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MCell4 with BioNetGen

ABSTRACT

Biochemical signaling pathways in living cells are often highly organized into spatially
segregated volumes, membranes, scaffolds, subcellular compartments, and organelles
comprising small numbers of interacting molecules. At this level of granularity stochastic
behavior dominates, well-mixed continuum approximations based on concentrations break
down and a particle-based approach is more accurate and more efficient. We describe
and validate a new version of the open-source MCell simulation program (MCell4), which
supports generalized 3D Monte Carlo modeling of diffusion and chemical reaction of discrete
molecules and macromolecular complexes in solution, on surfaces representing membranes,
and combinations thereof. The main improvements in MCell4 compared to the previous
versions, MCell3 and MCell3-R, include a Python interface and native BioNetGen reaction
language (BNGL) support. MCell4’s Python interface opens up completely new possibilities
for interfacing with external simulators to allow creation of sophisticated event-driven
multiscale/multiphysics simulations. The native BNGL support, implemented through a
new open-source library libBNG (also introduced in this paper), provides the capability to
run a given BNGL model spatially resolved in MCell4 and, with appropriate simplifying
assumptions, also in the BioNetGen simulation environment, greatly accelerating and

simplifying model validation and comparison.

1 1 Introduction

2 Living cells are complex structures in which biomolecules and biochemical processes are spatially organized
3 and span the extracellular space, plasma membrane, cytosol and subcellular organelles. These biochemical
4 processes are intrinsically multiscale in nature because they are based on molecular interactions on a
5 small scale leading to emergent behavior of cells on a larger scale. Becajuse of the dynamic nature of
6 biochemical processes on different temporal and spatial scales, appropriate mathematical tools are required
7 to understand the underlying dynamics and to dissect the mechanisms that control system behavior [1].
8 Overall, understanding how cellular design dictates function is essential to understanding health and disease
9 in the brain, heart, and elsewhere. MCell (Monte Carlo Cell) is a biochemistry simulation tool that uses
10 spatially realistic 3D cellular models and stochastic Monte Carlo algorithms to simulate the movements
11 and interactions of discrete molecules within and between cells[2, 13, 4}, 5]]. Here we describe MCell4, a new

12 version of MCell.

13 One of the most important new features in MCell4 is a flexible Python application programming interface
14 (API) that allows coupling between MCell and other simulation engines or other custom code. By itself

15 MCell performs particle-based reaction-diffusion simulations on spatial and temporal scales from nm to um
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16 and from ps to 10s of seconds. MCell4’s Python API extends its capabilities by facilitating the generation of

17 multiscale hybrid models, as we demonstrate here with an example.

18 A second important addition to MCell4 is efficient support for rule-based modeling by making use of
19 the BioNetGen (BNG) Language (BNGL). BNG is an open source software package for representing and
20 simulating biochemical reactions [6]. Although powerful, BNG models are non-spatial. Support for models
2t implemented in BNGL within MCell4 permits determination of the role of space in different reaction
22 scenarios. This is not a trivial task because the time scales of diffusion and of reactions [7]], as well as the

23 spatial localization of proteins, influence the results.

24 We first present the design principles of MCell4 and its API, and next we introduce the new BioNetGen
25 library. Finally we demonstrate some of the new features in MCell 4 with examples and present a hybrid

26 model that couples spatial simulations in MCell with ordinary differential equations (ODEs).

