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ABSTRACT 
 
 
Background: A growing body of evidence from animal models indicates that the 
myocardium hosts a population of B cells that play a role in the development of 
cardiomyopathy. However, there is minimal data on human myocardial B cells and their 
biological niche within the heart remains mostly unexplored. 
 
Methods: We integrated single-cell and single-nuclei datasets from 45 healthy human 
hearts, 70 hearts with dilated cardiomyopathy (DCM), and 8 hearts with Arrhythmogenic 
Right Ventricular Cardiomyopathy (ARVC). Interactions between B cells and other cell 
types were investigated using the CellChat Package. Differential gene expression 
analysis comparing B cells across conditions was performed using DESeq2. Pathway 
analysis was performed using Ingenuity, KEGG, and GO pathways analysis. 
 
Results: Out of 1,200,752 nuclei and 49,723 cells, we identified 1,100 B cells, including 
naive B cells and plasma cells. B cells showed an extensive network of interactions 
within the healthy myocardium that included outgoing signaling to macrophages, T cells, 
endothelial cells, and pericytes, and incoming signaling from endothelial cells, pericytes, 
and fibroblasts. This biological niche relied on both ECM-receptor interactions, cell-cell 
contact interactions, and paracrine interaction, it changed significantly in the context of 
cardiomyopathy and had disease-specific features. Differential gene expression 
analysis showed that in the context of DCM both naive and plasma myocardial B cells 
upregulated several pathways related to immune activation, including upregulation of 
oxidative phosphorylation, upregulation of leukocyte extravasation and, in naive B cells, 
antigen processing and presentation. 
 
Conclusions: The human healthy and diseased myocardium contains naive B cells and 
plasma cells, integrated in a diverse and dynamic biological niche. Naive myocardial-
associated B cells likely contribute to the pathogenesis of human dilated 
cardiomyopathy. 
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INTRODUCTION 

 
The immune system has been highlighted as a key potential player in the 

development of heart failure 1-4. The role of macrophages, monocytes, and T cells in the 
context of heart failure has been extensively studied in both human and animal models 
of cardiomyopathy1. In recent years, there has been increasing interest in 
understanding the role that B cells play in cardiomyopathy, but the available data is 
limited5.  

Studies on murine naive hearts have shown that B cells continuously patrol the 
heart and circulate between the heart and spleen along the cardio-splenic axis 4,6-9. B 
cells residing in the murine myocardium are therefore mainly part of a pool of circulating 
B cells that transiently adheres to the microvascular endothelium 6,10 . Intriguingly, a 
minor subset of myocardial B cells, in both mice and humans, enters the interstitial 
spaces, indicating a nuanced distribution of these cell types within the cardiac tissue 6,8. 
Data from murine models suggests that B cells interact with macrophages in the naive 
myocardium11 and play a role in the context of myocardial adaptation to injury and heart 
failure6,10,12-16. Yet, data about the role that B cells play in the healthy and diseased 
human heart is lacking.  

To address this gap in knowledge we performed a focused analysis of single cells 
and single nuclei datasets from healthy controls and patients with two different forms of 
cardiomyopathy: dilated cardiomyopathy (DCM) and Arrythmogenic Cardiomyopathy. 
DCM is a form of cardiomyopathy characterized by reduced left ventricular ejection 
fraction and increased left ventricular diameters. DCM can have various etiologies that 
lead to a common phenotype 2.  ARVC is a genetic disorder that is typically due to 
mutations in desmosomal proteins that lead to the replacement of the right ventricular 
myocardium with ‘fibrofatty’ (mix of fibrous and fatty components) tissue, resulting in 
dyskinesia of the right ventricle, arrhythmias and often also reduced left ventricular 
ejection fraction 17-21. We first investigated interactions between B cells and other cell 
types to gain insight into the biological niche of myocardial B cells, in health and 
disease. We then performed differential gene expression analysis to gain additional 
insight into the potential role that B cells might play in various forms of cardiomyopathy. 
(Figure 1A) 
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METHODS 
 
Quality-control  
Pre-processed single-cell and single-nuclei datasets were obtained from GSE18385222 
of Gene Expression Omnibus (GEO) and Cellxgene website 
(https://cellxgene.cziscience.com/collections/e75342a8-0f3b-4ec5-8ee1-
245a23e0f7cb/private)23.  These datasets include data from 45 healthy control human 
hearts, 70 hearts with DCM, and 8 with ARVC. Data from one patient with non-
compaction cardiomyopathy was included in the datasets but was excluded from the 
analysis. Data were loaded onto R (v. 4.1.3)24 and were analyzed using Seurat (v. 
4.1.0)25-28 with default settings unless otherwise stated. Cells were verified to include 
only cells with unique feature counts between 200 – 15,000 and mitochondrial read 
counts <5% . Ensemble gene IDs were converted to gene symbols where applicable 
using biomaRt29, and only gene IDs that matched between the GEO and Cellxgene 
datasets were kept for downstream applications.  
 
