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IN SILICO SINGLE-CELL METABOLISM ANALYSIS UNRAVELS ANEW
TRANSITION STAGE OF CD8 T CELLS 4 DAYS POST-INFECTION

Christophe Arpin!?, Franck Picard! and Olivier Gandrillon'?

ABSTRACT

CD8 T cell proper differentiation during antiviral responses relies on metabolic adaptations.
Herein, we investigated global metabolic activity in single CD8 T cells along an in vivo
response by estimating metabolic fluxes from single-cell RN A-sequencing data. The approach
was validated by the observation of metabolic variations known from experimental studies on
global cell populations, while adding temporally detailed information and unravelling yet
undescribed sections of CD8 T cell metabolism that are affected by cellular differentiation.
Furthermore, inter-cellular variability in gene expression level, highlighted by single cell data,
and heterogeneity of metabolic activity 4 days post-infection, revealed a new transition stage

accompanied by a metabolic switch in activated cells differentiating into full-blown effectors.
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INTRODUCTION

CD8 T lymphocytes are critical cytotoxic effector cells that protect against viral infections by
eradicating virus-infected cells. The antiviral response typically recruits rare antigen (Ag)-
specific naive CD8 T cells, resulting in their tremendous proliferation and differentiation into
potent cytotoxic cells that eradicate infected cells. After clearing of viral Ags, the majority of
effectors undergoes apoptosis leaving a small population of quiescent memory cells, which will
ensure rapid and most effective secondary responses to subsequent infections with the same
pathogen (Murali-Krishna et al., 1998; Kaech and Cui, 2012).

This differentiation process, which produces immediate effector and long-term protector
lymphocyte populations, is accompanied by metabolic reprogramming at different stages in
order to support specific bioenergetic requirements of differentiating cells (Klein Geltink et al.,
2018; Gupta et al., 2020; Mgller et al., 2022). For instance, glucose consumption by CD8 T
lymphocytes relies on its cytoplasmic degradation to pyruvate that can be further catabolized
to lactate, a process known as glycolysis. Alternatively, pyruvate can enter mitochondria, where
its conversion into acetyl-coenzymeA (acetyl-coA) fuels the TriCarboxylic Acid (TCA), which
in turn activates the mitochondrial membrane Electron Transport Chain (ETC) for Oxidative
phosphorylation (Oxphos) of Adenosine-DiPhosphate (ADP) to Adenosine-TriPhosphate
(ATP). CD8 T cell can also produce energy from fatty acids (FA)-oxidation (FAO) in
mitochondria, which produces acetyl-coA for the TCA. The metabolism of quiescent naive
CDS8 T cells mostly relies on basic glycolysis and FAO (Gupta et al., 2020). Upon activation,
CDS8 T cells enhance glucose consumption (Menk et al., 2018) and switch to aerobic glycolysis
(van der Windt and Pearce, 2012; Klein Geltink et al., 2018; Salmond, 2018; Jung et al., 2019;
Gupta et al., 2020; Mgller et al., 2022). This metabolic switch is mandatory for the proper
differentiation of naive cells into effectors (Pearce et al., 2013; Pollizzi et al., 2015). Later in
the response, when effectors differentiate to memory cells, they undergo a new metabolic
switch back to FAO (Araki et al., 2009; Pearce et al., 2009; van der Windt and Pearce, 2012),
which is again mandatory for proper memory CD8 T cell generation (Pollizzi et al., 2015;
Bevilacqua et al., 2022; Mgller et al., 2022).

Besides this well described reprogramming of energy production during CD8 T cell responses
to viral infections, Ag encounter also promotes cholesterol biosynthesis (Chen et al., 1975;
Kidani et al., 2013) and triggers an increase in glutamine uptake and glutaminolysis (Carr et
al., 2010; Wang et al., 2011), which fuels FA synthesis through a-KetoGlutarate (a-KG)-
dependent citrate production (Gupta et al., 2020; Pearce et al., 2013). T cell activation also

redirects glyceraldehyde-3P (G3P) downstream glucose degradation towards the production of
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S-phosphoribose-2P (PRPP) that fuels the pentose-phosphate pathway (PPP) to meet nucleic
acid and aromatic amino acid biosynthesis demands (Wang et al., 2011). Globally, CD8 T cell
activation, proliferation and differentiation are coupled to metabolic reprogramming that
support trade-offs between energy demand and biomolecule synthesis and participate in cell
differentiation. Both cell differentiation and metabolic switches are intertwined and co-
regulated epigenetically (Almeida et al., 2016; Jung et al., 2019; Yerinde et al., 2019; Gupta et
al., 2020; Mgller et al., 2022).

These metabolic adaptations to viral challenge have been studied on global populations of CD8
T cell responders. However, effector and memory CD8 T cell populations are heterogeneous
(Appay et al., 2002; Kaech and Cui, 2012; Mittriicker et al., 2014) and different subsets shall
undergo and require specific metabolic programs (Geiger et al., 2016; Gupta et al., 2019). Thus,
an analysis of the metabolism of CD8 T cell responding to a viral infection at the single-cell
level would be much more biologically relevant (Arsenio et al., 2014; Ahl et al., 2020;
Ferndndez-Garcia et al., 2022). However, single-cell metabolomic techniques still suffer from
relatively low throughput and sensitivity (Duncan et al., 2019; Sengupta et al., 2019). Thus, to
generate a global description of the metabolism of CD8 T cell responding to a viral infection at
the single-cell level, we made use of the recently described single-cell Flux Estimation Analysis
(scFEA) algorithm (Alghamdi et al., 2021) that estimates metabolite fluxes in cells from single-
cell RNA-sequencing (scRNA-seq) expression data. Our results evidenced metabolic switches
previously described, thus validating the approach, and revealed new metabolic perturbations
that may deserve further detailed experimental validation.

