

1 A haplotype-resolved chromosome-level assembly and annotation of European hazelnut (*C. avellana* cv.  
2 Jefferson) provides insight into mechanisms of eastern filbert blight resistance

3 S.C. Talbot<sup>1</sup>, K.J. Vining<sup>1</sup>, J.W. Snelling<sup>1</sup>, J. Clevenger<sup>2</sup>, and S.A. Mehlenbacher<sup>1</sup>.

4 <sup>1</sup>Department of Horticulture, Oregon State University, Corvallis, Oregon, USA; <sup>2</sup>Hudson Alpha Institute  
5 for Biotechnology, Huntsville, Alabama, USA.

6

7 **Abstract:**

8 European hazelnut (*Corylus avellana* L.) is an important tree nut crop. Hazelnut production in North  
9 America is currently limited in scalability due to *Anisogramma anomala*, a fungal pathogen that causes  
10 Eastern Filbert Blight (EFB) disease in hazelnut. Successful deployment of EFB resistant cultivars has  
11 been limited to the state of Oregon, where the breeding program at Oregon State University (OSU) has  
12 released cultivars with a dominant allele at a single resistance locus identified by classical breeding,  
13 linkage mapping, and molecular markers. 'Jefferson' is resistant to the predominant EFB biotype in  
14 Oregon and has been selected by the OSU breeding program as a model for hazelnut genetic and  
15 genomic research. Here, we present a near complete, haplotype-resolved chromosome-level hazelnut  
16 genome assembly for *C. avellana* 'Jefferson'. This new assembly is a significant improvement over a  
17 previously published genome draft. Analysis of genomic regions linked to EFB resistance and self-  
18 incompatibility confirmed haplotype splitting and identified new gene candidates that are essential for  
19 downstream molecular marker development, thereby facilitating breeding efforts.

20

21 **Keywords:** Chromosome-level, haplotype-resolved, *Corylus*, European hazelnut, genome, fungal disease  
22 resistance genes

23 **Introduction**

24 European hazelnut (*Corylus avellana* L.) is an important specialty tree nut crop that is grown in  
25 temperate climates for use in the in-shell and kernel markets, typically consumed raw or roasted, in  
26 confectionaries and baked goods. The estimated value of the global hazelnut industry is three billion US  
27 dollars with Turkey representing nearly 70% of global production (FAO, 2022). Hazelnut ( $2n = 2x = 11$ ) is  
28 a woody perennial that is monoecious, dichogamous, wind-pollinated, and self-incompatible (Hill et al.,  
29 2021). While all hazelnut species produce edible nuts, the European hazelnut (*Corylus avellana* L.) is the  
30 most widely grown because of its desirable characteristics such as a large high-quality nuts, thin shells,  
31 and desired flavor profile. Traditional cultivars are clonally propagated and originated as selections from  
32 the wild in Europe and western Asia (Mehlenbacher and Molnar, 2021).

33 Commercial hazelnut production in North America has been limited due to the high  
34 susceptibility of European hazelnut to *Anisogramma anomala*, a biotrophic ascomycete, and the causal  
35 agent of the eastern filbert blight (EFB) disease. *A. anomala* has co-evolved with its endemic host, the  
36 American hazelnut (*Corylus americana*), and in the wild, the disease is widely tolerated (Capik and  
37 Molnar, 2012; Revord et al., 2020). Symptoms of EFB are apparent ~18 months following initial  
38 infection, and include branch die-back, girdling of trunks, and eventual tree and orchard death. While  
39 management techniques such as pruning, scouting for cankers, and applying fungicides can slow the  
40 disease's spread, they do not eliminate it (Pscheidt and Ocamb, 2022). Thus, breeding for genetic  
41 resistance is considered the most sustainable approach to managing EFB.

42 Oregon State University (OSU) has been a leader in developing improved EFB resistant cultivars  
43 for the Pacific Northwest (PNW), where Oregon represents 95% of US hazelnut production.

44 The OSU hazelnut breeding program's primary contribution to EFB-resistant cultivar development can  
45 be traced to a 1975 discovery in southwest Washington of the obsolete pollinizer, 'Gasaway', which was  
46 completely free of EFB in a highly infected and dying orchard of 'DuChilly' (Thompson et al., 1996). To  
47 date multiple resistant pollinizers and cultivars derived from 'Gasaway' have been released  
48 (Mehlenbacher, 2021), and underlie the expansion of acreage planted in Oregon, which increased from  
49 ~11,000 ha in 2009 to greater than 25,000 ha in 2022 (USDA-NASS, 2023). Outside of Oregon, however,  
50 cultivars with 'Gasaway' resistance have been shown to be susceptible to genetically diverse *A. anomala*  
51 populations (Muehlbauer et al., 2019). Indeed, a genome assembly of the pathogen has shown that it  
52 has one of the largest Ascomycota genomes suggesting a high capacity for pathogenic variation (Cai et  
53 al., 2013). The long-term durability of Oregon's commercial hazelnut orchards and the potential for  
54 expanding hazelnut production is limited by the pathogen's variability and narrow resistance offered by  
55 'Gasaway'.

56 The availability of genomic resources in *Corylus* has been increasing in recent years. The cultivar  
57 'Jefferson' was chosen for the first *Corylus* genome assembly because it contains 'Gasaway' EFB  
58 resistance and it was selected from the reference mapping population (Mehlenbacher et al., 2006).  
59 However, the Illumina-based first draft was highly fragmented due to hazelnut's highly heterozygous  
60 nature and the limitations imparted by short-read sequencing and assembly technologies (Rowley et al.,  
61 2018). With advances in long-read sequencing, pseudo-chromosome level genome assemblies for  
62 *Corylus* have been made available for *C. avellana* cultivars 'Tombul' and 'Tonda Gentile delle Langhe'  
63 (Lucas et al., 2021; Pavese et al., 2021) and representative accessions of two *Corylus* species, *C.*  
64 *heterophylla* Fisch (Liu et al., 2021; Zhao et al., 2021) and *C. mandshurica* Maxim (Li et al., 2021).  
65 However, these genome assemblies are collapsed and there has been no haplotype-resolved "phased"  
66 assembly that represents both homologous chromosomes.

67 Distinguishing between the two chromosomes is essential for determining the parental allelic  
68 contributions to self-incompatibility, EFB resistance, and other traits.

69 EFB resistance derived from 'Gasaway' has been characterized as a dominant allele at a single  
70 locus with 1:1 segregation (Mehlenbacher et al., 1991, 2006). This source of resistance has been  
71 mapped to linkage group (LG) 6 of the genetic map using random amplified polymorphic DNA (RAPD)  
72 and simple sequence repeat (SSR) markers in a segregating population from a cross between two  
73 heterozygous clones, susceptible 'OSU 252.146' x resistant 'OSU 414.062' (Mehlenbacher et al., 2006).  
74 From this mapping population, the elite cultivar 'Jefferson' was identified for release and was the source  
75 of the first *Corylus* draft genome (Mehlenbacher et al., 2011; Rowley et al., 2012). Fine mapping of the  
76 'Gasaway' region using bacterial artificial chromosomes (BACs) identified a span of approximately 135 kb  
77 and five candidate EFB resistance genes (Sathuvalli et al., 2017). Other sources of EFB resistance have  
78 been identified and mapped in over 30 *C. avellana* cultivars and accessions, and while the majority map  
79 to LG6 (Sathuvalli et al., 2012; Colburn et al., 2015; Komaei Koma 2020), other sources of qualitative and  
80 quantitative resistance have been mapped to LG2 (Sathuvalli et al., 2011a; Şekerli et al., 2021),  
81 LG7(Bhattarai et al., 2017; Sathuvalli et al., 2011b; Şekerli et al., 2021), LG10 and LG11 (Lombardoni et  
82 al., 2022), and more recently LG4 and LG1 (unpublished). A complete summary of resistant cultivars and  
83 their related linkage group can be found in Table 1 of Mehlenbacher et al. (2023). The development of  
84 elite EFB resistant cultivars is a major goal in hazelnut breeding; however, the lengthy field evaluations  
85 provide more robust data on phenotypic variation. The accurate identification of candidate genetic  
86 parental contributions underlying qualitative and quantitative loci for EFB resistance will significantly aid  
87 in selection across a diverse collection of *Corylus* germplasm, thereby allowing for development of  
88 cultivars with multiple resistance loci.

89                   The largest class of characterized plant disease resistance (R) genes encode N-terminal  
90                   Nucleotide Binding Site (NBS) and C-terminal Leucine-Rich-Repeat (LRR) functional domains (McHale et  
91                   al., 2006). The LRR domain is highly variable within and among plant species and is typically associated  
92                   with direct or indirect pathogen effector protein interactions (Prigozhin and Krasileva, 2021). R-genes  
93                   are often localized into clusters within chromosomes and can have significant variations in encoded  
94                   amino acid sequence motifs, even within specific categories of R-genes (Kroj et al., 2016; Bailey et al.,  
95                   2018; Wang and Chai, 2020). Extensive research conducted over the past two decades has  
96                   demonstrated the successful deployment of NBS-LRR R-genes in a wide range of crops (Kourelis and van  
97                   der Hoorn, 2018). Investigating the complex molecular mechanisms of R-genes both within and across  
98                   different plant species is an expensive and resource-intensive task. Past work has identified candidate  
99                   EFB resistance genes in 'Jefferson', however, the functional descriptions are more than a decade old,  
100                   and recent improvements in genome assembly, annotation algorithms, and curated databases of plant  
101                   genomes represent an opportunity to improve the description of candidate R-genes. To better direct  
102                   future research in the 'Gasaway' resistance region, it is crucial to update the annotation of *Corylus* R-  
103                   gene candidates and evaluate them for protein domain similarities. This analysis will offer insights into  
104                   the putative functionality of these genes and help determine if other sources of EFB resistance share  
105                   similar molecular components.

106                   Hazelnut orchard design and elite cultivar development also require an understanding of self-  
107                   incompatibility. Hazelnut exhibits sporophytic self-incompatibility (SSI), whereby compatibility between  
108                   cultivars is determined by the genotypes of the plants. Incompatibility is determined by a single highly  
109                   polymorphic locus, with a minimum of two genes, one each for male and female identity. The best-  
110                   characterized example of SSI is in *Brassica*, which consists of two genes related to pollen-stigma  
111                   recognition: a female serine/threonine receptor kinase and a cysteine-rich protein that serves as the  
112                   pollen's credentials for compatibility interactions (Takasaki et al., 2000; Schopfer et al., 1999).

113 Both proteins co-localize in clusters on the genome containing similar sequences and in the plasma  
114 membrane, and are thought to be adapted from pre-existing signaling systems related to pathogen  
115 defense (Zhang et al., 2011). To identify SI alleles in hazelnut, the current method is a time-consuming  
116 process that requires a library of tester pollens and fluorescence microscopy to visualize pollen  
117 germination (Mehlenbacher, 1997); a total of thirty-three SI alleles have been identified thus far with an  
118 nine-level dominance hierarchy (Mehlenbacher, 2014). The locus responsible for SI has been mapped to  
119 LG 5 (Mehlenbacher et al., 2006). Fine mapping of this locus revealed a region spanning 193 kb and  
120 containing 18 predicted genes that differentiate between two SI-alleles,  $S_1$  and  $S_3$  (Hill et al., 2021).  
121 Previous studies have shown that *Corylus* displays a unique SSI mechanism and is independent of the  
122 well-characterized SSI system in *Brassica* (Hou et al., 2022). Remapping the SI locus will increase the  
123 precision of molecular marker development for SI-alleles, enabling further investigation into the genic  
124 contributions from parental plants. This will also help reveal the molecular mechanisms involved in  
125 *Corylus* SSI and identify candidate genes responsible for SI specificity.

126 Here we present a chromosome-length haplotype-resolved genome assembly and annotation of  
127 'Jefferson'. The assembly was produced using Pacific Biosciences HiFi reads and chromosome-scaffolded  
128 using high throughput chromosome conformation capture (Hi-C) sequence data. The practical value of  
129 this genome assembly is demonstrated by the separation of the two parents into haplotypes at the  
130 previously mapped locus for self-incompatibility alleles. Additionally, haplotype separation identified  
131 new candidate genes derived from the parent that contributed 'Gasaway' EFB resistance, providing  
132 insight into the molecular mechanisms of resistance.

133

134

135

136 **Materials and methods**

137 **Plant material**

138 The *C. avellana* cultivars 'Jefferson', and its parents, female 'OSU 252.146' and male 'OSU 414.062' were  
139 used for genome sequencing and assembly. 'OSU 252.146' is susceptible to EFB and carries the Sl-alleles  
140  $S_3$  and  $S_8$ , whereas 'OSU 414.062' has 'Gasaway' resistance and is homozygous for the Sl-allele  $S_1$ . Young  
141 leaf material was collected from field grown trees in Corvallis, Oregon, USA. Plants were dark-caged for  
142 2-3 days prior to collection, and collected leaves were frozen in liquid nitrogen for Illumina, PacBio, and  
143 Hi-C sequencing. For same-day flow cytometry analysis, young leaf tissue was collected in the early  
144 morning of May 2020, from a field grown tree of 'Jefferson' following leaf budbreak. Flow cytometry  
145 reference material was collected the same day from young tomato leaf tissue (*Solanum lycopersicum* L.  
146 'Stupicke') from two-week old potted plants grown in the greenhouse.

147 **DNA extraction, library preparation, and sequencing**

148 PacBio library prep and sequencing were done at the University of Oregon Genomics & Cell  
149 Characterization Core Facility (GC3F). High molecular weight genomic DNA was extracted from flash-  
150 frozen leaves. Two 8M SMRT cells were sequenced for 'Jefferson'. To generate HiFi reads, SMRTbell  
151 subreads were combined and post-processed with default parameters (CCS.how). Illumina library prep  
152 and sequencing of the parents, 'OSU 252.146' and 'OSU 414.062,' were done at GC3F according to then  
153 current Illumina HiSeq 4000 protocols and the iTRU library prep protocol (Glenn et al., 2019) to generate  
154 150 bp paired-end (PE) reads. For Hi-C sequencing, tissue processing, chromatin isolation, and library  
155 preparation was performed by Dovetail Genomics (Santa Cruz, CA, USA). The parental libraries were  
156 prepared in a manner similar to that of Erez Lieberman-Aiden et al. (2009) and sequenced as 150bp PE  
157 reads using the Illumina Hiseq 4000 platform. Illumina reads were demultiplexed using the Stacks v2.0  
158 Beta 10 process\_radtags module (Rochette et al., 2019).

159 Demultiplexed reads were checked for quality using FASTQC (version 0.11.5) (Andrews, 2010) and then  
160 cleaned by removing adapters, trimming, and quality filtering using the BBTools software suite  
161 (Bushnell, 2016); the filterbytile.sh script was used to remove reads associated with low-quality regions  
162 of the flow cells containing bubbles, BBduk was then implemented to trim or remove contaminating  
163 iTRU adapters, keep paired reads larger than 130bp, and quality filtering removed reads below Q20.

164 **Flow cytometry**

165 Flow cytometry was done on 'Jefferson' using the propidium iodide (PI) staining technique  
166 (Doležel et al., 2005). Solutions of nuclei extraction buffer and staining buffer for PI were prepared using  
167 the Cystain® PI kit according to manufacturer protocols (Sysmex, Lincolnshire, IL). Tomato (*Solanum*  
168 *lycopersicum* L. 'Stupicke') was used as a reference standard. The 2C DNA content of tomato has been  
169 determined to be 1.96 picograms (pg), where 1pg DNA = 0.978 x 10<sup>9</sup> bp (Doležel et al., 2005). Absolute  
170 genomic DNA was calculated by the following formula:

$$171 \text{Sample 2C DNA content} = \left[ \frac{(\text{sample G1 peak mean})}{(\text{standard G1peak mean})} \right] \times \text{standard 2C DNA content (pg DNA)}$$

172 Briefly, sliced leaf squares of tomato and 'Jefferson' of equal size (~0.5cm<sup>2</sup>) were placed in a petri dish  
173 together before the addition of 0.5 mL of nuclei extraction buffer. The *C. avellana* samples and tomato  
174 standard samples were co-chopped for 30 seconds using a razor blade prior to filtering through a 30 µm  
175 nylon-mesh CellTrics® into a 3.5 mL tube. Then, 2 mL of PI staining solution was added to the remaining  
176 tissue within the filter. The mixture was incubated at room temperature for 30 minutes inside a  
177 Styrofoam cooler to protect against light. Two replicated runs were conducted on different days to  
178 account for instrument variation. Stained nuclei were analyzed using a QuantaCyte Quantum P flow  
179 cytometer and CyPad software version 1.1. A minimum of 15,000 nuclei counts occurred before the  
180 manual gating of G1 sample and standard peaks for each run.

181

182 **Genome sequence assembly**

183 An initial Genome size was estimated with a *k-mer* analysis of HiFi reads using Jellyfish (version  
184 2.3.0, RRID: SCR\_005491) and the web version of GenomeScope (version 2.0, RRID: SCR\_017014) with  
185 settings: *k-mer* length of 21 and read length of 15,000 bp (Marçais et al., 2011; Verture et al., 2017). A  
186 haplotype-resolved contig assembly was generated using hifiasm trio-partition algorithm (version 0.16.1-  
187 r375, RRID: SCR\_021069) (Cheng et al., 2021). First, individual *k-mer* counts of parental Illumina reads of  
188 the parents 'OSU 252.146' and 'OSU 414.062' were acquired using Yak (version 1.1) as input evidence for  
189 hifiasm trio binning. The Arima Hi-C mapping pipeline was followed to generate mapped Hi-C reads  
190 (Github.com/ArimaGenomics/mapping\_pipeline). YaHs (version 1.1, RRID: SCR\_022965) was run  
191 independently on both haplotype assemblies produced by hifiasm with their respective Hi-C aligned, read-  
192 name sorted bam file (Zhou et al., 2022). A Hi-C contact map was generated for each respective haplotype.  
193 Contigs were combined and gapfilled using Juicebox (version 1.11.08, RRID: SCR\_021172) (Durand et al.,  
194 2017); finalized Hi-C contact maps were curated by Hudson Alpha (Huntsville, AL, USA), using an  
195 unpublished Hi-C scaffolding and alignment tool that oriented 'Jefferson' chromosomes based on the  
196 'Tombul' genome pseudo-chromosomal scaffolds (Lucas et al., 2020). To verify haplotype assignment  
197 accuracy, parental reads were realigned to each haplotype assembly. Final assembly metrics were  
198 generated by QUAST (version 5.0.0, RRID: SCR\_001228) (Mikheenko et al., 2018). Assembly completeness  
199 was assessed with BUSCO (version 5.4.6, RRID: SCR\_015008) in genome mode, using the Embryophyta  
200 odb10 dataset (Manni et al., 2021). The quality of assembling repetitive genomic regions were assessed  
201 using the long terminal repeat (LTR) assembly index (LAI); this pipeline was composed of LTRharvest within  
202 GenomeTools (version 1.6.1, RRID: SCR\_016120), LTR\_FINDER (version 1.2, RRID: SCR\_015247), and  
203 LTR\_retriever (version 2.9.4, RRID: SCR\_017623) using suggested default parameters to predict and  
204 combine likely full length candidate LTR-RTs (retrotransposons) (Ou et al., 2018). Calculation of the LAI  
205 index was based on the formula: LAI= (intact LTRs/total LTR length) x 100.