B cell identification 
Cells classified as lymphocytes by the authors of each dataset were subsetted and 
counts were normalized using the logNormalize function that takes feature counts for 
each cell and divides it by the total counts for that cell, then multiplies by a scale factor 
of 10,000, and natural-log transforms the values. The data were then scaled using the 
ScaleData function. The 2000 most highly variable features were identified using the 
FindVariableFeatures function with the variance stabilizing transformation method. 
Then, the function RunPCA was used, with 50 principal components (PCs) generated. 
The first 10 PCs were used to find the shared nearest neighbors (SNN) using the 
FindNeighbours function. Cluster identification was performed using the FindClusters 
function with a resolution of 0.8 using the Louvain algorithm, and a UMAP was created 
with the first 10 PCs. Subsequently, the ScType algorithm was employed for the 
identification of B cells based on known human B cell markers (Table S1)30,31. 
 
B cell Integration and Clustering 
For visualization, SCTransform was utilized to normalize, scale, identify variable 

features, and regress out percent mitochondrial gene expression. SCTransform (v2) 

was performed using the gamma-Poisson generalized linear model. After SCTransform, 

6000 consistently variable features across datasets were selected as integration 

features using the SelectIntegrationFeatures function. Next, the integration features 

were subjected to principal component analysis using RunPCA. Integration anchors 

were identified using the FindIntegrationAnchors function using reciprocal PCA 

dimensional reduction based on the first 50 PCs, using 10 neighbors (k) when choosing 

anchors. These anchors were used to integrate the data using the first 50 dimensions 

for the anchor weighing procedure in the IntegrateData function.  

After integration, PCA was performed again, and a UMAP and SNN graphs were 
generated based on the first 20 principal components. The cluster identification was 
made using the Louvain algorithm with a clustering resolution of 0.4. 
 
B cell differential Gene Expression and Pathway analysis 
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Differential gene expression between each disease condition (DCM and ARVC) and 
controls was conducted for each B cell subtype cluster utilizing the DESeq2 R 
package32. This pseudobulk analysis incorporated adjustments for experimental 
modalities, including whether the data originated from single-cell or single-nuclei 
protocols, as well as the dataset's source. Read counts were normalized via DESeq2's 
median of ratios method. The Wald test was employed for determining differential 
expression, with p-values adjusted using the Benjamini-Hochberg procedure to control 
the false discovery rate. Genes with a raw p-value <0.05 and an absolute fold change 
>1.5 were used for pathway analyses. For Ingenuity Pathway Analysis (IPA)32, the 
Ingenuity Knowledge Base reference set was selected with 35 molecules per network, 
and 25 networks per analysis for the interaction networks. Pathways with p-value < 0.05 
and absolute z-score > 1.5 were treated as statistically significant. Gene ontology (GO) 
enrichment analysis was performed using the enrichGO function of clusterProfiler (v. 
4.4.4). Both analyses were performed with a background gene set of all the genes 
submitted to differential gene enrichment analysis. The enrichGO function applies an 
over-representation analysis based on a one-sided Fisher’s exact test to the DEGs 
detected by DESeq2 analyses. Benjamini-Hochberg-adjusted p-values less than 0.05 
are considered significantly enriched pathways. Additionally, the same genes were 
utilized as input for the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis using the Database for Annotation, Visualization, and Integrated Discovery 
(DAVID) tool.  
 
Whole heart integration and cell annotation 
Both datasets were split by disease and by sample type (single-cell vs. single-nuclei). 
Using SCTransform33,34, mitochondrial genes were regressed out, data were 
normalized, transformed, and scaled, and 3000 variable features were identified. 
Integration of each dataset’s single-nuclei and single-cell data was performed per 
disease state in the same way as for the B cell clustering described above, except using 
3000 integration features, and employing a referenced based integration. The 
Cellxgene’s single nuclei dataset was used as reference. Non compaction 
cardiomyopathy was not integrated, since it was only present in one single nuclei 
dataset.  After integration, PCs were regenerated, and an elbow plot was used to 
determine the number of significant PCs to use for downstream analyses (20 PCs were 
used for ARVC, 30 PCs were used for DCM and controls). Cell clustering was 
performed using Seurat’s FindNeighbours and FindClusters using the Louvain algorithm 
with a resolution of 0.5 for ARVC, and 0.7 for DCM and controls. Clusters were 
visualized using UMAP dimensional reduction and annotated using ScType30 with 
modified cell markers. The full set of markers used to identify various cell types is 
reported in Supplementary Table 1. Clusters annotated as immune cell types were 
subset out, and then SCTransform, integration, clustering, and annotation were 
performed again on this immune subset as described above, except using a greater 
clustering resolution of 0.7 for ARVC and 0.9 for DCM and controls. The new immune 
cell type annotations were added back to the parent dataset. For simplicity, annotations 
were condensed as follows: Memory/naive/Effector CD8+/CD4+ T cells to “T cells”; 
Memory/naive B cell or plasma cells to “B cells”; Non-classical, classical and 
intermediate monocytes to “Monocytes”; Vascular / Lymphatic endothelial cells to 
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“Endothelial cells”; CD8+ NKT-like T cells to “NKT cells”; and Schwann cells to “Glial 
cells”. 
 
