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The transcription process is regulated by temporal
interactions of transcription factors with DNA. In the
last decade, computational and experimental stud-
ies revealed the residence times of transcription
factors on DNA correlate with transcriptional out-
put. Biochemical studies suggest that transcription
factors exhibit bi-exponential dynamics, attributed
to the binary affinity model composed of nonspe-
cific and specific protein-DNA bindings. Recently,
transcription factor residence times were shown
to display a power-law pattern implicating protein-
DNA affinity levels are rather continuous. Elucidat-
ing the underlying mechanisms of transcription fac-
tor residence distributions, beyond protein-DNA in-
teraction strength, is crucial to construct a more
complete understanding of transcriptional regula-
tion. Here, by using molecular dynamics simula-
tions of DNA and dimeric proteins, we demonstrate
residence time behaviors of generic homodimeric
transcription factors follow a multi-exponential pat-
tern even with single and binary affinity levels be-
tween DNA and proteins, indicating the existence
of emergent behavior. Our simulations reveal that
DNA-protein clusters of various sizes contribute to
this multi-exponential behavior. These findings add
another layer to transcriptional regulation and, con-
sequently, to gene expression by connecting pro-
tein concentration, DNA-protein clusters, and DNA
residence times of transcription factors.
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Introduction

Gene expression dictates many aspects of cellular be-
havior, including response to extracellular factors and
cellular identity. Among the many regulators of gene
expression, transcription factors (TFs) play the most
prominent role in inhibiting or activating the transcrip-
tion of their target genes (Browning, 2004; Seshasayee
et al., 2011; Bintu et al., 2005). Regulation of a gene
by a TF protein starts at the binding site once the TF
binds to its specific DNA sequence and forms protein-
DNA complexes. Nevertheless, gene expression is a
highly dynamic and regulated process. Thus, TF’s un-
binding from the DNA binding site might not be a fully

stochastic process (de Jonge et al., 2022; Haberle and
Stark, 2018). In accord, recent studies in TF dynamics
revealed that the residence time (RT) of a TF on its DNA
binding site (i.e., its unbinding rate) is intertwined with
transcriptional output (ClauB3 et al., 2017; Lickwar et al.,
2012; de Jonge et al., 2020). Thus, TF residence times
on DNA directly contribute to the regulation of gene ex-
pression. Therefore, understanding residence time pat-
terns becomes a key to the accurate prediction of gene
expression behavior.

The duration of a TF on its DNA binding site can de-
pend on the TF protein’s affinity to the DNA, tempera-
ture, and 3D DNA structure (Kim and Shendure, 2019;
Inukai et al., 2017). Kinetic studies focusing on unbind-
ing (or dissociation) kinetics of TFs from their single-
binding sites have demonstrated the concentration de-
pendency of TF unbinding rates (Graham et al., 2011;
Joshi et al.,, 2012). In scarce concentrations, a TF tends
to stay bound to its target site for more extended peri-
ods of time. In contrast, the abundance of unbound TFs
in solution leads to a competition for the binding sites
on DNA, resulting in much higher unbinding rates (i.e.,
shorter residence times) via the process referred to as
Facilitated Dissociation (FD) (Kamar et al., 2017; Kosar
et al., 2022).

The impact of TF concentration is not limited to protein
unbinding dynamics via FD. TFs can also contribute to
3D genome organization and form DNA-protein clus-
ters in a concentration-dependent manner (Kim and
Shendure, 2019; Noort et al., 2004; Skoko et al., 2006,
2004; Remesh et al., 2020; Kosar and Erbas, 2022;
Arold et al., 2010; Dame et al., 2000; Winardhi et al.,
2015). Such structural effects are more pronounced
with bacterial Nucleoid-Associated Proteins (NAPs), a
class of DNA-binding proteins often with dual functional-
ity. NAPs are involved in chromosome organization, and
a number of them also function as transcription factors
(Dillon and Dorman, 2010; Wang et al., 2011; Dorman,
2014). Due to their common multivalent nature Lee
(1992), DNA-binding proteins can drive the bridging of
DNA segments and thus the formation of DNA-protein
clusters of various shapes and sizes and other forms of
chromosome architectural effects (Skoko et al., 2004;
Dillon and Dorman, 2010; Wang et al., 2011; Hammel
et al., 2016; Dame, 2005; Verma et al., 2019). Molec-
ular Dynamics (MD) simulations of model bacterial sys-
tems suggest that these events are highly dependent
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on protein concentration and U, s, nonspecific interac-
tion potential (i.e., the affinity between the DNA-binding
protein and nonspecific DNA).