2z 1.1 Particle-Based Reaction Dynamics Tools

28 In particle-based reaction-diffusion simulations, each molecule is represented as an individual agent.
20 Molecules diffuse either within volumes or on membrane surfaces and may affect each other by react-
3 ing upon collision. A review of currently maintained particle-based stochastic simulators which describes

31 Smoldyn [7], eGFRD [8]], SpringSaLaD [9], ReaDDy [10], and MCell3 was recently published in [11]].

32 MCell is a particle-based simulator that represents volume molecules as point particles and surface molecules
33 as area-filling tiles on surfaces. The typical simulation time-step in MCell is 1 ps, and the simulated times
34 can stretch from milliseconds to minutes. Briefly, MCell operates as follows. As a volume molecule diffuses
35 through space by random Brownian motion, all volume molecules within a given radius (i.e. the interaction
3 radius, 7;,;) along its trajectory, or the single surface molecule located at the point of collision on a surface, are
37 considered as possible reaction partners. As a surface molecule diffuses it is first moved to its final position
38 after one time step and any surface molecules immediately adjacent to that final position are considered
s as possible reaction partners. Molecules diffusing in 3D volumes do not themselves have volume (i.e. no
40 volume exclusion). The collision cross-section area for interactions among volume molecules is derived
41 from r;,;. Molecules on membrane surfaces occupy a fixed area defined by the individual triangular grid
42 elements (tiles) created by subdividing the surface mesh triangles with a barycentric grid. The collision
43 cross-section for interactions between volume and surface molecules and among surface molecules is
44 derived from the density of the barycentric surface grid. MCell is able to represent arbitrary geometries
45 comprised of triangulated surface meshes. Thus complex models such as a 180 um?® 3 dimensional serial
46 electron microscopic reconstruction of hippocampal neuropil have been used to construct a geometrically-
47 precise and biophysically accurate simulation of synaptic transmission and calcium dynamics in neuronal
48 synapses [5]. A detailed description of the mathematical foundations of MCell’s algorithms can be found in

49 these references [2} 3] 4].
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5o MCell3-R [12], a precursor of of MCell4, is an extension of MCell that supports BNGL [13] and allows
5t modeling of protein complexes or polymers by using rule-based definition of reactions. MCell3-R uses a

52 library called NFSim [14] to compute the products of reaction rules for reactions described in BNGL.

53 MCell4 is an entirely new implementation of MCell, written in C++. It provides a versatile Python interface
54 in addition to many other improvements. In particular it runs significantly faster when simulating complex
55 reaction networks expressed as rules in BNGL. And most of the features of MCell that were introduced
s6 previously [4] have been retained. Here we briefly describe the motivations for introducing new features in

57 MCell4.

ss 1.2 Motivation for the MCell4 Python Application Programming Interface

se  We had two important motivations for the creation of the MCell4 Python API: 1) to give the users the freedom
60 to customize their models in a full-featured modern programming language, and 2) to create an easy way to

st couple MCell4 with other simulation platforms to allow multi-scale, multi-physics simulations.

62 The main goal when designing the new API for MCell4 was to allow definition of complex models combining
63 many reaction pathways distributed over complex geometry. Thus, a main requirement was to enable
64+ modularity with reusable components that can be independently validated. With this feature one can build

65 complex models by combining existing modules with new ones.

66 As in the approach in the PySB modeling framework [15], a model in MCell4 is seen as a piece of software,
67 allowing the same processes used in software development to be applied to biological model development.
68 The most important such processes are: 1) incremental development where the model is built step by step,
o relying on solid foundations of modeling that has been validated previously, 2) modularity that provides the
70 capability to create self-contained, reusable libraries, 3) unit testing and validation to verify that parts of the
71 model behave as expected, and 4) human-readable and writable model code that can be stored with git or
72 other code version control software. In addition to being essential for incremental development, this also
73 allows code reviews [16] so that other team members can inspect the latest changes to the model and can

74 contribute their own modules to the growing code base.

75 1.3 Motivation for a New BioNetGen Library

76 NFSim [14] is a C++ library that provides BioNetGen support, implements the network-free method, and
77 is used in MCell3-R [12]. To use a BNGL model in MCell3-R, the BNGL file first needs to be parsed by
78 the BioNetGen compiler; then, a converter generates a file containing MCell Model Description Language
79 (MDL), a file with rule-based extensions to MDL (MDLR), and additional XML files required by the NFSim
so library. These files then constitute the model for simulation in MCell3-R. The disadvantage of this approach
81 is that the original BNGL file is no longer present in the MCell3-R model. Thus each time changes are made

s2 to the model, the converter must be run again, and any changes made by hand to the MCell3-R model files

4
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83 will be lost. MCell3-R also has performance and memory consumption problems when the simulated system

84 has a large number of potential reactions.