Cell-cell-communication 
Cell-cell communication was determined using CellChat R package (version 1.6.1) and 
the human ligand-receptor database, CellChatDB35. The SCTransformed data was used 
for all disease groups. For each disease group, we subsetted the data to include only 
known cell-signaling genes included in the CellChat reference database. Next, we 
determined the over-expressed ligands and receptors per cell type, over-expressed 
ligand/receptor pairs across cell types, and the communication probability based on the 
trimean method, following the standard workflow35. We calculated the aggregated cell-
cell communication network for B cells using the aggregateNet function35. For 
visualization, the three disease state objects were “lifted” such that each object included 
the same set of annotated cell populations so that they could subsequently be merged 
into a single cellchat object for downstream analyses.  
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RESULTS 
 
In silico analysis of integrated myocardial lymphocytes identifies plasma and 
naive B cells within the healthy and diseased human heart  

B cells and plasma cells from Cellxgene and the GEO datasets were identified, 
subsetted, integrated, and further subclassified using ScType with selected markers for 
B cell/plasma cell populations. From 45 control samples and 79 cardiomyopathy 
samples, encompassing 1,100,752 single nuclei and 49.723 single cells (Figure 1A)  a 
total of 1,100 B cells/plasma cells were identified. These cells were subsequently 
subsetted and integrated using SCTransform. The integrated data was processed as 
aforementioned in the methods section, yielding 2 major B cell clusters (Figure 1B, 
Figure S1). We identified one of the major clusters as naive B cells and the other cluster 
as plasma cells. We also identified some B cells that we could not confidently assign to 
any specific B cell subtype and we therefore labeled these as “unknown” (Figure. 1B, 
Figure S1).  

 
Myocardial B Cells have an extensive network of interactions with other 
myocardial cell types, that change by disease state 

We first investigated communication between B cells and other cell types to 
define the biological niche of myocardial B cells in health and disease. This this end, the 
CellChat algorithm was employed to calculate the likelihood of cell-cell communications. 
First, in order to identify the various cell types in the heart, clusters in the integrated 
datasets were annotated using scType (Figure 1 C-E).  Next, an evaluation of the 
relative interaction strength of B cells with other heart cells within a cell-cell 
communication network was performed, based on CellChat’s calculated communication 
probability (Figure 2; Figure S2). In control human hearts, B cells were predicted to 
communicate with macrophages, monocytes, myeloid dendritic cells (DCs), pericytes, 
endothelial cells, and fibroblasts (Figure 2 A-B). In ARVC, the analysis displayed similar 
interaction patterns as in controls. However, there were more signals from monocytes, 
endocardial cells, and cardiomyocytes to B cells; there were reduced signals to or from 
fibroblasts, pericytes, and stromal cells (Figure 2 C-D; Figure S2 A-B). In DCM, we 
observed increased signaling from B cells to eosinophils, fibroblasts, and epicardial fat 
cells. Furthermore, we noted augmented signaling from almost all cells, but especially 
from stromal cells and fibroblast to B cells. Also, reduced signaling from B cells to 
monocytes, pericytes, and endothelial cells was observed (Figure 2E-F; Supplementary 
Figure 2 C-D). 

To further probe these interactions, the specific B cell ligand-receptor interactions 
by disease state were visualized (Figure 3). We saw that while some ligand-receptor 
interactions were conserved across disease states, multiple interactions were significant 
only in certain disease states. Healthy control hearts were uniquely characterized by B 
cell signaling to endocardial cells, endothelial, fibroblasts, pericytes, and smooth muscle 
cells via the Wnt family member 5B (WNT5B) – Frizzled-4 (FZD4), and Growth Arrest 
Specific 6 (GAS6) – AXL tyrosine kinase (AXL) / MER proto-oncogene, tyrosine kinase 
(MERTK) pathways (Figure 5A). In healthy control hearts, we also observed that B cell 
signaling was characterized by PECAM1 homophilic interaction with other B cells, 
endothelial cells, and myeloid cells, which is important for the diapedesis of immune 
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cells and survival signaling36 (Figure 3A). Myeloid, endothelial, pericyte, fibroblast, 
stromal, epicardial fat, and glial cells also signaled to B cells via Amyloid precursor 
protein (APP) – CD74 and thrombospondin-1/2/4 (THBS1/2/4) – CD36. (Figure 3B). 