206 **Structural gene annotation**

207 Gene prediction and annotation was facilitated by Illumina transcriptome data from the  
208 following sources: 1) 'Jefferson' style, bark and leaf tissue, *C. avellana* 'Barcelona' catkins, whole  
209 seedling of 'OSU 954.076' x 'OSU 976.091' including root tissue (Rowley et al., 2012; Sathuvalli,  
210 unpublished); and 2) leaf bud tissue from *C. avellana* 'Tombul', 'Çakıldak', and 'Palaz', publicly available  
211 from the National Center for Biotechnology Information (SRA: PRJNA316492) (Kavas et al., 2020). The  
212 resulting set of reads putatively representing *C. avellana* was ~423 million PE 150bp RNA-seq reads.  
213 Similarly, a protein set consisting of 61,590 annotated proteins was curated from a previous  
214 unpublished version 3 'Jefferson' genome assembly and *C. avellana* 'Tombul' (Lucas et al., 2021). Gene  
215 annotation was performed for both 'Jefferson' haplotype assemblies. To create a repeat library of  
216 transposable element families, a RepeatModeler (RRID: SCR\_015027) families set was concatenated  
217 with the haplotype-resolved chromosome-level assemblies of 'Jefferson' and six other OSU *C. avellana*  
218 accessions that were trio-assembled using the same methods as 'Jefferson' but without chromosome  
219 scaffolding (unpublished). Low complexity DNA sequences and repetitive regions were soft masked  
220 prior to gene annotation using the default parameters of RepeatMasker (version 4.1.0, RRID:  
221 SCR\_012954). Structural annotations of protein-coding genes were identified using the gene prediction  
222 software AUGUSTUS, GeneMark-ES/EP+, and GenomeThreader, integrated by BRAKER1 and BRAKER2  
223 (RRID: SCR\_018964) (Stanke et al., 2006a,b, 2008; Li et al., 2009; Barnett et al., 2011; Gremme, 2013;  
224 Lomsadze et al., 2014; Buchfink et al., 2015; Hoff et al., 2016, 2019; Brůna et al., 2020, 2021). First,  
225 BRAKER1 used a unique .bam file generated from the splice-aware aligner Hisat2 (Kim et al., 2019), of  
226 the previously described RNA-seq set aligned to each haplotype assembly. Second, BRAKER2 was run  
227 using the AUGUSTUS *Arabidopsis thaliana* training set and gene structures were predicted via spliced  
228 alignments with AUGUSTUS ab-initio and GenomeThreader integration on each masked haplotype  
229 genome using the combined protein dataset previously described.

230 Gene predictions of the respective BRAKER1 and BRAKER2 haplotype runs were assessed for quality,  
231 deduplicated, and combined using TSEBRA with default settings (Gabriel et al., 2021).

232 To further improve this original gene annotation set, BRAKER3 was used (Gabriel et al., 2023). A  
233 new masked genome was generated for both haplotype assemblies using EDTA (version 2.1.0, RRID:  
234 SCR\_022063) (Ou et al., 2019) with parameters: --anno 1 --cds --sensitive including the respective coding  
235 sequences and gene locations generated by the BRAKER1/BRAKER2 pipeline. Finalized gene prediction  
236 sets were produced using BRAKER3 that included soft-masked genomes, a curated Viridiplantae ODB11  
237 protein set consisting of roughly 5.3 million proteins, and the previously described RNA-seq dataset.  
238 BRAKER3 outputs were used as input for TSEBRA, with the -k parameter, to enforce and recover  
239 potential missing genes and transcripts produced by the BRAKER1/BRAKER2 pipeline.

240 **Functional gene annotation**

241 Both haplotype annotation sets from TSEBRA were subject to predictive functional analysis using  
242 the transcript set within OmicsBox (version 3.0); the OmicsBox pipeline included CloudBLAST using  
243 BLASTx, InterPro, GO Merge, GO Mapping, and GO Annotation plus validation (Altschul et al., 1990; Götz  
244 et al., 2008; Paysan-Lafosse et al., 2022). Completeness of the predicted annotation sets was assessed  
245 using BUSCO --protein mode, inputting translated amino-acid sequences derived from CDS of gene  
246 transcripts and the Embryophyta odb10 dataset. To assess long-range structural variation between  
247 haplotype assemblies, translocations, inversions, and copy number variation were identified using  
248 minimap2 (version 2.23-r1111, RRID: SCR\_018550) (Li H., 2018), and SyRI (version 1.6.3, RRID:  
249 SCR\_023008) and visualized by plotsr (Goel et al., 2019, 2022). Conservation of putative high confidence  
250 homologs between assemblies were compared using Orthofinder (version 2.5.4, RRID: SCR\_017118)  
251 (Emms and Kelly, 2019).

252 **Identification of candidate genes for EFB resistance and self-incompatibility**

253 To identify potential disease resistance gene homologs, the amino acid sequence of annotated  
254 protein-coding genes from each assembly were queried against the Plant Resistance Gene Database  
255 (version 3.0) using DRAGO2-api (Osuna-Cruz et al., 2018). DNA alignments of previously identified RAPD  
256 and SSR marker sequence fragments, BAC-end libraries, and annotated protein-coding genes from  
257 'Jefferson' were aligned to the new genome assemblies using minimap2 (Heng Li, 2018). Marker  
258 locations were secondarily assessed for off-target allele-size amplification and multimapping by *in silico*  
259 PCR using each marker's corresponding primer pair mapped against the Jefferson V4 haplotype 1 and 2  
260 genomes, allowing for 1-2 mismatches per primer pair. A multiple sequence alignment of the translated  
261 candidate R-genes from each haplotype was generated with MUSCLE (version 5.1.0, RRID: SCR\_011812)  
262 using default settings (Edgar, 2021). A phylogenetic tree of these sequences was created using the  
263 neighbor joining tree (BLOSUM62) calculation in JalView (Waterhouse et al., 2009). MEME software  
264 (version 5.4.1, RRID: SCR\_001783) was utilized to identify conserved subdomains among the putative R-  
265 gene candidate proteins using the settings: -mod anr -nmotifs 10 -protein (Bailey et al., 2009).

266 In a similar approach, genes involved in self-incompatibility were remapped to both haplotype  
267 assemblies using previously identified fine-mapped markers and gene sets (Hill et al., 2021). These  
268 markers and genes served as query evidence in BLASTn/BLASTp searches of both haplotype assemblies.  
269 A multiple sequence alignment of the identified proteins of interest in each haplotype was generated  
270 using MUSCLE and visualized using the neighbor joining tree (BLOSUM62) within JalView. The complete  
271 genome assembly and annotation pipeline are summarized (Supplemental Figure S1).

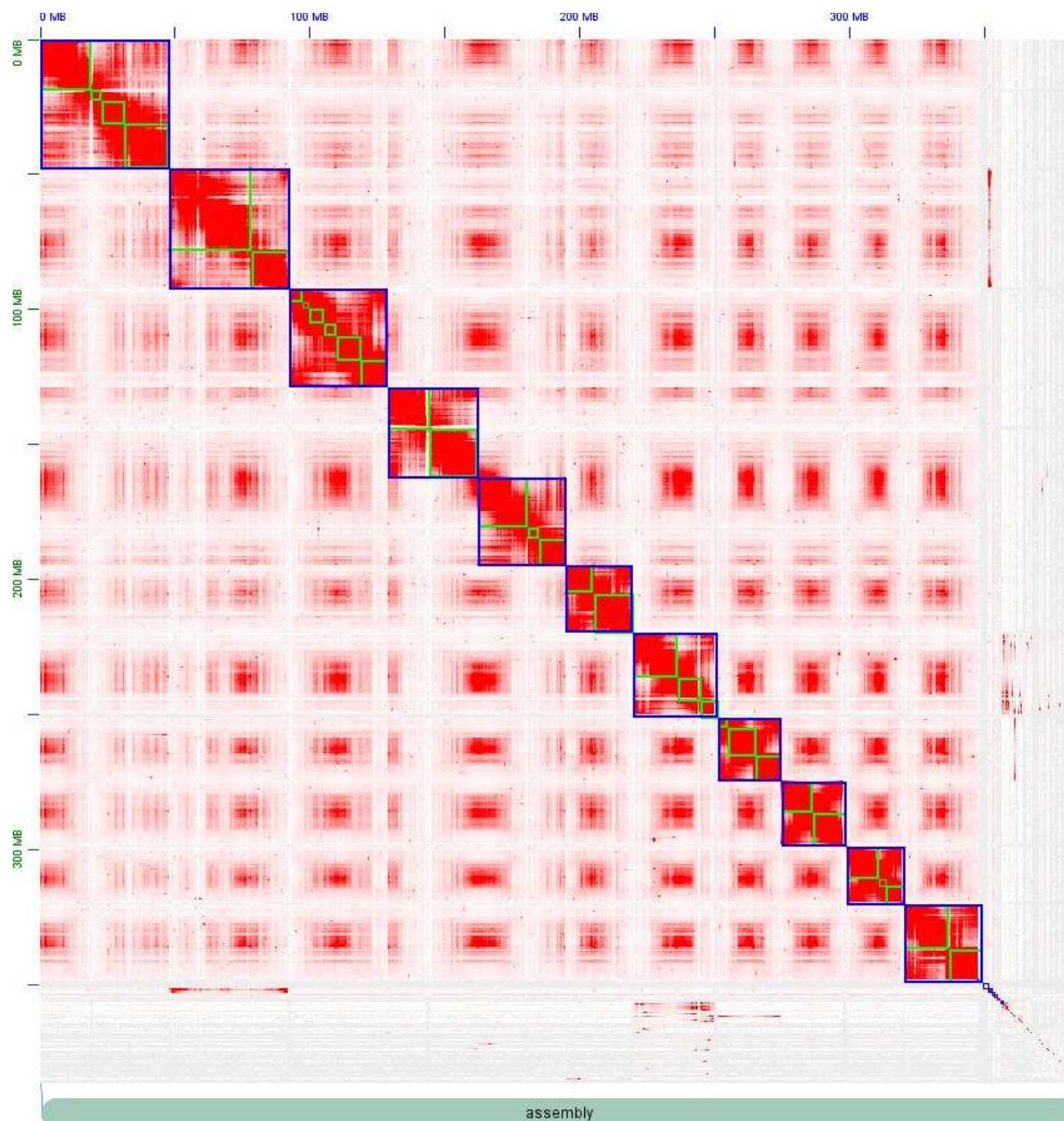
272

273

274 **Results and discussion**

275 **Genome assembly**

276 A combined total of 3.6 million PacBio HiFi reads with an average length of 15,597 bp were  
277 generated from two 8M SMRT cells, resulting in 56.8 Gb of sequence data (~147x genome coverage)  
278 (Supplementary table S1). For the two parents, 'OSU252.146' and 'OSU414.062', 295 and 218 million PE  
279 150 bp Illumina reads were generated, yielding 44 Gb (115x coverage) and 32 Gb (85x coverage),  
280 respectively (Supplemental table S1). These reads were used to generate hifiasm trio binned haploid  
281 genome assemblies spanning 385,825,918 bp and 372,534,284 bp, containing 663 and 229 contigs for  
282 haplotype 1 and 2, with N50s of 23.4 Mb and 22.5 Mb, respectively (Table 1).


283 The hifiasm haplotype assemblies were used as inputs to the chromosome scaffolding process.  
284 Hi-C sequencing of 'Jefferson' generated ~428 million PE 150 bp reads, for a total yield of ~64.6 Gb (168x  
285 coverage, Supplemental table S1). The resulting 'Jefferson V4' Hi-C scaffolded genome assemblies of each  
286 haplotype consisted of 11 pseudo-chromosomal scaffolds. The chromosome-level assemblies spanned a  
287 total length of 349,702,244 bp and 352,009,510 bp for haplotype 1 and haplotype 2, an N50 of 32.5 Mb  
288 and 32.4 Mb (Table 1, Supplemental table S2). The Hi-C interaction matrix clearly differentiated between  
289 individual chromosomes in both haplotypes (Figure 1A, 1B). Alignment of parental reads to each genome  
290 assembly haplotype showed that the majority of reads from 'OSU 252.146' aligned to haplotype 2,  
291 whereas the majority of reads from 'OSU 414.062' aligned to haplotype 1 (Supplemental table S3). BUSCO  
292 results in genome mode showed that both chromosome-level haplotype genome assemblies were of high,  
293 comparable quality and captured >97% of conserved genes in the Embryophyta dataset (Table 2).

294

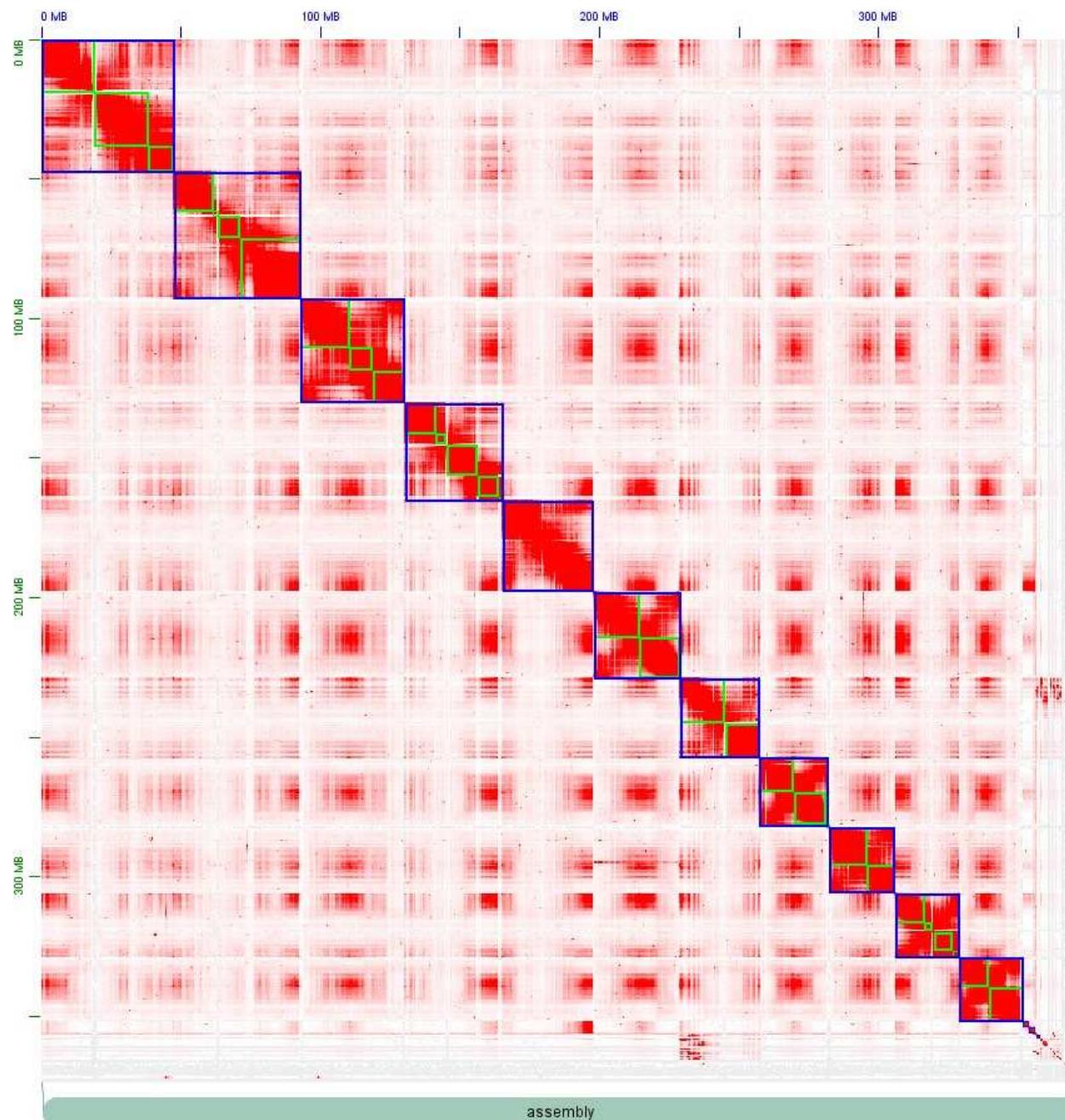
295 **Table 1.** Summary statistics for the assembled *C. avellana* 'Jefferson' genomes.

| Statistics                                          | 'Jeff V4 Hap1' | 'Jeff V4 Hap2' | "Jeff V4 Hap1"<br>Chr-resolved | "Jeff V4 Hap2"<br>Chr-resolved |
|-----------------------------------------------------|----------------|----------------|--------------------------------|--------------------------------|
| <b>Total Scaffold<br/>number</b>                    | 663            | 229            | 11                             | 11                             |
| <b>Total assembly<br/>Length (Mb)</b>               | 385.8          | 372.5          | 349.7                          | 352                            |
| <b>N<sub>50</sub> (Mb)</b>                          | 23.4           | 22.5           | 32.5                           | 32.4                           |
| <b>Largest contig (Mb)</b>                          | 34.0           | 38.9           | 48.25                          | 47.6                           |
| <b>L50 (Mb)</b>                                     | 7              | 7              | 5                              | 5                              |
| <b>Number of contigs<br/>merged</b>                 | NA             | NA             | 22                             | 21                             |
| <b>Number of predicted<br/>protein-coding genes</b> | NA             | NA             | 33,506                         | 34,379                         |

296



297


assembly

298 **Figure 1A.** Hi-C interaction matrix for the 'Jefferson' (*C. avellana*) haplotype 1 assembly. On the X and Y-  
299 axes is the distance in the genome assembly (Mb), the green squares represent contigs that are  
300 scaffolded within the blue square, which represent a chromosome. The red indicates chromatin  
301 interaction loci which are most abundant within chromosomes. The grey space in the lower right  
302 represent unaligned contigs which did not have sufficient Hi-C mapping depth to be incorporated into  
303 chromosomal scaffolds.

304

305

306



307

308 **Figure 1B.** Hi-C interaction matrix for 'Jefferson' (*C. avellana*) haplotype 2 assembly.