85 To create a seamless integration of BNGL with MCell4 we implemented a new library for the BioNetGen
8 language that contains a BNGL parser and a network-free BNG reaction engine the main purpose of which is
87 to compute reaction products for a given set of reaction rules and reactants. This BNG library (libBNG) was
ss designed to be independent of MCell4 in mind so that it can be used in other simulation tools. libBNG does
8o not yet support all of the special features and keywords of the BioNetGen tool suite. Most notably, BNGL
90 functions are not supported, however the set of supported features is sufficient for any MCell4 model. And
91 when a special function is needed, it can be represented in Python code with the MCell4 APL The source

92 code of libBNG is available under the MIT license in Reference [17].

93 1.4 Features of MCell4

94 Here we briefly describe some of the features of MCell4. In the results section we present a few relevant
o5 examples specifically to demonstrate some of these features. We indicate which example illustrates the

96 mentioned feature.

o7 1.4.1 Python/C++ API for Model Creation and Execution

98 All models can now be created in Python. CellBlender (see section|[1.5) is useful for creation of many relatively
99 simple models without the need to write Python code by hand. However, more complicated customized
100 models will need to include a custom Python script. While CellBlender provides for inclusion of custom
101 python scripts, for simplicity and explanatory power, all the examples presented in the results section of this

102 paper are written solely in Python.

103 1.4.2 Reactions are Now Written in BNGL
104 In MCell4 the reaction language is BNGL [13]. Thus, MCell4 fully supports rule-based reactions and all
105 models use this feature.

106 Most importantly, the support for BNGL and NFSim means that MCell4 performs direct, agent-based evalu-
107 ation of reaction rules and thus enables spatially-resolved network-free simulations of interactions between
18 and among volume and surface molecules. The CaMKII holoenzyme model in the results section for

1009 example, would not be possible without the spatial network-free algorithms implemented in MCell4.

110 1.4.3 Ability to Go Back and Forth between MCell4 and BNG Simulator Environments

111 The new BNG library [17] allows direct loading and parsing of a BNG model that can then be placed

112 within a realistic 3D cellular geometry. This allows comparison of the results of non-spatial (simulated with

5
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113 BioNetGen solvers) and spatial (simulated with MCell4) implementations of the same BNG model. Two of
114 the examples in the results section demonstrate this feature: SNARE (3.1.1), and CaMKII (3.1.3).

115 If the spatial features are found to be unimportant for a given model, and simulation speed is of more
116 concern, the BNGL file can be run as a separate module with the BNG simulator. See section for an

117 example.

118 1.4.4 Other Advanced Features

119 Among the more advanced features introduced in MCell4 is the ability to implement transcellular and
120 transmembrane interactions that occur between surface molecules located on separate membranes. MCell4
121 also supports both coarse-grained and fine-grained customization of models by customizing the time-step
122 customization and by introducing event-driven callbacks. Callbacks implement custom Python code that
123 runs when a particular reaction occurs or when a collision occurs between a molecule and a wall. An example
124 of the use of callbacks to implement release of neurotransmitter when a SNARE complex is activated is

125 shown in section

126 Finally, the new Python API supports the ability to create multi-scale multi-physics hybrid simulations that
127 take advantage of all the existing Python packages. For an example of a hybrid model see section[3.3]