In ARVC, there were overall fewer interactions between B cells and other cell 
types compared to healthy controls. One cell-cell interaction that was unique to ARVC 
was the cell-adhesion molecule (CADM1) homophilic interactions between B cells and 
cardiac cells (Figure 3A). In contrast to ARVC, DCM patients showed considerably 
increased B cell-cell interactions. B cells signaled to eosinophils and dendritic cells via 
the MHC-II molecule DR beta 1 (HLA-DRB1) and the CD4 receptor (Figure 3A). In 
addition, we found that CD44 was a major cell-cell interaction receptor on B cells with 
extensive interactions with the extracellular matrix (ECM) proteins laminin, collagen, and 
fibronectin, of various cell types (Figure 3B).  Signaling through CD44 has been 
associated with immune cell migration and activation37. Eosinophils were also shown to 
signal to B cells through Macrophage migration inhibitory factor (MIF) – CD44 + CD74 
complex which has been associated with B cell chemotaxis and survival38-40 (Figure 3B). 
Interestingly, signaling through galectin 9 (LGALS9) – CD45 or CD44 was also 
observed, which is known to have an inhibitory role on B cell receptor signaling and 
activation41,42 (Figure 3B). Other potential interactions mediated through receptors on B 
cells included pericyte mediated thrombospondin-4 (THBS4) signaling through CD47 on 
B cells. B cells were also the target of signalling through CD44 - laminin 2 (LAM2) 
interactions originating from multiple cell types including epicardial fat cells, fibroblasts, 
and endocardial cells (Figure 3B). 

 
 
Differential gene expression analysis reveals pronounced dysregulation of 
inflammatory pathways in myocardial naive B Cells and plasma B cells in DCM, 
but not in ARVC 

To further elucidate the biological significance of B cells in human 
cardiomyopathy, we sought to identify differentially enriched pathways in DCM and 
ARVC B cell populations. Pseudo-bulk differential gene expression analysis was 
performed to compare gene expression between disease conditions and controls for 
each B cell cluster. Few genes were differentially expressed with an adjusted p-value 
<0.05, so an unadjusted p-value <0.05 and fold change >1.5 were used as cutoffs for 
including genes in downstream pathway analyses. In DCM, 227 genes met this cutoff in 
the plasma cells cluster, and 116 in the naive B cells cluster (Table S2 and S3). In 
ARVC, 215 genes and 136 genes met this cutoff in the plasma and naive B cell clusters, 
respectively (Table S4 and S5). These gene lists were submitted to GO, KEGG, and IPA 
pathway analyses. 
 
In ARVC, the genes differentially expressed in naive B cells and plasma cells showed 
no enrichment in inflammation-related pathways when analyzed via KEGG pathway 
(Tables 1 and 2), GO pathways (Table S6), or IPA  pathways analysis (Table S7 and 
S8).  
 
Conversely, in DCM both naive B cells and plasma cells showed significant 
dysregulation of multiple pathways related to the immune response. In the naive B cell 
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cluster, IPA showed upregulation of B Cell Receptor Signaling, Leukocyte Extravasation, 
and Immunogenic Cell Death Signaling (Figure 4A; Table S9). Additionally, GO 
enrichment analysis indicated dysregulation of B cell activation, B cell proliferation, 
antigen process and presentation, and antigen receptor-mediated signaling (Figure S3, 
Table S10). The top dysregulated pathways related to immune response by KEGG 
pathway analysis were antigen processing and presentation and B cell receptor 
signaling pathway (Table 3). When focusing on the plasma cell cluster, in DCM IPA 
showed upregulation of NFκB Activation by viruses, macrophage alternative activation 
signaling pathway, IL-3 Signaling, CXCR4 signaling, leukocyte extravasation signaling, 
T cell receptor signaling, neutrophil extracellular trap signaling pathway, IL-7 signaling 
pathway, Fcγ receptor-mediated phagocytosis in macrophages and monocytes (Figure 
4B; Table S11). GO enrichment analysis showed dysregulation of several pathways that 
involve transcript processing and protein synthesis (Fig. S3; Table S12).  KEGG 
pathway analysis showed dysregulation in antigen processing and presentation and B 
cell receptor signaling pathways (Table 4).  
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DISCUSSION 
 We present an analysis of human myocardial single cell and single nuclei datasets 
focused on the analysis of the biological niche of myocardial B cells, in the healthy and 
diseased heart. We found that the human myocardium harbors naive B cells and plasma 
cells (Figure 1, Supp. Fig.1) that interact with multiple cell types, especially macrophages, 
monocytes, endothelial cells, pericytes, and fibroblasts (Figure 2). We found that the rich 
network of interactions of myocardial B cells is altered in the context of cardiomyopathy, 
with disease-specific features (Figure 2-3, Supp Fig 2). This is reflected by disease-
specific changes in gene expression of both naive B cells and plasma cells (Figure 4, 
Supp Fig 3). These findings expand our understanding of the biology of myocardial B cells 
and suggest that B cells might play a role in the pathogenesis of specific types of human 
cardiomyopathies. 
 
