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The transcription process is regulated by temporal

interactions of transcription factors with DNA. In the

last decade, computational and experimental stud-

ies revealed the residence times of transcription

factors on DNA correlate with transcriptional out-

put. Biochemical studies suggest that transcription

factors exhibit bi-exponential dynamics, attributed

to the binary affinity model composed of nonspe-

cific and specific protein-DNA bindings. Recently,

transcription factor residence times were shown

to display a power-law pattern implicating protein-

DNA affinity levels are rather continuous. Elucidat-

ing the underlying mechanisms of transcription fac-

tor residence distributions, beyond protein-DNA in-

teraction strength, is crucial to construct a more

complete understanding of transcriptional regula-

tion. Here, by using molecular dynamics simula-

tions of DNA and dimeric proteins, we demonstrate

residence time behaviors of generic homodimeric

transcription factors follow a multi-exponential pat-

tern even with single and binary affinity levels be-

tween DNA and proteins, indicating the existence

of emergent behavior. Our simulations reveal that

DNA-protein clusters of various sizes contribute to

this multi-exponential behavior. These findings add

another layer to transcriptional regulation and, con-

sequently, to gene expression by connecting pro-

tein concentration, DNA-protein clusters, and DNA

residence times of transcription factors.
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Introduction

Gene expression dictates many aspects of cellular be-

havior, including response to extracellular factors and

cellular identity. Among the many regulators of gene

expression, transcription factors (TFs) play the most

prominent role in inhibiting or activating the transcrip-

tion of their target genes (Browning, 2004; Seshasayee

et al., 2011; Bintu et al., 2005). Regulation of a gene

by a TF protein starts at the binding site once the TF

binds to its specific DNA sequence and forms protein-

DNA complexes. Nevertheless, gene expression is a

highly dynamic and regulated process. Thus, TF’s un-

binding from the DNA binding site might not be a fully

stochastic process (de Jonge et al., 2022; Haberle and

Stark, 2018). In accord, recent studies in TF dynamics

revealed that the residence time (RT) of a TF on its DNA

binding site (i.e., its unbinding rate) is intertwined with

transcriptional output (Clauß et al., 2017; Lickwar et al.,

2012; de Jonge et al., 2020). Thus, TF residence times

on DNA directly contribute to the regulation of gene ex-

pression. Therefore, understanding residence time pat-

terns becomes a key to the accurate prediction of gene

expression behavior.

The duration of a TF on its DNA binding site can de-

pend on the TF protein’s affinity to the DNA, tempera-

ture, and 3D DNA structure (Kim and Shendure, 2019;

Inukai et al., 2017). Kinetic studies focusing on unbind-

ing (or dissociation) kinetics of TFs from their single-

binding sites have demonstrated the concentration de-

pendency of TF unbinding rates (Graham et al., 2011;

Joshi et al., 2012). In scarce concentrations, a TF tends

to stay bound to its target site for more extended peri-

ods of time. In contrast, the abundance of unbound TFs

in solution leads to a competition for the binding sites

on DNA, resulting in much higher unbinding rates (i.e.,

shorter residence times) via the process referred to as

Facilitated Dissociation (FD) (Kamar et al., 2017; Koşar

et al., 2022).

The impact of TF concentration is not limited to protein

unbinding dynamics via FD. TFs can also contribute to

3D genome organization and form DNA-protein clus-

ters in a concentration-dependent manner (Kim and

Shendure, 2019; Noort et al., 2004; Skoko et al., 2006,

2004; Remesh et al., 2020; Koşar and Erbaş, 2022;

Arold et al., 2010; Dame et al., 2000; Winardhi et al.,

2015). Such structural effects are more pronounced

with bacterial Nucleoid-Associated Proteins (NAPs), a

class of DNA-binding proteins often with dual functional-

ity. NAPs are involved in chromosome organization, and

a number of them also function as transcription factors

(Dillon and Dorman, 2010; Wang et al., 2011; Dorman,

2014). Due to their common multivalent nature Lee

(1992), DNA-binding proteins can drive the bridging of

DNA segments and thus the formation of DNA-protein

clusters of various shapes and sizes and other forms of

chromosome architectural effects (Skoko et al., 2004;

Dillon and Dorman, 2010; Wang et al., 2011; Hammel

et al., 2016; Dame, 2005; Verma et al., 2019). Molec-

ular Dynamics (MD) simulations of model bacterial sys-

tems suggest that these events are highly dependent
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on protein concentration and Uns, nonspecific interac-

tion potential (i.e., the affinity between the DNA-binding

protein and nonspecific DNA).

