36 256 32 260 2532  67.85 25.25 67.87
“chrll  2.83e+08 4.73e+06 6.54e+06 6.53e+02 2.38e+08 31 277 28 286 21.81 68.49 21.77 68.54
chrl2  2.44e+08 4.10e+06 5.71e+06 7.68e+02 2.54e+08 44 210 27 206 2355 51.19 2399 51.22
chr13  3.47e+08 4.34e+06 6.08¢+06 2.58e+03 3.12e+08 52 242 34 237 27.98 54.02 28.64 85.85
chrl4  2.73e+08 4.15e+06 5.79¢+06 1.82e+03 2.62e+08 45 222 28 222 23.56 51.67 24.17 78.13
chrl5  5.64e+08 5.20e+06 7.26e+06 2.06e+03 4.02e+08 64 347 35 334 3520 74.27 35.69 102.97
chrl6  3.39e+08 3.91e+06 5.53e+06 1.52e+03 6.91e+08 152 216 512 244 58.88  53.00 61.02 53.00
chrl7  1.73e+08 2.76e+06 3.93e+06 1.42e+03 3.25¢+08 50 102 33 102 27.83 40.68 28.69 49.50
chr18  2.44e+08 2.83e+06 3.98¢+06 1.27e+03 3.00e+08 44 108 31 106 26.61 40.80 26.78 45.01
chrl9  291e+08 3.02e+06 4.21e+06 1.07e+03 2.03e+08 31 123 21 117 18.12 40.14 18.43  40.18
chr20  1.87e+08 2.82e+06 3.97e+06 8.24e+02 2.35e+08 35 114 25 108 20.79 39.02 21.04  39.05
chr2l  2.74e+08 2.76e+06 3.88¢+06 3.03e+03 2.21e+08 33 110 23 103 18.79 38.07 19.12 4647
chr22  4.64e+08 3.76e+06 5.22¢+06 1.76e+03 2.05e+08 32 181 22 183 18.30 44.73 18.65 45.13
chrX  2.07e+08 3.46e+06 4.89¢+06 2.42e+03 2.70e+08 41 156 28 155 24.66 43.05 24.84 43.05
chrY  8.80e+07 3.18e+05 4.41e+05 3.07e+02 1.34e+07 2 5 1 5 147  4.65 1.57  4.65
chrtM  1.76e+04 1.40e+03 1.89e+03 4.40e+01 4.06e+04 1 1 1 1 021  0.04 049  0.04
all chrs 8.42e+09 1.11e+08 1.55e+08 3.48e+04 8.12e+09 1630 -* 1020 -* 737.15 -* 738.76 -*
6 Su pplement overlap. But, in our 1D visualizations, we arrange the nodes from left to

right. Therefore, we project the 1D coordinates into a 1D node order: We
sort the final layout by graph component, graph position, and node rank.

6.1 Supplementary data

6.1.1 Performance evaluation
The results of the performance evaluation are given in Table S1.

6.1.2 1D visualizations
The 1D PG-SGD algorithm creates a 1D layout of the nodes of the graph.
Theoretically, it is possible that 2 nodes have the same 1D coordinate or
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Fig. S1: odgi viz 1D visualizations of a 5 haplotypes subgraph of the Human Pangenome Reference Consortium (HPRC) chromosome 6 pangenome
graph. The major histocompatibility complex (MHC) sequence was injected as an extra path. Various node arrangements are shown. a-d A graphs nodes
are arranged from left to right forming the pangenome sequence. The black lines under the paths are the links representing the topology. Path names are
left. (a) odgi viz default modality: The colored bars are the paths versus pangenome sequence in a binary matrix. Shown is the subgraph extracted with
odgi extract. No 1D layout algorithm was applied here. b-d odgi viz colored by path position. Light grey corresponds to the beginning of a path, black
encodes the end of the path. (b) The nodes are arranged randomly in 1D. (¢) The nodes are arranged applying the 1D PG-SGD algorithm. (d) The nodes
are arranged applying a 1D reference-guided PG-SGD where the nodes of haplotype HG01071 are fixed and only all the othere ones are movable in 1D.
Now all paths of this haplotype are arranged from their lowest to their highest nucleotide position. However,lot’s of longer links are now visible compared
to the node ordering directly above. This indicates a node order that is globally not optimal.
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