128 1.5 Model Creation and Visualization in CellBlender

120 CellBlender is a Blender [18] addon that supports creation, execution, analysis, and visualization of MCell4
130 models. CellBlender has been updated from its previous MCell3 version and includes several new features:
131 automatic generation of well structured Python code from the CellBlender representations of complete
132 MCell4 models; execution, analysis, and visualization of these models; and visualization of simulation data
133 generated by simulations of externally created Python-only models. CellBlender offers an easy way to begin
134 using MCell through built-in examples (Fig. [l shows an example of a model of the Rat Neuromuscular

135 Junction), and tutorials [19].

13s 2 Design and Implementation

137 21 MCell4: a Bird’s Eye View

138 We will briefly review MCell4’s architecture and fundamental aspects of its API, starting with Fig.

139 MCell simulations progress through time by a series of iterations. The duration of an iteration is given
140 by a user-defined time step (usually 1 ps). The Scheduler keeps track of events to be run in each iteration.
141 The main simulation loop implemented in the all-inclusive object called "World" requests the Scheduler to
142 handle the all the events that occur in each iteration (Fig. [3) until the desired number of iterations have been

143 completed.
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User Perspective
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Figure 1: MCell4 models can be created, executed, and visualized using CellBlender, an addon for Blender. The
capabilities of Blender are indispensable for creating complex geometries for MCell4 models.

PyMCell MCell4 Engine
Python Interface

Scheduler Events

‘ i

Model Representation . ;
Simulation State

!

BNG Library

MCell3 MDL
Parser Species Reactions

Figure 2: MCell4 is comprised of four main components: 1) The PyMCell library provides a Python interface and contains
classes to hold the model representation, 2) The MCell4 engine implements the simulation algorithms, 3) The BNG
(BioNetGen) library provides methods to resolve BioNetGen reactions, and 4) The MDL (Model Description Language)
parser enables backwards compatibility with MCell3.

World .| Scheduler .| BaseEvent
ReleaseEvent | DiffuseReactEvent || MoIRxnCountEvent || VizOutputEvent

- create new - diffuse molecules - count molecules or || - dump molecule
molecules reactions positions

Figure 3: The Scheduler executes time step iterations which consist of discrete events executed in this order: 1) A
ReleaseEvent creates new molecules, 2) A MolRxnCountEvent counts numbers of molecules or how many times a reaction
occurrs, 3) A VizOutputEvent stores molecule locations for visualization in CellBlender, and 4) A DiffuseReactEvent
implements diffusion of molecules, checks collisions, and executes reactions. Only the DiffuseReactEvent must be
executed at each time step to move the time forward. The other events listed here are optional.
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144 2.2 Python API Generator: A Closer Look

145 The MCell4 physics engine is implemented in C++. To ensure reliable correspondence between the represen-
146 tation of a model in Python and in C++, we have implemented a Python API generator which is used when
147 building the MCell4 executable and Python module from source code. The API generator reads a high-level
148 definition file in the YAML format and automatically generates all the base C++ classes, their corresponding
149 Python API representations, code for informative error messages, and documentation. A consistent Python
150 and C++ API contributes to the quality of the user experience when creating a model, and facilitates well

151 maintained documentation.

152 The presence of the API generator, schematically represented in Fig. |4} ensures that when new features are
153 added to MCell4, one only needs to modify a single API definition in the YAML format to ensure that both

154 the API and the documentation reflect the new features.

Base C++ classes that hold the model
representation

Python interface to C++ code through
pybind11

Definition of API

; API
classes in YAML | generator C++ code to export model representation
format as Python code, e.g., for checkpointing

API definition for Python code editors ‘

Documentation in RST markup language ‘

Figure 4: When MCell4 is built from its source code, the API generator reads a high-level definition of the MCell4 Python
interface and generates code and documentation. Automatic generation of an API makes it possible to easily modify or
extend the API while ensuring that all parts including documentation stay consistent. The API generator is a general
tool that can also be used (with minor modifications) for other software tools that combine C++ and Python [20].

