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ABSTRACT 
CD8 T cell proper differentiation during antiviral responses relies on metabolic adaptations. 

Herein, we investigated global metabolic activity in single CD8 T cells along an in vivo 

response by estimating metabolic fluxes from single-cell RNA-sequencing data. The approach 

was validated by the observation of metabolic variations known from experimental studies on 

global cell populations, while adding temporally detailed information and unravelling yet 

undescribed sections of CD8 T cell metabolism that are affected by cellular differentiation. 

Furthermore, inter-cellular variability in gene expression level, highlighted by single cell data, 

and heterogeneity of metabolic activity 4 days post-infection, revealed a new transition stage 

accompanied by a metabolic switch in activated cells differentiating into full-blown effectors. 
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INTRODUCTION 
CD8 T lymphocytes are critical cytotoxic effector cells that protect against viral infections by 

eradicating virus-infected cells. The antiviral response typically recruits rare antigen (Ag)- 

specific naive CD8 T cells, resulting in their tremendous proliferation and differentiation into 

potent cytotoxic cells that eradicate infected cells. After clearing of viral Ags, the majority of 

effectors undergoes apoptosis leaving a small population of quiescent memory cells, which will 

ensure rapid and most effective secondary responses to subsequent infections with the same 

pathogen (Murali-Krishna et al., 1998; Kaech and Cui, 2012).  

This differentiation process, which produces immediate effector and long-term protector 

lymphocyte populations, is accompanied by metabolic reprogramming at different stages in 

order to support specific bioenergetic requirements of differentiating cells (Klein Geltink et al., 

2018; Gupta et al., 2020; Møller et al., 2022). For instance, glucose consumption by CD8 T 

lymphocytes relies on its cytoplasmic degradation to pyruvate that can be further catabolized 

to lactate, a process known as glycolysis. Alternatively, pyruvate can enter mitochondria, where 

its conversion into acetyl-coenzymeA (acetyl-coA) fuels the TriCarboxylic Acid (TCA), which 

in turn activates the mitochondrial membrane Electron Transport Chain (ETC) for Oxidative 

phosphorylation (Oxphos) of Adenosine-DiPhosphate (ADP) to Adenosine-TriPhosphate 

(ATP). CD8 T cell can also produce energy from fatty acids (FA)-oxidation (FAO) in 

mitochondria, which produces acetyl-coA for the TCA. The metabolism of quiescent naive 

CD8 T cells mostly relies on basic glycolysis and FAO (Gupta et al., 2020). Upon activation, 

CD8 T cells enhance glucose consumption (Menk et al., 2018) and switch to aerobic glycolysis 

(van der Windt and Pearce, 2012; Klein Geltink et al., 2018; Salmond, 2018; Jung et al., 2019; 

Gupta et al., 2020; Møller et al., 2022). This metabolic switch is mandatory for the proper 

differentiation of naive cells into effectors (Pearce et al., 2013; Pollizzi et al., 2015). Later in 

the response, when effectors differentiate to memory cells, they undergo a new metabolic 

switch back to FAO (Araki et al., 2009; Pearce et al., 2009; van der Windt and Pearce, 2012), 

which is again mandatory for proper memory CD8 T cell generation (Pollizzi et al., 2015; 

Bevilacqua et al., 2022; Møller et al., 2022).  

Besides this well described reprogramming of energy production during CD8 T cell responses 

to viral infections, Ag encounter also promotes cholesterol biosynthesis (Chen et al., 1975; 

Kidani et al., 2013) and triggers an increase in glutamine uptake and glutaminolysis (Carr et 

al., 2010; Wang et al., 2011), which fuels FA synthesis through -KetoGlutarate (-KG)-

dependent citrate production (Gupta et al., 2020; Pearce et al., 2013). T cell activation also 

redirects glyceraldehyde-3P (G3P) downstream glucose degradation towards the production of 
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5-phosphoribose-2P (PRPP) that fuels the pentose-phosphate pathway (PPP) to meet nucleic 

acid and aromatic amino acid biosynthesis demands (Wang et al., 2011). Globally, CD8 T cell 

activation, proliferation and differentiation are coupled to metabolic reprogramming that 

support trade-offs between energy demand and biomolecule synthesis and participate in cell 

differentiation. Both cell differentiation and metabolic switches are intertwined and co-

regulated epigenetically (Almeida et al., 2016; Jung et al., 2019; Yerinde et al., 2019; Gupta et 

al., 2020; Møller et al., 2022). 

These metabolic adaptations to viral challenge have been studied on global populations of CD8 

T cell responders. However, effector and memory CD8 T cell populations are heterogeneous 

(Appay et al., 2002; Kaech and Cui, 2012; Mittrücker et al., 2014) and different subsets shall 

undergo and require specific metabolic programs (Geiger et al., 2016; Gupta et al., 2019). Thus, 

an analysis of the metabolism of CD8 T cell responding to a viral infection at the single-cell 

level would be much more biologically relevant (Arsenio et al., 2014; Ahl et al., 2020; 

Fernández-García et al., 2022). However, single-cell metabolomic techniques still suffer from 

relatively low throughput and sensitivity (Duncan et al., 2019; Sengupta et al., 2019). Thus, to 

generate a global description of the metabolism of CD8 T cell responding to a viral infection at 

the single-cell level, we made use of the recently described single-cell Flux Estimation Analysis 

(scFEA) algorithm (Alghamdi et al., 2021) that estimates metabolite fluxes in cells from single-

cell RNA-sequencing (scRNA-seq) expression data. Our results evidenced metabolic switches 

previously described, thus validating the approach, and revealed new metabolic perturbations 

that may deserve further detailed experimental validation.  