Furthermore, this single-cell level analysis revealed time-dependent variation in inter-cellular
heterogeneity. Indeed, we show that, as in numerous other cell differentiation systems (Papili
Gao et al., 2020), metabolic genes are subjected to a transient rise in gene expression variability
allowing cells to explore the gene expression space, before selection of the most appropriate
gene regulatory network (GRN) state resulting in a more homogeneous gene expression pattern
in the emerging differentiated populations (Guillemin and Stumpf, 2021). Interestingly, two
distinct surges in metabolic gene expression variability were observed, immediately after
activation and around 4 days post-infection (dpi). The genes concerned by these perturbations
are involved in largely non-overlapping pans of cell metabolism, suggesting a yet unknown
metabolic switch at 4 dpi, when activated cells fully commit to effector differentiation. This
switch may be coupled to a selection process, as the scFEA analysis revealed that many cells
at 4 dpi could not sustain the metabolic changes triggered by cell activation. Finally, it occurs

at a transition stage globally affecting the GRN, beyond metabolic regulation.
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RESULTS
Expression data

We obtained expression data from a scRNA-seq study of murine CD8 T cells responding to an
acute viral infection (Kurd et al., 2020). Therein, the authors transferred P14 transgenic CD8 T
cells that recognize an LCMYV epitope to histocompatible hosts, which were acutely immunized
with the virus the day after. Single responding CD8 T cells from the spleens of immunized
hosts were then sorted at different days post-infection (dpi) and analyzed by scRNA-seq. We
performed quality control of the data downloaded from Gene Expression Omnibus
(GSE131847) and selected cells and genes (Methods) to generate a final UMI count table of
14,666 genes in 42,025 single cells (Figure 1A). Dimension reduction and representation on
UMAP revealed a correct temporal arrangement of the cells (Figure 1B), although D4 and D32

cells split in two regions of the projection.

Global analysis of metabolic changes in responding CD8 T cells

In order to have access to an unbiased global analysis of the metabolism in CD8 T cells
responding to an in vivo viral infection at the single-cell level, we used the scFEA algorithm
that can estimate metabolic fluxes from scRNA-seq expression data (Alghamdi et al., 2021).
The authors have subdivided all the metabolic pathways of human and murine cells into 171
flux-independent modules of enzymatic reactions. These modules are then reconstructed as a
factor graph based on the network topology and gene expression status. Finally, all cell
fluxomes are estimated thanks to a multilayer neural network model to capture the nonlinear
dependency of metabolic fluxes on the enzymatic gene expressions.

Fluxome analysis

We selected 530 metabolic genes (Methods) for scFEA analysis. As expected, their level of
expression varies during the primary T cell response (SupplementaryFigure 1). We submitted
UMI counts for these 530 metabolic genes in the 42,025 cells to scFEA and the algorithm
returned flux values in all cells for 168 of the designed modules. We selected modules with
relevant flux values (Methods) and did not consider the modules corresponding to simple
metabolite efflux from cells (Super-Module 12 in Alghamdi et al. (2021)). Modules with a
substantial variation of flux along the differentiation kinetics were further selected (Methods),
resulting in a list of 34 metabolic modules of interest (SupplementaryTable 2,
SupplementaryFigure 4). Those belong to 13 of the 22 Super metabolic Modules (SM) defined
by Alghamdi et al. (2021), including SM1 corresponding to ‘glycolysis and TCA cycle’, which
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are crucial for CD8 T cell responses. Furthermore, spermine, beta-alanine,
leucine+valine+isoleucine and spermine metabolisms; the pentose phosphate pathway; the urea
cycle and the synthesis of purines, pyrimidines, N- and O-linked glycans, as well as steroid
hormones, all displayed significant and varying fluxes (SupplementaryTable 2).

Flux variations all occur between D0 and D10 of the response with a surge in variation at D5,
all fluxes returning to their initial values by D10 and remaining stable up to the memory phase
of the response at D90 (SupplementaryFigure 4).The flux variations display 3 typical patterns:
fluxes either increase (Figure 2A) or decrease (Figure 2B) between DO and D10, or show a
biphasic evolution with a transient decrease between D0 and D4, followed by an increase above
initial values from 5 to 10 dpi (Figure 2C). Whatever the direction of the flux variations, cells
at 4 dpi are heterogeneous with a majority of cells displaying a flux corresponding to the
variation between 3 and 5 dpi, but a minority of cells with a flux similar to initial values, as if
they were not able to sustain the initial metabolic changes.

The projection of the fluctuating flux modules on the murine metabolic map from KEGG
reveals a regionalization of the selected modules by Super-Module (Figure 3) and complex
variations of fluxes during the differentiation of cells. For instance, in the ‘Pyrimidine
synthesis> SM21, the flux through M-155 that corresponds to the reactions Uridine-
TriPhospsate (UTP) - Cytidine-TriPhosphate (CTP) - Cytidine-DiPhosphate (CDP) is
upregulated between DO and D10, while the flux through M-153 that corresponds to the
overlapping reaction Uridine-MonoPhosphate (UMP) = UTP - CTP - CDP is initially
downregulated between DO and D4 and then upregulated (SupplementaryFigure 5A).
Furthermore, the fluxes through M-157 (CDP - deoxyCDP (dCDP)), M-158 (dCDP -
deoxycytidine-MonoPhosphate (dCMP)) and M-171 (dCMP -> deoxycytidine) are up
regulated, while the flux through M-161 (dCDP - deoxycytidine-TriPhosphate (dCTP)) is
downregulated. Such complex flux interactions are difficult to interpret in terms of metabolite
concentrations, such as for CDP or dCDP, and were evidenced in other Super-Modules: SM17
(SupplementaryFigure 5B) and SM16 (SupplementaryFigure 5C).