The affinity of a TF to its specific binding site is often

stronger compared to its binding affinity towards a non-

specific DNA sequence. However, nonspecific binding

can contribute to the global chromosome organization.

Contrarily, specific protein-DNA interactions can gov-

ern the formation of small local DNA-protein complexes

(i.e., clusters) around the specific binding sites (Koşar

et al., 2022; Lin et al., 2012; Brackley et al., 2013; Ag-

back et al., 1998). DNA-protein complexes could signifi-

cantly affect transcriptional regulation. Transcription fac-

tories are multiprotein complexes formed by TFs, RNA

polymerase, coactivators, etc., within the eukaryotic nu-

clei. These factories not only carry out transcription but

also organize nuclear architecture (Iborra et al., 1996;

Cook, 2010; Melnik et al., 2011; Mitchell and Fraser,

2008). Therefore, multiprotein complexes or clusters

are crucial regulators of transcriptional output.

Moreover, Eukaryotic euchromatin regions, which are

not densely packed as heterochromatin regions, are

more accessible by transcription factors thus, more

transcriptionally active (Amemiya et al., 2022; Elgin

and Grewal, 2003; Penagos-Puig and Furlan-Magaril,

2020). This notion emphasizes the significance of

local genome architectures in residence times. In

other words, the contribution of DNA-binding proteins

to gene regulation is not restricted to their functions as

TFs since their activity in domain-specific and global

genome organization is also crucial.

A recent experimental study employing single molecule

tracking (SMT) demonstrated residence durations of

several TFs and chromatin-associated proteins dynam-

ics follow a power-law pattern (Garcia et al., 2021).

These findings support a continuum model for TF dy-

namics and TF-DNA interaction affinities rather than a

bi-exponential model attributed to binary specific and

nonspecific affinities.

In the bi-exponential model, TFs were considered to

have longer residence times on their specific target

DNA sequence and shorter residence times on non-

specific DNA, generating a bi-exponential distribution

of residence durations (Chen et al., 2014; Ball et al.,

2016; Morisaki et al., 2014). Contrary to this sugges-

tion, even with a single affinity (Uns = Usp) and binary

affinity model (Uns < Usp), we observed an apparent

multi-exponential pattern in our model, indicating an

emergent behavior. In parallel with our findings, multi-

exponential was used to interpret the residence behav-

iors of several SMT studies (Hipp et al., 2019; Reisser

et al., 2020; Agarwal et al., 2017).

Consequently, we explored the driving factors of multi-

exponential residence behaviors of TFs. In particular,

high nonspecific affinity cases, which enabled the for-

mation of much larger clusters, exhibited distinct RT dis-

tributions and required more exponents to match with

decay curves. Investigation of TF-DNA cluster forma-

tions of different sizes revealed that cluster dissipa-

tion mean lifetimes are coupled to their sizes. There-

fore, concentration and affinity-dependent cluster for-

mations could be the driving factors of the observed

multi-exponential patterns.

Finally, we explored the distributed affinity model to

check whether the additional complexity would lead to

power-law behavior. However, it is clear that limited dis-

crete affinity distribution again forms a multi-exponential

decay pattern and does not provide sufficient complex-

ity to generate a power-law behavior.

Here, we demonstrate that TF dynamics follow multi-

exponential patterns without the need for multiple TF-

DNA affinity levels. We also show how these behaviors

are impacted by cluster formations. Our model predicts

the power-law behavior might be plausible even with dis-

crete affinities with some additional complexities. These

findings may help establish a more advanced under-

standing of transcriptional regulation, thus of regulation

of gene expression.

Results

Residence time behaviors are multifactorial

We employed multiple cases for nonspecific interaction

affinities ranging from a very weak 1kT to a strong 4kT

(i.e., Uns = Usp) per bead, where Usp = 4kT per bead

in all cases. For each of these affinity levels, four differ-

ent physiologically relevant (Verma et al., 2019; Azam

et al., 1999; Ball et al., 1992) concentrations ranging

from 10 − 60µM of TFs were employed in the simula-

tions. We obtained residence time patterns, as shown

in Figure 1 and as described in methods, in the form

of occurrence versus duration, where occurrence is the

number of times a duration was achieved or observed.