The affinity of a TF to its specific binding site is often
stronger compared to its binding affinity towards a non-
specific DNA sequence. However, nonspecific binding
can contribute to the global chromosome organization.
Contrarily, specific protein-DNA interactions can gov-
ern the formation of small local DNA-protein complexes
(i.e., clusters) around the specific binding sites (Kosar
et al., 2022; Lin et al., 2012; Brackley et al., 2013; Ag-
back et al., 1998). DNA-protein complexes could signifi-
cantly affect transcriptional regulation. Transcription fac-
tories are multiprotein complexes formed by TFs, RNA
polymerase, coactivators, etc., within the eukaryotic nu-
clei. These factories not only carry out transcription but
also organize nuclear architecture (lborra et al., 1996;
Cook, 2010; Melnik et al., 2011; Mitchell and Fraser,
2008). Therefore, multiprotein complexes or clusters
are crucial regulators of transcriptional output.

Moreover, Eukaryotic euchromatin regions, which are
not densely packed as heterochromatin regions, are
more accessible by transcription factors thus, more
transcriptionally active (Amemiya et al., 2022; Elgin
and Grewal, 2003; Penagos-Puig and Furlan-Magaril,
2020). This notion emphasizes the significance of
local genome architectures in residence times. |In
other words, the contribution of DNA-binding proteins
to gene regulation is not restricted to their functions as
TFs since their activity in domain-specific and global
genome organization is also crucial.

A recent experimental study employing single molecule
tracking (SMT) demonstrated residence durations of
several TFs and chromatin-associated proteins dynam-
ics follow a power-law pattern (Garcia et al., 2021).
These findings support a continuum model for TF dy-
namics and TF-DNA interaction affinities rather than a
bi-exponential model attributed to binary specific and
nonspecific affinities.

In the bi-exponential model, TFs were considered to
have longer residence times on their specific target
DNA sequence and shorter residence times on non-
specific DNA, generating a bi-exponential distribution
of residence durations (Chen et al., 2014; Ball et al.,
2016; Morisaki et al., 2014). Contrary to this sugges-
tion, even with a single affinity (U, s = Usp) and binary
affinity model (U,s < Usp), we observed an apparent
multi-exponential pattern in our model, indicating an
emergent behavior. In parallel with our findings, multi-
exponential was used to interpret the residence behav-
iors of several SMT studies (Hipp et al., 2019; Reisser
et al., 2020; Agarwal et al., 2017).

Consequently, we explored the driving factors of multi-
exponential residence behaviors of TFs. In particular,
high nonspecific affinity cases, which enabled the for-
mation of much larger clusters, exhibited distinct RT dis-
tributions and required more exponents to match with
decay curves. Investigation of TF-DNA cluster forma-
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tions of different sizes revealed that cluster dissipa-
tion mean lifetimes are coupled to their sizes. There-
fore, concentration and affinity-dependent cluster for-
mations could be the driving factors of the observed
multi-exponential patterns.

Finally, we explored the distributed affinity model to
check whether the additional complexity would lead to
power-law behavior. However, it is clear that limited dis-
crete affinity distribution again forms a multi-exponential
decay pattern and does not provide sufficient complex-
ity to generate a power-law behavior.

Here, we demonstrate that TF dynamics follow multi-
exponential patterns without the need for multiple TF-
DNA affinity levels. We also show how these behaviors
are impacted by cluster formations. Our model predicts
the power-law behavior might be plausible even with dis-
crete affinities with some additional complexities. These
findings may help establish a more advanced under-
standing of transcriptional regulation, thus of regulation
of gene expression.