309

310

311

312

313

314 **Table 2.** Assessment of genome completeness in 'Jefferson' haplotypes using BUSCO.

| Searching Model | Protein categories                         | BUSCO       |            |             |            |
|-----------------|--------------------------------------------|-------------|------------|-------------|------------|
|                 |                                            | Haplotype 1 |            | Haplotype 2 |            |
|                 |                                            | Number      | Percentage | Number      | Percentage |
| Genome          | <b>Complete BUSCOs (C)</b>                 | 1565        | 97.0       | 1575        | 97.5       |
|                 | <b>Complete and single-copy BUSCOs (S)</b> | 1535        | 95.1       | 1534        | 95.0       |
|                 | <b>Complete and duplicated BUSCOs (D)</b>  | 30          | 1.9        | 41          | 2.5        |
|                 | <b>Fragmented BUSCOs (F)</b>               | 6           | 0.4        | 6           | 0.4        |
|                 | <b>Missing BUSCOs (M)</b>                  | 43          | 2.6        | 33          | 2.1        |
|                 | <b>Total BUSCO groups searched</b>         | 1614        | 100.0      | 1614        | 100.0      |
| Protein         | <b>Complete BUSCOs (C)</b>                 | 1572        | 97.4       | 1584        | 98.2       |
|                 | <b>Complete and single-copy BUSCOs (S)</b> | 1012        | 62.7       | 1008        | 62.5       |
|                 | <b>Complete and duplicated BUSCOs (D)</b>  | 560         | 34.7       | 576         | 35.7       |
|                 | <b>Fragmented BUSCOs (F)</b>               | 4           | 0.2        | 4           | 0.2        |
|                 | <b>Missing BUSCOs (M)</b>                  | 38          | 2.4        | 26          | 1.6        |
|                 | <b>Total BUSCO groups searched</b>         | 1614        | 100.0      | 1614        | 100.0      |

315

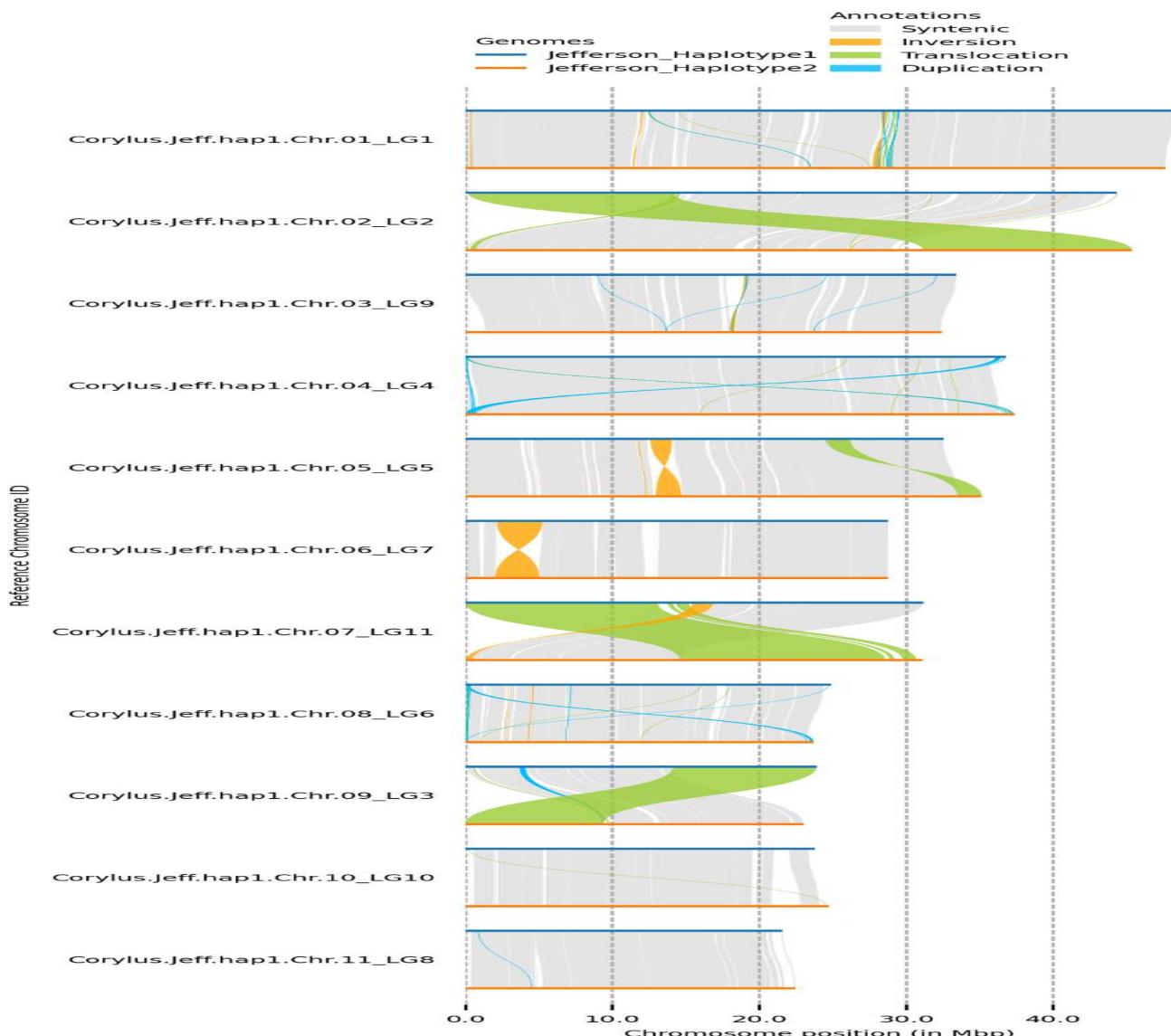
316

317

318 **Genome size estimation**

319 Flow cytometry was used to estimate a 1C genome size of 'Jefferson' of 365.65 Mb (1C = 0.37 pg).  
320 This estimate is slightly smaller than a previously reported estimate of 'Jefferson' (370 Mb) (Rowley et al.,  
321 2018) and the reported range of other cultivars and diploid species in the subgenus *Corylus* (*C. cornuta*,  
322 *C. colurna*), which was between 1C = 0.41 - 0.43 pg (Bai et al., 2012; Vallès et al., 2014). PacBio HiFi reads  
323 of 'Jefferson' were also input to GenomeScope to provide a secondary genome size estimate and  
324 heterozygosity of 274.8 Mb and 1.54%, respectively (Supplementary Figure S2). The *k-mer* based estimate  
325 is significantly less than the flow cytometry estimate, likely due to limitations of the algorithm in  
326 accounting for long-read length and high heterozygosity. The chromosome-resolved assemblies were 4%  
327 smaller than the flow cytometry prediction.

328 **Linkage map of 'Jefferson'**


329 The first available *Corylus avellana* linkage map was constructed using random amplified  
330 polymorphic DNA and simple sequence repeat (SSRs) markers segregating in an F1 mapping population  
331 derived from a cross between 'OSU 252.146' and 'OSU 414.062', the same population from which  
332 'Jefferson' was selected (Mehlenbacher et al., 2004). Since then, this linkage map has been improved by  
333 additional SSRs and data from a bacterial artificial chromosome (BAC) library (Sathuvalli et al., 2017;  
334 Mehlenbacher and Bhattarai, 2018). To assign the linkage groups to pseudo-chromosomal scaffolds, 18  
335 RAPD, 874 microsatellite, 4,100 paired BAC-ends with proper insert size, and 15,000 biallelic SNP marker  
336 sequence fragments were aligned to both Jefferson haplotypes using minimap2 (Li H., 2018), and  
337 compared to previous linkage mapping designations (Koma Komaei, 2020). Both haplotypes were  
338 successfully assigned the same linkage group for each corresponding pseudo-chromosomal scaffold and  
339 renamed appropriately.

340 **Synteny of 'Jefferson' haplotypes**

341 The 'Jefferson' haplotype assemblies showed a high degree of synteny (Figure 2). Differences in  
342 length between pseudo-chromosome haplotypes ranged from ~16,000 bp (chromosome 6) to ~2.5 Mb  
343 (chromosome 5); most scaffolds representing homologous chromosomes differed in length by an average  
344 of ~892 kb. Between haplotypes there were three large scale translocations (chromosome 2, 7, and 9),  
345 two inversions (chromosome 5 and 6), and several small duplications, translocations, and gaps. The most  
346 notable of non syntenous regions were three large scale translocations on chromosomes two, seven, and  
347 nine, comprising total lengths of 14 Mb, 13 Mb, and 9.7 Mb, respectively (Supplemental table S4). Despite  
348 nearly 93% of the haplotype assemblies mapping to one another, 33% of the alignments were categorized  
349 as having high divergence (Supplemental table S5).

350 Past cytological work has categorized three chromosome sizes, with two homologous pairs being large,  
351 five medium, and three small (Falistocco and Marconi, 2013). Translocations have also been observed in  
352 *Corylus* (Salesses and Bonnet, 1988). Reciprocal translocations are thought to frequently confound genetic  
353 map generation for many hazelnut populations (Lunde et al., 2006; Bhattarai et al., 2017; Marioni et al.,  
354 2018), and are hypothesized to be the result of cytogenetic abnormalities, such as irregular chromosomal  
355 migration during cell division, or nondisjunction during microsporogenesis or megasporogenesis  
356 (Lagerstedt, 1977). Mono-, bi-, and multi- valent chromosome pairings have been observed frequently in  
357 *Corylus* spp. and their hybrids (Woodworth, 1929; Kasapligil, 1968); this suggests that unequal crossover  
358 events may be common, especially when diverse germplasm is used. However, it is also possible these  
359 apparent translocations are errors from orienting the 'Jefferson' Hi-C alignment against 'Tombul'.

360



361

362 **Figure 2.** Synteny plot of the two 'Jefferson' chromosome-resolved haplotype assemblies. Pseudo-  
363 chromosomal scaffolds of each haplotype were aligned to each other, and labelled on the Y-axis with the  
364 chromosome ID and related linkage group. The X-axis shows the chromosome size in Mbp. Chromosomes  
365 of haplotypes 1 and 2 are displayed as blue and orange lines, respectively. Grey shading represents  
366 complete synteny between genomic positions, yellow represents an inversion, green represents a  
367 translocation, and light blue represents a duplication.

368

369

370

371 **Characterization of repeats**

372 Prior to annotating protein-coding genes, genome repeat identification and masking was  
373 performed on the chromosome-level haplotype assemblies. The proportion of repeats and unknown  
374 elements identified in the initial RepeatModeler and RepeatMasker runs for the 'Jefferson' haplotypes  
375 was higher than those reported for other *C. avellana* cultivars and *Corylus* species, with ~65% of bases  
376 being masked. The high proportion of LTRs identified suggested potentially erroneous repeat calls that  
377 were introduced by the large concatenated LTR families dataset. By rerunning the analysis using EDTA, a  
378 more stable view of LTRs was obtained, with 38.26% and 35.29% of repeats masked for haplotype 1 and  
379 2 (Supplemental table S6, S7). Class I retroelements made up 46-54% of all repeats identified for  
380 haplotype 1 and 2, respectively. *Gypsy* superfamilies were nearly double those of *Copia*, which is  
381 opposite of what has been previously reported in *C. avellana* 'Tombul' but on par with *C. avellana*  
382 'Tonda Gentile delle Langhe' and Silver birch (*Betula pendula*) 'SB1' (Lucas et al., 2021; Pavese et al.,  
383 2021; Salojärvi et al., 2017). Nearly 20% of the total repeat length identified in either haplotype had LTRs  
384 categorized as 'unknown.' The most significant difference observed between repeat elements of the  
385 haplotype assemblies was a doubling of the loosely-defined annotated "repeat\_region", with 21 Mb and  
386 9.5 Mb for haplotype 1 and 2, respectively. LAI analysis of haplotype 1 (LAI=16.9) and haplotype 2  
387 (LAI=16.2), indicates that the repetitive and intergenic sequence space is of reference genome quality  
388 and a significant improvement from 'Tombul' (LAI=8.76) (Supplementary Figure S3).

389

390

391

392

393 **Structural and functional gene annotation**

394 A total of 32,431 and 33,159 protein-coding genes were identified in haplotypes 1 and 2,  
395 respectively, and when considering alternative isoforms, these numbers increased to 48,832 and 50,663  
396 coding transcripts, respectively. The protein-coding genes of both haplotype assemblies had an average  
397 length of 3,653/3,695 bp, with an average of 3.5 introns per longest isoform and median intron and exon  
398 lengths of 232 and 138 bp, respectively. For haplotypes 1 and 2, 21,201/21,354 (~64%) of genes had no  
399 alternative isoforms, 7,767/8,089 (~24%) had one alternative isoform and 3,453/3,716 (~11%) had two or  
400 more isoforms. For each haplotype's predicted gene set, >97% of *C. avellana* genes were complete  
401 BUSCOs for the ODB10 Embryophyta gene families (Table 2). Approximately 35% of highly conserved  
402 BUSCO genes were predicted as complete-duplicated, likely due to alternative transcripts.

403 For haplotype 1, functional annotation analyses assigned GO terms and InterPro domains to  
404 24,369 (72.7%) of transcripts. For the remaining transcripts in haplotype 1, 3,907 (11.4%) had no blast  
405 hits, 3,605 (10.8%) had only blast hits, 1,666 (5%) were identified with GO mapping. Similarly for haplotype  
406 2, 24,932 (72.5%) of transcripts were assigned GO terms and InterPro domains. Of the remaining  
407 transcripts in haplotype 2, 3,907 (11.4%) had no blast hits, 3,725 (10.8%) had only blast hits, and 1,815  
408 (5.3%) of transcripts were GO mapped (Supplemental Figure S4, S5). OrthoFinder was used to further  
409 characterize and assess conservation between predicted gene sets of each haplotype assembly. Of the  
410 combined 99,495 transcripts from haplotype 1 and 2, 96,193 (96.7%) were placed in a total of 31,779  
411 orthogroups, with only 4,618 (4.6%) of genes being categorized as unique to a haplotype. To assess the  
412 overall distribution of disease resistance genes, DRAGO2 identified 3,620 and 3,659 putative genes with  
413 resistance-like domains for haplotype 1 and haplotype 2 assemblies. The majority of these genes  
414 identified by DRAGO2 were receptor-like kinases and proteins (~25%), with a small fraction being  
415 identified as NBS-LRRs (~10%) (Supplement table S8).

416 **Potential candidate genes for self-incompatibility**

417 The locus for pollen-stigma incompatibility was fine-mapped by Hill et al. 2021, who identified  
418 18 genes within a 193.5 kb region on linkage group 5 that were associated with SI alleles  $S_1$  and  $S_3$ . To  
419 remap the SI locus, BLASTn was used to align genes from the previous assembly to both chromosome-  
420 resolved haplotype assemblies of 'Jefferson.' BLASTn searches returned twelve genes with 100% identity  
421 to the  $S_1$  allele among the newly predicted genes in haplotype 1, chromosome 5. In chromosome 5 of  
422 haplotype 2, eleven genes with 100% identity to the  $S_3$  allele were identified. Multiple genes that were  
423 previously identified as candidates for SI interactions in *Corylus*, PIX7 (Putative interactor of XopAC<sub>7</sub>) and  
424 MIK2 (*MDIS<sub>1</sub>-interacting receptor like kinase*) were also found in both Jefferson haplotypes. Haplotype 1  
425 contained two copies of PIX7 and eight copies of MIK2, whereas haplotype 2 contained three copies of  
426 PIX7 and five copies of MIK2. The SI-locus occupied 86.6 kb in haplotype 1 and 222 kb in haplotype 2.  
427 The phasing of alleles within the chromosome 5 SI locus agrees with the previous fine mapping results  
428 showing that 'OSU 252.146' contributes  $S_3$  to 'Jefferson', and is represented in the haplotype 2  
429 assembly, whereas 'OSU 414.062' which contributed  $S_1$  to 'Jefferson', is represented in the haplotype 1  
430 assembly.

431 The similarity of PIX7 and MIK2 candidates was assessed using OrthoFinder, which assigned  
432 these genes to seven orthogroups. All seven PIX7 homologs were assigned to three orthogroups,  
433 whereas the majority of MIK2 homologs were assigned to a single orthogroup. This suggests that  
434 putative PIX7 and MIK2 candidate gene copies are highly conserved, but there may be some variation in  
435 protein subdomains that lead to the identification of multiple orthogroups. Indeed, of the eighteen  
436 genes identified as PIX7 or MDIS-1 homologs, all were variable in total length (Table 3). Recent studies  
437 have shown that in *Brassica*, the most well characterized SSI system, a small RNA is crucial for inducing  
438 methylation of recessive SI allele, in order to induce compatibility (Yasuda et al., 2021).

439 When considering the large number of SI-alleles in *Corylus* (33 to date), it is possible that unannotated  
440 sRNA(s) are acting upon different variants of PIX7 or MIK2 to establish allelic dominance. Additional  
441 genomes of other *Corylus* cultivars with confirmed SI-alleles will be needed to verify differences in SI-  
442 alleles and putative candidate genes to further elucidate the complex molecular mechanism driving SSI  
443 and allelic hierarchy in *Corylus*.

444

445 **Table 3.** *Corylus avellana* 'Jefferson' self-incompatibility homologs identified in the self-incompatibility  
446 region of both haplotypes of chromosome 5 (LG 5).

| <i>Corylus avellana</i> gene | Amino acid length (bp) | Function                                              |
|------------------------------|------------------------|-------------------------------------------------------|
| Hap1_g18435                  | 513                    | probable serine/threonine protein kinase PIX7         |
| Hap1_g18437                  | 695                    | MDIS1 interacting receptor like kinase 2 like         |
| Hap1_g18438                  | 328                    | MDIS1 interacting receptor like kinase 2 like         |
| Hap1_g18439                  | 937                    | MDIS1 interacting receptor like kinase 2 like         |
| Hap1_g18441                  | 357                    | MDIS1 interacting receptor like kinase 2 like         |
| Hap1_g18442                  | 767                    | MDIS1 interacting receptor like kinase 2 like isoform |
| Hap1_g18443                  | 1,056                  | MDIS1 interacting receptor like kinase 2 like isoform |
| Hap1_g18444                  | 112                    | probable serine/threonine protein kinase PIX7         |
| Hap1_g18445                  | 177                    | MDIS1 interacting receptor like kinase 2 like isoform |
| Hap1_g18450                  | 787                    | MDIS1 interacting receptor like kinase 2 like isoform |
| Hap2_g19113                  | 477                    | probable serine/threonine protein kinase PIX7         |
| Hap2_g19115                  | 417                    | MDIS1 interacting receptor like kinase 2-like         |
| Hap2_g19117                  | 937                    | MDIS1 interacting receptor like kinase 2-like         |
| Hap2_g19118                  | 182                    | probable serine/threonine protein kinase PIX7         |
| Hap2_g19119                  | 950                    | MDIS1 interacting receptor like kinase 2-like         |
| Hap2_g19124                  | 793                    | MDIS1 interacting receptor like kinase 2-like         |
| Hap2_g19138                  | 1,296                  | MDIS1-interacting receptor like kinase 2-like         |
| Hap2_g19148                  | 513                    | probable serine/threonine protein kinase PIX7         |

447

448

449

450 **Potential candidate genes for EFB resistance in hazelnut**

451 In 'Jefferson,' EFB resistance is derived from 'Gasaway' and is conferred by a dominant allele at  
452 a single locus that has been mapped between RAPD markers 152-800 and 268-580 on linkage group 6  
453 (Mehlenbacher et al., 2006). Recent QTL (Quantitative Trail Loci) mapping in *C. americana* x *C. avellana*  
454 mapping populations associated LG6 EFB resistance in *C. avellana* cv. 'Tonda di Giffoni', with SNP 93212  
455 (Lombardoni et al., 2022). Aligning the associated paired-end sequences from SNP 93212 to 'Jefferson'  
456 V4 haplotype 1 placed the QTL peak 20 kb upstream from the markers most closely associated with EFB  
457 resistance, and within BAC contig 43F13 in the fine-mapped region defined by Sathuvalli et al. (2017).  
458 When mapping the Sanger sequence of CC875206.1 W07-365 (365 bp), the RAPD marker originally  
459 extracted from the PCR band associated with W07 'Gasaway' resistance, the sequence is repeated 3  
460 times in this region in both haplotypes of 'Jefferson,' however, the sequence is truncated by ~60 bp in  
461 haplotype 2 and spans an additional 100 kb in chromosomal space. Mapping the original Illumina reads  
462 from BAC 43F13 to both haplotypes revealed haplotype 1 as the source of the BAC contig and clearly  
463 defined the region coinciding with the associated BAC-end markers. The higher percentage of Illumina  
464 reads aligning to haplotype 1 from EFB-resistant parent 'OSU 414.062', provides additional support for  
465 an EFB-resistance model with R-gene contributions derived from 'Gasaway' present in haplotype 1 only.