We then tried fitting several equations to define TF res-

idence patterns (Figure 1C). Fit equations included ex-

ponential decay with up to five exponents as well as a

power-law equation (Figure 2).

The projection of RT patterns in the log-log scale ex-

hibited an apparent arching pattern, eliminating the

possibility of a good power-law fit, which requires a

straight pattern in such a scale. The single exponential

decay (ED) equation can only describe short-duration

(< 10a.u.) distributions regardless of affinity and con-

centration (Figure S2A, Figure S1), implying the full-

spectrum residence time behavior is not dependent on

a single parameter. This behavior was indeed expected

due to distinct NS and SP levels leading to at least a

bi-exponential behavior.

For most of the cases, our simulations utilized binary

values where, for each simulation, there was only one

nonspecific and one specific affinity where Uns < Usp. If

there was no emergent factor affecting residence times,

a double exponential decay (DED) would be sufficient to

interpret the residence time patterns obtained from the

simulations. Thus, we used a double exponential decay

equation for characterizing RT patterns. DED provided
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Figure 1. Graphical abstract of the study

(A) The coarse-grained model of a generic homodimeric transcription factor. The light blue parts represent the binding domains and dark blue part is the hinge

(non-binding) domain. Radiuses of the coarse-grained bead are given in Lennard-Jones (LJ) units and the angle between binding domains are shown in degrees. (B)

Possible binding states of a TF and calculation of residence times (RT). A TF could be fully or partially bound to DNA, or it could be in an unbound state in which it does

not interact with the DNA. Note that red and dark blue regions represent specific binding sites and nonspecific binding sites of the DNA, respectively. Nevertheless,

binding to the either site are considered equivalent. (C) Collection, minimization, and analysis of TF residence patterns. First, bound durations of each TF throughout

the simulations are collected which is then minimized to their medians. Resulting patterns are analyzed fitting several exponential equations.

much better fits compared to the ED equation but no-

tably failed to generalize well for all durations (Figure 2).

That is certainly noteworthy, considering simulations uti-

lized a single type of TF and two distinct types of DNA

sites.

The employed strategy here was to increase the num-

ber of exponents to characterize TF residence behav-

iors better. We gradually increased the number of ex-

ponents for the decay equation to up to five exponents.

On top of the visual inspection of the fits, we quantita-

tively analyzed their accuracy via normalized Residual

Sum of Squares (RSS), where the lower RSS indicates

a better fit. The increase from single to double as well

as from double to triple exponential decay resulted in

the order of magnitudes lower RSS (Figure 2B). Ad-

ditional increments in the number of decay exponents

also reduced RSS for the fits, but the changes were not

as drastic. These analyses demonstrate that RTs follow

a multi-exponential decay pattern, suggesting RT pat-

terns are shaped by additional factors besides binary

DNA-protein binding affinities.

Residence time behaviors are dependent on the

emergent behavior of TF concentration and binding

energies

Residence time behaviors (Figure 2A, Figure S1) sug-

gest a pattern beyond a bi-exponential system that

cannot be simply explained nor attributed to the dual

model of short-lived TF-DNA interactions on nonspe-

cific sites and longer-lived, more stable interactions on

specific binding sites. Therefore, an emergent behavior

is required to explain such multi-exponential patterns.

Specifically, patterns obtained from elevated concentra-

tion and high-affinity kT cases require more exponents,

indicating such behaviors emerge as the results of con-

centration and energy levels.

The relatively high binding energies and concentration

of DNA-binding proteins were shown to lead to cluster

formations as well as local and global condensations of

the chromosome (Koşar et al., 2022; Lin et al., 2012;

Brackley et al., 2013; Agback et al., 1998). Unsurpris-

ingly, higher concentrations yield larger clusters (Fig-

ure 3C). The remarkable part is that global compaction

of the chromosome, and cluster sizes, even conforma-

tions are mainly regulated by nonspecific interactions,

and specific interactions have little effect. This behav-

ior can be attributed to the abundance of nonspecific
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Figure 2. Analysis of TF residence time patterns

(A) Distribution of TF residence times in arbitrary unit (a.u.) at various concentrations for distinct Uns levels and fitting Exponential Decay (ED), Double Exponential

Decay (DED), Triple Exponential Decay (TED), Quadruple Exponential Decay (QED), Pentuple Exponential Decay (PED), and Power-law equations to residence time

data. (B) Normalized Residuals Sum of Squares (RSS) of the fits depicting the difference between observation and the fits. For all equations, overall RSS, RSS by

concentrations, and by binding affinities are shown, respectively. Note that specific binding energies are 4kT for all the systems.