Results

Residence time behaviors are multifactorial

We employed multiple cases for nonspecific interaction
affinities ranging from a very weak 1k7 to a strong 4kT
(i.e., Uns = Usp) per bead, where U, = 4kT" per bead
in all cases. For each of these affinity levels, four differ-
ent physiologically relevant (Verma et al., 2019; Azam
et al., 1999; Ball et al.,, 1992) concentrations ranging
from 10 — 60uM of TFs were employed in the simula-
tions. We obtained residence time patterns, as shown
in Figure 1 and as described in methods, in the form
of occurrence versus duration, where occurrence is the
number of times a duration was achieved or observed.
We then tried fitting several equations to define TF res-
idence patterns (Figure 1C). Fit equations included ex-
ponential decay with up to five exponents as well as a
power-law equation (Figure 2).

The projection of RT patterns in the log-log scale ex-
hibited an apparent arching pattern, eliminating the
possibility of a good power-law fit, which requires a
straight pattern in such a scale. The single exponential
decay (ED) equation can only describe short-duration
(< 10a.u.) distributions regardless of affinity and con-
centration (Figure S2A, Figure S1), implying the full-
spectrum residence time behavior is not dependent on
a single parameter. This behavior was indeed expected
due to distinct NS and SP levels leading to at least a
bi-exponential behavior.

For most of the cases, our simulations utilized binary
values where, for each simulation, there was only one
nonspecific and one specific affinity where U,,; < Usp,. If
there was no emergent factor affecting residence times,
a double exponential decay (DED) would be sufficient to
interpret the residence time patterns obtained from the
simulations. Thus, we used a double exponential decay
equation for characterizing RT patterns. DED provided
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Figure 1. Graphical abstract of the study

(A) The coarse-grained model of a generic homodimeric transcription factor. The light blue parts represent the binding domains and dark blue part is the hinge
(non-binding) domain. Radiuses of the coarse-grained bead are given in Lennard-Jones (LJ) units and the angle between binding domains are shown in degrees. (B)
Possible binding states of a TF and calculation of residence times (RT). A TF could be fully or partially bound to DNA, or it could be in an unbound state in which it does
not interact with the DNA. Note that red and dark blue regions represent specific binding sites and nonspecific binding sites of the DNA, respectively. Nevertheless,
binding to the either site are considered equivalent. (C) Collection, minimization, and analysis of TF residence patterns. First, bound durations of each TF throughout
the simulations are collected which is then minimized to their medians. Resulting patterns are analyzed fitting several exponential equations.

much better fits compared to the ED equation but no-
tably failed to generalize well for all durations (Figure 2).
That is certainly noteworthy, considering simulations uti-
lized a single type of TF and two distinct types of DNA
sites.

The employed strategy here was to increase the num-
ber of exponents to characterize TF residence behav-
iors better. We gradually increased the number of ex-
ponents for the decay equation to up to five exponents.
On top of the visual inspection of the fits, we quantita-
tively analyzed their accuracy via normalized Residual
Sum of Squares (RSS), where the lower RSS indicates
a better fit. The increase from single to double as well
as from double to triple exponential decay resulted in
the order of magnitudes lower RSS (Figure 2B). Ad-
ditional increments in the number of decay exponents
also reduced RSS for the fits, but the changes were not
as drastic. These analyses demonstrate that RTs follow
a multi-exponential decay pattern, suggesting RT pat-
terns are shaped by additional factors besides binary
DNA-protein binding affinities.
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Residence time behaviors are dependent on the
emergent behavior of TF concentration and binding
energies

Residence time behaviors (Figure 2A, Figure S1) sug-
gest a pattern beyond a bi-exponential system that
cannot be simply explained nor attributed to the dual
model of short-lived TF-DNA interactions on nonspe-
cific sites and longer-lived, more stable interactions on
specific binding sites. Therefore, an emergent behavior
is required to explain such multi-exponential patterns.
Specifically, patterns obtained from elevated concentra-
tion and high-affinity k7" cases require more exponents,
indicating such behaviors emerge as the results of con-
centration and energy levels.