Metabolic stress analysis

Thus, in order to relate flux variations in modules and metabolite accumulation or deprivation
from cells, we again used scFEA that calculates metabolite concentrations from the estimated
fluxes. scFEA returned values for 70 metabolites. We selected (Methods) the top19 variable
metabolites for analysis (SupplementaryTable 3). The concentration of metabolites varied
between DO and D14 of the response (Figure 4) with a peak at 5 dpi. Cells were transiently
deprived of Glucose-6-Phosphate (G6P), pyruvate, acetyl-coA and glycan backbones
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(GlcNAc)4 (Man)3 (Asn)l and (Gal)l (GIcNAc)l (Man)l (Ser/Thr)l; and transiently
accumulated leucine, isoleucine, lactate and deoxyadenosine. For these metabolites, a large
fraction of cells at 4 dpi did not sustain the accumulation or loss, as observed for fluxes (Figure
2). Other metabolite concentrations were biphasic with G3P, glutathione, E,E-Farnesyl-PP,
UMP and dolichyl-P-D-mannose being accumulated up to 4 dpi and then deprived from cells.
Conversely, after an initial loss from DO to D4, cells accumulated glutamate, cholesterol and 5-
Phosphoribose-2P (PRPP) between D5 and D14. Finally, CDP concentration displayed
oscillations rising at D3, then decreasing below initial values with a nadir at 5 dpi, followed by
a new maximum at D6, while dCDP concentration oscillated in mirror (Figure 4).
Interestingly, when the top19 variable metabolites were localized on the metabolic map, they
all matched a varying flux module (Figure 3). Indeed, Glutamate, PRPP and cholesterol, which
are the products of M-25, M-33, M-167 modules with first decreasing and then up-regulated
fluxes, were first deleted from cells before accumulating, while Glutathione, G3P and (E,E)-
Farnesyl-PP, the substrates of these same modules were first accumulated before loss. Also,
leucine and isoleucine substrates of M-53 and M-55/M-56 modules with decreasing fluxes and
deoxyadenosine product of M-140 with an increasing flux accumulated, while the increase of
M-6 flux from pyruvate to lactate resulted in an accumulation of lactate and pyruvate depletion.
Furthermore, the analysis of metabolite stress helped interpret the complex interactions of
varying fluxes. For instance, the complex interactions of fluxes in all 6 modules of the
‘pyrimidine synthesis’ SM21 resulted in opposite oscillations in CDP and dCDP
concentrations, while fluctuations in M-153 flux resulted in an accumulation of UMP prior to
depletion (SupplementaryFigure 7A). Similarly, the rise in M-126 flux counteracted
fluctuations in M-125 flux and the increase in M-122 competed the decrease and fluctuations
of M-119 and M-121, so that cells were depleted from (Gal)l (GlcNAc)l (Man)1 (Ser/Thr)l
and (GIcNAc)4 (Man)3 (Asn)l glycans (SupplementaryFigure 7B, C). This is in accordance
with the stronger values of fluxes in M-126 and M-122, as compared to fluxes in M-125 and
M-119 and M-121, respectively (SupplementaryTable 2).

In a whole, scFEA analysis led to a very detailed global and temporal single-cell description of
variations in metabolic fluxes and metabolite concentrations in CD8 T cells during a viral

infection.
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Stochasticity of metabolic gene expression

Single-cell resolution of metabolic fluxome analysis showed a large degree of inter-cellular
heterogeneity, revealing a cell subset at 4 dpi (Figure 2, SupplementaryFigure 4) and
highlighting the importance of this degree of granularity to characterize CD8 T cell responses.
We next questioned whether inter-cellular heterogeneity in metabolic fluxes stems from a
certain degree of stochasticity in the differentiation process. Indeed, in most cell differentiation
contexts, a rise in the stochasticity of gene expression has been observed just prior to transition
or branching points in the differentiation process (Richard et al., 2016; Stumpf et al., 2017;
Papili Gao et al., 2020; Dussiau et al., 2022; Parmentier et al., 2022; Toh et al., 2022). Such an
increase in gene expression variability allows cells submitted to environmental perturbations to
explore the gene expression space before selection of the most appropriate GRN state in the
resulting differentiated population (Huang et al., 2005; Huang, 2009). This phenomenon has
not yet been described for mature lymphocytes differentiating in response to an antigenic
challenge. As shown in SupplementaryFigure 1, the level of metabolic gene expression varies
during CD8 T cell differentiation. However, during hematopoiesis, if many genes show
fluctuations in expression level, it is the ones that show the highest fluctuations in cell-to-cell
variability over the course of a differentiation trajectory that are pathway-specific (Dussiau et
al., 2022). Since metabolic regulation is crucial for the proper differentiation of CD8 T cells in
response to a viral challenge, we thus assessed the inter-cellular variability in metabolic gene
expression during this differentiation process.

For this, we estimated the degree of inter-cellular variability in the expression of the 530
metabolic genes selected for flux estimations by their level of entropy (Dussiau et al., 2022;
Gandrillon et al., 2021) at each dpi (Methods). As shown in Figure SA, many metabolic genes
show strong variations in expression variability, mostly during the first 10 days after infection.
Thus, although metabolic gene expression is strictly regulated during CD8 T cell differentiation
(Gupta et al., 2019; Mgller et al., 2022), surges in inter-cellular variability indicate the process
is submitted to variation in stochasticity. There is a weak correlation (r=0.68) between the
variations in gene expression and entropy (SupplementaryFigure 8), as previously seen in other
cell differentiation models (Dussiau et al., 2022). In order to highlight kinetic patterns of
metabolic gene entropies, we clustered entropy profiles shown in Figure 5A, with functional
PCA followed by kmeans clustering (Methods). We identified two groups of patterns in
metabolic gene expression variabilities (Figure 5B, C): 86 genes (SupplementaryTable 4) show

a strong, transient and immediate surge in entropy after activation, hereafter called profile 1,
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while 444 genes show a weaker and later increase in entropy, beginning at 4 dpi, with a peak at
6 dpi, hereafter called profile 2. We next investigated the metabolic pathways sustained by the
genes submitted to variation in stochasticity at these two stages. For this, we performed a Gene
Ontology analysis of both groups of genes (Methods) and mapped the reactions they govern on
the KEGG global metabolic map. As shown in Figure 6, the metabolic pathways corresponding
to the genes allowing the functional annotation clustering of entropy kinetic profiles 1 and 2
cover a great deal of the murine metabolic map and hardly overlap (See also
SupplementaryTable 5). Different sections of CD8 T cell metabolism are thus affected by the

early and late increases in gene expression variability.