466 Functional annotation of the 'Jefferson' EFB resistance region on haplotypes of chromosome 8  
467 (LG 6) identified several probable receptor-like kinases and putative disease resistance genes. On  
468 haplotype 1, a region of approximately 125 kb contained five CNLs identified by DRAGO2 but eight genes  
469 with functional descriptions relating to "RGA" (Resistance Gene Analog). On haplotype 1, Hap1\_g26572  
470 and Hap1\_g26573 were identified as having homology to RGA3 and a short 232aa RGA2-like isoform,  
471 respectively. Six other putative resistance genes were identified in haplotype 1, including a long 1,116 aa  
472 copy of disease resistance RGA2-like isoform in Hap1\_g26576, three copies of RGA3 in Hap1\_g26579,  
473 Hap1\_g26581, and Hap1\_g26582, and two copies of RGA4 in Hap1\_g26580 and Hap1\_g26583.

474 Similarly, haplotype 2 contained fourteen genes with functional descriptions related to “RGA3” and  
475 “RGA2-like isoform” (Table 4), but only eleven were identified as CNLs by DRAGO2. None of the R-genes  
476 from haplotype 1 had a 100% match to haplotype 2 R-genes. In Figure 3, the genomic location and  
477 orientation of the putative EFB R-gene candidates on chromosome 8 (LG6) are depicted for both  
478 haplotypes, showing that RGA3 homologs are closely linked to an RGA2-like isoform and an RGA4  
479 homolog on haplotype 1, whereas R-gene candidates on haplotype 2 are identified as only RGA3 and  
480 one as RGA2-like isoforms, all ranging in distance from one another by 20-60 kb.

481 RGA4 has been characterized as an auto-inducer of immune response to the fungal disease rice  
482 blast caused by *Magnaporthe oryzae*, whereby RGA4 is tightly linked with RGA5, with the encoded  
483 proteins interacting as a homo and hetero dimer, such that both are required for resistance (Césari et  
484 al., 2014). Research suggests that the presence of an integrated heavy metal associated (HMA) domain  
485 within RGA5 mimics the pathogen effector target as a “decoy”, and upon direct binding to the effector,  
486 a signal is transduced to RGA4, relieving RGA4 repression and initiating an immune response (Xi et al.,  
487 2022). Heavy metal-associated isoprenylated plant proteins (HIPPs) in rice (*Oryza sativa*) contain HMA  
488 domains, and have been identified as putative effector hubs (Bentham et al., 2020; Maidment et al.,  
489 2021) as HIPPs have been shown to be the target of multiple fungal effector proteins, having a greater  
490 binding affinity to *M. oryzae* AVR-Pik variants than the integrated HMA domains present in rice CC-NLR  
491 resistance genes *Pik-1* and *Pik-2* (Maidment et al., 2021). Importantly, HMA domain variants have been  
492 shown to perceive new effectors (Césari et al., 2022). On haplotype 1, the genes Hap1\_g26587 and  
493 Hap1\_g26589 were given the functional description “heavy metal-associated isoprenylated plant  
494 protein 47” and are located 19 kb and 43 kb upstream, respectively, of the closest RGA4 on the minus  
495 strand. Conversely, on haplotype 2, four HMA genes with the same descriptor (Hap2\_g27459,  
496 Hap2\_g27477, Hap2\_g27482, and Hap2\_g27484) were identified. These genes ranged from 20-72 kb  
497 away from the nearest putative RGA3 gene.

498 HIPP genes of haplotypes 1 and 2, respectively, share high identity with minimal amino acid  
499 substitutions among each other. Performing a BLASTp of these predicted proteins against the entire  
500 protein set of both haplotypes resulted in matches with other predicted HIPPs, with no homology to  
501 suggest that the nearby RGA cluster has a unique synonymous integrated HMA domain like that in rice.

502 In recent years it has become apparent that cysteine-rich receptor-like secreted proteins  
503 (CRRSPs) have crucial involvement in plant-fungal pathogen interactions (Zeiner et al., 2023). *Gnk2* from  
504 ginkgo (*Ginkgo biloba*) and two maize (*Zea mays*) proteins, *AFP1* and *AFP2*, bind to mannose during the  
505 defense response against fungal pathogens (Miyakawa et al., 2014; Ma et al., 2018). Mannose and its  
506 reduced sugar alcohol, mannitol, are independently important to both host plant and fungal pathogen  
507 metabolism and signaling during plant growth and pathogen invasion (Patel and Williamson, 2016).  
508 CRRSPs have also been shown to be directly involved in fungal pathogen recognition as co-receptors for  
509 pathogen effectors (Wang et al., 2023). Recently *TaCRK3*, a CRRSP in wheat, was revealed to inhibit  
510 mycelial growth *in vitro* (Guo et al., 2021). Five genes were given the functional description “cysteine-  
511 rich repeat secretory protein 38”: two in haplotype 1, Hap1\_g26574 and Hap1\_g26585, and three in  
512 haplotype 2, Hap2\_g27475, Hap2\_g27480, and Hap2\_g27457. To further investigate similarity between  
513 these CRRSPs, we performed a BLASTp and used MUSCLE to generate a neighbor-joining tree in JalView  
514 (Figure 4). The haplotype 1 gene Hap1\_g26574 has two transcripts, with .t1 containing a 20 bp deletion  
515 at the 5' end; the two transcripts have an 86% and 88% similarity to the haplotype 1 gene  
516 (Hap1\_g26585) and the haplotype 2 genes, respectively, whereas all haplotype 2 genes are 100%  
517 identical. These genes contained an extracellular domain composed of two DUF26 (domain of unknown  
518 function 26) motifs, but notably lacked an intracellular serine/threonine kinase domain and  
519 transmembrane domain (Figure 5).

520

521           Despite identifying candidate EFB resistance genes on haplotype 1, the overall similarity  
522    between these genes and haplotype 2 R-genes makes it challenging to determine whether one or  
523    several resistance genes are involved in the activation of 'Gasaway' resistance. It remains to be  
524    determined how the unique CRRSP (Hap1\_g24474) is involved in processes of pathogen detection and  
525    downstream signaling response with close proximity to numerous NBS-LRRs. Thus, it appears that the  
526    uncharacterized disease resistance signaling pathway of 'Gasaway' involves NBS-LRR RGA homologs and  
527    CRRSP, whereby pathotype specific effector(s) might target a decoy of RGA homologs, a unique CRRSP,  
528    or possibly both, supporting the traditional R-gene guard-decoy hypothesis. Further research is needed  
529    to characterize which haplotype 1 gene(s) are truly responsible for 'Gasaway' EFB resistance and  
530    whether other EFB resistance sources are derived from this same hypothesized molecular mechanism,  
531    with R-gene homologs acting in congruence with unique CRRSP proteins. The hazelnut breeding  
532    program at OSU has used many different sources of EFB resistance and sequenced their genomes in an  
533    effort to expand knowledge of the allelic diversity of putative resistance gene candidates. Future work in  
534    determining EFB resistance mechanisms of other *C. avellana* cultivars should be based on comparisons  
535    between the pool of R-genes and CRRSP proteins derived from haplotype 1 of 'Jefferson' to prospective  
536    EFB resistance genes in order to narrow the list of putative candidate genes.

537

538

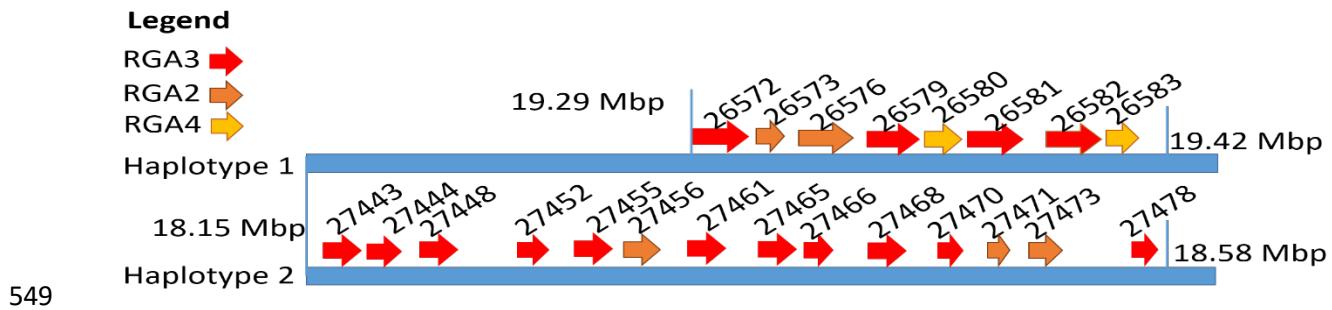
539

540

541

542

543 **Table 4.** *Corylus avellana* 'Jefferson' candidate EFB R-gene homologs identified in the 'Gasaway'  
544 resistance region locus on chromosome 8 (linkage group 6) of both haplotypes.

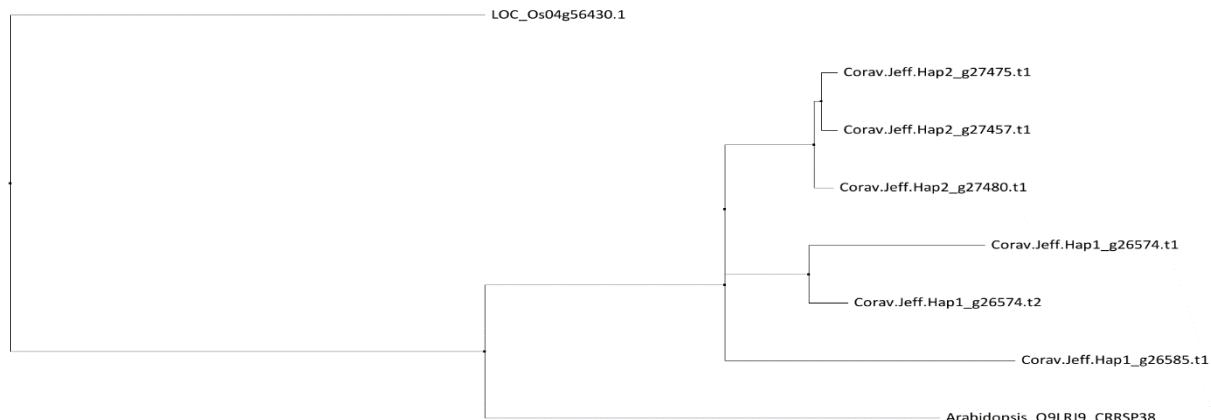

| <i>Corylus avellana</i> gene | Amino acid length (bp) | Function                                        |
|------------------------------|------------------------|-------------------------------------------------|
| Hap1_g26572                  | 1,213                  | putative disease resistance protein RGA3        |
| Hap1_g26573                  | 237                    | disease resistance protein RGA2-like isoform X2 |
| Hap1_g26574                  | 224                    | Cysteine-rich repeat secretory protein 38       |
| Hap1_g26576                  | 1,116                  | disease resistance protein RGA2-like isoform X2 |
| Hap1_g26579                  | 891                    | putative disease resistance protein RGA3        |
| Hap1_g26580                  | 323                    | putative disease resistance protein RGA4        |
| Hap1_g26581                  | 1,191                  | putative disease resistance protein RGA3        |
| Hap1_g26582                  | 849                    | putative disease resistance protein RGA3        |
| Hap1_g26583                  | 274                    | putative disease resistance protein RGA4        |
| Hap1_g26585                  | 230                    | Cysteine-rich repeat secretory protein 38-like  |
| Hap2_g27443                  | 1,215                  | putative disease resistance protein RGA3        |
| Hap2_g27444                  | 1,164                  | putative disease resistance protein RGA3        |
| Hap2_g27448                  | 1,145                  | putative disease resistance protein RGA3        |
| Hap2_g27452                  | 1,159                  | putative disease resistance protein RGA3        |
| Hap2_g27455                  | 1,159                  | putative disease resistance protein RGA3        |
| Hap2_g27456                  | 1,150                  | disease resistance protein RGA2-like isoform X2 |
| Hap2_g27461                  | 1,178                  | putative disease resistance protein RGA3        |
| Hap2_g27465                  | 1,145                  | putative disease resistance protein RGA3        |
| Hap2_g27466                  | 847                    | putative disease resistance protein RGA3        |
| Hap2_g27468                  | 1,159                  | putative disease resistance protein RGA3        |
| Hap2_g27470                  | 472                    | putative disease resistance protein RGA3        |
| Hap2_g27471                  | 725                    | disease resistance protein RGA2-like isoform X2 |
| Hap2_g27473                  | 1,150                  | disease resistance protein RGA2-like isoform X2 |
| Hap2_g27478                  | 473                    | putative disease resistance protein RGA3        |

545

546

547

548




550 **Figure 3.** Putative EFB R-gene candidates (RGA-homologs) plotted on chromosome 8 of both haplotypes.  
551 Red arrows represent RGA3 homologs, orange arrows represent RGA2 isoform-X2 homologs and yellow  
552 arrows represent RGA4 homologs. The gene ID for each respective homolog is listed above the arrow  
553 where haplotype 1 represents Hap1\_g and haplotype 2 represents Hap2\_g. Denoted as vertical lines in  
554 Mb are the start and stop positions of the R-gene cluster.

555

556

557



559

560 **Figure 4.** Neighbor joining tree of seven cysteine-rich secretory proteins (CRSPs) within the EFB R-gene  
region of both haplotypes with *Arabidopsis* and rice (*RCR3*) homologs aligned by MUSCLE.