Furthermore, this single-cell level analysis revealed time-dependent variation in inter-cellular 

heterogeneity. Indeed, we show that, as in numerous other cell differentiation systems (Papili 

Gao et al., 2020),  metabolic genes are subjected to a transient rise in gene expression variability 

allowing cells to explore the gene expression space, before selection of the most appropriate 

gene regulatory network (GRN) state resulting in a more homogeneous gene expression pattern 

in the emerging differentiated populations (Guillemin and Stumpf, 2021). Interestingly, two 

distinct surges in metabolic gene expression variability were observed, immediately after 

activation and around 4 days post-infection (dpi). The genes concerned by these perturbations 

are involved in largely non-overlapping pans of cell metabolism, suggesting a yet unknown 

metabolic switch at 4 dpi, when activated cells fully commit to effector differentiation. This 

switch may be coupled to a selection process, as the scFEA analysis revealed that many cells 

at 4 dpi could not sustain the metabolic changes triggered by cell activation. Finally, it occurs 

at a transition stage globally affecting the GRN, beyond metabolic regulation. 
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RESULTS 

Expression data 

We obtained expression data from a scRNA-seq study of murine CD8 T cells responding to an 

acute viral infection (Kurd et al., 2020). Therein, the authors transferred P14 transgenic CD8 T 

cells that recognize an LCMV epitope to histocompatible hosts, which were acutely immunized 

with the virus the day after. Single responding CD8 T cells from the spleens of immunized 

hosts were then sorted at different days post-infection (dpi) and analyzed by scRNA-seq. We 

performed quality control of the data downloaded from Gene Expression Omnibus 

(GSE131847) and selected cells and genes (Methods) to generate a final UMI count table of 

14,666 genes in 42,025 single cells (Figure 1A). Dimension reduction and representation on 

UMAP revealed a correct temporal arrangement of the cells (Figure 1B), although D4 and D32 

cells split in two regions of the projection. 

 

Global analysis of metabolic changes in responding CD8 T cells 
In order to have access to an unbiased global analysis of the metabolism in CD8 T cells 

responding to an in vivo viral infection at the single-cell level, we used the scFEA algorithm 

that can estimate metabolic fluxes from scRNA-seq expression data (Alghamdi et al., 2021). 

The authors have subdivided all the metabolic pathways of human and murine cells into 171 

flux-independent modules of enzymatic reactions. These modules are then reconstructed as a 

factor graph based on the network topology and gene expression status. Finally, all cell 

fluxomes are estimated thanks to a multilayer neural network model to capture the nonlinear 

dependency of metabolic fluxes on the enzymatic gene expressions.  

Fluxome analysis 

We selected 530 metabolic genes (Methods) for scFEA analysis. As expected, their level of 

expression varies during the primary T cell response (SupplementaryFigure 1). We submitted 

UMI counts for these 530 metabolic genes in the 42,025 cells to scFEA and the algorithm 

returned flux values in all cells for 168 of the designed modules. We selected modules with 

relevant flux values (Methods) and did not consider the modules corresponding to simple 

metabolite efflux from cells (Super-Module 12 in Alghamdi et al. (2021)). Modules with a 

substantial variation of flux along the differentiation kinetics were further selected (Methods), 

resulting in a list of 34 metabolic modules of interest (SupplementaryTable 2, 

SupplementaryFigure 4). Those belong to 13 of the 22 Super metabolic Modules (SM) defined 

by Alghamdi et al. (2021), including SM1 corresponding to 8glycolysis and TCA cycle9, which 
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are crucial for CD8 T cell responses. Furthermore, spermine, beta-alanine, 

leucine+valine+isoleucine and spermine metabolisms; the pentose phosphate pathway; the urea 

cycle and the synthesis of purines, pyrimidines, N- and O-linked glycans, as well as steroid 

hormones, all displayed significant and varying fluxes (SupplementaryTable 2). 

Flux variations all occur between D0 and D10 of the response with a surge in variation at D5, 

all fluxes returning to their initial values by D10 and remaining stable up to the memory phase 

of the response at D90 (SupplementaryFigure 4).The flux variations display 3 typical patterns: 

fluxes either increase (Figure 2A) or decrease (Figure 2B) between D0 and D10, or show a 

biphasic evolution with a transient decrease between D0 and D4, followed by an increase above 

initial values from 5 to 10 dpi (Figure 2C). Whatever the direction of the flux variations, cells 

at 4 dpi are heterogeneous with a majority of cells displaying a flux corresponding to the 

variation between 3 and 5 dpi, but a minority of cells with a flux similar to initial values, as if 

they were not able to sustain the initial metabolic changes.  

The projection of the fluctuating flux modules on the murine metabolic map from KEGG 

reveals a regionalization of the selected modules by Super-Module (Figure 3) and complex 

variations of fluxes during the differentiation of cells. For instance, in the 8Pyrimidine 

synthesis9 SM21, the flux through M-155 that corresponds to the reactions Uridine-

TriPhospsate (UTP) → Cytidine-TriPhosphate (CTP) → Cytidine-DiPhosphate (CDP) is 

upregulated between D0 and D10, while the flux through M-153 that corresponds to the 

overlapping reaction Uridine-MonoPhosphate (UMP) → UTP → CTP → CDP is initially 

downregulated between D0 and D4 and then upregulated (SupplementaryFigure 5A). 

Furthermore, the fluxes through M-157 (CDP → deoxyCDP (dCDP)), M-158 (dCDP → 

deoxycytidine-MonoPhosphate (dCMP)) and M-171 (dCMP → deoxycytidine) are up 

regulated, while the flux through M-161 (dCDP → deoxycytidine-TriPhosphate (dCTP)) is 

downregulated. Such complex flux interactions are difficult to interpret in terms of metabolite 

concentrations, such as for CDP or dCDP, and were evidenced in other Super-Modules: SM17 

(SupplementaryFigure 5B) and SM16 (SupplementaryFigure 5C).  