 Initial studies in murine models identified myocardial B cells as naive B cells and 
B1 cells6,8,16. Follow-up studies raised the possibility that the myocardium could host 
several other B cell types including multiple types of follicular B cells, germinal center 
cells, and marginal zone B cells15. Data on human myocardial B cells is limited. A study 
based on analysis of histological sections from multiple non-failing hearts and single-cell 
sequencing data from 14 healthy human hearts identified a small population of naive B 
cells with a gene expression signature similar to that observed in rodent studies, as well 
as plasma cells43. Plasma cells were also recently described in a study that performed 
tissue transcriptomic-based analysis of the human myocardium44. Our findings 
corroborate the notion that the human heart harbors naive B cells and plasma cells. 
 
 There is minimal to no data on the biological niche of human myocardial B cells. 
Our focused analyses indicate that, in the naive heart, myocardial-associated B cells 
interact with multiple cell types, both sending signals to other cells and receiving signals 
from other cells. In the naive heart, B cells appear to have the strongest outgoing 
communication with macrophages (Fig.2A). This is in line with murine data suggesting 
that B cells modulate the expression of specific surface markers on resident myocardial 
macrophages11. However, B cells appeared to have an extensive network of 
communication with multiple different cell types (Figure 2A-2B). This is remarkable but, 
to some extent, not completely unexpected considering that studies in rodents have 
shown that young mice with congenital B cell deficiency present changes in myocardial 
structure and function when compared to syngenic, age/sex-matched controls6.  
 

We found that the network of interactions between B cells and other myocardial 

cell types changes in the context of cardiomyopathy, with disease-specific features (Fig 2 

A-F and Fig 3). This is arguably the most important finding of our study as it suggests that 

myocardial B cells play a specific role in specific pathological conditions. Notably, the Wnt 

(WNT5B) – Frizzled (FZD4), GAS6–AXL/MERTK pathways, and PECAM1 homophilic 

interactions were prevalent in the healthy state but were lost in disease states (Figure 

3A). These pathways are associated with proliferation, growth, and survival 

signaling36,45,46. This may therefore suggest that B cells play a role in maintaining the 

cardiac architecture in normal states, a hypothesis that is in line with previously 

referenced observations in murine models that connect congential B cell deficiency with 
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alterations in myocardial structure6. PECAM1 homophilic interaction of B cells with 

endothelial cells is also consistent with the role of PECAM1 in various stages of the 

extravasation of immune cells, potentially mediating B cell entry into the myocardial 

interstitiun47. PECAM1 has been demonstrated to be crucial for the process of diapedesis 

and movement to the sites of inflammation48.  In the healthy heart, other cells signaled to 

B cells largely through the thrombospondin 1, 2 and 4 – CD36 pathway (Figure 3B), which 

has been shown to be essential in maintaining B cell metabolic function and activation 

potential49. These signals are lost in the context of ARVC and DCM. Taken together, these 

observations suggest that myocardial B cells might play a role in myocardial homeostasis 

and at the same time receive within the myocardium specific signals that promote their 

survival and readiness to respond to pathogenic stimuli. These signals might be turned 

off once a specific B cell response has been triggered and B cells switch from a 

“homeostatic function” to a “response function”.  

 

The biological niche of B cells, defined by their network of cell-cell interactions, 

showed disease-specific features. ARVC was overall characterized by a significant 

reduction in B cell interactions with most other cells (Figure 2 C-D and Figure 3). However, 

we noted increased interaction strength with macrophages, monocytes, cardiomyocytes, 

and endocardial cells compared to healthy controls (Figure 2D). These increased 

interactions were in part due to CADM1 homophilic interactions (Figure 3). CADM1 is a 

cell-cell adhesion molecule that activates the PI3K pathway50, which is also activated by 

the B cell receptor51. The significance of this finding and its relevance in ARVC remains 

unclear. Conversely to ARVC, our results indicate that B cell interactions are greatly 

increased in DCM relative to controls. This is consistent with findings that B cell numbers 

are also increased in the peripheral blood of DCM patients52 and with other clinical 

observations that suggest a pathogenic role of B cells in DCM53. Most notably, we found 

that in DCM B cells had considerably greater and stronger interactions with fibroblasts, 

epicardial fat cells, eosinophils, and stromal cells compared to controls (Figure 2F). An 

increase in interactions with epicardial fat cells is consistent with prior findings suggesting 

a potential role of epicardial fat-associated B cells in the pathogenesis of ischemic dilated 

cardiomyopathy54. We found that in DCM the majority of the communication between B 

cells and fibroblasts, epicardial fat cells, and other stromal cells was mediated by the 

interaction of extra-cellular matrix (ECM) proteins such as laminin, collagen, and 

fibronectin with CD44 (Figure 3B). CD44 is known for its interaction with ECM55, and has 

been linked to other functions such as immune cell extravasation, response against 

pathogens, development of fibrosis, and wound healing56,57. This interaction is in line with 

the findings of our pathway analysis of genes differentially expressed in B cells from DCM 