Metabolism analysis reveals a transition stage 4 days post-infection
The late surge in gene expression inter-cellular variability suggests a new transition step at 4

dpi that may be responsible for the heterogeneity in fluxes and metabolite concentrations
observed at that time of the response (Figure 2, Figure 4). It is indeed striking that the dichotomy
observed at 4 dpi in module flux values and metabolite concentrations largely overlaps the
clustering obtained based on all hypervariable gene expression (Methods, Figure 7A and data
not shown). Furthermore, when cells collected at 4 dpi are clustered based on flux module
values or metabolite concentrations, a large overlap is again observed between these clusters
and those based on all hypervariable gene expression data (Figure 7B, C). Thus, the late surge
in inter-cellular metabolic gene expression variability (Figure 5B, C) reveals a transition stage
affecting all gene expression data and specifically metabolic activity, and points toward the
existence of two distinct cell populations at that stage.

Gene set enrichment analysis (Methods) of D4-expression clusters mostly revealed an
enrichment in genes associated with CD8 T cell effector functions (e.g., Ccl3, Ccl4, Ccl5, Ifng,
Gzmb, Prf1) in cells from expression cluster #0 and the specific enrichment in “Zf5” motif of
the Zbtb4 transcription repressor in 32 out of 47 over-expressed genes in cells from expression

cluster #1 (SupplementaryTable 7).

DIScussION

In this study we have made use of the scFEA algorithm (Alghamdi et al., 2021) to evaluate at
the single-cell level the global metabolic activity in CD8 T cells responding to a viral infection
in vivo from scRNA-seq data (Kurd et al., 2020; Milner et al., 2020). Previous single-CD8-T-
cell metabolic analyses relied only on scRNA-seq measurements of mRNA levels of in vitro

activated cells (Fernandez-Garcia et al., 2022), or cytometry quantification of a few selected
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proteins implied in metabolism and/or its regulation (Ahl et al., 2020; Hartmann et al., 2021;
Levine et al., 2021). However, mRNA and protein levels are not linearly correlated to the
activity of the corresponding metabolic modules and our study is the first attempt at globally
evaluating all metabolic activities in single responding CD8 T cells. The conclusions of our
study can be questioned as they are drawn from flux value estimations from expression data.
Two lines of evidence nevertheless support our claims: first, the output of the scFEA algorithm
was validated against experimental data in the original study (Alghamdi et al., 2021) and
second, our analysis does reproduce known facts on metabolic changes in activated CD8 T
cells, demonstrating the validity of the approach. Indeed, flux estimation of carbohydrate
metabolism pathways was in accordance with the extensively described switches in glucose
consumption observed during CD8 T cell differentiation (van der Windt and Pearce, 2012;
Klein Geltink et al., 2018; Gupta et al., 2020; Mgller et al., 2022). Among the five modules
describing the degradation of glucose to pyruvate, only M-2 (Glucose-6P (G6P) to G3P)
showed a substantial flux variation but its flux increase upon activation is in agreement with a
global rise in metabolic activity of antigen-challenged CD8 T cells. Furthermore, the flux
increase in M-6 (pyruvate to lactate) exactly describes the metabolic switch from Oxphos to
aerobic glycolysis that is crucial for CD8 T cell differentiation into effector cells. Oxphos is not
entirely included in modules of the scFEA analysis, however the flux through M-8 (citrate to
2-oxoglutarate) and M-13 (malate to oxaloacetate) of the TCA, which fuels Oxphos, are
decreased as expected. Of note, varying fluxes through modules may seem contradictory and
sometimes difficult to interpret. However, metabolic stress analysis helped reconciling the
observations on fluxomes. For instance, if the conflicting increase in M-11 (succinate to
fumarate) is difficult to interpret directly in regards to M-8 and M-13 modules, metabolic stress
analysis revealed a depletion of acetyl-coA that, together with the deprivation of G6P and
pyruvate and the accumulation of lactate, all confirm the metabolic switch from Oxphos to
aerobic glycolysis during the differentiation of virus-challenged CD8 T cells into effectors.
Besides, the increased flux through M-62 (ornithine to putrescine) corresponds to the increase
in polyamine synthesis from ornithine through the urea cycle, as described in Ag-activated T
cells (Wang et al., 2011). scFEA analysis also added some temporal information on other
known CDS8 T cell metabolic perturbations. For instance, glucose consumption through the
pentose phosphate anabolic pathway is increased in activated CD8 T cells (Sagone et al., 1974;
Wang et al., 2011). It is thought to be important for nucleic acid demands in highly proliferating
cells (Frauwirth, Kenneth A. and Thompson, Craig B., 2004; van der Windt and Pearce, 2012).
We observed that the flux through M-33 (G3P to PRPP) of the PPP initially decreases leading,
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together with the increase flux through M-2, to an accumulation of G3P at 4 dpi. The increase
in M-33 flux leading to an accumulation of PRPP at D6, in only seen secondary to the initial
decrease, suggesting an important role for the PPP during the transition from activated cells to
fully differentiated effectors. Similarly, T cell activation induces the increase of glutamine
uptake and glutaminolysis (Carr et al., 2010; Wang et al., 2011). The glutamate produced by
glutamine degradation can enter mitochondria and fuel the TCA to produce a-KG and
downstream cellular building blocks, such as lipids and nucleic acids (Gupta et al., 2020;
Hansen and Gibson, 2022; Lane and Fan, 2015; Pearce et al., 2013), or be converted to
glutathione in the cytoplasm to reduce the reactive oxygen species (ROS) produced by the
enhanced mitochondrial activity (Klein Geltink et al., 2018; Mgller et al., 2022). We observed
an initial decrease in the flux through the M-25 (glutathione to glutamate), followed by an
increase which led to accumulation of glutathione at D3 and glutamate at D5. This suggests
that increased glutaminolysis is initially used to produce glutathione that will buffer the ROS
production by mitochondria, in turn sustaining the mTOR pathway and the glycolytic switch
(Mak et al., 2017). After 4 dpi, enhanced glutaminolysis leads to glutamate accumulation that
can fuel the TCA cycle to produce de novo cellular components in highly proliferating effector
cells (Gupta et al., 2020; Hansen and Gibson, 2022; Lane and Fan, 2015; Pearce et al., 2013).
Finally, we detected the increased cholesterol production described in activated CD8 T cells
(Chen et al., 1975; Kidani et al., 2013) only after 4 dpi, suggesting its role may not be major
for the immune synapse formation (Yang et al., 2016) but important for the regulation of the
transcriptional activity of Liver X receptor (Bensinger et al., 2008) and Sterol Regulatory
Element-Binding Protein (Kidani et al., 2013), in activated T cells (Mgller et al., 2022). In
conclusion, scFEA analysis provided a very detailed description of metabolic adaptations in
virus activated CD8 T cells at the single cell level that were validated by previous experimental
results but added a level of temporal precision.