Metabolic stress analysis 

Thus, in order to relate flux variations in modules and metabolite accumulation or deprivation 

from cells, we again used scFEA that calculates metabolite concentrations from the estimated 

fluxes. scFEA returned values for 70 metabolites. We selected (Methods) the top19 variable 

metabolites for analysis (SupplementaryTable 3). The concentration of metabolites varied 

between D0 and D14 of the response (Figure 4) with a peak at 5 dpi. Cells were transiently 

deprived of Glucose-6-Phosphate (G6P), pyruvate, acetyl-coA and glycan backbones 
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(GlcNAc)4 (Man)3 (Asn)1 and (Gal)1 (GlcNAc)1 (Man)1 (Ser/Thr)1; and transiently 

accumulated leucine, isoleucine, lactate and deoxyadenosine. For these metabolites, a large 

fraction of cells at 4 dpi did not sustain the accumulation or loss, as observed for fluxes (Figure 

2). Other metabolite concentrations were biphasic with G3P, glutathione, E,E-Farnesyl-PP, 

UMP and dolichyl-P-D-mannose being accumulated up to 4 dpi and then deprived from cells. 

Conversely, after an initial loss from D0 to D4, cells accumulated glutamate, cholesterol and 5-

Phosphoribose-2P (PRPP) between D5 and D14. Finally, CDP concentration displayed 

oscillations rising at D3, then decreasing below initial values with a nadir at 5 dpi, followed by 

a new maximum at D6, while dCDP concentration oscillated in mirror (Figure 4). 

Interestingly, when the top19 variable metabolites were localized on the metabolic map, they 

all matched a varying flux module (Figure 3). Indeed, Glutamate, PRPP and cholesterol, which 

are the products of M-25, M-33, M-167 modules with first decreasing and then up-regulated 

fluxes, were first deleted from cells before accumulating, while Glutathione, G3P and (E,E)-

Farnesyl-PP, the substrates of these same modules were first accumulated before loss. Also, 

leucine and isoleucine substrates of M-53 and M-55/M-56 modules with decreasing fluxes and 

deoxyadenosine product of M-140 with an increasing flux accumulated, while the increase of 

M-6 flux from pyruvate to lactate resulted in an accumulation of lactate and pyruvate depletion. 

Furthermore, the analysis of metabolite stress helped interpret the complex interactions of 

varying fluxes. For instance, the complex interactions of fluxes in all 6 modules of the 

8pyrimidine synthesis9 SM21 resulted in opposite oscillations in CDP and dCDP 

concentrations, while fluctuations in M-153 flux resulted in an accumulation of UMP prior to 

depletion (SupplementaryFigure 7A). Similarly, the rise in M-126 flux counteracted 

fluctuations in M-125 flux and the increase in M-122 competed the decrease and fluctuations 

of M-119 and M-121, so that cells were depleted from (Gal)1 (GlcNAc)1 (Man)1 (Ser/Thr)1 

and (GlcNAc)4 (Man)3 (Asn)1 glycans (SupplementaryFigure 7B, C). This is in accordance 

with the stronger values of fluxes in M-126 and M-122, as compared to fluxes in M-125 and 

M-119 and M-121, respectively (SupplementaryTable 2). 

In a whole, scFEA analysis led to a very detailed global and temporal single-cell description of 

variations in metabolic fluxes and metabolite concentrations in CD8 T cells during a viral 

infection. 
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Stochasticity of metabolic gene expression 

Single-cell resolution of metabolic fluxome analysis showed a large degree of inter-cellular 

heterogeneity, revealing a cell subset at 4 dpi (Figure 2, SupplementaryFigure 4) and 

highlighting the importance of this degree of granularity to characterize CD8 T cell responses. 

We next questioned whether inter-cellular heterogeneity in metabolic fluxes stems from a 

certain degree of stochasticity in the differentiation process. Indeed, in most cell differentiation 

contexts, a rise in the stochasticity of gene expression has been observed just prior to transition 

or branching points in the differentiation process (Richard et al., 2016; Stumpf et al., 2017; 

Papili Gao et al., 2020; Dussiau et al., 2022; Parmentier et al., 2022; Toh et al., 2022). Such an 

increase in gene expression variability allows cells submitted to environmental perturbations to 

explore the gene expression space before selection of the most appropriate GRN state in the 

resulting differentiated population (Huang et al., 2005; Huang, 2009). This phenomenon has 

not yet been described for mature lymphocytes differentiating in response to an antigenic 

challenge. As shown in SupplementaryFigure 1, the level of metabolic gene expression varies 

during CD8 T cell differentiation. However, during hematopoiesis, if many genes show 

fluctuations in expression level, it is the ones that show the highest fluctuations in cell-to-cell 

variability over the course of a differentiation trajectory that are pathway-specific (Dussiau et 

al., 2022). Since metabolic regulation is crucial for the proper differentiation of CD8 T cells in 

response to a viral challenge, we thus assessed the inter-cellular variability in metabolic gene 

expression during this differentiation process.  

For this, we estimated the degree of inter-cellular variability in the expression of the 530 

metabolic genes selected for flux estimations by their level of entropy (Dussiau et al., 2022; 

Gandrillon et al., 2021) at each dpi  (Methods). As shown in Figure 5A, many metabolic genes 

show strong variations in expression variability, mostly during the first 10 days after infection. 

Thus, although metabolic gene expression is strictly regulated during CD8 T cell differentiation 

(Gupta et al., 2019; Møller et al., 2022), surges in inter-cellular variability indicate the process 

is submitted to variation in stochasticity. There is a weak correlation (r=0.68) between the 

variations in gene expression and entropy (SupplementaryFigure 8), as previously seen in other 

cell differentiation models (Dussiau et al., 2022). In order to highlight kinetic patterns of 

metabolic gene entropies, we clustered entropy profiles shown in Figure 5A, with functional 

PCA followed by kmeans clustering (Methods). We identified two groups of patterns in 

metabolic gene expression variabilities (Figure 5B, C): 86 genes (SupplementaryTable 4) show 

a strong, transient and immediate surge in entropy after activation, hereafter called profile 1, 
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while 444 genes show a weaker and later increase in entropy, beginning at 4 dpi, with a peak at 

6 dpi, hereafter called profile 2. We next investigated the metabolic pathways sustained by the 

genes submitted to variation in stochasticity at these two stages. For this, we performed a Gene 

Ontology analysis of both groups of genes (Methods) and mapped the reactions they govern on 

the KEGG global metabolic map. As shown in Figure 6, the metabolic pathways corresponding 

to the genes allowing the functional annotation clustering of entropy kinetic profiles 1 and 2 

cover a great deal of the murine metabolic map and hardly overlap (See also 

SupplementaryTable 5). Different sections of CD8 T cell metabolism are thus affected by the 

early and late increases in gene expression variability. 