DNA sites over specific sites. In this work, we reduced

the impact of global chromosome compaction via minia-

turized TF binding domains (Figure 1A), minimizing the

bridging of multiple DNA segments. Moreover, the use

of adequate binding energies eliminated the possibility

of high chromosomal compaction even at high concen-

trations (Figure 3A). This strategy allowed TFs to roam

relatively freely within the cellular confinement.

Our model depicts TFs residing for increasingly higher

durations on DNA instead of freely roaming around with

the increasing NS potential with fixed specific binding

energy (Figure 3A-B). Consistent with the previous find-

ings, at a very low NS potential (Uns = 1kT ), bound pro-

teins are sparsely distributed around the DNA polymer,

mainly near binding sites, but do not form DNA-polymer

complexes (i.e., clusters) (Figure 3). Relatively higher

NS potentials (Uns = 2.8kT and Uns = 3kT ) led to pri-

marily small and globular clusters. Whereas stronger

NS affinities (Uns = 3.5kT and Uns = 4kT ) enabled the

formation of much bigger clusters with filamentous con-

formation (Figure 3C). Therefore, we hypothesized the

cluster sizes and conformations to play significant roles

in TF residence patterns.

Cluster formations drive multi-exponential resi-

dence time patterns

To unravel the relationship between DNA-protein clus-

ters and multi-exponent patterns, we initially considered

tracking and collecting residence times of TFs for each

individual cluster, as described in Figure 1. However,

clusters are dynamic formations, and it is not rational to

follow TFs that were initially part of a cluster because

after they dissipate, they are free to bind anywhere

on DNA. Therefore, we rather investigated the dissi-

pation mean lifetimes of individual clusters (see meth-

ods). As opposed to RT pattern acquisitions, partial

unbinding events were also counted. This modification

was needed simply because at high nonspecific affini-

ties, the time needed for obtaining cluster decay rates

would exceed simulation lifetimes when only full unbind-

ing events were counted.

At relatively low nonspecific energies (Uns = 2.8kT and

Uns = 3kT ), correlation analysis of cluster size and their

dissipation durations did not reveal any relation. Con-

Kosar and Erbaş | Transcription Factor Residence Behaviors | 4

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2023. ; https://doi.org/10.1101/2023.09.21.558872doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.21.558872
http://creativecommons.org/licenses/by/4.0/


A B C
�
�
�
��
��
�
�

�
�
�
��
��
��
�
�

�
�
�
��
��
�
�

�
�
�
��
��
��
�
�

�
�
�
��
��
�
�

Figure 3. Visualizations of the system, protein distributions, and cluster formations of the coarse-grained bacterium model at various nonspecific binding

energies

(A) Overview of the system DNA (white-light blue), and TFs. (B) TF distributions within the confinement. (C) Cluster formations of TFs. Here, the coloring only

serves to distinguish distinct protein clusters. Snapshots were obtained from systems with TF concentrations of 60µM . Specific binding energies are 4kT for all the

systems.

trarily, higher nonspecific interaction potentials (Uns =

3.5kT and Uns = 4kT ) led to correlations with coeffi-

cient of r ≥ 0.5 (Figure 4B), where larger clusters had

longer mean lifetimes. These imply differently sized

clusters could dissipate at diverse rates, contributing

to multi-exponential behavior that is more apparent for

high nonspecific affinity cases (Figure 2A).

It should also be noted that at 2.8kT and 3kT nonspe-

cific affinities, cluster sizes ranged from 20 to 45 and

20 to 70 TFs, respectively (Figure 4B). The size ranges

were significantly improved with higher nonspecific in-

teractions. The cases of 3.5kT and 4kT nonspecific

affinities allowed the formation of clusters of size rang-

ing from 50 to 250 TFs (Figure 4B). This increase, of

course, provides advantages for the analysis of the re-

lation between lifetimes and cluster sizes.