155 2.3 MCell4 Model Structure

156 A predefined model structure is important to enable reusability of model components (e.g., [21]). With a
157 predefined model structure every piece of code for a given component (such as reaction definitions, geometry,
158 initial model state, and observables) is in a file with a specified name and follows a predefined coding style.
159 Such standardized model structure (shown in Fig.[5) aids in the reuse of code and simplifies creation of new
160 models by leveraging existing model components. Another advantage of a predefined model structure is the

161 capability to combine parts of existing models into one model (Fig. [6).

162 2.3.1 Example Model Using the MCell4 Python API

163 A simple example that shows the MCell4 API including Subsystem, Instantiation, and Model classes is
164 shown in Fig.[7} Because of the simplicity of this example, we do not show the division into the separate files

165 illustrated in Fig.
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parameters.py
(used by all
other files)

geometry.py
subsystem.py

or <—{ instantiation.py H observables.py
subsystem.bngl

model.py arrows show dependencies

Figure 5: The main files included in a standard MCell4 model are: 1) parameters.py with all the model parameters, 2)
subsystem.py that captures information on species and reactions in a way that is independent of a particular model
and can be used as a reusable module, 3) geometry.py with a definition of 3D geometry objects, 4) instantiation.py that
usually defines the initial model state, i.e., which geometry objects are created in the simulation and the number and
positions of molecules to be released at a given time, 5) observables.py with lists of characteristics to be measured and
saved in files during simulation, and 6) model.py in which all the parts of the model are assembled together and in which
the the simulation loop with optional interactions with external simulators is defined. Model.py is the only required file.

geometry o e geometry of a

PR L synaptic spine

terminal ynaptic sp

t 1
parameters & parameters & || parameters & || instantiation 1: instantiation 2: instantiation 3: | | observables:
subsystem 1: subsystem 2: subsystem 3:
releases of releases of releases of what do |

definition of a definition of definition of molecules molecules in an molecules in need to know
new synaptic presynaptic postsynaptic interacting in the || instantiated an instantiated | | about my
pathway that | pathways pathways new synaptic presynaptic synaptic spine | | simulated
am studying pathway terminal system

not all dependencies are shown

Figure 6: Modularity of a model allows assembly of multiple subsystem definitions into a single model. In the example
shown here, individual modules are assembled to construct a model of a new synaptic pathway that is affected by other
processes. The complete model includes modules that individually define the presynaptic terminal with its presynaptic
pathways and the postsynaptic spine with its postsynaptic pathways.

166 2.4 Graph-Based Approach To Protein Modeling

167 BNGL [23] supports intuitive modeling of protein complexes by representing them as undirected graphs.
168 Such graphs contain two types of nodes: elementary molecules and components. Component nodes represent
160 binding sites of the protein and can also express the state of the whole protein or of a binding site. A
170 graph representing a single protein is implemented as an elementary molecule node with component nodes
171 connected to it through edges. To form a dimer, two individual components of different proteins are bound
172 by creating an edge between them. A graph with one or more elementary molecules with their components
173 is called a complex. A reaction rule defines a graph transformation that manipulates the graph of reactants.
174 A reaction rule usually manipulates edges to connect or disconnect complexes or change the state of a

175 component. It can also modify the elementary molecules such as in the reaction A + B -> C where we do not
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MCell4 Python API

import mcell as m

subsystem = m.Subsystem()
a = m.Species(
name = 'a’', # this species will be called 'a',
diffusion_constant_3d = le-6 # molecules of 'a' are volume
# molecules and diffuse in 3D space
)

subsystem.add_species(a)

instantiation = m.Instantiation()

# ReleaseSite defines which and how many molecules will be released
# either when simulation starts (default) or at a predefined time
rel_a = m.ReleaseSite(

name = 'rel_a’',

complex = a, # molecules of which species to release
number_to_release = 10, # copy number

location = (0, 0, 0) # all these molecules will be released

# at (x, y, z) location (0, 0, 0)
)

instantiation.add_release_site(rel_a)

model = m.Model()
model.add_subsystem(subsystem) # include information on species
model.add_instantiation(instantiation) # include molecule release site

model.initialize() # initialize simulation state
model.run_iterations(10) # simulate 10 iterations
model.end_simulation() # final simulation step