561

|                                 |     |                                                                                                                    |                             |
|---------------------------------|-----|--------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Corav.Jeff.Hap2_g27475.t1/1     | 1   | MLASKHV--A---LSLLFCLSLHL---A-NC--ALPL-HHFCFS-----                                                                  | -H-EDYTANS 41               |
| Corav.Jeff.Hap1_g26574.t1/1     | 1   | -----M---A-NC--ADPL-YHFCFS-----                                                                                    | -Q-ENYTANS 22               |
| LOC_Os04g56430.1/1-259          | 1   | MARCTLL--V---L--LVAAAVAV--V-PL--AAGQPWATC-G-----                                                                   | -D-GTYEQGS 38               |
| Corav.Jeff.Hap1_g26574.t2/1     | 1   | MLASKHI--A---LSLLFCLSLHM---A-NC--ADPL-YHFCFS-----                                                                  | -Q-ENYTANS 41               |
| Arabidopsis_Q9LR9_QRRSP3        | 1   | MSSKLRI--VWFPLALIAQIQLSHTVLSQSQNN--A-FL-FHKCSD-----                                                                | -IEGSFTSKS 50               |
| Corav.Jeff.Hap2_g27457.t1/1     | 1   | MLASKHV--A---LSLLFCLSLHL---A-NC--ALPL-HHFCFS-----                                                                  | -H-EDYTANS 41               |
| Corav.Jeff.Hap1_g26585.t1/1     | 1   | MLASKHI--A---LSLLFCLSLHL---A-NC--ALPL-HHFCFS-----                                                                  | -H-EDYTANS 41               |
| Corav.Jeff.Hap2_g27480.t1/1     | 1   | MLASKHV--A---LSLLFCLSLHL---A-NC--ALPL-HHFCFS-----                                                                  | -H-EDYTANS 41               |
| Corav.Jeff.Hap2_g27475.t1/1     | 42  | PYASNMKGLLNLLSTKV--PPTGFGLCSTGE-SQNKKISGLA[CRGDVSSTNCKTC]VVDAGKELRSRCAYKKGAIWYDNCLLKYSNIDFF-GEID-----              | -NKNKFYMCNVLDVDN-----147    |
| Corav.Jeff.Hap1_g26574.t1/1     | 23  | PYATNLKGLLNLLSTKV--PPTGFRLGSTGE-SQNKKINGL[CRGDVSSTNCKTC]VVDAGKELRSRCPYKGAIWYDNCLLKYSIDFF-GEID-----                 | -NKNKFYMWNVQVDVN-----128    |
| LOC_Os04g56430.1/1-259          | 39  | AYENNLNLALTLRDGASSQEILFSTGSNGA-APNTVYGLL[CRGDISRAACYDGT]SVWRDAGSACRRAKDVALVYNECYARLSDKDDFLADKVPGQLTLMSTNISGAD----- | -151                        |
| Corav.Jeff.Hap1_g26574.t2/1     | 42  | PYATNLKGLLNLLSTKV--PPTGFRLGSTGE-SQNKKINGL[CRGDVSSTNCKTC]VVDAGKELRSRCPYKGAIWYDNCLLKYSIDFF-GEID-----                 | -NKNKFYMWNVQVDVN-----147    |
| Arabidopsis_Q9LR9_QRRSP3        | 51  | LYESNLNLFSQLSYKV--PSTGFAASSTGN-TPNNVNGLA[CRGDASSSDCRS]LETAPIELRQRCPPNKGIVWYDNCLVKYSSTNFF-GKID-----                 | -FENRFYLYNVKNVSD-----156    |
| Corav.Jeff.Hap2_g27457.t1/1     | 42  | PYASNMKGLLNLLSTKV--PPTGFGLCSTGE-SQNKKISGLA[CRGDVSSTNCKTC]VVDAGKELRSRCAYKKGAIWYDNCLLKYSNIDFF-GEID-----              | -NKNKFYMCNVLDVDN-----147    |
| Corav.Jeff.Hap1_g26585.t1/1     | 42  | PYASNMKGLLNLLSTKV--PPTGFGLGSTGE-SQNKKINGL[CRGDVSSTNCKTC]VVDADKELRSPCPYKGAIWYNNCFLKYSNIDFF-GEID-----                | -NKNKFYMCNVQVDVN-----147    |
| Corav.Jeff.Hap2_g27480.t1/1     | 42  | PYASNMKGLLNLLSTKV--PPTGFGLCSTGE-SQNKKISGLA[CRGDVSSTNCKTC]VVDAGKELRSRCAYRKGAIWYDNCLLKYSNIDFF-GEID-----              | -NKNKFYMCNVQVDVN-----147    |
| Corav.Jeff.Hap2_g27475.t1/1 148 |     | -----PTSF-NPKAKDLSL-SYKAS--DIP-KVYAAHEL-----                                                                       | -ELGSS--LKLGYLAQ[CTRL] 196  |
| Corav.Jeff.Hap1_g26574.t1/1 129 |     | -----PTSF-NPVRKDLSL-SNKAY--DIP-KLYAAHEL-----                                                                       | -ELGSS--QTLYGLAQ[CTRL] 177  |
| LOC_Os04g56430.1/1-259          | 152 | -----VAAY-DRAVTRLLAATAEYAAAG--DIARKLFATGQR-----                                                                    | -VGADPGFPNLYATAQ[CAFDI] 204 |
| Corav.Jeff.Hap1_g26574.t2/1 148 |     | -----PTSF-NPVRKDLSL-SNKAY--DIP-KLYAAHEL-----                                                                       | -ELGSS--QTLYGLAQ[CTRL] 196  |
| Arabidopsis_Q9LR9_QRRSP3        | 157 | -----PTSF-NSQTAKALLTEL-TKKATTTRDNQ-KLFATGEK-----                                                                   | -NIGKN--KLYGLVQ[CTRL] 206   |
| Corav.Jeff.Hap2_g27457.t1/1 148 |     | -----PTSF-NPKAKDLSL-SYKAS--DIP-KVYAAHEL-----                                                                       | -ELGSS--LKLGYLAQ[CTRL] 196  |
| Corav.Jeff.Hap1_g26585.t1/1 148 |     | -----PTSF-NTKAKDLSL-SYKAS--NIP-KVYAAHEL-----                                                                       | -ELGSS--LKLGYLAQ[CTRL] 196  |
| Corav.Jeff.Hap2_g27480.t1/1 148 |     | -----PTSF-NPKAKDLSL-SYKAS--DIP-KVYAAHEL-----                                                                       | -ELGSS--LKLGYLAQ[CTRL] 196  |
| Corav.Jeff.Hap2_g27475.t1/1 197 |     | [SGVDCMR]LYGVISELPNCNG-KRGGRVVGGSNVRYEYLPFVDA*-----                                                                | 243                         |
| Corav.Jeff.Hap1_g26574.t1/1 178 |     | [SGDDCKK]LDGVISELPNCNG-KRGGRVVGGSNVRYEYLPFVDA*-----                                                                | 224                         |
| LOC_Os04g56430.1/1-259          | 205 | [TLEACRG]CLEGLVARWWDTPANVGARIAGPRCLLRSVEYPFYTGAPMVVLRE*                                                            | 259                         |
| Corav.Jeff.Hap1_g26574.t2/1 197 |     | [SGDDCKK]LDGVISELPNCNG-KRGGRVVGGSNVRYEYLPFVDA*-----                                                                | 243                         |
| Arabidopsis_Q9LR9_QRRSP3        | 207 | [KSITCKA]CLNGIIGELPNCDCG-KEGGRVVGGSNFNRYEYLPFVKT-A-----                                                            | 252                         |
| Corav.Jeff.Hap2_g27457.t1/1 197 |     | [SGVDCMR]LYGVISELPNCNG-KRGGRVVGGSNVRYEYLPFVDA*-----                                                                | 243                         |
| Corav.Jeff.Hap1_g26585.t1/1 197 |     | [SGVDCMR]LYGVISELPKLLQW-KTRWSSCGW-----EL-----*                                                                     | 230                         |
| Corav.Jeff.Hap2_g27480.t1/1 197 |     | [SGVDCMR]LYGVISELPNCNG-KRGGRVVGGSNVRYEYLPFVDA*-----                                                                | 243                         |

562

563 **Figure 5.** Amino-acid sequence alignment of all Cysteine-rich repeat secretory protein-38 in *C. avellana*  
564 'Jefferson' and a homolog from Arabidopsis and Rice (*RMC*). The numbers on the right side indicate the  
565 positions of the residues in the corresponding protein. Red shading indicates the conserved motif of the  
566 DUF26 domain C-X8-C-X2-C.

567

568

569

570

571 **Conclusions**

572 Here, we report the first haplotype-resolved chromosome-level genome assembly and  
573 annotation of the diploid *C. avellana* 'Jefferson'. BUSCO analysis showed that the genome assemblies  
574 and structural annotations were of high quality. The ability of haplotype-phasing to identify parental  
575 genic contributions was successfully demonstrated by the complete separation of SI-alleles to their  
576 respective parental haplotypes. Furthermore, the region associated with 'Gasaway' EFB resistance was  
577 remapped with high confidence to the resistant parental haplotype, and several new candidate  
578 resistance genes were identified. The molecular mechanism behind 'Gasaway' resistance remains to be  
579 investigated, however, the RGA cluster in congruence with a cysteine-rich secretory protein provides  
580 evidence of a guard model hypothesis. The haplotype-resolved 'Jefferson' genome assembly and  
581 annotation presented here will serve as a powerful resource for hazelnut breeders and plant scientists in  
582 the further development of molecular markers for genomics-assisted breeding and facilitate future  
583 studies of *Corylus* biology and genetics.

584

585

586

587

588

589

590

591

592 **Data availability**

593 The haplotype genome assemblies and annotations of *C. avellana* 'Jefferson' presented here is available  
594 at the United States Department of Energy's Joint Genomics Institute Phytozome web browser  
595 (accepted, pending release) (available [. The 'Jefferson' genome assembly, annotation, and respective](#)  
596 [read tracks will also be available soon as a genome browser via JBrowse2 at](#)  
597 [Hazelnutgenomes.oregonstate.edu.](#)

598 **Acknowledgements**

599 SCT performed flow cytometry, genome assembly, quality assessments, Hi-C guided assembly, synteny  
600 analysis, structural and functional annotation, and related analyses of potential candidate genes for  
601 resistance and self-incompatibility. JC assisted with Hi-C assembly. JWS conducted remapping of linkage  
602 groups and provided insight into candidate gene analysis. KJV coordinated research and provided  
603 conceptual guidance, and assisted with assembly, annotation, repeat content, and resistance gene  
604 analysis. SAM conceived the study and provided overarching guidance. SCT and KJV authored the  
605 manuscript. Oregon State University Center for Quantitative Life Sciences provided the support for  
606 computational resources used. All authors approved the final manuscript. The Oregon Hazelnut  
607 Commission supported this research.

608

609

610

611

612

613 **Literature cited**

614 Altschul S.F., Gish W., Miller W., Myers E.W. and Lipman D.J. Basic local alignment search tool. *J. Mol. Biol*, 1990; 215: 403-410. [doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2).

616 Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010.

617 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>

618 Bai C., Alverson W.S., Follansbee A., Waller D.M. New reports of nuclear DNA content for 407 U.S. plant species. *Annals of Botany*, 2012; 110: 1623-1629. doi.org/[10.1093/aob/mcs222](https://doi.org/10.1093/aob/mcs222)

620 Bailey T.L., Boden M., Buske F.A., Frith M., Grant C.E., Clementi L., Ren J., Li W.W., and Noble W.S.

621 MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Research*, 2009; 37: W202-W208.

622 doi.org/[10.1093/nar/gkp335](https://doi.org/10.1093/nar/gkp335)

623 Bailey P.C., Schudoma C. Jackson W., Baggs E., Dagdas G., Haerty W., Mouscou M., and Krasileva K.V.

624 Dominant integration locus drives continuous diversification of plant immune receptors with exogenous

625 domain fusions. *Genome Biology*, 2018; 19(23). [doi.org/10.1186/s13059-018-1392-6](https://doi.org/10.1186/s13059-018-1392-6)

626 Barnett D. W., Garrison E. K., Quinlan A. R., Strömborg M. P., and Marth G. T. BamTools: a C++ API and

627 toolkit for analyzing and managing BAM files. *Bioinformatics*, 2011; 12: 1691-1692.

628 doi.org/[10.1093/bioinformatics/btr174](https://doi.org/10.1093/bioinformatics/btr174)

629 Bentham A.R., Concepcion J.C., Mukhi N., Zdrzalek R., Draeger M., Gorenkin D., Hughes R.K., and

630 Banfield M.J. A molecular roadmap to the plant immune system. *Journal of Biological Chemistry*, 2020;

631 295(44): 14916-14935. doi.org/[10.1074/jbc.REV120.010852](https://doi.org/10.1074/jbc.REV120.010852)

632 Bhattacharai G., Mehlenbacher S.A., and Smith D.C. Eastern filbert blight disease resistance from *Corylus americana* 'Rush' and selection 'Yoder #5' maps to linkage group 7. *Tree Genetics & Genomes*, 2017;

633 13(45). doi.org/[10.1007/s11295-017-1129-9](https://doi.org/10.1007/s11295-017-1129-9)

635 Brúna T., Lomsadze A., and Borodovsky M. GeneMark-EP+: eukaryotic gene prediction with self-training

636 in the space of genes and proteins. *NAR Genomics and Bioinformatics*, 2020; 2(2): lqaa026.

637 doi.org/[10.1093/nargab/lqaa026](https://doi.org/10.1093/nargab/lqaa026)

638 Brúna T., Hoff K.J., Lomsadze A., Stanke M., and Borodovsky M. BRAKER2: automatic eukaryotic genome

639 annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. *NAR Genomics and*

640 *Bioinformatics*, 2021; 3(1): lqaa108. doi.org/[10.1093/nargab/lqaa108](https://doi.org/10.1093/nargab/lqaa108)

641 Buchfink B., Xie C., and Huson D.H. Fast and sensitive protein alignment using DIAMOND. *Nature Methods*, 2015; 12(1):59. doi.org/[10.1038/nmeth.3176](https://doi.org/10.1038/nmeth.3176)

643 Bushnell B. 2016. BBTools. <https://jgi.doe.gov/data-and-tools/bbtools>.

644 Cai G., Leadbetter C.W., Muehlbauer M.F., Molnar T.J., and Hillman B.I. Genome-wide microsatellite

645 identification in the fungus *Anisogramma anomala* using Illumina sequencing and genome assembly.

646 *PLoS One*, 2013; 8(11): e82408. doi.org/[10.1371/journal.pone.0082408](https://doi.org/10.1371/journal.pone.0082408)

647 Capik J.M, and Molnar T.J. Assessment of Host (*Corylus* sp.) Resistance to eastern filbert blight in New  
648 Jersey. *American Society for Horticultural Science*, 2012; 137(3): 157-172.  
649 doi.org/[10.21273/JASHS.137.3.157](https://doi.org/10.21273/JASHS.137.3.157)

650 Césari S., Kanzaki H., Fujiwara T., Bernoux M., Chalvon V., Kawano Y., Shimamoto K., Dodds P., Terauchi  
651 R., and Kroj T. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease  
652 resistance. *EMBO Journal*, 2014; 33(17): 1941-1959. doi.org/[10.1525/embj.201487923](https://doi.org/10.1525/embj.201487923)

653 Césari S., Xi Y., Declerck N., Chalvon V., Mammri L., Pugnière M., Henriet C., de Guillen K., Chochois V.,  
654 Padilla A., and Kroj T. New recognition specificity in a plant immune receptor by molecular engineering  
655 of its integrated domain. *Nature Communications*, 2022; 13: 1524. doi.org/[10.1038/s41467-022-29196-6](https://doi.org/10.1038/s41467-022-29196-6)

656 Cheng H., Concepcion G.T., Feng X., Zhang H., and Li H. Haplotype-resolved de novo assembly using  
657 phased assembly graphs with hifiasm. *Nature Methods*, 2021; 18:170-175. doi.org/[10.1038/s41592-020-01056-5](https://doi.org/10.1038/s41592-020-01056-5)

659 Colburn B.C., Mehlenbacher S.A., Sathuvalli V.R., and Smith D.C. Eastern filbert blight resistance in  
660 hazelnut accessions 'Cuplà', Crvenje', and OSU 495.072. *Journal of the American Society for Horticultural  
661 Science*, 2015; 140(2): 191-200. doi.org/[10.21273/JASHS.140.2.191](https://doi.org/10.21273/JASHS.140.2.191)

662 Durand N.C., Robinson J.T., Shamim M.S., Machol I., Mesirov J.P., Lander E.S., and Aiden E.L. Juicebox  
663 provides a visualization system for Hi-C contact maps with unlimited zoom. *Cell system*, 2017; 3(1):99-  
664 101. doi.org/[10.1016/j.cels.2015.07.012](https://doi.org/10.1016/j.cels.2015.07.012)

665 Edgar R.C. MUSCLE v5 enables improved estimates of phylogenetic tree confidence by ensemble  
666 bootstrapping. *bioRxiv*, 2021; 06.20.449169. doi.org/[10.1101/2021.06.20.449169](https://doi.org/10.1101/2021.06.20.449169)

667 Emms D.M., and Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics.  
668 *Genome Biology*, 2019; 238(20). doi.org/[10.1186/s13059-019-1832-y](https://doi.org/10.1186/s13059-019-1832-y)

669 Falistocco E. and Marconi G. Cytogenetic characterization by in situ hybridization techniques and  
670 molecular analysis of 5S rRNA genes of the European hazelnut (*Corylus avellana*). *Genome*, 2013; 56(3):  
671 155-159. doi.org/[10.1139/gen-2013-0045](https://doi.org/10.1139/gen-2013-0045)

672 Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database, 2022; [Accessed  
673 12 August 2022]. <https://www.fao.org/faostat/en/#search/hazelnut>

674 Gabriel L., Hoff K.J., Brůna T., Borodovsky M., and Stanke M. TSEBRA: transcript selector for BRAKER.  
675 *BMC Bioinformatics*, 2021; 22(566). doi.org/[10.1186/s12859-021-04482-0](https://doi.org/10.1186/s12859-021-04482-0)

676 Gabriel L., Brůna T., Hoff K.J., Ebel M., Lomsadze A., Borodovsky M., and Stanke M. BRAKER3: fully  
677 automated genome annotation using RNA-Seq and protein Evidence with GeneMark-ETP, AUGUSTUS  
678 and TSEBRA. *BioRxiv*, 2023. doi.org/[10.1101/2023.06.10.544449](https://doi.org/10.1101/2023.06.10.544449)

679 Glenn T.C., Nilsen R.A., Kieran T.J., Sanders J.G., Bayona-Vásquez N.J., Finger J.W., Pierson T.W., Bentley  
680 K.E., Hoffberg S.L., Louha S., Garcia-De Leon F.J., del Rio Portilla M.A., Reed K.D., Anderson J.L., Meece  
681 J.K., Aggrey S.E., Rekaya R., Alabady M., Belanger M., Winker K., Faircloth B.C. Adapterama I: universal  
682 stubs and primers for 384 unique dual-indexed or 147,456 combinatorially-indexed Illumina libraries  
683 (iTru & iNext). *PeerJ*, 2019; e7755. doi.org/[10.7717/peerj.7755](https://doi.org/10.7717/peerj.7755)

684 Goel M., Sun H., Jiao W.-B., and Schneeberger K. SyRi: finding genomic rearrangements and local  
685 sequence differences from whole-genome assemblies. *Genome Biology*, 2019; 20(277).  
686 doi.org/[10.1186/s13059-019-1911-0](https://doi.org/10.1186/s13059-019-1911-0)

687 Goel M., Sun H., Jiao W.-B., and Schneeberger K. SyRi: finding genomic rearrangements and local  
688 sequence differences from whole-genome assemblies. *Genome Biology*, 2019; 20: 277.  
689 doi.org/[10.1186/s13059-019-1911-0](https://doi.org/10.1186/s13059-019-1911-0)

690 Goel M. and Schneeberger K. plotsr: visualizing structural similarities and rearrangements between  
691 multiple genomes. *Bioinformatics*, 2022; 38(10): 2922-2926. doi.org/[10.1093/bioinformatics/btac196](https://doi.org/10.1093/bioinformatics/btac196)

692 Götz S., Garcia-Gomez J.M., Terol J., Williams T.D., Nagaraj S.H., Nueda M.J., Robles M., Talon M.,  
693 Dopazo J., and Conesa A. High-throughput functional annotation and data mining with the Blast2GO  
694 suite. *Nucleic Acids Research*, 2008; 36(10): 3420-3435. doi.org/[10.1093/nar/gkn176](https://doi.org/10.1093/nar/gkn176)

695 Gremme, G. Computational gene structure prediction. 2013. PhD dissertation.

696 Guo F., Wu T., Shen F., Xu G., Qi H., and Zhang Z. The cysteine-rich receptor-like kinase TaCRK3  
697 contributes to defense against Rhizoctonia cerealis in wheat. *Journal of Experimental Botany*, 2021;  
698 72(20): 6904-6919. doi.org/[10.1093/jxb/erab328](https://doi.org/10.1093/jxb/erab328)

699 Hill R.J., Baldassi C., Snelling J.W., Vining K.J., and Mehlenbacher S.A. Fine mapping of the locus  
700 controlling self-incompatibility in European hazelnut. *Tree Genetics & Genomes*, 2021; 17:6.  
701 doi.org/[10.1007/s11295-020-01485-5](https://doi.org/10.1007/s11295-020-01485-5)

702 Hoff K. J., Lange, S., Lomsadze A., Borodovsky M., and Stanke M. BRAKER1: unsupervised RNA-Seq-based  
703 genome annotation with GeneMark-ET and AUGUSTUS. *Bioinformatics*, 2016; 32(5): 767-769.  
704 doi.org/[10.1093/bioinformatics/btv661](https://doi.org/10.1093/bioinformatics/btv661)

705 Hoff K. J., Lomsadze A., Borodovsky, M., and Stanke, M. Whole-genome annotation with BRAKER. In  
706 *Gene Prediction*. Humana, New York, NY. 2019; 1962: 65-95. doi.org/[10.1007/978-1-4939-9173-0\\_5](https://doi.org/10.1007/978-1-4939-9173-0_5)

707 Hou S., Zhao T., Yang Z., Liang L., Ma W., Wang G., and Ma Q. Stigmatic transcriptome analysis of self-  
708 incompatible and compatible pollination in *Corylus heterophylla* Fisch x *Corylus avellana* L. *Frontiers in*  
709 *Plant Science*, 2022; 13: 800768. doi.org/[10.3389/fpls.2022.800768](https://doi.org/10.3389/fpls.2022.800768)

710 Kasapligil B. *Corylus colurna* and its varieties. *Journal of the California Horticultural Society*, 1963; 24: 95-  
711 104.