TF residence times depend on their position in clus-

ters

Upon establishing the relationship between cluster sizes

and their lifetimes, we considered analyzing the resi-

dence times of TFs that are located at different regions

of the clusters. Cluster-associated TFs can be classi-

fied as surface TFs and core TFs. While the core TFs

are rather trapped within the cluster, surface TFs are

more exposed and could be expected to have shorter

residence durations as they are free to unbind. Addi-

tionally, TFs that are not part of any cluster are classi-

fied as free TFs, which are useful as references against

cluster-associated TFs (Figure S2B).

Visual investigation of individual proteins located at dif-

ferent positions with respect to the TF-DNA clusters did

not show apparent distinction in their residence times

(Figure S2). However, in an analytic (i.e., t-test) and

more comprehensive approach utilizing multiple time

steps, core TFs exhibited significantly longer residence

times compared to surface and free TFs (Figure 5A).

However, this behavior was limited to the high nonspe-

cific affinity cases and not observed at lower nonspecific

potentials, which may add another layer of complexity to

residence behaviors, therefore, could explain the more

prominent multi-exponential residence patterns at such

energy levels. At Uns = 3.5kT case, surface TFs also

had significantly higher residence times in comparison

to free TFs (Figure 5A). This disparity indeed reveals

that even located at the exposed regions of clusters,

TFs could behave differently compared to freely roam-

ing TFs. Overall, the variations among core, surface,

and free TFs residence times could shape the overall

residence distributions and further contribute to multi-

exponential DNA-residence behaviors of TFs at single

and binary affinity models.
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Figure 4. Correlation analysis of cluster sizes and dissipation times

(A) Snapshots of the TF clusters at given nonspecific energies from random timeteps. Darker colors implicate higher mean lifetime as indicated by the colorbars on

the left. (B) Mean lifetimes in arbitrary units versus cluster sizes in number of TF they are composed of. Regression lines are used to determine correlations. Pearson

correlation coefficients (r) are given on the upper-left side and number of the clusters in the analysis are given on the bottom-right side. TF concentrations were 60µM

for all cases. The threshold was set as minimum 20 TFs for cluster size for decay rate analysis due to statistical reasons. 12 timesteps were used for sampling and

the fixed specific binding energy was 4kT for all simulations.

Another factor that should be considered is the differ-

ing number of TFs of each type for distinct cases. Even

though the concentration (60µM ) and specific binding

potentials (Usp = 4kT ) are fixed among the cases, the

higher nonspecific energies drive clustering rather than

scattering (Figure 3B), also leading to the formation

of much bigger clusters (Figure 3C, Figure 4B). Thus,

more of the TFs are located within the clusters for high

nonspecific affinity cases (Figure 5B). Moreover, the

larger the clusters, the higher the core TF percentages

were (Figure 5B), as expected due to the decrease in

the surface-to-volume ratio.

Distributed affinity models do not lead to power-law

behavior

Our MD simulations revealed that even single and bi-

nary affinity models could lead to multi-exponential res-

idence time patterns. The next step was to mimic

the continuum affinity model with a distributed affinity

model, where we employed 13 distinct DNA site types

and assigned them diverse binding affinities with DNA.

The affinities inclusively ranged between 1 − 4kT and

2 − 5kT with an increment of 0.25kT and the number

of DNA sites for the given affinity assigned to provide

either a normal (i.e., Gaussian) or uniform distribution.

Contrary to our expectations, distributed affinity mod-
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Figure 5. Residence time analysis based on the TF localization with respect to clusters

(A) Differences among of TF residence times for free, surface, and core TFs at given nonspecific affinities. Welch’s t-test was used for significance analysis. (B)

Distributions of TF residence times for the given TF types. 12 timesteps were used for sampling and the fixed specific binding energy of 4kT was used for all

simulations. Representative 12% of the data are shown to prevent over-crowding. Data was obtained from 60µM cases. Free TFs do not belong in any clusters.

TFs on the Surface and in the Core of clusters were named accordingly.

els did not produce power-law behaviors . Instead, the

triple-exponential fit was the better predictor of the mod-

els (Figure 6). Further power-law fit attempts via adding

weights for the power-law equation provided better fits

partly for higher durations, yet it failed to explain over-

all residence time patterns (Figure 6). Therefore, we

might speculate that discrete distribution models may

not be enough for power-law behavior, and such be-

havior would require much higher complexity than our

MD simulations could provide to behave completely as

a continuum model.