Figure 7: Example of a simple MCell4 model that releases 10 volume molecules of species ‘a’” and simulates their
diffusion for 10 iterations with a default time step of 1 pis. Note that for this and following examples, a system variable,
PYTHONPATH, must be set so that the Python interpreter knows where to find the MCell4 module [22].
Alternatively one can append to python’s search path from within the model file with the statement: import
sys; sys.path.append("/path/to/mcell4/libs")

176 care about the molecular details and do not need to model individual binding sites. An example of applying
177 a reaction rule that connects complexes and changes the state is shown in Fig.[8| Note that what we call
178 an "elementary molecule type" here is called a "molecule type" in BioNetGen. In MCell, "molecules" are
179 defined as whole molecules such as protein complexes that act as individual agents in the simulation. For
180 better clarity, we adopt the name "elementary molecule" for the base building blocks of complexes. The tool

181 SpringSaLaD [9] uses the same distinction.

182 This graph-based approach is essential when dealing with combinatorial complexity. To model a protein that
183 has 10 sites, in which each can be unphosphorylated, phosphorylated, or bound to another protein with
184 ordinary differential equations (ODEs) requires 310 (i.e. 59049) simultaneous ODEs [24]. For comparison, a
185 BNGL model of the same protein will have just 6 reversible reaction rules (assuming no interaction between

186 these 10 sites). Such a model can then be simulated using network-free simulation methods [25].

10
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(A) Reaction A(c0~R) + B(c1) -> A(c0~S!1).B(c1!1)

rule

(B) Reactants A(c0~S,c0~R) + B(c1~U,c2~X)

and product

> A(c0~S,c0~S!1).B(c1~U!1,c2~X)

igﬁ,riéiﬁ?aﬁon c0~S c0~R - c1~U X \co~s \ \co~s Hc1~u\ \c2~x \

of reactants
and products

(G) Reactants _ N
changed into . m m B 3) Apply changes determined
products A — in step 2) onto reactants

(D) Reactants
c0~S c0~R  |c1~U c2~X
A B
[} [}
(E) Rule - o
reacant A(cO~R) + B(c1) ot raacia e oo
patterns . B
A :
(F) Rule - ‘
2) Map product(s) onto
product A(c0~SI1).B(c1!1) ‘cO-—-S Hc1~unchanged ‘ rgactaifpattem(s)and

determine changes

Figure 8: Example of a graph transformation with BNG reaction rules. In this example, reactants are defined with
molecule types A(cO~R~S,c0~R~S) and B(c1~U~V,c2~X~Y) where A and B are names of the molecule types, c0 is a
component of A that can be in one of the states R and S, and similarly ¢2 and ¢3 are components of B. (A) is the example
reaction rule, (B) are example species reactants and products in the BNGL syntax, and (C) shows a graph representation
of the rule in (B).

Application of the rule is done in the following steps: 1) a mapping from each molecule and each component from
reactant patterns (E) onto reactants (D) is computed (dotted arrows), if the state of a component is set in the pattern, the
corresponding reactant’s component state must match. The next step 2) is to compute a mapping of the rule product
pattern (F) onto reactant patterns (E). The difference between the reaction rule product pattern and the reactant patterns
tells what changes need to be made to generate the product. In this example, a bond between A’s component c0 with
state R and B’s component c1 is created. The state of A’s component c0 is changed to S. Once the mappings are computed,
we follow the arrows leading from the reaction rule product pattern (F) to reactant patterns (E) and then to reactants (D)
and 3) perform changes on the reactants resulting in the product graph (G). Each graph component of the product graph
is a separate product and there is exactly one product in this example.