The relatively high binding energies and concentration
of DNA-binding proteins were shown to lead to cluster
formations as well as local and global condensations of
the chromosome (Kosar et al., 2022; Lin et al., 2012;
Brackley et al., 2013; Agback et al., 1998). Unsurpris-
ingly, higher concentrations yield larger clusters (Fig-
ure 3C). The remarkable part is that global compaction
of the chromosome, and cluster sizes, even conforma-
tions are mainly regulated by nonspecific interactions,
and specific interactions have little effect. This behav-
ior can be attributed to the abundance of nonspecific
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Figure 2. Analysis of TF residence time patterns
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(A) Distribution of TF residence times in arbitrary unit (a.u.) at various concentrations for distinct U, s levels and fitting Exponential Decay (ED), Double Exponential
Decay (DED), Triple Exponential Decay (TED), Quadruple Exponential Decay (QED), Pentuple Exponential Decay (PED), and Power-law equations to residence time
data. (B) Normalized Residuals Sum of Squares (RSS) of the fits depicting the difference between observation and the fits. For all equations, overall RSS, RSS by
concentrations, and by binding affinities are shown, respectively. Note that specific binding energies are 4T for all the systems.

DNA sites over specific sites. In this work, we reduced
the impact of global chromosome compaction via minia-
turized TF binding domains (Figure 1A), minimizing the
bridging of multiple DNA segments. Moreover, the use
of adequate binding energies eliminated the possibility
of high chromosomal compaction even at high concen-
trations (Figure 3A). This strategy allowed TFs to roam
relatively freely within the cellular confinement.

Our model depicts TFs residing for increasingly higher
durations on DNA instead of freely roaming around with
the increasing NS potential with fixed specific binding
energy (Figure 3A-B). Consistent with the previous find-
ings, at a very low NS potential (U,,s = 1kT’), bound pro-
teins are sparsely distributed around the DNA polymer,
mainly near binding sites, but do not form DNA-polymer
complexes (i.e., clusters) (Figure 3). Relatively higher
NS potentials (U, s = 2.8kT and U,,s = 3kT) led to pri-
marily small and globular clusters. Whereas stronger
NS affinities (U, s = 3.5kT and U,,s = 4kT) enabled the
formation of much bigger clusters with filamentous con-
formation (Figure 3C). Therefore, we hypothesized the
cluster sizes and conformations to play significant roles
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in TF residence patterns.

Cluster formations drive multi-exponential resi-
dence time patterns

To unravel the relationship between DNA-protein clus-
ters and multi-exponent patterns, we initially considered
tracking and collecting residence times of TFs for each
individual cluster, as described in Figure 1. However,
clusters are dynamic formations, and it is not rational to
follow TFs that were initially part of a cluster because
after they dissipate, they are free to bind anywhere
on DNA. Therefore, we rather investigated the dissi-
pation mean lifetimes of individual clusters (see meth-
ods). As opposed to RT pattern acquisitions, partial
unbinding events were also counted. This modification
was needed simply because at high nonspecific affini-
ties, the time needed for obtaining cluster decay rates
would exceed simulation lifetimes when only full unbind-
ing events were counted.

At relatively low nonspecific energies (U,,s = 2.8kT and
U,s = 3kT), correlation analysis of cluster size and their
dissipation durations did not reveal any relation. Con-
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Figure 3. Visualizations of the system, protein distributions, and cluster formations of the coarse-grained bacterium model at various nonspecific binding

energies

(A) Overview of the system DNA (white-light blue), and TFs. (B) TF distributions within the confinement. (C) Cluster formations of TFs. Here, the coloring only
serves to distinguish distinct protein clusters. Snapshots were obtained from systems with TF concentrations of 60, M . Specific binding energies are 4kT for all the

systems.

trarily, higher nonspecific interaction potentials (U,,s =
3.5kT and Uns = 4k7T) led to correlations with coeffi-
cient of r > 0.5 (Figure 4B), where larger clusters had
longer mean lifetimes. These imply differently sized
clusters could dissipate at diverse rates, contributing
to multi-exponential behavior that is more apparent for
high nonspecific affinity cases (Figure 2A).

It should also be noted that at 2.8kT" and 3kT nonspe-
cific affinities, cluster sizes ranged from 20 to 45 and
20 to 70 TFs, respectively (Figure 4B). The size ranges
were significantly improved with higher nonspecific in-
teractions. The cases of 3.5kT and 4kT nonspecific
affinities allowed the formation of clusters of size rang-
ing from 50 to 250 TFs (Figure 4B). This increase, of
course, provides advantages for the analysis of the re-
lation between lifetimes and cluster sizes.