Discussion

Our findings reveal an apparent multi-exponential be-

havior for the discrete affinity model of TF-DNA bind-

ings. Single and binary affinities leading to multi-

exponential distributions were beyond the prior sugges-

tion of bi-exponential behavior due to specific and non-

specific binding sites. Here, we demonstrate how this

multi-exponential behavior is shaped by TF-DNA com-

plexes, the dependency of these formations, and the

residence times behavior to nonspecific binding affini-

ties.

One of the prominent features of our previous coarse-

grained model was the global chromosome organiza-

tion. Although that system allowed the modeling of

the role of nonspecific affinities, selected bead size for

TF binding domains led to multiple interactions facilitat-

ing the chromosomal collapse. Extreme compaction of

the chromosome and resulting residence times of TFs

would exceed simulation durations, making it unlikely to

obtain RT patterns. By lowering the bead size of TFs,

we minimized multiple binding and over-compaction.

That also enabled the decoupling of 3D genome orga-

nization from RT patterns, increasing the control over

other variables.

Similar to any MD study, this work has considerable

limitations. Most prominently, the simplification of the

cell for coarse-grained MD simulations removes most

of the complexity possessed by the actual cellular sys-

tems. Additionally, we used a single type of TF for all

MD simulations with discrete binding affinities. In com-

bination, reduced complexity may explain the lack of ob-

servation of power-law behavior, which was attributed

to continuous TF-DNA affinities in experimental studies.

Of course, the cellular complexity is persistent in the

experimental setup. Therefore, other factors, such as

fluctuating TF levels and dynamic chromosomal land-

scape, should not be neglected. However, our sim-

ulations, even with discrete affinities, exhibited multi-

exponential behaviors, suggesting a power-law pattern

is highly possible with continuous affinities, which is be-

yond the scope of this study.

As their primary roles, TFs can inhibit and activate tran-

scription. The formation of stable protein-DNA com-

plexes extends the duration of a TF’s residence on its

target DNA site. That, in turn, could significantly en-

hance their inhibitory or activatory effects. We may also

speculate that larger and more compact clusters may

decrease the accessibility by RNA polymerase, such as

in heterochromatin-like domains (Amemiya et al., 2022),

effectively reducing the transcriptional output. Contrar-

ily, similar protein-DNA complexes, but in the form of

transcriptional machinery, could initiate or enhance tran-

scription.
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Even though we demonstrated cluster size is an im-

portant factor for residence times, we also wanted to

reveal any possible relationship between cluster shape

and dissipation rates. However, investigation of the con-

formations of the cluster formations on residence times

was inconclusive due to cluster sizes being highly de-

pendent on nonspecific affinities. Thus, establishing a

clear relation between cluster shape and RT requires

eliminating affinity as a variable. In turn, that would re-

quire a separate MD model. Furthermore, clusters are

not fixed formations; they are highly dynamic. Their

sizes, conformations, orientations, and even the DNA

segments they interact with change over time in the sys-

tem. Moreover, clusters can merge and split, making it

rather complicated to track individual clusters and make

accurate analyses.

Additionally, the utilization of dimeric TF models may

have contributed to the multi-exponential behavior in

two ways. First, our definition of unbound TF requires

both binding domains not to be in touch with any DNA

molecule. In other words, partial bindings to DNA (i.e.,

bindings with only one binding domain) are equivalent

to full bindings in terms of being considered bound. The

difference in stability of partial binding and full binding

may indeed lead to distinct residence behaviors con-

tributing to multi-exponential behavior. Moreover, di-

valent interactions are significantly more prone to fa-

cilitated dissociation (Kamar et al., 2017; Chen et al.,

2018). Since FD is pronounced at high concentrations

(Koşar et al., 2022), multi-exponential behavior could be

partially attributed to FD as it can facilitate the unbinding

of the exposed TFs (i.e., free or surface) more than the

unexposed TFs (i.e., core).

Noise in gene expression is an important factor driving

cellular heterogeneity (Liu et al., 2019). Gene expres-

sion noise could lead different cells in a homogeneous

population to distinct phenotypes even under the same

environmental conditions (Raser and O’Shea, 2005).