712 Kavas M., Yıldırım K., Seçgin Z., and Gökdemir G. Discovery of simple sequence repeat (SSR) markers in  
713 hazelnut (*Corylus avellana* L.) by transcriptome sequencing and SSR-based characterization of hazelnut  
714 cultivars. *Scandinavian Journal of Forest Research*, 2020; 35(5-6).  
715 doi.org/[10.1080/02827581.2020.1797155](https://doi.org/10.1080/02827581.2020.1797155)

716 Kim D., Paggi J.M., Park C., Bennett C. and Salzberg S.L. Graph-based genome alignment and genotyping  
717 with HISAT2 and HISAT-genotype. *Nature Biotechnology*, 2019; 37: 907-915. doi.org/[10.1038/s41587-019-0201-4](https://doi.org/10.1038/s41587-019-0201-4)

719 Komaei Koma G. High-density linkage maps for European hazelnut (*Corylus avellana* L.) from single  
720 nucleotid polymorphism markers and mapping new sources of resistance to eastern filbert blight. *PhD*  
721 *Dissertation*, 2020.

722 Kourelis J., and van der Hoorn R.A.L. Defended to the nines: 25 Years of resistance gene cloning  
723 identifies nine mechanisms for R protein function. *Plant Cell*, 2018; 30(2): 285-299.  
724 doi.org/[10.1105/tpc.17.00579](https://doi.org/10.1105/tpc.17.00579)

725 Kroj T., Chanclud E., Michel-Romiti C., Grand X., Morel J.B. Integration of decoy domains derived from  
726 protein targets of pathogen effectors into plant immune receptors is widespread. *New Phytol*, 2016;  
727 210(2): 618-26. doi.org/[10.1111/nph.13869](https://doi.org/10.1111/nph.13869).

728 Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., and Durbin R. The  
729 sequence alignment/map format and SAMtools. *Bioinformatics*, 2009; 25(16): 2078-2079.  
730 doi.org/[10.1093/bioinformatics/btp352](https://doi.org/10.1093/bioinformatics/btp352)

731 Li H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*, 2018; 34(18): 3094-3100.  
732 doi.org/[10.1093/bioinformatics/bty191](https://doi.org/10.1093/bioinformatics/bty191)

733 Li Y., Sun P., Lu Z., Chen J., Wang Z., Du X., Zheng Z., Wu Y., Hu H., Yang J., Ma J., Liu J., and Yang Y. The  
734 *Corylus mandshurica* genome provides insights into the evolution of Betulaceae genomes and hazelnut  
735 breeding. *Horticulture Research*, 2021; 8: 54. doi.org/[10.1038/s41438-021-00495-1](https://doi.org/10.1038/s41438-021-00495-1)

736 Lieberman-Aiden E., Berkum van N.L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B.R.,  
737 Sabo P.J., Dorschner M.O., Sandstrom R., Bernstein B., Bender M.A., Groudine M., Gnrke A.,  
738 Stamatoyannopoulos J., Mirny L.A., Lander E.S., and Dekker J. Comprehensive mapping of long-range  
739 interactions reveals folding principles of the human genome. *Science*, 2009; 326(5950): 289-293.  
740 doi.org/[10.1126/science.1181369](https://doi.org/10.1126/science.1181369)

741 Liu J., Wei H., Zhang X., He H., Cheng Y., and Wang D. Chromosome-level genome assembly and  
742 HazelOmics database construction provides insights into unsaturated fatty acid synthesis and cold  
743 resistance in hazelnut (*Corylus heterophylla*). *Frontiers in Plant Science*, 2021; 12:766548.  
744 doi.org/[10.3389/fpls.2021.766548](https://doi.org/10.3389/fpls.2021.766548)

745 Lombardoni J.L., Honig J.A., Vaiciunas J.N., Revord R.S., and Molnar T.J. Segregation of eastern filbert  
746 blight disease response and single nucleotide polymorphism markers in three European-American  
747 interspecific hybrid hazelnut populations. *Journal of the American Society for Horticultural Science*, 2022;  
748 147(4): 196-207. doi.org/[10.21273/JASHS05112-22](https://doi.org/10.21273/JASHS05112-22)

749 Lomsadze A., Burns P.D., and Borodovsky M. Integration of mapped RNA-seq reads into automatic  
750 training of eukaryotic gene finding algorithm. *Nucleic Acids Research*, 2014; 42(15): e119.  
751 doi.org/[10.1093/nar/gku557](https://doi.org/10.1093/nar/gku557)

752 Lucas S.J., Kahraman K., Avşar B., Buggs R.J.A., and Bilge I. A chromosome-scale genome assembly of  
753 European hazel (*Corylus avellana* L.) reveals targets for crop improvement. *The Plant Journal*, 2021; 105:  
754 1413-1430. doi.org/[10.1111/tpj.15099](https://doi.org/10.1111/tpj.15099)

755 Lunde C.F., Mehlenbacher S.A., and Smith D.C. Segregation for resistance to eastern filbert blight in  
756 progeny of 'Zimmerman' hazelnut. *Journal of the American Society for Horticultural Science*, 2006;  
757 131(6): 731-737. doi.org/

758 Ma L., Wang L., Trippel C., Mendoza-Mendoza A., Ullmann S., Moretti M., Carsten A., Kahnt J.,  
759 Reissmann S., Zechmann B., Bange G., and Kahmann R. The *Ustilago maydis* repetitive effector Rsp3  
760 blocks the antifungal activity of mannose-binding maize proteins. *Nature Communications*, 2018; 9(1):  
761 1711. doi.org/[10.1038/s41467-018-04149-0](https://doi.org/10.1038/s41467-018-04149-0)

762 Maidment J.H.R., Franceschetti M., Maqbool A., Saitoh H., Jantasuriyarat C., Kamoun S., Terauchi R., and  
763 Banfield M.J. Multiple variants of the fungal effector AVR-Pik bind the HMA domain of the rice protein  
764 OsHIPP19, providing a foundation to engineer plant defense. *Journal of Biological Chemistry*, 2021; 296:  
765 100371. doi.org/[10.1016/j.jbc.2021.100371](https://doi.org/10.1016/j.jbc.2021.100371)

766 Manni M., Berkeley M.R., Seppey M., Simão F.A., and Zdobnov E.M. BUSCO Update: Novel and  
767 streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic,  
768 prokaryotic, and viral genomes. *Molecular Biology and Evolution*, 2021; 38(10): 4647-4654.  
769 doi.org/[10.1093/molbev/msab199](https://doi.org/10.1093/molbev/msab199)

770 Marçais G., and Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-  
771 mers. *Bioinformatics*, 2011; 27(6):764-770. doi.org/[10.1093/bioinformatics/btr011](https://doi.org/10.1093/bioinformatics/btr011)

772 Marinoni D.T., Valentini N., Portis E., Acquadro A., Beltramo C., Mehlenbacher S.A., Mockler T.C., Rowley  
773 E.R., and Botta R. High density SNP and QTL analysis for time of leaf budburst in *Corylus avellana* L. *PLOS  
774 One*, 2018. doi.org/[10.1371/journal.pone.0195408](https://doi.org/10.1371/journal.pone.0195408)

775 McHale L., Tan X., Koehl P., and Michelmore R.W. Plant NBS-LRR proteins: adaptable guards. *Genome  
776 Biology*, 2006; 7(212). doi.org/[10.1186/gb-2006-7-4-212](https://doi.org/10.1186/gb-2006-7-4-212)

777 Mehlenbacher S.A., Thompson M.M., and Cameron H.R. Occurrence and inheritance of resistance to  
778 eastern filbert blight in 'Gasaway' hazelnut. *HortScience*, 1991; 26:410-411. doi.org/  
779 doi.org/[10.21273/HORTSCI.26.4.442](https://doi.org/10.21273/HORTSCI.26.4.442)

780 Mehlenbacher S.A. Revised dominance hierarchy for S-alleles in *Corylus avellana* L. *Theoretical and  
781 Applied Genetics*, 1997; 94: 360-366. doi.org/[10.1007/s001220050424](https://doi.org/10.1007/s001220050424)

782 Mehlenbacher S.A., Brown R.N., Nouhra E.R., Gökirmak T., Bassil N.V. and Kubisiak T.L. 2006. A genetic  
783 linkage map for hazelnut (*Corylus avellana* L.) based on RAPD and SSR markers. *Genome*, 2006; 49:122-  
784 133. doi.org/[10.1139/g05-091](https://doi.org/10.1139/g05-091)

785 Mehlenbacher S.A., Smith D.C., and McCluskey R.L. 2011. 'Jefferson' hazelnut. *HortScience*, 2011; 46:  
786 662-664. doi.org/[10.21273/HORTSCI.46.4.662](https://doi.org/10.21273/HORTSCI.46.4.662)

787 Mehlenbacher S.A. Geographic distribution of incompatibility alleles in cultivars and selections of  
788 European hazelnut. *Journal of American Society of Horticultural Science*, 2014; 139: 191-212.  
789 doi.org/[10.21273/JASHS.139.2.191](https://doi.org/10.21273/JASHS.139.2.191)

790 Mehlenbacher S.A. and Bhattarai G. An updated linkage map for hazelnut with new simple sequence  
791 repeat markers. *Acta Horticulture*. 2018; 1226:31-38. doi.org/[10.17660/ActaHortic.2018.1226.4](https://doi.org/10.17660/ActaHortic.2018.1226.4)

792 Mehlenbacher S.A. and Molnar T.J. Hazelnut Breeding. In *Plant Breeding Reviews*, I. Goldman (Ed.),  
793 2021; chapter 2. [doi.org/10.1002/9781119828235.ch2](https://doi.org/10.1002/9781119828235.ch2)

794 Mehlenbacher S.A, Heilsnis B.J., Mooneyham R.T., and J.W. Snelling. Breeding hazelnuts resistant to  
795 eastern filbert blight. *Acta Horticulture ISHS*, 2023; 1362: 557-562.  
796 doi.org/[10.17660/ActaHortic.2023.1362.75](https://doi.org/10.17660/ActaHortic.2023.1362.75)

797 Mikheenko A., Prjibelski A., Saveliev V., Antipov D., and Gurevich A. Versatile genome assembly  
798 evaluation with QUAST-LG. *Bioinformatics*, 2018; 34(13):i142-150.  
799 doi.org/[10.1093/bioinformatics/bty266](https://doi.org/10.1093/bioinformatics/bty266)

800 Miyakawa T., Hatano K., Miyauchi Y., Suwa Y., Sawano Y., and Tanokura M. A secreted protein with  
801 plant-specific cysteine-rich motif functions as a mannose-binding lectin that exhibits antifungal activity.  
802 *Plant Physiology*, 2014; 166(2): 766-78. doi.org/[10.1104/pp.114.242636](https://doi.org/10.1104/pp.114.242636)

803 Muehlbauer M.F., Tobia J., Honig J.A., Zhang N., Hillman B.I., Gold K.M., and Molnar T.J. Population  
804 differentiation within *Anisogramma anomala* in North America. *Journal of Phytopathology*, 2019; 109(6):  
805 1074-1082. doi.org/[10.1094/PHYTO-06-18-0209-R](https://doi.org/10.1094/PHYTO-06-18-0209-R)

806 Osuna-Cruz C.M., Paytuvi-Gallart A., Donato A.D., Sundesha V., Andolfo G., Cigliano R.A., Sanseverino  
807 W., and Ercolano M.R. PRGdb3.0: a comprehensive platform for prediction and analysis of plant disease  
808 resistance genes. *Nucleic Acids Research*, 2018; 46: D1197-D1201. doi.org/[10.1093/nar/gkx1119](https://doi.org/10.1093/nar/gkx1119)

809 Ou S., Chen J., and Jiang N. Assessing genome assembly quality using the LTR Assembly Index (LAI).  
810 *Nucleic Acids Research*, 2018; 46(21): e216. doi.org/[10.1093/nar/gky730](https://doi.org/10.1093/nar/gky730)/

811 Ou S., Su W., Liao Y., Chougule K., Agda J.R.A., Hellinga A.J., Lugo C.S.B., Elliott T.A., Ware D., Peterson T.,  
812 Jiang N., Hirsch C.N., and Hufford M.B. Benchmarking transposable element annotation methods for  
813 creation of a streamlined, comprehensive pipeline. *Genome Biology*, 2019; 275.  
814 doi.org/[10.1186/s13059-019-1905-y](https://doi.org/10.1186/s13059-019-1905-y)

815 Patel T.K., and Williamson J.D. Mannitol in plants, fungi, and plant-fungal interactions. *Trends in Plant  
816 Science*, 2016; 21(6): 486-497. doi.org/[10.1016/j.tplants.2016.01.006](https://doi.org/10.1016/j.tplants.2016.01.006)

817 Pavese V., Cavalet-Giorsa E., Barchi L., Acquadro A., Marinoni D.T., Portis E., Lucas S.J., and Botta R.  
818 Whole-genome assembly of *Corylus avellana* cv "Tonda Gentile delle Langhe" using linked-reads (10x  
819 Genomics). *G3-Genes Genomes Genetics*, 2021; 11(7). doi.org/[10.1093/g3journal/jkab152](https://doi.org/10.1093/g3journal/jkab152)

820 Paysan-Lafosse T., Blum M., Chuguransky S., Grego T., Pinto B.L., Salazar G.A., Bileschi M.L., Bork P.,  
821 Bridge A., Colwell L., Gough J., Haft D.H., Letunić I., Marchler-Bauer A., Mi H., Natale D.A., Orengo C.A.,  
822 Pandurangan A.P., Rivoire C., Sigrist C.J.A., Sillitoe I., Thanki N., Thomas P.D., Tosatto S.C.E., Wu C.H., and  
823 Bateman A. Interpro in 2022. *Nucleic Acids Research*, 2022; gkac993. doi.org/[10.1093/nar/gkac993](https://doi.org/10.1093/nar/gkac993).

824 Prigozhin D.M. and Krasileva K.V. Analysis of intraspecies diversity reveals a subset of highly variable  
825 plant immune receptors and predicts their binding sites. *The Plant Cell*, 2021; 33(4):998-1015.  
826 doi.org/[10.1093/plcell/koab013](https://doi.org/10.1093/plcell/koab013).

827 Pscheidt J.W. and Ocambo C.M., senior editors. Pacific Northwest Plant Disease Management Handbook.  
828 Oregon State University, 2022; [accessed 1 September 2022]. <https://pnwhandbooks.org/plantdisease>

829 Revord R.S., Lovell S.T., Brown P., Capik J., and Molnar T.J. Using genotyping-by-sequencing derived SNPs  
830 to examine the genetic structure and identify a core set of *Corylus americana* germplasm. *Tree Genetics*  
831 & *Genomes*, 2020; 16(65): 1-11. doi.org/[10.1007/s11295-020-01462-y](https://doi.org/10.1007/s11295-020-01462-y)

832 Rochette N.C., Rivera-Colón A.G., and Catchen J.M. Stacks 2: Analytical methods for paired-end  
833 sequencing improve RADseq-based population genomics. *Mol. Ecol.*, 2019; 28: 4737–4754.  
834 doi.org/[10.1111/mec.15253](https://doi.org/10.1111/mec.15253)

835 Rowley E.R., Fox S.E., Bryant D.W., Sullivan C.M., Priest H.D., Givan S.A., Mehlenbacher S.A., and Mockler  
836 T.C. Assembly and characterization of the European hazelnut 'Jefferson' transcriptome. *Crop Science*,  
837 2012; 52(6): 2679-2686. doi.org/[10.2135/cropsci2012.02.0065](https://doi.org/10.2135/cropsci2012.02.0065).

838 Rowley E.R., Vanburen R., Bryant D.W., Priest H.D., Mehlenbacher S.A., and Mockler T.C. A draft genome  
839 and high-density genetic map of European hazelnut (*Corylus avellana* L.). *Biorxiv*, 2018; 1-25.  
840 doi.org/[10.1101/469015](https://doi.org/10.1101/469015).

841 Salesses G. and Bonnet A. Cytogenetic study of hybrids between hazelnut varieties carrying a  
842 translocation in heterozygous state. *Cytologia*, 1988; 53: 407-413. [In French.]

843 Salojärvi J., Smolander O.-P., Nieminen K., Rajaraman S., Safronov O., Safdari P., Lamminmäki A.,  
844 Immanen J., Lan T., Tanskanen J., Rastas P., Amiryousefi A., Jayaprakash B., Kammonen J. I., Hagqvist R.,  
845 Eswaran G., Ahonen V. H., Serra J. A., Asiegbu F. O., Barajas-Lopez J. d. D., Blande D., Blokhina O.,  
846 Blomster T., Broholm S., Brosché M., Cui F., Dardick C., Ehonen S. E., Elomaa P., Escamez S., Fagerstedt K.  
847 V., Fujii H., Gauthier A., Gollan P. J., Halimaa P., Heino P. I., Himanen K., Hollender C., Kangasjärvi S.,  
848 Kauppinen L., Kelleher C. T., Kontunen-Soppela S., Koskinen J. P., Kovalchuk A., Kärenlampi S. O.,  
849 Kärkönen A. K., Lim K.-J., Leppälä J., Macpherson L., Mikola J., Mouhu K., Mähönen A. P., Niinemets Ü.,  
850 Oksanen E., Overmyer K., Palva E. T., Pazouki L., Pennanen V., Puhakainen T., Poczai P., Possen B. J. H.  
851 M., Punkkinen M., Rahikainen M. M., Rousi M., Ruonala R., van der Schoot C., Shapiguzov A., Sierla M.,  
852 Sipilä T. P., Sutela S., Teeri T. H., Tervahauta A. I., Vaattovaara A., Vahala J., Vetchinnikova L., Welling A.,  
853 Wrzaczek M., Xu E., Paulin L. G., Schulman A. H., Lascoux M., Albert V. A., Auvinen P., Helariutta Y., and  
854 Kangasjärvi J. Genome sequencing and population genomic analyses provide insights into the adaptive  
855 landscape of silver birch. *Nature Genetics*, 2017; 49: 904-912. doi.org/10.1038/ng.3862

856 Sathuvalli V.R., Mehlenbacher S.A., and Smith D.C. DNA markers linked to eastern filbert blight  
857 resistance from a hazelnut selection from the Republic of Georgia. *Journal of American Society for*  
858 *Horticultural Science*, 2011a; 136: 350-357. doi.org/[10.21273/JASHS.136.5.350](https://doi.org/10.21273/JASHS.136.5.350)

859 Sathuvalli V.R., Chen H., and Mehlenbacher S.A. DNA markers linked to eastern filbert blight resistance  
860 in "Ratoli" hazelnut (*Corylus avellana* L.). *Tree Genetics & Genomes*, 2011b; 7: 337-345. doi.org/  
861 doi.org/[10.1007/s11295-010-0335-5](https://doi.org/10.1007/s11295-010-0335-5)

862 Sathuvalli V.R., Mehlenbacher S.A., and Smith D.C. Identification and mapping of DNA markers linked to  
863 eastern filbert blight resistance from OSU 408.040 hazelnut. *HortScience*, 2012; 47: 570–573.