TF residence times depend on their position in clus-
ters

Upon establishing the relationship between cluster sizes
and their lifetimes, we considered analyzing the resi-
dence times of TFs that are located at different regions
of the clusters. Cluster-associated TFs can be classi-
fied as surface TFs and core TFs. While the core TFs
are rather trapped within the cluster, surface TFs are
more exposed and could be expected to have shorter
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residence durations as they are free to unbind. Addi-
tionally, TFs that are not part of any cluster are classi-
fied as free TFs, which are useful as references against
cluster-associated TFs (Figure S2B).

Visual investigation of individual proteins located at dif-
ferent positions with respect to the TF-DNA clusters did
not show apparent distinction in their residence times
(Figure S2). However, in an analytic (i.e., t-test) and
more comprehensive approach utilizing multiple time
steps, core TFs exhibited significantly longer residence
times compared to surface and free TFs (Figure 5A).
However, this behavior was limited to the high nonspe-
cific affinity cases and not observed at lower nonspecific
potentials, which may add another layer of complexity to
residence behaviors, therefore, could explain the more
prominent multi-exponential residence patterns at such
energy levels. At U,s = 3.5kT case, surface TFs also
had significantly higher residence times in comparison
to free TFs (Figure 5A). This disparity indeed reveals
that even located at the exposed regions of clusters,
TFs could behave differently compared to freely roam-
ing TFs. Overall, the variations among core, surface,
and free TFs residence times could shape the overall
residence distributions and further contribute to multi-
exponential DNA-residence behaviors of TFs at single
and binary affinity models.
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Figure 4. Correlation analysis of cluster sizes and dissipation times

Cluster Size (#TF)

(A) Snapshots of the TF clusters at given nonspecific energies from random timeteps. Darker colors implicate higher mean lifetime as indicated by the colorbars on
the left. (B) Mean lifetimes in arbitrary units versus cluster sizes in number of TF they are composed of. Regression lines are used to determine correlations. Pearson
correlation coefficients (r) are given on the upper-left side and number of the clusters in the analysis are given on the bottom-right side. TF concentrations were 60 M
for all cases. The threshold was set as minimum 20 TFs for cluster size for decay rate analysis due to statistical reasons. 12 timesteps were used for sampling and

the fixed specific binding energy was 4kT for all simulations.

Another factor that should be considered is the differ-
ing number of TFs of each type for distinct cases. Even
though the concentration (60 M) and specific binding
potentials (Us, = 4kT) are fixed among the cases, the
higher nonspecific energies drive clustering rather than
scattering (Figure 3B), also leading to the formation
of much bigger clusters (Figure 3C, Figure 4B). Thus,
more of the TFs are located within the clusters for high
nonspecific affinity cases (Figure 5B). Moreover, the
larger the clusters, the higher the core TF percentages
were (Figure 5B), as expected due to the decrease in
the surface-to-volume ratio.
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Distributed affinity models do not lead to power-law
behavior

Our MD simulations revealed that even single and bi-
nary affinity models could lead to multi-exponential res-
idence time patterns. The next step was to mimic
the continuum affinity model with a distributed affinity
model, where we employed 13 distinct DNA site types
and assigned them diverse binding affinities with DNA.
The affinities inclusively ranged between 1 —4kT and
2 — 5kT with an increment of 0.25kT and the number
of DNA sites for the given affinity assigned to provide
either a normal (i.e., Gaussian) or uniform distribution.

Contrary to our expectations, distributed affinity mod-
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Figure 5. Residence time analysis based on the TF localization with respect to clusters

(A) Differences among of TF residence times for free, surface, and core TFs at given nonspecific affinities. Welch’s t-test was used for significance analysis. (B)
Distributions of TF residence times for the given TF types. 12 timesteps were used for sampling and the fixed specific binding energy of 4kT" was used for all
simulations. Representative 12% of the data are shown to prevent over-crowding. Data was obtained from 60, M cases. Free TFs do not belong in any clusters.

TFs on the Surface and in the Core of clusters were named accordingly.

els did not produce power-law behaviors . Instead, the
triple-exponential fit was the better predictor of the mod-
els (Figure 6). Further power-law fit attempts via adding
weights for the power-law equation provided better fits
partly for higher durations, yet it failed to explain over-
all residence time patterns (Figure 6). Therefore, we
might speculate that discrete distribution models may
not be enough for power-law behavior, and such be-
havior would require much higher complexity than our
MD simulations could provide to behave completely as
a continuum model.