Nevertheless, no substantial variations of flux or metabolite concentration in cells were
observed past 10 dpi and, thus, the back-switch in metabolism from aerobic glycolysis to
Oxphos and FAO of effectors differentiating into memory CD8 T cells (Klein Geltink et al.,
2018; Gupta et al., 2019; Mgller et al., 2022) was not evidenced by our analysis. This may be
due to variations in flux and metabolite concentrations that are beyond the sensitivity of scFEA
estimations. Furthermore, fluctuation of fluxes in modules from ‘beta-alanine metabolism’
SM6, ‘urea cycle’ SM9, ‘spermine metabolism’ SM11 and ‘hyaluronic acid synthesis’ SM13
did not result in detectable accumulation or deprivation of any metabolite on the corresponding

pathways, suggesting a reduced sensitivity of scFEA estimations of metabolite concentrations

p. 10
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as compared to modules fluxes. Finally, scFEA could not evidence flux variations in any of the
modules of the SM4, 5, 7, 8, 14, 15, 18 or 19, defined in Alghamdi et al. (2021) as ‘glycan,
glycosaminoglycan, glutamate, glycogen, sialic and fatty acids, beta-alanine and aspartate
metabolism or synthesis’. We cannot conclude whether these sections of CD8 T cell
metabolism are less affected by cellular differentiation or whether the algorithm fails to
evidence them. However, as many genes encoding enzymes responsible for reactions of some
of these pathways, such fatty acid elongation, are submitted to a surge in expression variability,
we suspect sSCFEA is not sensitive enough to catch all CD8 T cell metabolic perturbations,
further strengthening the quantitative importance of the changes that were detected. In that
respect, sScFEA revealed variations of full sections of cellular metabolism that were not
expected from experimental studies. For instance, scFEA revealed perturbations of the
fluxomes in ‘N-and O-linked glycan synthesis’ SM16 and SM17 with deprivation of two types
glycan backbones. Interestingly, enhanced glycolysis and glutaminolysis fuel an increase in O-
linked GlcNAcylation of nuclear proteins upon T cell activation (Kearse and Hart, 1991;
Swamy et al., 2016) that triggers the Nuclear Factor kappa-light-chain enhancer of activated B
cells (NF-kB) signaling pathway (Ramakrishnan et al., 2013). The differential regulation of
specific modules and metabolites in SM16 and SM17 highlighted by scFEA could help
designing experiments to decipher which post-translational modifications are crucial for CD8
T cell antiviral responses. Furthermore, reduced flux in several modules of leucine and
isoleucine degradation to succinyl-coA and acetyl-coA in SM9 resulted in the accumulation of
both these amino acids and participated with aerobic glycolysis to the deprivation in acetyl-
coA. Thus, scFEA suggests a role for these amino acids in CD8 T cell responses that remains
to be experimentally investigated. Deprivation of acetyl-coA, the principal giver of acyl groups
for post-translational modifications (Walsh et al., 2018) shall also deserve experimental
investigation. Similarly, scFEA analysis revealed an increase in the flux through several
modules of the ‘purine synthesis’ SM20, leading to the accumulation of deoxyadenosine, as
well as a very complex interaction of fluxomes in modules and variations of metabolite
concentrations in the ‘pyrimidine synthesis” SM21. The role of specific intermediates and
metabolic modules of nucleic acid biosynthesis in CD8 T cell activation is totally unexplored.
In conclusion, scFEA analysis points out new sections of cellular metabolism that deserve
experimental investigation in the context of CD8 T cell antiviral responses and memory

development.
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Cell differentiation has long been seen as an instructive process with genetic programs
orchestrated by a set of master regulator genes, the transcription factors, being solicited in every
single cell submitted to environmental perturbation (Davis et al., 1987; Herskowitz, 1989;
Whyte et al., 2013). The recent breakthrough of single cell omics technologies has largely
challenged this view (Kato and Igarashi, 2019). Indeed, stochasticity of gene expression at the
single cell level (Raj and van Oudenaarden, 2008) translates to stochasticity in the
differentiation process (Chang et al., 2008; Kalmar et al., 2009). In this Darwinian view, cell
differentiation proceeds in two steps: stochastic gene expression in response to a stimulus
creates a certain degree of transcriptional uncertainty, where individual cells can initiate
different genetic programs, leading to a high degree of inter-cell variability in gene expression.
The subsequent selection of fit cells allows the return to a homogeneous population of
differentiated cells, in which a new stable state of the GRN has been established (Moris et al.,
2016; Richard et al., 2016; Stumpf et al., 2017; Papili Gao et al., 2020; Dussiau et al., 2022;
Parmentier et al., 2022; Toh et al., 2022).