and controls, that showed upregulation in leukocyte extravasation signaling, in both 

plasma cells and naive B cells (Figure 4). It is also in line with published evidence 

indicating that murine heart failure-derived B cells can cause increased fibroblast 

proliferation and collagen production12, that CD44 activation on B cells can increase pro-

inflammatory gene expression58, and that B cells contribute to myocardial fibrosis in 

specific murine models of cardiomyopathy59,60.  
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Our analysis of cell communication in DCM highlighted two unexpected 

interactions that have not been described before: communication between B cells and 
eosinophils and communication between B cells and pericytes. We found predicted 
interactions from eosinophils to B cells that occurred through the MIF–CD44/CD74 
complex (Figure 3B), which has been associated with mediating B cell chemotaxis and 
survival38-40. The CD44/CD74 complex activates also NFκB signaling 61, which was an 
upregulated pathway in DCM plasma cells (Figure 4).  However,  eosinophils were also 
found to interact with B cells through galectin 9 – CD45 or CD44 (Figure 3B), an 
interaction that has been shown to inhibit B cell signaling and activation41,42. This suggests 
that eosinophils might contribute to the fine-tuning of B cell activation in DCM. In addition, 
we found that B cells signaled to eosinophils through laminin–CD44 and HLA-DRB1– 
CD4 (Figure 3A), which are strong activating receptors. This suggests that B cells may 
play a role in eosinophil activation in DCM37,62.  Eosinophils have been shown to play a 
key pathogenic role in certain forms of DCM63,64, and thus this observation further 
corroborates the notion that B cells might play an important role in the pathogenesis of 
DCM.  We found also a predicted interaction between B cells and pericytes (Figure 2 E-
F and Figure 3).  Pericyte THBS4 signaling to CD47 on B cells was uniquely seen in DCM 
patients. Notably, pericytes have been strongly associated with fibrosis in various disease 
states65-67 and Thbs4 has been identified as a key regulator of cardiac fibrosis in animal 
models68. This suggests that myocardial B cells might play a role in DCM-associated 
cardiac fibrosis.  

 
The analysis of genes differentially expressed in B cells between DCM and 

controls or ARVC and controls strengthens and expands the findings from our cell-cell 
interaction analysis. We found dysregulation of several pathways related to immune 
activation in DCM,  in both naive and plasma cells (Figure 4 and Supplementary Figure 
3), that corroborate findings from murine models and from initial observations in humans. 
More specifically, the top dysregulated KEGG pathway in naive B cells from DCM patients 
was “antigen processing and presentation” (Table 3). “Antigen processing and 
presentation” was previously highlighted as one of the key pathways dysregulated in 
myocardial B cells in the context of murine post-ischemic dilated cardiomyopathy10. DCM 
was characterized by metabolic activation of plasma cells (i.e. upregulation of oxidative 
phosphorylation pathway, Figure 4B and Table 4). Several studies have shown the 
presence of autoantibodies against cardiac proteins in DCM patients 70-72 and treatment 
with immunoglobulin adsorption has shown potential benefits for patients with myocardial 
autoantibodies 73-75. In the only clinical study that addressed the role of B cell depletion in 
DCM, antibody-mediated B cell depletion resulted in a marked clinical improvement in 
selected patients with chronic myocardial inflammation that did not respond to standard 
treatments69. All things considered, therefore, our differential gene expression analysis 
supports the hypothesis that myocardial-associated B cells play a role in human DCM 
and suggests that the production of pathogenic antibodies in DCM might take place within 
the myocardium.  

 
 Our analysis is the first of its kind and provides several novel insights into the 
biology of human myocardial B cells, but it has several limitations that should be kept in 
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mind when considering our findings. First of all, we integrated multiple, previously 
collected datasets. Therefore, we cannot exclude that “batch effects” might have biased 
our findings or that biologically important signaling pathways might have been missed 
due to the integration process.  Second, while we integrated a large number of datasets 
corresponding to 45 normal human hearts and 70 hearts with DCM, we had data from 
only 8 patients with ARVC. Therefore, we cannot exclude that imbalances in sample size 
between DCM and ARVC might have reduced our statistical power in the analysis of 
ARVC patients. In addition, cell-cell interaction probabilities in scRNAseq and snRNAseq 
are based on expression levels and cell densities, but cannot take into account the spatial 
proximity of the cells. Additional work using spatial analyses will be necessary to better 
characterize the predicted interactions that we describe.  
 