Discussion

Our findings reveal an apparent multi-exponential be-
havior for the discrete affinity model of TF-DNA bind-
ings. Single and binary affinities leading to multi-
exponential distributions were beyond the prior sugges-
tion of bi-exponential behavior due to specific and non-
specific binding sites. Here, we demonstrate how this
multi-exponential behavior is shaped by TF-DNA com-
plexes, the dependency of these formations, and the
residence times behavior to nonspecific binding affini-
ties.

One of the prominent features of our previous coarse-
grained model was the global chromosome organiza-
tion. Although that system allowed the modeling of
the role of nonspecific affinities, selected bead size for
TF binding domains led to multiple interactions facilitat-
ing the chromosomal collapse. Extreme compaction of
the chromosome and resulting residence times of TFs
would exceed simulation durations, making it unlikely to
obtain RT patterns. By lowering the bead size of TFs,
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we minimized multiple binding and over-compaction.
That also enabled the decoupling of 3D genome orga-
nization from RT patterns, increasing the control over
other variables.

Similar to any MD study, this work has considerable
limitations. Most prominently, the simplification of the
cell for coarse-grained MD simulations removes most
of the complexity possessed by the actual cellular sys-
tems. Additionally, we used a single type of TF for all
MD simulations with discrete binding affinities. In com-
bination, reduced complexity may explain the lack of ob-
servation of power-law behavior, which was attributed
to continuous TF-DNA affinities in experimental studies.
Of course, the cellular complexity is persistent in the
experimental setup. Therefore, other factors, such as
fluctuating TF levels and dynamic chromosomal land-
scape, should not be neglected. However, our sim-
ulations, even with discrete affinities, exhibited multi-
exponential behaviors, suggesting a power-law pattern
is highly possible with continuous affinities, which is be-
yond the scope of this study.

As their primary roles, TFs can inhibit and activate tran-
scription. The formation of stable protein-DNA com-
plexes extends the duration of a TF’s residence on its
target DNA site. That, in turn, could significantly en-
hance their inhibitory or activatory effects. We may also
speculate that larger and more compact clusters may
decrease the accessibility by RNA polymerase, such as
in heterochromatin-like domains (Amemiya et al., 2022),
effectively reducing the transcriptional output. Contrar-
ily, similar protein-DNA complexes, but in the form of
transcriptional machinery, could initiate or enhance tran-
scription.
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Even though we demonstrated cluster size is an im-
portant factor for residence times, we also wanted to
reveal any possible relationship between cluster shape
and dissipation rates. However, investigation of the con-
formations of the cluster formations on residence times
was inconclusive due to cluster sizes being highly de-
pendent on nonspecific affinities. Thus, establishing a
clear relation between cluster shape and RT requires
eliminating affinity as a variable. In turn, that would re-
quire a separate MD model. Furthermore, clusters are
not fixed formations; they are highly dynamic. Their
sizes, conformations, orientations, and even the DNA
segments they interact with change over time in the sys-
tem. Moreover, clusters can merge and split, making it
rather complicated to track individual clusters and make
accurate analyses.

Additionally, the utilization of dimeric TF models may
have contributed to the multi-exponential behavior in
two ways. First, our definition of unbound TF requires
both binding domains not to be in touch with any DNA
molecule. In other words, partial bindings to DNA (i.e.,
bindings with only one binding domain) are equivalent
to full bindings in terms of being considered bound. The
difference in stability of partial binding and full binding
may indeed lead to distinct residence behaviors con-
tributing to multi-exponential behavior. Moreover, di-
valent interactions are significantly more prone to fa-
cilitated dissociation (Kamar et al., 2017; Chen et al.,
2018). Since FD is pronounced at high concentrations
(Kosar et al., 2022), multi-exponential behavior could be
partially attributed to FD as it can facilitate the unbinding
of the exposed TFs (i.e., free or surface) more than the
unexposed TFs (i.e., core).