This resulting cellular heterogeneity may provide evo-

lutionary advantages to cells. The primary driving event

of gene expression noise is considered to be TF bind-

ing (Parab et al., 2022). Also, infrequent or rare bio-

chemical processes contribute to noise in gene expres-

sion (Raser and O’Shea, 2005). Such infrequency or

lower occurrence could be seen for the higher duration

residences in our systems, which are more apparent

at high nonspecific affinity and high protein concentra-

tion cases. Therefore, such cases could lead to higher

gene expression noise and yield a more heterogeneous

population of cells. It should also be noted that longer

residence times are more likely to cause transcriptional

bursts (Raser and O’Shea, 2005), which is another no-

tion that contributes to noise in gene expression. On the

other hand, shorter DNA residence times are suggested

to lower gene expression noise (Azpeitia and Wagner,

2020). Our study sheds light on DNA residence distri-

butions and may explain the diverse noise in gene ex-

pression responses.

In this study, we demonstrate that TFs follow multi-

exponential patterns with discrete affinities in our MD

model. We discuss how binding affinity and concen-

tration of TFs dictate these behaviors. There are in-

deed some implications of this behavior on biological

systems. Isolated from cellular complexity and con-

tinuum model, model homodimeric TFs exhibit multi-

exponential patterns even with single and binary affini-

ties. This type of behavior might be one of the underly-

ing reasons for gene expression noise and consequent

cellular heterogeneity and contribute to cellular differ-

entiation. Moreover, the distributions of TF-DNA res-

idence times may help explain discrete transcriptional

bursts. Lastly, DNA-protein clusters in bacterial chro-

mosomes could drive Topologically Associated Domain-

like domain formations and further affect the regulation

of gene expression. Overall, our findings might con-

tribute to a more comprehensive understanding of gene

expression and regulation.

Methods

Modelling the system

We used a modified version of our previous coarse-

grained model bacterial system mimicking an E. coli

bacterium. The model system includes a fairly re-

laxed chromosome with uniformly distributed binding

sites confined within cell wall-like boundaries resem-

bling that of a rod-shaped bacterium. Generic homod-

imeric transcription factors with various concentrations

(10 − 60µM ) were placed randomly in the volume cre-

ated by confinement.

Modelling the DNA polymer

For coarse-grained modeling, we used 10bp ≈ 1 bead

bead “Kremer-Grest” (KG) model for DNA where 1 bead

has a diameter of 1σ in Lennard-Jones (LJ) units corre-

sponding to ∼ 3.4nm. We set the persistent length to

15 beads corresponding to 50nm consistent with dou-

ble helix DNA molecule. We established an N = 12000

KG bead DNA model where we maximized the num-

ber of binding sites and left sufficient spacing for DNA

segmental flexibility to minimize the impacts by bridging

the binding sites. The initial circular DNA structure was

compacted using self-attractive forces to reduce its size

to fit within the available volume, similar to our previous

work (Koşar et al., 2022). The binding sites are com-

posed of three beads (as opposed to two beads in our

previous work), increasing the likelihood of maximum in-

teraction with the proteins. 150 binding sites are placed

uniformly along DNA with 80-bead spacing.

Constructing the confinement

To mimic the rod-like shape of the bacterial cell wall, we

first built an open-ended cylinder (or simply a pipe) with

a diameter of R = 2r and a height of 2R. Then, two

semi-spheres with radiuses of r are used as caps to

close the endings of the cylinder. The overall structure
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Figure 6. TF residence time behaviors at distributed affinities

(A) Uniform distribution and (B) Normal or Gaussian distribution affinity models. Pattern analysis via fitting of triple exponential, power-law, and weighted power-law

equations from left to right respectively. TF concentrations were 60µM for all cases. Black lines are shown as reference from fixed nonspecific affinity of 3.5kT .

Specific binding affinities are 4kT for all the systems.

has a volume of 2/3 × π × R3. The radius (r) was set

to provide a 1% DNA volume fraction to match that of

E. coli. Therefore, r corresponds to ∼ 30σ in LJ units

(∼ 100nm) for a DNA polymer length of N = 12000. The

fixed beads of the cell wall are placed dense enough

to provide effective boundaries for DNA and proteins.

Nevertheless, there were an insignificant number of TF

leaks (< 2%) for extended simulations.