In summary, through the analysis of integrated single-cell datasets, we provide 
insights into the unique, dynamic, biological niche that B cells occupy within the human 
myocardium. Our findings provide novel insight into the biology of human myocardial B 
cells, corroborate previous work in murine models and clinical datasets, and support the 
notion that B cells play an important role in dilated cardiomyopathy. Further experimental 
work will be needed to confirm the extensive network of intracardiac intercellular 
communications that we describe and to further characterize B cell function in various 
forms of cardiomyopathy. 
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TABLES 
 
Table 1. Dysregulated KEGG Pathways Assessed Using DAVID in ARVC’s naive B cells 
cluster, contrasting ARVC vs control samples data 
 

Term Count % p-value 
Fold 
Enrichment FDR 

Cardiac muscle contraction 5 7.692308 0.000203 16.2164751 0.018693 
NOD-like receptor signaling 
pathway 4 6.153846 0.02508 6.068100358 0.963231 

Oxidative phosphorylation 3 4.615385 0.07651 6.317164179 1 

 
 
 
 
 
 
Table 2. Dysregulated KEGG Pathways Assessed Using DAVID in ARVC’s plasma cells 
cluster, contrasting ARVC vs control samples data 

Term Count % p-value 
Fold 
Enrichment FDR 

Cardiac muscle contraction 7 6.306306 1.23E-05 13.09792219 0.001012 
Adrenergic signaling in 
cardiomyocytes 6 5.405405 0.002235 6.342407592 0.078236 

 
 
 
Table 3. Dysregulated KEGG Pathways Assessed Using DAVID in DCM’s naive B cells 
cluster, contrasting DCM vs control samples data 

Term Count % p-value 
Fold 
Enrichment FDR 

Antigen processing and presentation 10 3.115265 2.28E-05 6.383861237 0.001105 

B cell receptor signaling pathway 10 3.115265 4.15E-05 5.927871148 0.001343 

Oxidative phosphorylation 12 3.738318 7.14E-05 4.459174715 0.001979 

Thermogenesis 14 4.361371 0.000734 3.004817444 0.005931 
Parathyroid hormone synthesis, secretion and 
action 9 2.803738 0.001225 4.227802442 0.007923 

Lysine degradation 7 2.180685 0.001536 5.532679739 0.00903 

Cardiac muscle contraction 8 2.492212 0.001707 4.578769439 0.009509 

Th1 and Th2 cell differentiation 8 2.492212 0.002355 4.329923274 0.01269 

Retrograde endocannabinoid signaling 10 3.115265 0.002786 3.364467409 0.014222 

Fc gamma R-mediated phagocytosis 8 2.492212 0.003178 4.106731352 0.015489 

Chemokine signaling pathway 11 3.426791 0.005039 2.85278799 0.022217 

Th17 cell differentiation 8 2.492212 0.00575 3.688453159 0.024788 

Thyroid hormone signaling pathway 8 2.492212 0.010507 3.292173068 0.040766 
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Fc epsilon RI signaling pathway 6 1.869159 0.011323 4.393598616 0.043073 

Platelet activation 8 2.492212 0.011923 3.212523719 0.04448 

Hematopoietic cell lineage 7 2.180685 0.014096 3.520796197 0.050641 

Intestinal immune network for IgA production 5 1.557632 0.016169 5.081032413 0.057033 

Glutamatergic synapse 7 2.180685 0.027349 3.030946292 0.088429 

Long-term depression 5 1.557632 0.031475 4.149509804 0.098975 

Neurotrophin signaling pathway 7 2.180685 0.031631 2.929065744 0.098975 
Growth hormone synthesis, secretion and 
action 7 2.180685 0.032766 2.904656863 0.1009 

Long-term potentiation 5 1.557632 0.044502 3.715978929 0.134897 

Pancreatic secretion 6 1.869159 0.053041 2.929065744 0.146999 

Insulin signaling pathway 7 2.180685 0.056194 2.544224989 0.150867 

C-type lectin receptor signaling pathway 6 1.869159 0.05677 2.872737557 0.150867 

Gastric acid secretion 5 1.557632 0.065064 3.275928793 0.158026 

Cholinergic synapse 6 1.869159 0.075369 2.64393545 0.174067 

Leukocyte transendothelial migration 6 1.869159 0.077618 2.620743034 0.176603 

NOD-like receptor signaling pathway 8 2.492212 0.078646 2.141682479 0.176603 

Serotonergic synapse 6 1.869159 0.079903 2.597953964 0.176603 

Adrenergic signaling in cardiomyocytes 7 2.180685 0.087682 2.263368984 0.191128 

 
 
 
 
 
Table 4. Dysregulated KEGG Pathways Assessed Using DAVID in DCM’s plasma cells 
cluster, contrasting DCM vs control samples data. 