2.4.1 Extension of BNGL for Volume-Surface Reactions

BNGL compartments [26] allow the definition of hierarchical volumes or surfaces where simulated molecules
are located. To model a transport reaction that moves a volume molecule from one compartment through a
channel (located in a membrane) into another volume compartment, one must specify the direction of this

transport. We show such a reaction which implements hierarchy of compartments in Fig. 9}

In BNGL, a reaction that defines the transport of A from compartment EC into CP through transporter T is

represented with the following rule:

A@EC + T@PM -> A@CP + T@PM

11
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Figure 9: An example of compartments: EC is extracellular space, PM is the plasma membrane, and CP is cytoplasm. A
is a molecule that diffuses freely in 3D space, and T is a molecule located in the plasma membrane.

195 To model multiple instances of cells or organelles, this definition needs to be replicated with different

196 compartments as follows:

197 AQ@EC + T@PM1 -> A@CP1l + T@PM1
1e8  AQEC + T@PM2 -> A@CP2 + T@PM2

199

200 MCell3 uses a general specification of orientations [4] in which the rule above is represented as:

201 A+ T" ->A, + T'

202 On the reactant side of the reaction, A’ (A followed by an apostrophe) means that molecule A hits molecule
203 T from the "outside" (as defined below) of the compartment, and T" means that the surface molecule T must
204 be oriented in the membrane facing towards the outside. On the product side of the reaction, A, (A followed
205 by a comma) means that the product A will be created on the inside of the compartment and T" means that
206 T will still be oriented towards the outside. Geometric objects in MCell are composed of triangles. The
207 "outside" of a triangle is defined as the direction in which the normal vector of the triangle points. More

208 details on molecule orientations defined in MCell3 can be found in [4].

200 Because the MCell3 representation of orientation is not compatible with the grammar of BNGL, and to avoid
210 repetition of reaction rules for each compartment, we have defined an extension to BNGL that allows two
211 special compartment classes called @IN and @OUT to be used in MCell4. With this extension reactions with

212 compartments are then more generally defined as:

213 AQOUT + T -> A@IN + T

214 Note that only bimolecular reactions where a volume and a surface reactant interact may use the @IN or
215 @OUT compartment classes. When the rule is used at simulation time the actual membrane compartment
216 containing the surface reactant (T here) along with the volumetric compartment containing the volume
217 reactant (A here) are used to correctly interpret the geometric meaning of the @IN and @OUT compartment
218 class associated with the volume reactant. For example when this rule is applied to reactants A@EC (i.e A
219 located in EC) and T@PM (i.e. T located in PM) at simulation time, MCell4 will first interpret the @OUT

220 compartment class in the rule and find that compartment EC is outside of PM, and satisfies the left-hand

12
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221 side of the rule. Next MCell4 finds that that compartment CP is inside of PM, and finalizes the mapping of
222 the generic compartment class @IN to the specific compartment class @CP MCell4 then inserts this specific
223 compartment information into the rule A@QOUT + T -> A@IN + T to get the runtime rule A@QEC + T@PM ->
22¢  A@CP + T@PM which is the same as the example rule we started with.

225 One more situation that we considered is how to define the orientation of the transporter in the membrane.
226  One might need to model flippases and floppases (e.g., [27]) that change the orientation of a receptor in a
227 membrane. In MCell3, this is handled by an orientation syntax in which a comma indicates an inward-facing
228 orientation, and an apostrophe indicates an outward-facing orientation. In MCell4, when a molecule is
229 created in a membrane, its orientation is always facing outwards (equivalent to T” in the MCell3 notation).
230 If one needs to define orientation explicitly, a component of an elementary molecule can be defined. For
231 example one can extend the definition the molecule type T to contain a component called ‘o” with two states

232 called INWARDS and OUTWARDS. The rule defined for a specific state of the transporter will then be:

233 A@OUT + T(0o~OUTWARDS) -> AQIN + T(o~OUTWARDS)

234 To flip the orientation of T, a standard BNGL rule F + T(o~OUTWARDS) -> F + T(o~INWARDS) can be

235 defined; Here, F is a surface molecule flippase.