 
Metabolism analysis reveals a transition stage 4 days post-infection 
The late surge in gene expression inter-cellular variability suggests a new transition step at 4 

dpi that may be responsible for the heterogeneity in fluxes and metabolite concentrations 

observed at that time of the response (Figure 2, Figure 4). It is indeed striking that the dichotomy 

observed at 4 dpi in module flux values and metabolite concentrations largely overlaps the 

clustering obtained based on all hypervariable gene expression (Methods, Figure 7A and data 

not shown). Furthermore, when cells collected at 4 dpi are clustered based on flux module 

values or metabolite concentrations, a large overlap is again observed between these clusters 

and those based on all hypervariable gene expression data (Figure 7B, C). Thus, the late surge 

in inter-cellular metabolic gene expression variability (Figure 5B, C) reveals a transition stage 

affecting all gene expression data and specifically metabolic activity, and points toward the 

existence of two distinct cell populations at that stage.  

Gene set enrichment analysis (Methods) of D4-expression clusters mostly revealed an 

enrichment in genes associated with CD8 T cell effector functions (e.g., Ccl3, Ccl4, Ccl5, Ifng, 

Gzmb, Prf1) in cells from expression cluster #0 and the specific enrichment in <Zf5= motif of 

the Zbtb4 transcription repressor in 32 out of 47 over-expressed genes in cells from expression 

cluster #1 (SupplementaryTable 7). 

DISCUSSION 

In this study we have made use of the scFEA algorithm (Alghamdi et al., 2021) to evaluate at 

the single-cell level the global metabolic activity in CD8 T cells responding to a viral infection 

in vivo from scRNA-seq data (Kurd et al., 2020; Milner et al., 2020). Previous single-CD8-T-

cell metabolic analyses relied only on scRNA-seq measurements of mRNA levels of in vitro 

activated cells (Fernández-García et al., 2022), or cytometry quantification of a few selected 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2023. ; https://doi.org/10.1101/2023.09.22.558248doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.22.558248
http://creativecommons.org/licenses/by-nc-nd/4.0/


p.  9 

proteins implied in metabolism and/or its regulation (Ahl et al., 2020; Hartmann et al., 2021; 

Levine et al., 2021). However, mRNA and protein levels are not linearly correlated to the 

activity of the corresponding metabolic modules and our study is the first attempt at globally 

evaluating all metabolic activities in single responding CD8 T cells. The conclusions of our 

study can be questioned as they are drawn from flux value estimations from expression data. 

Two lines of evidence nevertheless support our claims: first, the output of the scFEA algorithm 

was validated against experimental data in the original study (Alghamdi et al., 2021) and 

second, our analysis does reproduce known facts on metabolic changes in activated CD8 T 

cells, demonstrating the validity of the approach. Indeed, flux estimation of carbohydrate 

metabolism pathways was in accordance with the extensively described switches in glucose 

consumption observed during CD8 T cell differentiation (van der Windt and Pearce, 2012; 

Klein Geltink et al., 2018; Gupta et al., 2020; Møller et al., 2022). Among the five modules 

describing the degradation of glucose to pyruvate, only M-2 (Glucose-6P (G6P) to G3P) 

showed a substantial flux variation but its flux increase upon activation is in agreement with a 

global rise in metabolic activity of antigen-challenged CD8 T cells. Furthermore, the flux 

increase in M-6 (pyruvate to lactate) exactly describes the metabolic switch from Oxphos to 

aerobic glycolysis that is crucial for CD8 T cell differentiation into effector cells. Oxphos is not 

entirely included in modules of the scFEA analysis, however the flux through M-8 (citrate to 

2-oxoglutarate) and M-13 (malate to oxaloacetate) of the TCA, which fuels Oxphos, are 

decreased as expected. Of note, varying fluxes through modules may seem contradictory and 

sometimes difficult to interpret. However, metabolic stress analysis helped reconciling the 

observations on fluxomes. For instance, if the conflicting increase in M-11 (succinate to 

fumarate) is difficult to interpret directly in regards to M-8 and M-13 modules, metabolic stress 

analysis revealed a depletion of acetyl-coA that, together with the deprivation of G6P and 

pyruvate and the accumulation of lactate, all confirm the metabolic switch from Oxphos to 

aerobic glycolysis during the differentiation of virus-challenged CD8 T cells into effectors. 

Besides, the increased flux through M-62 (ornithine to putrescine) corresponds to the increase 

in polyamine synthesis from ornithine through the urea cycle, as described in Ag-activated T 

cells (Wang et al., 2011). scFEA analysis also added some temporal information on other 

known CD8 T cell metabolic perturbations. For instance, glucose consumption through the 

pentose phosphate anabolic pathway is increased in activated CD8 T cells (Sagone et al., 1974; 

Wang et al., 2011). It is thought to be important for nucleic acid demands in highly proliferating 

cells (Frauwirth, Kenneth A. and Thompson, Craig B., 2004; van der Windt and Pearce, 2012). 