864 Sathuvalli V.R., Mehlenbacher S.A., and Smith D.C. High-Resolution Genetic and Physical Mapping of the  
865 Eastern Filbert Blight Resistance Region in 'Jefferson' Hazelnut (*Corylus avellana* L.). *The Plant Genome*,  
866 2017; 10(2). doi.org/[10.3835/plantgenome2016.12.0123](https://doi.org/10.3835/plantgenome2016.12.0123)

867 Schopfer C.R., Nasrallah M.E., and Nasrallah J.B. The male determinant of self-incompatibility in Brassica.  
868 *Science*, 1999; 286(5445): 1697-1700. doi.org/[10.1126/science.286.5445.1697](https://doi.org/10.1126/science.286.5445.1697)

869 Şekerli M., Koma G.K., Snelling J.W., and Mehlenbacher S.A. New simple sequence repeat markers on  
870 linkage groups 2 and 7, and investigation of new sources of eastern filbert blight resistance in hazelnut.  
871 *Journal of the American Society for Horticultural Science*, 2021; 146(4): 252-66.  
872 [doi.org/10.21273/JASHS05040-21](https://doi.org/10.21273/JASHS05040-21)

873 Stanke M., Keller O., Gunduz I., Hayes A., Waack S., and Morgenstern B. AUGUSTUS: *ab initio* prediction  
874 of alternative transcripts. *Nucleic Acids Research*, 2006a; 34(2): W435-W439.  
875 [doi.org/10.1093/nar/gkl200](https://doi.org/10.1093/nar/gkl200)

876 Stanke M., Schöffmann O., Morgenstern B., and Waack S. Gene prediction in eukaryotes with a  
877 generalized hidden Markov model that uses hints from external sources. *BMC Bioinformatics*, 2006b;  
878 7(1): 62. [doi.org/10.1186/1471-2105-7-62](https://doi.org/10.1186/1471-2105-7-62)

879 Stanke M., Diekhans M., Baertsch R., and Haussler D. Using native and syntenically mapped cDNA  
880 alignments to improve de novo gene finding. *Bioinformatics*, 2008; 24(5): 637-644.  
881 [doi.org/10.1093/bioinformatics/btn013](https://doi.org/10.1093/bioinformatics/btn013)

882 Takasaki T., Hatakeyama K., Suzuki G., Watanabe M., Isogai A., and Hinata K. The S receptor kinase  
883 determines self-incompatibility in *Brassica* stigma. *Nature*, 2000; 403(6772): 913-916.  
884 [doi.org/10.1038/35002628](https://doi.org/10.1038/35002628)

885 Thompson M.M., Lagerstedt H.B., and Mehlenbacher S.A. New York: Wiley. In Janick J. and Moore J.N.  
886 (Eds.), *Fruit breeding*, 1996; Vol. 3. Nuts: 125-184.

887 USDA national agricultural statistics service NASS - quick stats. *USDA National Agricultural Statistics  
888 Service*, 2022; [Accessed 17 August 2023]. <https://data.nal.usda.gov/dataset/nass-quick-stats>

889 Vallès J., Bašić N., Bogunić F., Bourge M., Brown S.C., Garnatje T., Hajrudinović A., Muratović E.,  
890 Pustahija F., Šolić E.M., and Siljak-Yakovc S. Contribution to plant genome size knowledge: first  
891 assessments in five genera and 30 species of angiosperms from western Balkans. *Botanica Serbica*, 2014;  
892 38(1): 25-33.

893 Verture G.W., Sedlazeck F.J., Nattestad M., Underwood C.J., Fang H., Gurtowski J., and Schatz M.C.  
894 GenomeScope: fast reference-free genome profiling from short reads. *Bioinformatics*, 2017; 33(14, 15):  
895 2202-2204. [doi.org/10.1093/bioinformatics/btx153](https://doi.org/10.1093/bioinformatics/btx153)

896 Wang J. and Chai J. Structural insights into the plant immune receptors PRRs and NLRs. *Plant Physiology*,  
897 2020; 182(4): 1566-1581. [doi.org/10.1104/pp.19.01252](https://doi.org/10.1104/pp.19.01252)

898 Wang Y., Teng Z., Li H., Wang W., Xu F., Sun K., Chu J., Qian Y., Loake G.J., Chu C., and Tang J. An  
899 activated form of NB-ARC protein RLS1 functions with cysteine-rich receptor-like protein RMC to trigger  
900 cell death in rice. *Plant Communications*, 2023; 4(2): 100459. [doi.org/10.1016/j.xplc.2022.100459](https://doi.org/10.1016/j.xplc.2022.100459)

901 Waterhouse A.M., Procter J.B., Martin D.M.A., Clamp M., and Barton G.J. Jalview version 2 - a multiple  
902 sequence alignment editor and analysis workbench. *Bioinformatics*, 2009; (25): 1189-1191.  
903 [doi.org/10.1093/bioinformatics/btp033](https://doi.org/10.1093/bioinformatics/btp033)

904 Woodworth R.H. Cytological studies in the Betulaceae. I. *Betula*. *Botanical Gazette*, 1929; 87: 383-399.

905 Wróblewski T., Spiridon L., Martin E.C., Petrescu A.-J., Cavanaugh K., Truco M.J., Xu H., Gozdowski D.,  
906 Michelmore R.W., and Takken F.L.W. Genome-wide functional analyses of plant coiled-coil NLR-type  
907 pathogen receptors reveal essential roles of their N-terminal domain in oligomerization, networking and  
908 immunity. *PLOS Biology*, 2018. doi.org/[10.1371/journal.pbio.2005821](https://doi.org/10.1371/journal.pbio.2005821)

909 Xi Y., Chalvon V., Padilla A., Cesari S., and Koj T. The activity of the RGA5 sensor NLR from rice requires  
910 binding of its integrated HMA domain to effectors but not HMA domain self-interaction. *Molecular Plant  
911 Pathology*, 2022; 23(9): 1320-1330. doi.org/[10.1111/mpp.13236](https://doi.org/10.1111/mpp.13236)

912 Yasuda S., Kobayashi R., Ito T., Wada Y., and Yakayama S. Homology-Based Interactions between Small  
913 RNAs and Their Targets Control Dominance Hierarchy of Male Determinant Alleles of Self-Incompatibility  
914 in *Arabidopsis lyrata*. *International Journal of Molecular Science*, 2021; 22(13): 6990.  
915 doi.org/[10.3390/ijms22136990](https://doi.org/10.3390/ijms22136990)

916 Zeiner A., Colina F.J., Citterico M., and Wrzaczek M. Cysteine-rich receptor-like protein kinases: their  
917 evolution, structure, and roles in stress response and development. *Journal of Experimental Botany*,  
918 2023; 74(17): 4910-4927. doi.org/[10.1093/jxb/erad236](https://doi.org/10.1093/jxb/erad236)

919 Zhang X., Wang L., Yuan Y., Tian D., and Yang S. Rapid copy number expansion and recent recruitment of  
920 domains in S-receptor kinase-like genes contribute to the origin of self-incompatibility. *The FEBS Journal*,  
921 2011; 278(22): 4323-4337. doi.org/[10.1111/j.1742-4658.2011.08439.x](https://doi.org/10.1111/j.1742-4658.2011.08439.x)

922 Zhao T., Ma W., Yang Z., Liang L., Chen X., Wang G., Ma Q., and Wang L. A chromosome-level reference  
923 genome of the hazelnut, *Corylus heterophylla* Fisch. *Gigascience*, 2021; 10(4): giab027.  
924 doi.org/[10.1093/gigascience/giab027](https://doi.org/10.1093/gigascience/giab027)

925 Zhou C., McCarthy S.A., and Durbin R. YaHs: yet another Hi-C scaffolding tool. *Bioinformatics*, 2022;  
926 39(1): btac808. doi.org/[10.1093/bioinformatics/btac808](https://doi.org/10.1093/bioinformatics/btac808)

927

928

929

930

931

932

933

934

935 **Supplemental**

936 **File S1. List of Supplementary Materials**

937 Table S1. Summary of sequencing data from Illumina, Hi-C, and PacBio platforms.

938 Table S2. Summary statistics for the eleven haplotype scaffolds corresponding to the 'Jefferson'  
939 European hazelnut (*C. avellana*) base chromosomes.

940 Table S3. Number and percentage of aligned Illumina 150 bp PE reads derived from 'Jefferson' parents  
941 to 'Jefferson' chromosome-level haplotype-resolved assemblies

942 Table S4. Structural variations by SyRI of 'Jefferson' haplotype 1 and haplotype 2.

943 Table S5. Sequence variations by SyRI of 'Jefferson' haplotype 1 and haplotype 2.

944 Table S6. 'Jefferson' haplotype 1 assembly EDTA output.

945 Table S7. 'Jefferson' haplotype 2 assembly EDTA output.

946 Table S8. Distribution of resistance-like genes identified by DRAGO2 among 11 pseudo-chromosomal  
947 scaffolds of the 'Jefferson' haplotype 1 and haplotype 2 assemblies.

948 Figure S1. Genome assembly and annotation workflow of *C. avellana* 'Jefferson'.

949 Figure S2. GenomeScope of raw 'Jefferson' PacBio HiFi reads with k-mer length = 31.

950 Figure S3. LAI scores of *C. avellana* 'Jefferson' haplotypes and 'Tombul'.

951 Figure S4. OmicsBox summary metrics of 'Jefferson' haplotype 1 functional annotation.

952 Figure S5. OmicsBox summary metrics of 'Jefferson' haplotype 2 functional annotation.

953

954

955

956

957

958

959

960

961

962

963

964

965

966 **Table S1** Summary of sequencing data from Illumina, Hi-C, and PacBio platforms.

| Sequencing platform         | Sample        | Insert length | Sequencing model | Number of reads | Total nucleotides |
|-----------------------------|---------------|---------------|------------------|-----------------|-------------------|
| PacBio Sequel IIe           | 'Jefferson'   | >20kb         | 2x 8M SMRT cell  | 3.64 M          | 56.8 Gb           |
| Hiseq 4000                  | 'OSU 252.146' | 300bp         | 2x150            | 295.9 M         | 44.38 Gb          |
| Hiseq 4000                  | 'OSU 414.062' | 300bp         | 2x150            | 218.2 M         | 32.73 Gb          |
| Dovetail Hi-C on Hiseq 4000 | 'Jefferson'   | 300bp         | 2x150            | 428.46 M        | 64.69 Gb          |

967

968

969 **Table S2.** Summary statistics for the eleven haplotype scaffolds corresponding to the 'Jefferson'  
970 European hazelnut (*C. avellana*) base chromosomes.

| Chromosomes              | Haplotype 1        |                      |           | Haplotype 2        |                      |           |
|--------------------------|--------------------|----------------------|-----------|--------------------|----------------------|-----------|
|                          | Total length (bp)  | N count <sup>1</sup> | Gaps      | Total length (bp)  | N count <sup>1</sup> | Gaps      |
| 1                        | 48,258,603         | 600                  | 3         | 47,666,154         | 400                  | 2         |
| 2                        | 44,374,200         | 200                  | 1         | 45,407,320         | 600                  | 3         |
| 3                        | 33,425,378         | 200                  | 1         | 32,429,289         | 0                    | 0         |
| 4                        | 36,823,049         | 1,200                | 6         | 37,439,655         | 400                  | 2         |
| 5                        | 32,584,664         | 400                  | 2         | 35,167,529         | 800                  | 4         |
| 6                        | 28,787,360         | 0                    | 0         | 28,771,021         | 200                  | 1         |
| 7                        | 31,176,844         | 200                  | 1         | 31,107,465         | 200                  | 1         |
| 8                        | 24,916,583         | 400                  | 2         | 23,719,546         | 200                  | 1         |
| 9                        | 23,914,400         | 400                  | 2         | 23,029,850         | 800                  | 4         |
| 10                       | 23,820,452         | 200                  | 1         | 24,758,360         | 400                  | 2         |
| 11                       | 21,620,711         | 600                  | 3         | 22,513,321         | 200                  | 1         |
| <b>Total genome size</b> | <b>349,702,244</b> | <b>4,400</b>         | <b>22</b> | <b>352,009,510</b> | <b>4,200</b>         | <b>21</b> |

971 <sup>1</sup>Ns are inserted by YaHs at a fixed rate of 200 nucleotides for every contig merge.

972

973

974

975

976 **Table S3.** Number and percentage of aligned Illumina 150 bp PE reads derived from 'Jefferson' parents  
977 to 'Jefferson' chromosome-level haplotype-resolved assemblies.

|                            | Number and percentage of aligned reads for each parent |                      |
|----------------------------|--------------------------------------------------------|----------------------|
|                            | 'OSU 252.146'                                          | 'OSU 414.062'        |
| 'Jefferson' V4 Haplotype 1 | 267,993,778 (90.57%)                                   | 200,943,531 (92.08%) |
| 'Jefferson' V4 Haplotype 2 | 272,354,026 (92.04%)                                   | 199,451,255 (91.39%) |

978

979

980 **Table S4.** Structural variations by SyRI<sup>1</sup> of 'Jefferson' haplotype 1 and haplotype 2.

| Structural variation     | Count | Haplotype 1 length (bp) | Haplotype 2 length (bp) |
|--------------------------|-------|-------------------------|-------------------------|
| Syntenic regions         | 253   | 277,416,244             | 276,792,668             |
| Inversions               | 37    | 6,741,817               | 6,220,076               |
| Translocations           | 216   | 41,832,328              | 42,723,238              |
| Duplications (reference) | 259   | 4,088,393               | -----                   |
| Duplications (query)     | 353   | ----                    | 2,863,543               |
| Not aligned (reference)  | 593   | 23,471,255              | ----                    |
| Not aligned (query)      | 677   | ----                    | 23,296,270              |

981 <sup>1</sup>Count table output from default SyRI run, derived from a minimap2 .bam alignment between both  
982 haplotypes with the parameter: --eqx.

983

984

985 **Table S5.** Sequence variations by SyRI<sup>1</sup> of 'Jefferson' haplotype 1 and haplotype 2.

| Sequence variation | Count     | Haplotype 1 length (bp) | Haplotype 2 length (bp) |
|--------------------|-----------|-------------------------|-------------------------|
| SNPs               | 1,593,404 | 1,593,404               | 1,593,404               |
| Insertions         | 213,321   | ----                    | 2,792,929               |
| Deletions          | 150,213   | 2,897,238               | ----                    |
| Copygains          | 91        | -----                   | 471,299                 |
| Copylosses         | 80        | 253,126                 | ----                    |
| Highly diverged    | 13,753    | 116,506,195             | 116,208,998             |
| Tandem repeats     | 22        | 86,034                  | 71,726                  |

986 <sup>1</sup>Count table output from default SyRI run, derived from a minimap2 .bam alignment between both  
987 haplotypes with the parameter: --eqx.

988

989

990

991

992

993 **Table S6.** 'Jefferson' haplotype 1 assembly EDTA<sup>1</sup> output.

| Class                      | Number of elements | Length (bp)        | Percentage of genome |
|----------------------------|--------------------|--------------------|----------------------|
| <b>LTR</b>                 | <b>103,937</b>     | <b>62,391,913</b>  | <b>17.84%</b>        |
| Copia                      | 23,301             | 15,899,955         | 4.55%                |
| Gypsy                      | 25,625             | 21,135,697         | 6.04%                |
| unknown                    | 55,011             | 25,356,261         | 7.25%                |
| <b>TIR</b>                 | <b>158,209</b>     | <b>40,419,512</b>  | <b>11.55%</b>        |
| CACTA                      | 33,740             | 9,654,395          | 2.76%                |
| Mutator                    | 77,114             | 17,487,304         | 5.00%                |
| PIF_Harbinger              | 22,873             | 5,671,550          | 1.62%                |
| Tc1_Mariner                | 3,700              | 878,845            | 0.25%                |
| hAT                        | 20,782             | 6,727,418          | 1.92%                |
| <b>nonLTR</b>              | <b>1,065</b>       | <b>361,136</b>     | <b>0.10%</b>         |
| LINE_element               | 1,031              | 352,462            | 0.10%                |
| unknown                    | 34                 | 8,674              | 0.00%                |
| <b>nonTIR</b>              | --                 | --                 | --                   |
| helitron                   | <b>35,911</b>      | <b>9,497,804</b>   | <b>2.72%</b>         |
| <b>repeat_region</b>       | <b>81,361</b>      | <b>21,122,389</b>  | <b>6.04%</b>         |
| <b>Total Genome Masked</b> | <b>380,483</b>     | <b>133,792,754</b> | <b>38.26%</b>        |

994 <sup>1</sup>EDTA run with parameters: --cds --bed --sensitive 1 --analysis 1; the CDS and bed file provide is derived  
995 from the BRAKER1/BRAKER2 gene set produced for the respective haplotype.

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009 **Table S7.** 'Jefferson' haplotype 2 assembly EDTA<sup>1</sup> output.

| Class                | Number of elements | Length (bp)       | Percentage of genome |
|----------------------|--------------------|-------------------|----------------------|
| <b>LTR</b>           | <b>126,989</b>     | <b>67,657,376</b> | <b>19.22%</b>        |
| Copia                | 27,892             | 17,200,312        | 4.89%                |
| Gypsy                | 26,884             | 21,861,582        | 6.21%                |
| unknown              | 72,213             | 28,595,482        | 8.12%                |
| <b>TIR</b>           | <b>145,984</b>     | <b>37,854,874</b> | <b>10.75%</b>        |
| CACTA                | 27,535             | 7,250,762         | 2.06%                |
| Mutator              | 74,679             | 18,295,776        | 5.20%                |
| PIF_Harbinger        | 17,714             | 4,238,613         | 1.20%                |
| Tc1_Mariner          | 3,122              | 681,523           | 0.19%                |
| hAT                  | 22,934             | 7,388,200         | 2.10%                |
| <b>nonLTR</b>        | <b>1,100</b>       | <b>442,005</b>    | <b>0.12%</b>         |
| LINE_element         | 1,047              | 425,994           | 0.12%                |
| unknown              | 53                 | 16,011            | 0.00%                |
| <b>nonTIR</b>        | --                 | --                | --                   |
| helitron             | <b>39,521</b>      | <b>8,684,384</b>  | <b>2.47%</b>         |
| <b>repeat_region</b> | <b>37,689</b>      | <b>9,592,939</b>  | <b>2.73%</b>         |

1010 **Total Genome Masked** **380,483** **124,231,578** **35.29%**

1011 <sup>1</sup>EDTA run with parameters: --cds --bed --sensitive 1 --analysis 1; the CDS and bed file provide is derived from the BRAKER1/BRAKER2 gene set produced for the respective haplotype.