Term Count % p-value 
Fold 
Enrichment FDR 

Cardiac muscle contraction 12 2.348337 2.93E-05 4.885297937 0.003383 

Lysine degradation 9 1.761252 0.000354 5.059772863 0.016338 

Thermogenesis 16 3.131115 0.00225 2.442648968 0.047242 

Oxidative phosphorylation 11 2.152642 0.004421 2.907481421 0.068073 

Thyroid hormone signaling pathway 10 1.956947 0.006941 2.927141326 0.094316 

Antigen processing and presentation 7 1.369863 0.022132 3.17857526 0.213023 

Adrenergic signaling in cardiomyocytes 10 1.956947 0.029497 2.299896756 0.243349 
Growth hormone synthesis, secretion and 
action 8 1.565558 0.052089 2.361227336 0.325206 
Parathyroid hormone synthesis, secretion and 
action 7 1.369863 0.077804 2.338951607 0.438358 

Biosynthesis of nucleotide sugars 4 0.782779 0.0848 3.829017302 0.4607 

B cell receptor signaling pathway 6 1.174168 0.087256 2.529886432 0.4607 

Estrogen signaling pathway 8 1.565558 0.093866 2.053241162 0.481846 
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FIGURE LEGENDS 

 
Figure 1. Graphic depicting the in silico workflow UMAP and plots generated. a): 
two human heart single cell datasets were downloaded, loaded into R and analyzed 
using Seurat. Standard quality control and clustering methods were first performed. B 
cells were then identified using ScType, and ScTransform was used to normalize, scale, 
and integrate the datasets. Finally, differentially expressed genes were identified and 
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pathway analysis as well as cell-cell communication analysis was performed. Panel b 
shows a UMAP with the subset of cells identified as B cells that were subsetted from the 
integrated data and sub-classified into B cell subtypes. Cells with an identity that went 
unresolved were classified as “unknown” and excluded from the analysis. Panels c-e 
show the UMAPs of the integrated data sets from sc/sn-RNA sequencing cells split by 
condition, including, control (panel c), ARVC (panel d), and DCM (panel e).  
 

 
 
Figure 2. B cell interaction network is notably altered by disease state. Intercellular 
communications plot of the interactions from B cell ligands to other receptors in a) 
controls, c) ARVC, e) DCM, and from other cell ligands to B cell receptors in b) controls, 
d)ARVC and f) DCM. Thickness of the line is relative to the maximum communication 
probability to or from B cells. Line color represents the source (ligand provider) of the 
interaction. Size of circle is proportional to the number of cells of that type. Open circles 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2023. ; https://doi.org/10.1101/2023.09.21.558902doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.21.558902
http://creativecommons.org/licenses/by/4.0/


represent cell types that are not detected in the disease state. DC = dendritic cell. 
Statistical significance determined by CellChat’s permutation test. 
 

 
 
Figure 3. B cell ligand-receptor interactions are significantly altered by disease 
states. Dot plot of all probable interactions that reached statistical significance. Color 
represents condition (Controls = turquoise, DCM = purple, ARVC = red). Bar plot 
represents counts of ligand-receptor interactions for each cell type per disease state. 
Statistical significance was determined by CellChat’s permutation test. L-R = ligand-
receptor, Probability = communication probability as determined by CellChat’s algorithm. 
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Figure 4. Dysregulated Pathways Identified using IPA in both Naive B cells and 
Plasma cells clusters from DCM samples as compared to controls. The bar plots 
depict the dysregulated pathways identified by Ingenuity Pathway Analysis (IPA). A) 
Dysregulated Ingenuity Canonical Pathways in the Plasma cells cluster. B) 
Dysregulated Ingenuity Canonical Pathways in the Naive B cells cluster. The plots show 
pathways involving immune system response and metabolism. The pathways shown 
here meet the statistical criteria of a p-value below 0.05 and an absolute z-score 
exceeding 1.5. ARVC data did not show any relevant pathway on IPA based on the 
defined threshold criteria. 
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DESCRFIPTION OF SUPPLEMENTARY TABLES  
 
Supplementary Table 1. List of biomarkers used for ScType cell classification. 
 
Supplementary Table 2. DESeq statistical analysis of plasma cells derived from DCM 
patients versus controls.  
 
Supplementary Table 3. DESeq statistical analysis of naive B cells derived from DCM 
patients versus controls.  
 
Supplementary Table 4. DESeq statistical analysis of plasma cells derived from ARVC 
patients versus controls.  
 
Supplementary Table 5. DESeq statistical analysis of plasma cells derived from ARVC 
patients versus controls.  
 
Supplementary Table 6. Dysregulated GO pathways in ARVC’s plasma cells cluster, 
contrasting ARVC versus control samples data. 
 
Supplementary Table 7. Dysregulated IPA pathways in ARVC’s naive B cells cluster, 
contrasting ARVC versus control samples data. 
 
Supplementary Table 8. Dysregulated IPA pathways in ARVC’s plasma cells cluster, 
contrasting ARVC versus control samples data. 
 
Supplementary Table 9. Dysregulated IPA pathways in DCM’s naive B cells cluster, 
contrasting ARVC versus control samples data. 
 
Supplementary Table 10. Dysregulated GO pathways in DCM’s naive B cells cluster, 
contrasting ARVC versus control samples data. 
 
Supplementary Table 11.  Dysregulated IPA pathways in DCM’s plasma cells cluster, 
contrasting ARVC versus control samples data. 
 
Supplementary Table 12. Dysregulated GO pathways in DCM’s plasma cells cluster, 
contrasting ARVC versus control samples data. 
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