We observed that the flux through M-33 (G3P to PRPP) of the PPP initially decreases leading, 
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together with the increase flux through M-2, to an accumulation of G3P at 4 dpi. The increase 

in M-33 flux leading to an accumulation of PRPP at D6, in only seen secondary to the initial 

decrease, suggesting an important role for the PPP during the transition from activated cells to 

fully differentiated effectors. Similarly, T cell activation induces the increase of glutamine 

uptake and glutaminolysis (Carr et al., 2010; Wang et al., 2011). The glutamate produced by 

glutamine degradation can enter mitochondria and fuel the TCA to produce -KG and 

downstream cellular building blocks, such as lipids and nucleic acids (Gupta et al., 2020; 

Hansen and Gibson, 2022; Lane and Fan, 2015; Pearce et al., 2013), or be converted to 

glutathione in the cytoplasm to reduce the reactive oxygen species (ROS) produced by the 

enhanced mitochondrial activity (Klein Geltink et al., 2018; Møller et al., 2022). We observed 

an initial decrease in the flux through the M-25 (glutathione to glutamate), followed by an 

increase which led to accumulation of glutathione at D3 and glutamate at D5. This suggests 

that increased glutaminolysis is initially used to produce glutathione that will buffer the ROS 

production by mitochondria, in turn sustaining the mTOR pathway and the glycolytic switch 

(Mak et al., 2017). After 4 dpi, enhanced glutaminolysis leads to glutamate accumulation that 

can fuel the TCA cycle to produce de novo cellular components in highly proliferating effector 

cells (Gupta et al., 2020; Hansen and Gibson, 2022; Lane and Fan, 2015; Pearce et al., 2013). 

Finally, we detected the increased cholesterol production described in activated CD8 T cells 

(Chen et al., 1975; Kidani et al., 2013) only after 4 dpi, suggesting its role may not be major 

for the immune synapse formation (Yang et al., 2016) but important for the regulation of the 

transcriptional activity of Liver X receptor (Bensinger et al., 2008) and Sterol Regulatory 

Element-Binding Protein (Kidani et al., 2013), in activated T cells (Møller et al., 2022). In 

conclusion, scFEA analysis provided a very detailed description of metabolic adaptations in 

virus activated CD8 T cells at the single cell level that were validated by previous experimental 

results but added a level of temporal precision.  

Nevertheless, no substantial variations of flux or metabolite concentration in cells were 

observed past 10 dpi and, thus, the back-switch in metabolism from aerobic glycolysis to 

Oxphos and FAO of effectors differentiating into memory CD8 T cells (Klein Geltink et al., 

2018; Gupta et al., 2019; Møller et al., 2022) was not evidenced by our analysis. This may be 

due to variations in flux and metabolite concentrations that are beyond the sensitivity of scFEA 

estimations. Furthermore, fluctuation of fluxes in modules from 8beta-alanine metabolism9 

SM6, 8urea cycle9 SM9, 8spermine metabolism9 SM11 and 8hyaluronic acid synthesis9 SM13 

did not result in detectable accumulation or deprivation of any metabolite on the corresponding 

pathways, suggesting a reduced sensitivity of scFEA estimations of metabolite concentrations 
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as compared to modules fluxes. Finally, scFEA could not evidence flux variations in any of the 

modules of the SM4, 5, 7, 8, 14, 15, 18 or 19, defined in Alghamdi et al. (2021) as 8glycan, 

glycosaminoglycan, glutamate, glycogen, sialic and fatty acids, beta-alanine and aspartate 

metabolism or synthesis9. We cannot conclude whether these sections of CD8 T cell 

metabolism are less affected by cellular differentiation or whether the algorithm fails to 

evidence them. However, as many genes encoding enzymes responsible for reactions of some 

of these pathways, such fatty acid elongation, are submitted to a surge in expression variability, 

we suspect scFEA is not sensitive enough to catch all CD8 T cell metabolic perturbations, 

further strengthening the quantitative importance of the changes that were detected. In that 

respect, scFEA revealed variations of full sections of cellular metabolism that were not 

expected from experimental studies. For instance, scFEA revealed perturbations of the 

fluxomes in 8N-and O-linked glycan synthesis9 SM16 and SM17 with deprivation of two types 

glycan backbones. Interestingly, enhanced glycolysis and glutaminolysis fuel an increase in O-

linked GlcNAcylation of nuclear proteins upon T cell activation (Kearse and Hart, 1991; 

Swamy et al., 2016) that triggers the Nuclear Factor kappa-light-chain enhancer of activated B 

cells (NF-B) signaling pathway (Ramakrishnan et al., 2013). The differential regulation of 

specific modules and metabolites in SM16 and SM17 highlighted by scFEA could help 

designing experiments to decipher which post-translational modifications are crucial for CD8 

T cell antiviral responses. Furthermore, reduced flux in several modules of leucine and 

isoleucine degradation to succinyl-coA and acetyl-coA in SM9 resulted in the accumulation of 

both these amino acids and participated with aerobic glycolysis to the deprivation in acetyl-

coA. Thus, scFEA suggests a role for these amino acids in CD8 T cell responses that remains 

to be experimentally investigated. Deprivation of acetyl-coA, the principal giver of acyl groups 

for post-translational modifications (Walsh et al., 2018) shall also deserve experimental 

investigation. Similarly, scFEA analysis revealed an increase in the flux through several 

modules of the 8purine synthesis9 SM20, leading to the accumulation of deoxyadenosine, as 

well as a very complex interaction of fluxomes in modules and variations of metabolite 

concentrations in the 8pyrimidine synthesis9 SM21. The role of specific intermediates and 

metabolic modules of nucleic acid biosynthesis in CD8 T cell activation is totally unexplored. 

In conclusion, scFEA analysis points out new sections of cellular metabolism that deserve 

experimental investigation in the context of CD8 T cell antiviral responses and memory 

development. 
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Cell differentiation has long been seen as an instructive process with genetic programs 

orchestrated by a set of master regulator genes, the transcription factors, being solicited in every 

single cell submitted to environmental perturbation (Davis et al., 1987; Herskowitz, 1989; 

Whyte et al., 2013). The recent breakthrough of single cell omics technologies has largely 

challenged this view (Kato and Igarashi, 2019). Indeed, stochasticity of gene expression at the 

single cell level (Raj and van Oudenaarden, 2008) translates to stochasticity in the 

differentiation process (Chang et al., 2008; Kalmar et al., 2009). In this Darwinian view, cell 

differentiation proceeds in two steps: stochastic gene expression in response to a stimulus 

creates a certain degree of transcriptional uncertainty, where individual cells can initiate 

different genetic programs, leading to a high degree of inter-cell variability in gene expression. 