Noise in gene expression is an important factor driving
cellular heterogeneity (Liu et al., 2019). Gene expres-
sion noise could lead different cells in a homogeneous
population to distinct phenotypes even under the same
environmental conditions (Raser and O’Shea, 2005).
This resulting cellular heterogeneity may provide evo-
lutionary advantages to cells. The primary driving event
of gene expression noise is considered to be TF bind-
ing (Parab et al., 2022). Also, infrequent or rare bio-
chemical processes contribute to noise in gene expres-
sion (Raser and O’Shea, 2005). Such infrequency or
lower occurrence could be seen for the higher duration
residences in our systems, which are more apparent
at high nonspecific affinity and high protein concentra-
tion cases. Therefore, such cases could lead to higher
gene expression noise and yield a more heterogeneous
population of cells. It should also be noted that longer
residence times are more likely to cause transcriptional
bursts (Raser and O’Shea, 2005), which is another no-
tion that contributes to noise in gene expression. On the
other hand, shorter DNA residence times are suggested
to lower gene expression noise (Azpeitia and Wagner,
2020). Our study sheds light on DNA residence distri-
butions and may explain the diverse noise in gene ex-
pression responses.
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In this study, we demonstrate that TFs follow multi-
exponential patterns with discrete affinities in our MD
model. We discuss how binding affinity and concen-
tration of TFs dictate these behaviors. There are in-
deed some implications of this behavior on biological
systems. lIsolated from cellular complexity and con-
tinuum model, model homodimeric TFs exhibit multi-
exponential patterns even with single and binary affini-
ties. This type of behavior might be one of the underly-
ing reasons for gene expression noise and consequent
cellular heterogeneity and contribute to cellular differ-
entiation. Moreover, the distributions of TF-DNA res-
idence times may help explain discrete transcriptional
bursts. Lastly, DNA-protein clusters in bacterial chro-
mosomes could drive Topologically Associated Domain-
like domain formations and further affect the regulation
of gene expression. Overall, our findings might con-
tribute to a more comprehensive understanding of gene
expression and regulation.

Methods

Modelling the system

We used a modified version of our previous coarse-
grained model bacterial system mimicking an E. coli
bacterium. The model system includes a fairly re-
laxed chromosome with uniformly distributed binding
sites confined within cell wall-like boundaries resem-
bling that of a rod-shaped bacterium. Generic homod-
imeric transcription factors with various concentrations
(10 — 60 M) were placed randomly in the volume cre-
ated by confinement.

Modelling the DNA polymer

For coarse-grained modeling, we used 10bp =~ 1 bead
bead “Kremer-Grest” (KG) model for DNA where 1 bead
has a diameter of 16 in Lennard-Jones (LJ) units corre-
sponding to ~ 3.4nm. We set the persistent length to
15 beads corresponding to 50nm consistent with dou-
ble helix DNA molecule. We established an N = 12000
KG bead DNA model where we maximized the num-
ber of binding sites and left sufficient spacing for DNA
segmental flexibility to minimize the impacts by bridging
the binding sites. The initial circular DNA structure was
compacted using self-attractive forces to reduce its size
to fit within the available volume, similar to our previous
work (Kosar et al., 2022). The binding sites are com-
posed of three beads (as opposed to two beads in our
previous work), increasing the likelihood of maximum in-
teraction with the proteins. 150 binding sites are placed
uniformly along DNA with 80-bead spacing.

Constructing the confinement

To mimic the rod-like shape of the bacterial cell wall, we
first built an open-ended cylinder (or simply a pipe) with
a diameter of R = 2r and a height of 2R. Then, two
semi-spheres with radiuses of r are used as caps to
close the endings of the cylinder. The overall structure
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Figure 6. TF residence time behaviors at distributed affinities

(A) Uniform distribution and (B) Normal or Gaussian distribution affinity models. Pattern analysis via fitting of triple exponential, power-law, and weighted power-law
equations from left to right respectively. TF concentrations were 60u M for all cases. Black lines are shown as reference from fixed nonspecific affinity of 3.5k7".

Specific binding affinities are 4kT for all the systems.

has a volume of 2/3 x m x R3. The radius (r) was set
to provide a 1% DNA volume fraction to match that of
E. coli. Therefore, r corresponds to ~ 300 in LJ units
(~ 100nm) for a DNA polymer length of N =12000. The
fixed beads of the cell wall are placed dense enough
to provide effective boundaries for DNA and proteins.
Nevertheless, there were an insignificant number of TF
leaks (< 2%) for extended simulations.