Although this differentiation mechanism has been demonstrated in all biological models
examined to date, including in vivo situations (Dussiau et al., 2022; Toh et al., 2022), we show
here for the first time that it also affects metabolic genes during an in vivo lymphocyte response
to a viral challenge. Given the importance of a proper metabolic activity for the differentiation
of CD8 T cells in effector and memory populations during an antiviral response, this process is
thought to be tightly controlled. However, our results show that, as many other differentiation
processes, CD8 T cell responses benefit from a stochastic exploratory search of the gene
expression space during their differentiation at least at the level of the metabolic functions.
This implies the existence of selection steps of cells with the best fit state at some points of the
process. Our observations suggest that such a selection step may occur around 4 dpi. Indeed, at
this stage a large fraction of cells seems to recover flux values and metabolite concentrations
similar to those in unstimulated cells, as if unable to sustain the metabolic changes occurring in
other cells between D3 and D5 of the response. Furthermore, in many cases the flux direction
in modules, as well as the corresponding metabolite accumulation/deprivation in cells, reverts
between D3 and D5 highlighting a metabolic switch at D4. In addition, kinetic patterns of gene
expression variability revealed two groups of gene controlling different sections of the cellular
metabolism, that show a surge in entropy either directly after infection, or later starting at 4 dpi
suggesting a transition stage at that time of the response. This is strengthened by the observation
that heterogeneity of metabolic activities in cells collected at 4 dpi matches different states of

the global GRN. Altogether, these results suggest a transition stage accompanied by a metabolic
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switch in activated cells around 4 dpi, when they start to differentiate into cytotoxic effectors,

that would result in the selection of the best metabolically fit cells.

In a whole, our study allowed a global survey of cellular metabolism in CD8 T cell responding
to a viral infection in vivo, at the single-cell level, highlighting metabolic perturbations beyond
known switches revealed by previous experimental approaches. This study also evidenced a
transition step around 4 dpi, accompanied by a metabolic switch during the differentiation of
antigen-activated cells into full-blown effectors, adding one more piece of evidence linking

metabolic activity variations and differentiation processes.

METHODS

Data collection and processing.

Sequencing reads were generated by Kurd et al. (Kurd et al., 2020) and Milner et al. (Milner et
al., 2020). For these studies, the authors transferred P14 TCR-transgenic CD8 T cells, which
recognize a Lymphocytic ChorioMeningitis Virus (LCMV) epitope, to histocompatible hosts
that were acutely immunized the day after with 10° plaque-forming units of LCMV Armstrong.
Single responding P14 CD8 T cells from the spleens of immunized hosts were sorted at different
dpi and loaded into Single Cell A chips for partition into Gel Bead In-Emulsions in a Chromium
Controller (10x Genomics). Single-cell RNA libraries were prepared according to the 10x
Genomics Chromium Single Cell 3’ Reagent Kits v2 User Guide and sequenced (paired-end)
on a HiSeq 4000 (Illumina).

We used data collected at 0, 3, 4, 5, 6, 7, 10, 14, 21, 32 and 90 dpi and downloaded reads from
GEO ‘release 2020-10-09° (GSE131847) with fastqdump from the SRA-toolkit suite

(https://www.ncbi.nlm.nih.gov/sra), using the --split-files option.

Quality control of reads was performed with fastp (Chen, 2023): we discarded reads of too low
quality, trimmed the others and removed adapters before selecting reads with a phred quality
score (Ewing and Green, 1998) of at least 30.

Reads were then aligned to the mouse genome assembly GRCm38

(https://www.ncbi.nlm.nih.gov/assembly/GCF _000001635.20/) with the Kallisto-Bustools

wrapper (Melsted et al., 2021), using the ‘lamanno’ workflow to generate a table of Unique
Molecular Identifier (UMI) counts of spliced mRNAs. Empty sequencing droplets were

removed with a threshold set to the inflection knee of the curve representing the UMI counts of
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ranked droplets (http://bioconductor.org/books/3.15/0SCA.advanced/droplet-

processing.html).

The UMI count tables of each collection day were imported and pooled in Seurat V4.0.4 (Hao
et al., 2021) and the 14,666 genes that are expressed in at least 20 cells were selected. Dying
cells with more than 5% of mitochondrial genes were further removed

The UMI count table was normalized with SCTransform (Hafemeister and Satija, 2019) and 2
% of the droplets containing more than one cell, as identified with the DoubletFinder package
(McGinnis et al., 2019) were removed, resulting in an UMI count table of 14,666 genes
expressed by 42,025 live single cells spanning the entire kinetics (Figure 1A). Principal
Component Analysis (PCA) was performed with prcomp

(https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prcomp). The broken-

stick model (MacArthur, 1957) was used to select 9 principal components for further dimension

reduction and visualization with Uniform Manifold Approximation and Projection (UMAP).