The subsequent selection of fit cells allows the return to a homogeneous population of 

differentiated cells, in which a new stable state of the GRN has been established (Moris et al., 

2016; Richard et al., 2016; Stumpf et al., 2017; Papili Gao et al., 2020; Dussiau et al., 2022; 

Parmentier et al., 2022; Toh et al., 2022).  

Although this differentiation mechanism has been demonstrated in all biological models 

examined to date, including in vivo situations (Dussiau et al., 2022; Toh et al., 2022), we show 

here for the first time that it also affects metabolic genes during an in vivo lymphocyte response 

to a viral challenge. Given the importance of a proper metabolic activity for the differentiation 

of CD8 T cells in effector and memory populations during an antiviral response, this process is 

thought to be tightly controlled. However, our results show that, as many other differentiation 

processes, CD8 T cell responses benefit from a stochastic exploratory search of the gene 

expression space during their differentiation at least at the level of the metabolic functions.  

This implies the existence of selection steps of cells with the best fit state at some points of the 

process. Our observations suggest that such a selection step may occur around 4 dpi. Indeed, at 

this stage a large fraction of cells seems to recover flux values and metabolite concentrations 

similar to those in unstimulated cells, as if unable to sustain the metabolic changes occurring in 

other cells between D3 and D5 of the response. Furthermore, in many cases the flux direction 

in modules, as well as the corresponding metabolite accumulation/deprivation in cells, reverts 

between D3 and D5 highlighting a metabolic switch at D4. In addition, kinetic patterns of gene 

expression variability revealed two groups of gene controlling different sections of the cellular 

metabolism, that show a surge in entropy either directly after infection, or later starting at 4 dpi 

suggesting a transition stage at that time of the response. This is strengthened by the observation 

that heterogeneity of metabolic activities in cells collected at 4 dpi matches different states of 

the global GRN. Altogether, these results suggest a transition stage accompanied by a metabolic 
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switch in activated cells around 4 dpi, when they start to differentiate into cytotoxic effectors, 

that would result in the selection of the best metabolically fit cells. 

 

In a whole, our study allowed a global survey of cellular metabolism in CD8 T cell responding 

to a viral infection in vivo, at the single-cell level, highlighting metabolic perturbations beyond 

known switches revealed by previous experimental approaches. This study also evidenced a 

transition step around 4 dpi, accompanied by a metabolic switch during the differentiation of 

antigen-activated cells into full-blown effectors, adding one more piece of evidence linking 

metabolic activity variations and differentiation processes. 

 

METHODS 

Data collection and processing. 
Sequencing reads were generated by Kurd et al. (Kurd et al., 2020) and Milner et al. (Milner et 

al., 2020). For these studies, the authors transferred P14 TCR-transgenic CD8 T cells, which 

recognize a Lymphocytic ChorioMeningitis Virus (LCMV) epitope, to histocompatible hosts 

that were acutely immunized the day after with 105 plaque-forming units of LCMV Armstrong. 

Single responding P14 CD8 T cells from the spleens of immunized hosts were sorted at different 

dpi and loaded into Single Cell A chips for partition into Gel Bead In-Emulsions in a Chromium 

Controller (10x Genomics). Single-cell RNA libraries were prepared according to the 10x 

Genomics Chromium Single Cell 3′ Reagent Kits v2 User Guide and sequenced (paired-end) 

on a HiSeq 4000 (Illumina).  

We used data collected at 0, 3, 4, 5, 6, 7, 10, 14, 21, 32 and 90 dpi and downloaded reads from 

GEO 8release 2020-10-099 (GSE131847) with fastqdump from the SRA-toolkit suite 

(https://www.ncbi.nlm.nih.gov/sra), using the --split-files option.  

Quality control of reads was performed with fastp (Chen, 2023): we discarded reads of too low 

quality, trimmed the others and removed adapters before selecting reads with a phred quality 

score (Ewing and Green, 1998) of at least 30. 

Reads were then aligned to the mouse genome assembly GRCm38 

(https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.20/) with the Kallisto-Bustools 

wrapper (Melsted et al., 2021), using the 8lamanno9 workflow to generate a table of Unique 

Molecular Identifier (UMI) counts of spliced mRNAs. Empty sequencing droplets were 

removed with a threshold set to the inflection knee of the curve representing the UMI counts of 
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ranked droplets (http://bioconductor.org/books/3.15/OSCA.advanced/droplet-

processing.html).  

The UMI count tables of each collection day were imported and pooled in Seurat V4.0.4 (Hao 

et al., 2021) and the 14,666 genes that are expressed in at least 20 cells were selected. Dying 

cells with more than 5% of mitochondrial genes were further removed 

The UMI count table was normalized with SCTransform (Hafemeister and Satija, 2019) and 2 

% of the droplets containing more than one cell, as identified with the DoubletFinder package 

(McGinnis et al., 2019) were removed, resulting in an UMI count table of 14,666 genes 

expressed by 42,025 live single cells spanning the entire kinetics (Figure 1A). Principal 

Component Analysis (PCA) was performed with prcomp 

(https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prcomp). The broken-

stick model (MacArthur, 1957) was used to select 9 principal components for further dimension 

reduction and visualization with Uniform Manifold Approximation and Projection (UMAP).  