1012

1013

1014

1015

1016

1017

1018

1019

1020 **Table S8.** Distribution of resistance-like transcripts identified by DRAGO2 among 11 pseudo-chromosomal  
1021 scaffolds of the 'Jefferson' haplotype 1 and haplotype 2 assemblies.

| 'Jefferson'<br>Pseudo-<br>chromosomal<br>scaffolds | CN <sup>1</sup> | CNL <sup>1</sup> | NL <sup>1</sup> | RLK <sup>2</sup> | RLP <sup>2</sup> | TN <sup>3</sup> | TNL <sup>3</sup> | Other <sup>4</sup> | Total           |
|----------------------------------------------------|-----------------|------------------|-----------------|------------------|------------------|-----------------|------------------|--------------------|-----------------|
| 1                                                  | 17/16           | 63/60            | 43/47           | 20/17            | 29/32            | 0/2             | 8/5              | 304/276            | 484/455         |
| 2                                                  | 18/23           | 12/14            | 22/28           | 84/65            | 91/58            | 3/1             | 0/0              | 383/403            | 613/592         |
| 3                                                  | 4/5             | 5/5              | 8/7             | 36/36            | 28/25            | 3/5             | 14/11            | 162/169            | 260/263         |
| 4                                                  | 3/10            | 14/8             | 1/4             | 50/57            | 24/24            | 0/0             | 1/1              | 189/207            | 284/315         |
| 5                                                  | 3/1             | 4/0              | 12/11           | 41/40            | 43/23            | 5/2             | 6/6              | 224/225            | 342/298         |
| 6                                                  | 1/2             | 2/1              | 4/5             | 45/49            | 15/31            | 15/13           | 21/15            | 233/240            | 335/356         |
| 7                                                  | 0/0             | 5/5              | 2/1             | 66/71            | 44/62            | 0/0             | 0/0              | 165/179            | 284/320         |
| 8                                                  | 5/8             | 11/20            | 5/5             | 39/37            | 70/58            | 14/10           | 47/31            | 166/169            | 360/345         |
| 9                                                  | 11/14           | 10/9             | 3/6             | 15/21            | 16/21            | 1/1             | 12/10            | 126/128            | 196/211         |
| 10                                                 | 2/1             | 11/9             | 6/2             | 45/50            | 63/66            | 0/0             | 2/3              | 136/147            | 265/280         |
| 11                                                 | 0/0             | 2/2              | 0/0             | 45/45            | 22/23            | 0/0             | 0/0              | 127/154            | 197/224         |
| Total                                              | 66/80           | 139/133          | 117/122         | 486/445          | 445/<br>423      | 41/34           | 111/82           | 2,215/<br>2,297    | 3,620/<br>3,659 |

1022 <sup>1</sup>Coiled-coil nucleotide binding site [(CC-NBS (CN))]; CC-NBS-leucine rich repeat [(CC-NBS-LRR (CNL))];  
1023 NBS-LRR (NL).

1024 <sup>2</sup>Receptor-like Kinase (RLK); Receptor-like Protein (RLP).

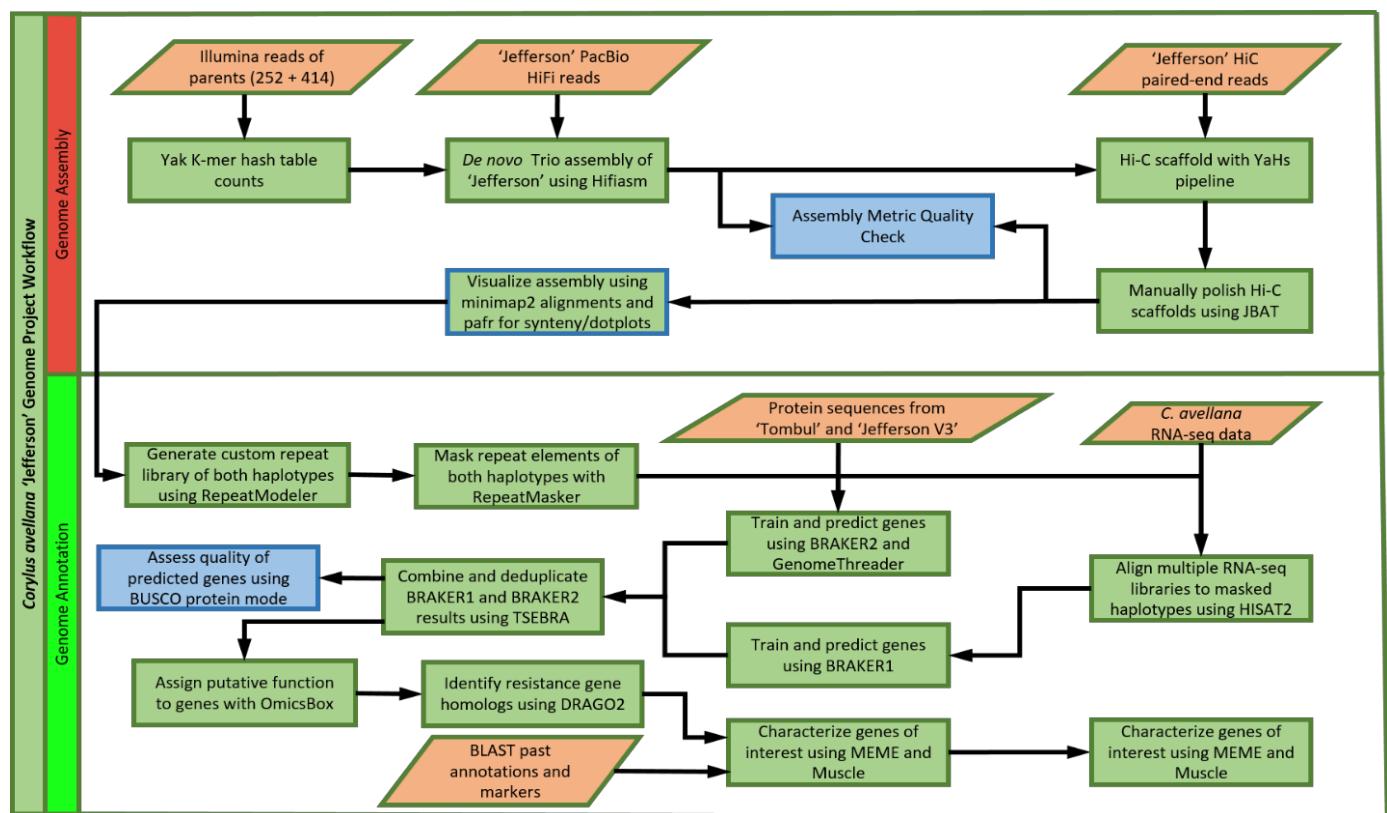
1025 <sup>3</sup>TIR-NBS (TN); TIR-NBS-LRR (TNL).

1026 <sup>4</sup>Includes kinases (K), NBS (N), LRRs (L), CKs, CTs, CTLs, Lysine motif containing proteins (LYK and LYP) and  
1027 Lectin-like motif containing proteins (LECM).

1028

1029

1030


1031

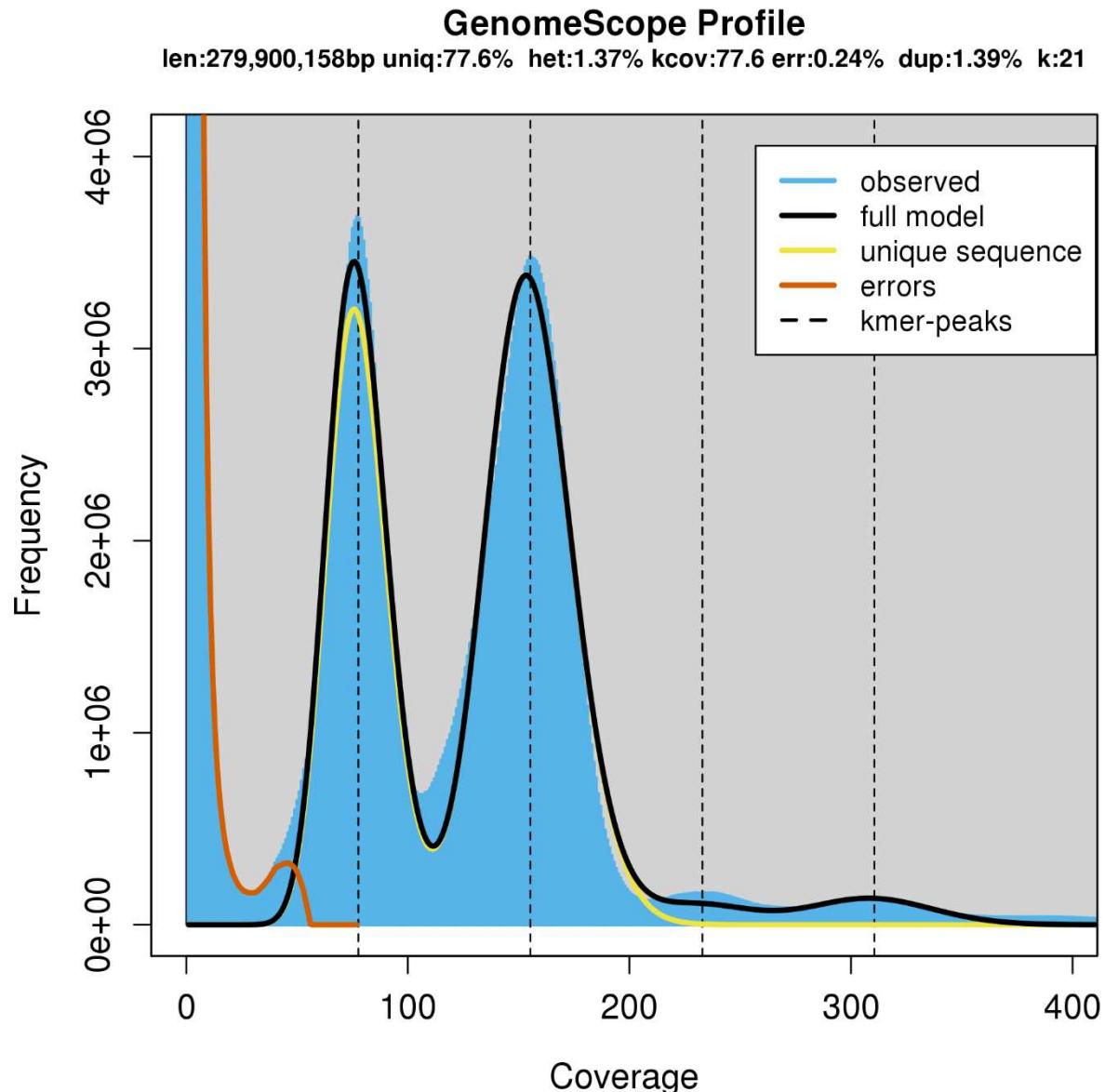
1032

1033

1034

1035




1036

1037

1038 **Figure S1.** Genome assembly and annotation workflow of *C. avellana* 'Jefferson'. Figure shows the  
1039 genome assembly and annotation pipeline with processes shown in green, extraneous data in orange  
1040 and quality checks in blue.  
1041

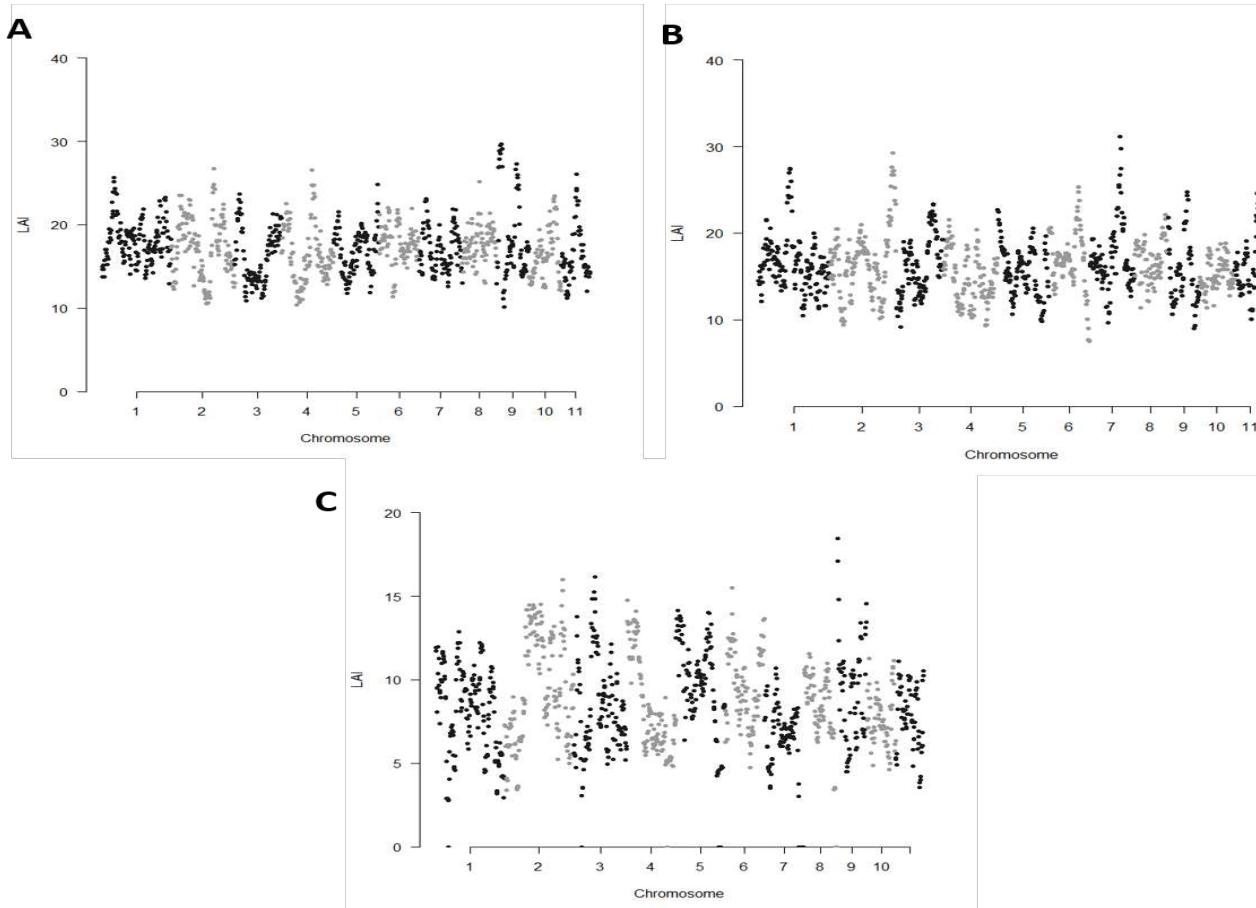
1042

1043



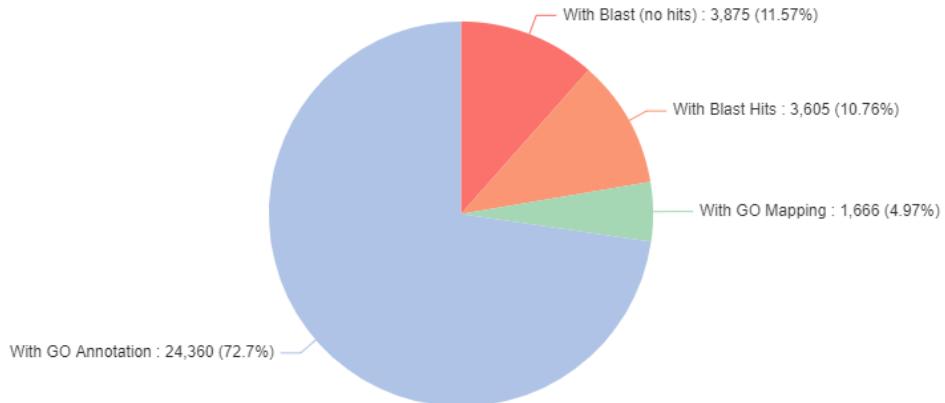
1044

1045 **Figure S2.** GenomeScope result of raw 'Jefferson' PacBio HiFi reads for k-mer length = 21. GenomeScope  
1046 output derived from jellyfish count -C -m 21 -s 1000000000 and jellyfish histo.


1047

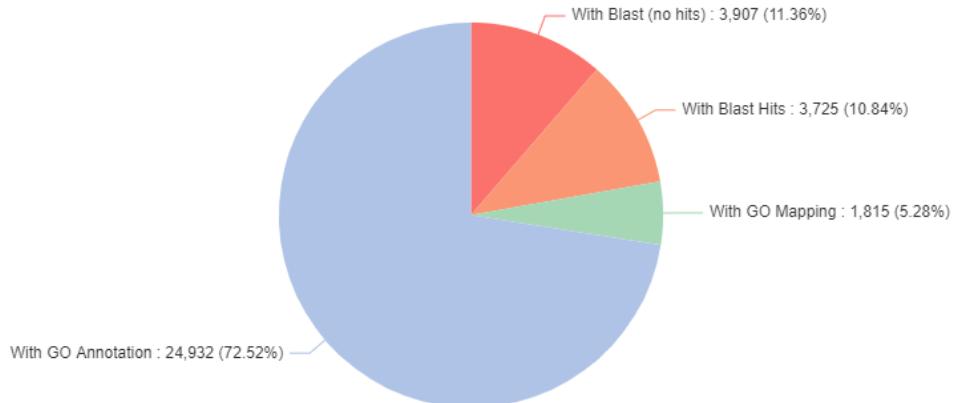
1048

1049


1050

1051




1059  
1060

### Functional Annotation of 'Jefferson' Haplotype 1



1061  
1062 **Figure S4.** OmicsBox summary metrics of 'Jefferson' haplotype 1 functional annotation. Pie chart shows  
1063 total distribution of OmicsBox functional annotation performed on haplotype 1 amino acid transcripts of  
1064 'Jefferson'. In red are transcripts that received no BLAST hits from the database and thus have unknown  
1065 function; orange are transcripts that received only BLAST hits; green are transcripts that had GO terms  
1066 associated with the initial BLAST database search; blue is transcripts that received GO annotation  
1067 descriptions.  
1068

### Functional Annotation of 'Jefferson' Haplotype 2



1069  
1070 **Figure S5.** OmicsBox summary metrics of 'Jefferson' haplotype 2 functional annotation. Pie chart shows  
1071 total distribution of OmicsBox functional annotation performed on haplotype 2 amino acid transcripts of  
1072 'Jefferson'.  
1073