Metabolic gene selection
scFEA uses the expression of a list of 719 metabolic genes relevant to the estimation of the

fluxes in all 171 metabolic modules. Among these metabolic genes, 430 are present in the
14,666 genes expressed in at least 20 cells in our data. However, all the genes regulating
glycolysis and Oxphos described in Kyoto Encyclopedia of Genes and Genomes database
(Kanehisa and Goto, 2000; Kanehisa et al., 2023, KEGG: release ‘101.4’) have not been
included in the initial list. As metabolic switches from Oxphos to aerobic glycolysis and vice
versa are crucial for the proper differentiation of CD8 T cells into effectors and memory cells
during a viral infection, we complemented the list of 430 metabolic genes from N. Alghamdi
et al. (2021) with 4 and 96 extra genes, respectively involved in glycolysis and Oxphos, and
present in the 14,666 considered genes (SupplementaryTable 1). We thus filtered the raw UMI
count table for the expression of the 530 selected metabolic genes. Interestingly, the expression
level of many metabolic genes displays temporal variations during the CD8 T cell response

(SupplementaryFigure 1).
Data filtering and scFEA analysis

Raw UMI count data were filtered for metabolic genes in the designed list (SupplementaryTable
1) and the counts for 530 metabolic genes in the 42,025 cells were submitted to scFEA. The
algorithm was installed and run at the High-Performance Computing cluster Pdle Scientifique
de Modélisation Numérique of the Ecole Normale Supérieure de Lyon, according to the

instructions of the authors (Alghamdi et al., 2021, https://github.com/changwn/scFEA).
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Module selection for fluxome analyses
The scFEA algorithm returned flux values in all cells for 168 modules. These were filtered to

select fluxes with a |[CV|>7.10 for all cells to eliminate modules with too little flux variation
along the kinetics (SupplementaryFigure 2). We checked the eliminated modules were not
significantly varying during the CD8 T cell response and re-introduced the M-114 module that
shows substantial variation with a [CV| of 2.10* (SupplementaryFigure 2D).

To only consider relevant flux values, the 131 resulting varying modules were then filtered to
select those with a maximum flux value superior or equal to 10> AU. Among the 47 remaining
modules, some still display weak flux values with a majority of cells not reaching the 103 AU
threshold (SupplementaryFigure 3A). They correspond to modules with a median of values
inferior to 3.10* AU (SupplementaryFigure 3B, C). These were filtered out and we finally
removed from the 41 remaining modules, 7 modules corresponding to simple metabolite efflux

from cells, resulting in a list of 34 modules of interest.

Metabolite selection
The concentration of the 70 metabolites, for which scFEA yielded results, were averaged by

day and the delta between the highest and the lowest concentrations along the kinetics
(concentration_delta) was calculated for each metabolite. The distribution of these
concentration_deltas displays a gap around 10~ AU (SupplementaryFigure 6) and we therefore
selected the modules with a greater concentration_delta, ending up with 20 metabolites of
interest. However, concentration in ornithine was hardly varying along the response (Figure 4)

and we did not consider it further, in the resulting top19 list (SupplementaryTable 3).

Gene expression variability

The variability of gene expression is estimated by the level of entropy of each gene at each dpi
(Gandrillon et al., 2021; Dussiau et al., 2022). Briefly, for each dpi, the distribution of gene
expression among the cell population is binned and Shannon’s entropy is then defined as minus
the sum across bins of pk.log(pk), where pk is the probability for a cell to belong to bin k.
Shannon’s Entropy thus measures heterogeneity in a population, with a value of 0 when all cells
belong to the same bin (minimal entropy) and a maximal value of log(k)/k when they are evenly
distributed in bins (maximal heterogeneity). The entropy of each metabolic gene at each dpi
was estimated with the unbiased ‘best-upper-bound’ estimator, as in Paninski et al. (Paninski,

2003).
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Clustering of entropy kinetic profiles

To identify groups of genes with similar temporal entropy patterns, i.e. similar profiles of
entropies along the kinetics, we used functional PCA followed by kmeans (Ramsey, J. O. and
Silverman, B. W., 2005). Briefly, functional PCA is used to reduce the dimensionality and catch
temporal dynamics of entropy curves. We used a model with piece-wise constant functions
(histograms) for their simplicity of interpretation. Then, a standard kmeans algorithm is used
on principal components to find the appropriate clusters. The number of principal components

and clusters (n = 2) was determined by the rule of thumb.

Gene Ontology analysis
The list of genes corresponding to the entropy kinetic profiles 1 and 2 in Figure 5C, were

submitted to DAVID Bioinformatic Resources (https://david.ncifcrf.gov/tools.jsp) for

functional annotation clustering on Gene Ontologies ‘Molecular Function’, ‘Biological
Process’ and ‘Cellular Component’. Seventy-eight out of the 86 genes in entropy kinetic
profilel supported the clustering in 10 annotation clusters with low stringency and 107 out of
the 444 genes in entropy kinetic profile2 supported the clustering in 15 annotation clusters with
high stringency (SupplementaryTable 5). The 78 and 107 genes supporting both annotation
clusters were then used to map the corresponding enzymatic reactions on the KEGG pathway
map (Figure 6).

Cell clustering

The 2,089 cells collected at 4 dpi were selected and the UMI counts of the 14,666 genes were
normalized with SCTransform (Hafemeister and Satija, 2019). The selected 2,100
hypervariable genes were used for further dimension reduction with PCA and UMAP. Cell
clustering was performed in Seurat (Hao et al., 2021) with a resolution level of 0.07 to obtain
2 clusters. Next, module flux values, as well as metabolite concentrations, in each D4-cell were
normalized and clustered, with respective resolution values of 0.02 and 0.03 to again obtain 2

clusters for each clustering.