Metabolic gene selection 
scFEA uses the expression of a list of 719 metabolic genes relevant to the estimation of the 

fluxes in all 171 metabolic modules. Among these metabolic genes, 430 are present in the 

14,666 genes expressed in at least 20 cells in our data. However, all the genes regulating 

glycolysis and Oxphos described in Kyoto Encyclopedia of Genes and Genomes database 

(Kanehisa and Goto, 2000; Kanehisa et al., 2023, KEGG: release 8101.49) have not been 

included in the initial list. As metabolic switches from Oxphos to aerobic glycolysis and vice 

versa are crucial for the proper differentiation of CD8 T cells into effectors and memory cells 

during a viral infection, we complemented the list of 430 metabolic genes from N. Alghamdi 

et al. (2021) with 4 and 96 extra genes, respectively involved in glycolysis and Oxphos, and 

present in the 14,666 considered genes (SupplementaryTable 1). We thus filtered the raw UMI 

count table for the expression of the 530 selected metabolic genes. Interestingly, the expression 

level of many metabolic genes displays temporal variations during the CD8 T cell response 

(SupplementaryFigure 1). 

Data filtering and scFEA analysis  
Raw UMI count data were filtered for metabolic genes in the designed list (SupplementaryTable 

1) and the counts for 530 metabolic genes in the 42,025 cells were submitted to scFEA. The 

algorithm was installed and run at the High-Performance Computing cluster Pôle Scientifique 

de Modélisation Numérique of the Ecole Normale Supérieure de Lyon, according to the 

instructions of the authors (Alghamdi et al., 2021, https://github.com/changwn/scFEA). 
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Module selection for fluxome analyses 
The scFEA algorithm returned flux values in all cells for 168 modules. These were filtered to 

select fluxes with a |CV|>7.10-4 for all cells to eliminate modules with too little flux variation 

along the kinetics (SupplementaryFigure 2). We checked the eliminated modules were not 

significantly varying during the CD8 T cell response and re-introduced the M-114 module that 

shows substantial variation with a |CV| of 2.10-4 (SupplementaryFigure 2D). 

To only consider relevant flux values, the 131 resulting varying modules were then filtered to 

select those with a maximum flux value superior or equal to 10-3 AU. Among the 47 remaining 

modules, some still display weak flux values with a majority of cells not reaching the 10-3 AU 

threshold (SupplementaryFigure 3A). They correspond to modules with a median of values 

inferior to 3.10-4 AU (SupplementaryFigure 3B, C). These were filtered out and we finally 

removed from the 41 remaining modules, 7 modules corresponding to simple metabolite efflux 

from cells, resulting in a list of 34 modules of interest.  

Metabolite selection 
The concentration of the 70 metabolites, for which scFEA yielded results, were averaged by 

day and the delta between the highest and the lowest concentrations along the kinetics 

(concentration_delta) was calculated for each metabolite. The distribution of these 

concentration_deltas displays a gap around 10-3 AU (SupplementaryFigure 6) and we therefore 

selected the modules with a greater concentration_delta, ending up with 20 metabolites of 

interest. However, concentration in ornithine was hardly varying along the response (Figure 4) 

and we did not consider it further, in the resulting top19 list (SupplementaryTable 3).  

Gene expression variability 

The variability of gene expression is estimated by the level of entropy of each gene at each dpi 

(Gandrillon et al., 2021; Dussiau et al., 2022). Briefly, for each dpi, the distribution of gene 

expression among the cell population is binned and Shannon9s entropy is then defined as minus 

the sum across bins of pk.log(pk), where pk is the probability for a cell to belong to bin k. 

Shannon9s Entropy thus measures heterogeneity in a population, with a value of 0 when all cells 

belong to the same bin (minimal entropy) and a maximal value of log(k)/k when they are evenly 

distributed in bins (maximal heterogeneity). The entropy of each metabolic gene at each dpi 

was estimated with the unbiased 8best-upper-bound9 estimator, as in Paninski et al. (Paninski, 

2003).  
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Clustering of entropy kinetic profiles 
To identify groups of genes with similar temporal entropy patterns, i.e. similar profiles of 

entropies along the kinetics, we used functional PCA followed by kmeans (Ramsey, J. O. and 

Silverman, B. W., 2005). Briefly, functional PCA is used to reduce the dimensionality and catch 

temporal dynamics of entropy curves. We used a model with piece-wise constant functions 

(histograms) for their simplicity of interpretation. Then, a standard kmeans algorithm is used 

on principal components to find the appropriate clusters. The number of principal components 

and clusters (n = 2) was determined by the rule of thumb.  

Gene Ontology analysis 
The list of genes corresponding to the entropy kinetic profiles 1 and 2 in Figure 5C, were 

submitted to DAVID Bioinformatic Resources (https://david.ncifcrf.gov/tools.jsp) for 

functional annotation clustering on Gene Ontologies 8Molecular Function9, 8Biological 

Process9 and 8Cellular Component9. Seventy-eight out of the 86 genes in entropy kinetic 

profile1 supported the clustering in 10 annotation clusters with low stringency and 107 out of 

the 444 genes in entropy kinetic profile2 supported the clustering in 15 annotation clusters with 

high stringency (SupplementaryTable 5). The 78 and 107 genes supporting both annotation 

clusters were then used to map the corresponding enzymatic reactions on the KEGG pathway 

map (Figure 6).  

Cell clustering 

The 2,089 cells collected at 4 dpi were selected and the UMI counts of the 14,666 genes were 

normalized with SCTransform (Hafemeister and Satija, 2019). The selected 2,100 

hypervariable genes were used for further dimension reduction with PCA and UMAP. Cell 

clustering was performed in Seurat (Hao et al., 2021) with a resolution level of 0.07 to obtain 

2 clusters. Next, module flux values, as well as metabolite concentrations, in each D4-cell were 

normalized and clustered, with respective resolution values of 0.02 and 0.03 to again obtain 2 

clusters for each clustering.  