Modelling of the transcription factors

We employed a generic model of homodimeric TFs in

which a TF has two identical binding domains and a

hinge domain with no affinity to DNA. Binding domains

were placed around the hinge domains with 90◦ angles

in a semi-flexible fashion with 12 beads of persistent

length. Radiuses were set to 0.5σ and 0.21σ for hinge

and binding domains, respectively (Figure 1A). We used

relatively small binding domains to minimize multiple in-

teractions by single binding domains and prevent over-

condensation of the nucleoid. The exact sizes and an-

gles were used to ensure the well-fittings of dimeric TFs

into three-bead binding sites. We employed four dif-

ferent concentration levels (i.e.,10µM , 20µM , 40µM ,

60µM ). The corresponding number of TFs for the given

concentrations was calculated using the volume pro-

vided by the confinement. TFs were distributed into the

volume at random coordinates.

Modelling the TF-DNA affinities

We used a fixed specific interaction potential of Usp =
4kT per bead, energy high enough for robust binding

also low enough to allow unbinding in the timeframe of

our simulations, enabling us to extract residence time

patterns. Varying nonspecific interaction potentials in

the range of 1−4kT allowed tracking of residence times

at distinct local compaction levels and diverging cluster

sizes, as well as differing protein distribution over DNA.

For the distributed affinity cases, there was no specific

binding potential. Instead, affinities inclusively followed

the given ranges of 1 − 4kT and 2 − 5kT with the in-

crement of 0.25kT , resulting in 13 distinct affinity levels

throughout DNA to ensure either Gaussian or uniform

distributions.

Calculation of residence durations

Transcription factors are considered bound under the

condition that at least one of two binding sites is in direct

contact with the DNA polymer. For each timestep, each

protein is marked either bound or unbound. Then, the

duration of each uninterrupted bound state was calcu-

lated (Figure 1B). Each time a particular residence du-

ration was encountered, the corresponding occurrence

was incremented by 1. We then utilized pooled occur-

rences, containing the number of occurrences for each

possible duration (1 − tmax), for analyzing residence

patterns of transcription factors from simulations with

distinct parameters. Obtained data is then minimized to

ensure one occurrence value has only one correspond-
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ing duration by taking the median of the durations. This

step was necessary for equation fits and visualizations.

Fitting equations to the residence time distributions

We used several equations to interpret the behavior of

transcription factors. Initially, we used single exponen-

tial decay c×exp(−t×k) and power-law c× t−k where

c stands for coefficient and k for decay rate or τ−1.

Due to suboptimal fitting with these equations, we in-

cluded double, triple, quadruple, and pentuple expo-

nential decays in the form of c1 × exp(−t × k1) + ... +
cn × exp(−t × kn). Resulting fits were graphed and

used for calculating the normalized Residual Sum of

Squares (RSS). Normalization was achieved by divid-

ing RSS by the number of durations with non-zero oc-

currence points to prevent more observations leading to

higher total RSS.

Clustering the transcription factors

Transcription factors within the threshold distance of

each other are accepted to be part of the same clus-

ter. We set the threshold distance to 2.1σ in LJ units

in agreement with visual inspections. For the overview

of the system, the minimum number of transcription fac-

tors to form a cluster was 12, and for decay analysis, it

was 20, ensuring a more accurate estimation of mean

lifetimes.

Cluster analysis

Cluster analysis included size, conformation, surface

analysis, and decay rates. The size of a cluster is sim-

ply the number of transcription factors within that partic-

ular cluster. To classify the conformation (or shape) of a

cluster, we first determined three possible formations,

namely filamentous, globular, and semi-filamentous.

We formed Rg tensor for each cluster and evaluated

their eigenvalues. To distinguish surface and core clus-

ter proteins, we employed the Convex-Hull algorithm.

Decay rates (reverse of mean lifetimes) for clusters were

calculated by fitting a single exponential decay equation

to N(t)/N0 . Decay rates require statistically mean-

ingful numbers for reliable analysis of lifetimes, which

led us to select 20 as the threshold for minimum clus-

ter size. We then used linear regression for correlation

analysis between cluster dissipation mean lifetimes and

their sizes.

Code Availability

The codes necessary to reproduce the

analyses and the graphs are available at

https://github.com/Zaf4/residence2.
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