Modelling of the transcription factors

We employed a generic model of homodimeric TFs in
which a TF has two identical binding domains and a
hinge domain with no affinity to DNA. Binding domains
were placed around the hinge domains with 90° angles
in a semi-flexible fashion with 12 beads of persistent
length. Radiuses were set to 0.50 and 0.21¢ for hinge
and binding domains, respectively (Figure 1A). We used
relatively small binding domains to minimize multiple in-
teractions by single binding domains and prevent over-
condensation of the nucleoid. The exact sizes and an-
gles were used to ensure the well-fittings of dimeric TFs
into three-bead binding sites. We employed four dif-
ferent concentration levels (i.e.,10uM, 20uM, 40pM,
60uM). The corresponding number of TFs for the given
concentrations was calculated using the volume pro-
vided by the confinement. TFs were distributed into the
volume at random coordinates.
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Modelling the TF-DNA affinities

We used a fixed specific interaction potential of Uy, =
4KkT per bead, energy high enough for robust binding
also low enough to allow unbinding in the timeframe of
our simulations, enabling us to extract residence time
patterns. Varying nonspecific interaction potentials in
the range of 1 —4kT allowed tracking of residence times
at distinct local compaction levels and diverging cluster
sizes, as well as differing protein distribution over DNA.
For the distributed affinity cases, there was no specific
binding potential. Instead, affinities inclusively followed
the given ranges of 1 —4kT and 2 — 5kT with the in-
crement of 0.25kT, resulting in 13 distinct affinity levels
throughout DNA to ensure either Gaussian or uniform
distributions.

Calculation of residence durations

Transcription factors are considered bound under the
condition that at least one of two binding sites is in direct
contact with the DNA polymer. For each timestep, each
protein is marked either bound or unbound. Then, the
duration of each uninterrupted bound state was calcu-
lated (Figure 1B). Each time a particular residence du-
ration was encountered, the corresponding occurrence
was incremented by 1. We then utilized pooled occur-
rences, containing the number of occurrences for each
possible duration (1 — tmax), for analyzing residence
patterns of transcription factors from simulations with
distinct parameters. Obtained data is then minimized to
ensure one occurrence value has only one correspond-
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ing duration by taking the median of the durations. This
step was necessary for equation fits and visualizations.

Fitting equations to the residence time distributions
We used several equations to interpret the behavior of
transcription factors. Initially, we used single exponen-
tial decay c x exp(—t x k) and power-law ¢ x t % where
¢ stands for coefficient and k for decay rate or 77 1.
Due to suboptimal fitting with these equations, we in-
cluded double, triple, quadruple, and pentuple expo-
nential decays in the form of ¢; x exp(—t x k1) +... +
cn X exp(—t X ky). Resulting fits were graphed and
used for calculating the normalized Residual Sum of
Squares (RSS). Normalization was achieved by divid-
ing RSS by the number of durations with non-zero oc-
currence points to prevent more observations leading to
higher total RSS.

Clustering the transcription factors

Transcription factors within the threshold distance of
each other are accepted to be part of the same clus-
ter. We set the threshold distance to 2.1¢ in LJ units
in agreement with visual inspections. For the overview
of the system, the minimum number of transcription fac-
tors to form a cluster was 12, and for decay analysis, it
was 20, ensuring a more accurate estimation of mean
lifetimes.

Cluster analysis

Cluster analysis included size, conformation, surface
analysis, and decay rates. The size of a cluster is sim-
ply the number of transcription factors within that partic-
ular cluster. To classify the conformation (or shape) of a
cluster, we first determined three possible formations,
namely filamentous, globular, and semi-filamentous.
We formed Rg tensor for each cluster and evaluated
their eigenvalues. To distinguish surface and core clus-
ter proteins, we employed the Convex-Hull algorithm.
Decay rates (reverse of mean lifetimes) for clusters were
calculated by fitting a single exponential decay equation
to N(t)/No . Decay rates require statistically mean-
ingful numbers for reliable analysis of lifetimes, which
led us to select 20 as the threshold for minimum clus-
ter size. We then used linear regression for correlation
analysis between cluster dissipation mean lifetimes and
their sizes.

Code Availability

The codes necessary to  reproduce the
analyses and the graphs are available at
https://github.com/Zaf4/residence2.
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