Differential gene analysis and gene set enrichment 
The 2,100 hyper-variable genes expressed by CD8 T cells at 4 dpi were selected and differential 

expression was evaluated by a kernel-based two-sample test that compares the distributions of 

gene expression (Ozier-Lafontaine et al., 2023). P-values were adjusted by the Bonferroni 

method. The 111 and 47 genes up-regulated in gene expression clusters #0 and #1, respectively, 

with an average log2(FC) > 0.13  (SupplementaryTable 6) were then submitted to gene set 
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enrichment analysis in g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) with default values and the 

2,100 hypervariable genes used as the background list. 
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ABBREVIATIONS 
ADP: Adenosine-DiPhosphate 
Antigen: Ag 
ATP: Adenosine-TriPhosphate 
AU: Arbitrary Unit 
coA: coenzyme A 
CDP: Cytidine-DiPhosphate 
CTP: Cytidine-TriPhosphate 
dCDP: deoxyCytidine-DiPhosphate 
dCMP: deoxyCytidine-MonoPhosphate 
dCTP: deoxyCytidine-TriPhosphate 
dpi: days post-infection 
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ETC: Electron transport Chain 
FA: Fatty acid 
FAO: FA oxidation 
G3P: Glyceraldehyde-3-Phosphate 
G6P: Glucose-6-Phosphate 
GRN: Gene Regulatory Network 
KEGG: Kyoto Encyclopedia of Genes and Genomes 
LCMV: Lymphocytic ChorioMeningitis Virus 
mTOR; mammalian Target Of Rapamycin 
Oxphos: Oxidative phosphorylation 
PCA: Principal Component Analysis 
PPP: Pentose Phosphate Pathway 
PRPP: 5-Phosphoribose-2P 
ROS: Reactive Oxygen Species  
scFEA: single-cell Flux Estimation Analysis 
scRNA-seq: single-cell RNA-sequencing 
SM: Super metabolic Module 
TCA: TriCarboxylic Acid 
TCR: T-Cell Ag Receptor 
UMAP: Uniform Manifold Approximation and Projection 
UMI: Unique Molecular Identifier 
UMP: Uridine-MonoPhosphate 
UTP: Uridine-TriPhosphate 
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FIGURES 

 

FIGURE 1: Data collection and processing. (A) Bar plot of live single cell counts recovered 
after selection at the indicated dpi. (B) UMAP representation of the recovered cells. 
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FIGURE 2: Examples of module flux variations. For each metabolic module, the distributions 
of flux values (x103 AU) at all dpi are shown left-hand and a box-plot of flux values for all cells 
is shown right-hand. The vertical bar on the left and the red dot on the right indicate the median 
and mean of flux values, respectively. Examples of modules with an upregulated (A), 
downregulated (B) or biphasic (C) flux are shown. Names, as well as the initial and final 
compounds, of modules are indicated in the color of the corresponding Super-Module, as in 
Figure 3. 
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FIGURE 3: Metabolic map projection of the modules and metabolites selected for analysis. 
The modules are depicted on the global murine metabolic pathway map 8mmu011009 from 
KEGG (Kanehisa and Goto, 2000; Kanehisa et al., 2023). They are represented as arrows 
following the enzymatic reactions from their initial to the terminal compounds. Modules are 
colored according to their SM family (Alghamdi et al., 2021). Plain arrows and unboxed names 
correspond to fluxes upregulated between D0 and D10. Dashed arrows and name boxes 
correspond to fluxes downregulated between D0 and D10. Dotted arrows and name boxes 
correspond to fluxes transiently downregulated between D0 and D4 and upregulated between 
D5 and D10.  Note that module M-115 is not pointing to its final product Farnesal, which is not 
represented on the map. Similarly, the first reactions from histidine to carnosine for module M-
43 and the last reactions from propanoyl-coA to acetyl-coA for module M-56 are represented 
as direct jumps between the compounds, as the intermediate chemical reactions are not depicted 
on the KEGG metabolic map. 
The top19 variable metabolites are labelled and shown as pink circles. Empty/plain circles 
represent respectively metabolites with a transient depletion/accumulation between D0 and 
D14. Metabolites with a biphasic change in concentrations are represented with two-color 
circles, with a pink left-hand part for metabolites firstly accumulated and with a pink right-hand 
part for those that are first depleted from cells. Finally, CDP and dCDP with a triphasic variation 
are represented by a hatched circle. 
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FIGURE 4: Variation in concentration of the top20 most variables metabolites. For each 
metabolite, the distributions of concentrations (AU) at all dpi are shown. The vertical bar 
indicates the median for all cells. Corresponding Super-Modules are indicated in their 
respective color. For metabolites at the junction of 2 SM, both are indicated. 
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FIGURE 5: Metabolic genes expression inter-cellular variability. (A) The entropies of the 
530 metabolic genes were calculated at each collection day and are represented as a function of 
time. (B) Functional PCA followed by kmeans clustering evidenced 2 groups of kinetic 
patterns. (C) The kinetics of the entropies of the genes in both clusters of (B) are shown as in 
(A). 
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FIGURE 6: Metabolic map projection of the pathways covered by genes in kinetic profiles. 
The enzymatic reactions corresponding to genes used for functional annotation of kinetic 
profiles are depicted on the KEGG murine metabolic map in (A) black for immediate profile 1, 
(B) red for later profile 2 and (C) blue for both. The regions corresponding to large pans of 
cellular metabolism are highlighted and labeled in blue. 
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FIGURE 7: Module flux values and metabolite concentration of clustered D4 cells.  

(A) Cells collected at 4 dpi were clustered on their gene expression levels and the histograms 
of flux values of two modules (top) and two metabolite concentrations (bottom) are shown 
according to the expression clusters #0 (red) and #1 (blue). (B) UMAP of D4 cell expression 
data colored by expression clusters (left, #0 in red and #1 in blue), flux module value clusters 
(middle, #0 in pink and #1 in green) and metabolite concentration clusters (right, #0 in orange 
and #1 in grey). (C) Cell repartition of flux module value clusters (left, #0 in pink and #1 in 
green) and metabolite concentration clusters (right, #0 in orange and #1 in grey) in expression 
data clusters. 
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