Differential gene analysis and gene set enrichment
The 2,100 hyper-variable genes expressed by CD8 T cells at 4 dpi were selected and differential

expression was evaluated by a kernel-based two-sample test that compares the distributions of
gene expression (Ozier-Lafontaine et al., 2023). P-values were adjusted by the Bonferroni
method. The 111 and 47 genes up-regulated in gene expression clusters #0 and #1, respectively,

with an average log2(FC) > 0.13 (SupplementaryTable 6) were then submitted to gene set
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enrichment analysis in g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) with default values and the

2,100 hypervariable genes used as the background list.
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ADP: Adenosine-DiPhosphate
Antigen: Ag

ATP: Adenosine-TriPhosphate

AU: Arbitrary Unit

coA: coenzyme A

CDP: Cytidine-DiPhosphate

CTP: Cytidine-TriPhosphate
dCDP: deoxyCytidine-DiPhosphate
dCMP: deoxyCytidine-MonoPhosphate
dCTP: deoxyCytidine-TriPhosphate
dpi: days post-infection
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ETC: Electron transport Chain

FA: Fatty acid

FAO: FA oxidation

G3P: Glyceraldehyde-3-Phosphate

G6P: Glucose-6-Phosphate

GRN: Gene Regulatory Network

KEGG: Kyoto Encyclopedia of Genes and Genomes
LCMV: Lymphocytic ChorioMeningitis Virus
mTOR; mammalian Target Of Rapamycin
Oxphos: Oxidative phosphorylation

PCA: Principal Component Analysis

PPP: Pentose Phosphate Pathway

PRPP: 5-Phosphoribose-2P

ROS: Reactive Oxygen Species

scFEA: single-cell Flux Estimation Analysis
scRNA-seq: single-cell RNA-sequencing

SM: Super metabolic Module

TCA: TriCarboxylic Acid

TCR: T-Cell Ag Receptor

UMAP: Uniform Manifold Approximation and Projection
UMI: Unique Molecular Identifier

UMP: Uridine-MonoPhosphate

UTP: Uridine-TriPhosphate
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FIGURES

FIGURE 1: Data collection and processing. (A) Bar plot of live single cell counts recovered
after selection at the indicated dpi. (B) UMAP representation of the recovered cells.
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FIGURE 2: Examples of module flux variations. For each metabolic module, the distributions
of flux values (x10* AU) at all dpi are shown left-hand and a box-plot of flux values for all cells
is shown right-hand. The vertical bar on the left and the red dot on the right indicate the median
and mean of flux values, respectively. Examples of modules with an upregulated (A),
downregulated (B) or biphasic (C) flux are shown. Names, as well as the initial and final
compounds, of modules are indicated in the color of the corresponding Super-Module, as in
Figure 3.
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FIGURE 3: Metabolic map projection of the modules and metabolites selected for analysis.
The modules are depicted on the global murine metabolic pathway map ‘mmu01100° from
KEGG (Kanehisa and Goto, 2000; Kanehisa et al., 2023). They are represented as arrows
following the enzymatic reactions from their initial to the terminal compounds. Modules are
colored according to their SM family (Alghamdi et al., 2021). Plain arrows and unboxed names
correspond to fluxes upregulated between DO and D10. Dashed arrows and name boxes
correspond to fluxes downregulated between DO and D10. Dotted arrows and name boxes
correspond to fluxes transiently downregulated between DO and D4 and upregulated between
D5 and D10. Note that module M-115 is not pointing to its final product Farnesal, which is not
represented on the map. Similarly, the first reactions from histidine to carnosine for module M-
43 and the last reactions from propanoyl-coA to acetyl-coA for module M-56 are represented
as direct jumps between the compounds, as the intermediate chemical reactions are not depicted
on the KEGG metabolic map.

The top19 variable metabolites are labelled and shown as pink circles. Empty/plain circles
represent respectively metabolites with a transient depletion/accumulation between DO and
D14. Metabolites with a biphasic change in concentrations are represented with two-color
circles, with a pink left-hand part for metabolites firstly accumulated and with a pink right-hand
part for those that are first depleted from cells. Finally, CDP and dCDP with a triphasic variation
are represented by a hatched circle.
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FIGURE 4: Variation in concentration of the top20 most variables metabolites. For each
metabolite, the distributions of concentrations (AU) at all dpi are shown. The vertical bar
indicates the median for all cells. Corresponding Super-Modules are indicated in their
respective color. For metabolites at the junction of 2 SM, both are indicated.
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FIGURE 5: Metabolic genes expression inter-cellular variability. (A) The entropies of the
530 metabolic genes were calculated at each collection day and are represented as a function of
time. (B) Functional PCA followed by kmeans clustering evidenced 2 groups of kinetic
patterns. (C) The kinetics of the entropies of the genes in both clusters of (B) are shown as in
(A).
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FIGURE 6: Metabolic map projection of the pathways covered by genes in kinetic profiles.
The enzymatic reactions corresponding to genes used for functional annotation of kinetic
profiles are depicted on the KEGG murine metabolic map in (A) black for immediate profile 1,
(B) red for later profile 2 and (C) blue for both. The regions corresponding to large pans of
cellular metabolism are highlighted and labeled in blue.
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FIGURE 7: Module flux values and metabolite concentration of clustered D4 cells.

(A) Cells collected at 4 dpi were clustered on their gene expression levels and the histograms
of flux values of two modules (top) and two metabolite concentrations (bottom) are shown
according to the expression clusters #0 (red) and #1 (blue). (B) UMAP of D4 cell expression
data colored by expression clusters (left, #0 in red and #1 in blue), flux module value clusters
(middle, #0 in pink and #1 in green) and metabolite concentration clusters (right, #0 in orange
and #1 in grey). (C) Cell repartition of flux module value clusters (left, #0 in pink and #1 in
green) and metabolite concentration clusters (right, #0 in orange and #1 in grey) in expression

data clusters.
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