236 To summarize, we introduced an extension to BNGL in which compartment classes @IN and @OUT are used
237 to define general volume+surface molecule reaction rules that can be applied to any specific compartments

238 at simulation time.

239 2.4.2 Units and Interoperability between MCell4 and BioNetGen

240 Usage of the BioNetGen language offers an excellent interchange format. Model definitions in BNGL can
241 be executed by MCell, and BioNetGen itself implements various simulation approaches such as ODE, SSA,
242 PLA, and NFSim. BioNetGen does not have pre-described units so that the user is free to use any unit system
243 they deem suitable and that is compatible with the underlying algorithms. To facilitate model interchange,
244 we define a set of units to be used when BNGL models are implemented in MCell4 and when the model is

245 exported for use within BioNetGen as shown in Table

246 An MCell4 model is typically implemented as a combination of Python and BNGL code. Although the
247 approach that we recommended is to capture all the reaction rules and initial molecule states in BNGL, it
248 may sometimes be beneficial to use Python code for these definitions (e.g., to generate reaction networks
249 programmatically). There are also aspects of spatial models that cannot be captured by BNGL. To simplify
250 model validation, MCell4 provides an automated means to export a model that has been implemented as a
251 combination of Python and BNGL into pure BNGL. Since not all features (especially spatial distributions)
252 of an MCell4 model can be mapped to pure BNGL, a best-effort approach is used during this export. All
253 model features that can be translated into BNGL are exported and error messages are printed identifying the

254 model aspects that have no equivalent in BNGL. If the exported model includes all essential model aspects it
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Simulation tool | Volume-volume or | Surface- Unimolecular| Compartment| Seed species

and mode of usage | volume-surface bi- | surface reaction rate | volume (initial
molecular reaction | bimolecular molecule
rate reaction rate release)

value

MCell4 with de-| M 1s™! pm? N-1s1 | s71 pm3 N

fault units

MCell with BNG | pm3 N~1s! pm3N-1s! st pm3 N

units; BioNetGen

ODE, SSA, PLA

BioNetGen NFSim | N~'s7! N-1s7! st ignored N

Table 1: Units used in MCell and suggested units for BioNetGen. Unit N represents the number of molecules and
M is molar concentration. BioNetGen interprets membranes (2D compartments) as thin volumes of thickness 10 nm.
NFSim in BioNetGen does not fully support compartmental BNGL yet and the volume of the compartment must be
incorporated into the rate units of the reactions occurring in that compartment, therefore NFSim’s bimolecular reaction
rate unit does not contain a volumetric component. Additional units in MCell include: length in pm and diffusion

constants in cm? s71,

255 can be used for cross-validation and comparison of results between the MCell4 and BioNetGen simulations.
256 Verifying results with multiple tools can reveal errors in the model or in the simulation tools. Therefore, such

257 validation is a recommended step in development of an MCell model.

258 2.4.3 [Example of an MCell4 Model with BioNetGen Specification

259 To demonstrate the support for BNGL in MCell4, we show a simple example (Fig.|11) that imports (i.e. loads)
260 information on species and reaction rules, molecule releases, and information about compartment from a

261 BNGL file (Fig. .

262 Note that the file in Fig.[10]is a standard BNGL file that can be used directly by other tools such as BioNetGen
263 so that no extra conversion steps are needed for the BNGL file to be used elsewhere. This permits fast
264 validation of a reaction network with BioNetGen’s ODE or other solvers. The model can be checked against

265 the spatial simulation results in MCell4 without the need to have multiple representations of the same model.

%6 3 Results

267 3.1 Testing & Validation

268 We performed extensive testing and validation to ensure the accuracy of results generated by MCell4.
269 We compared results from the previous versions, MCell3 [4] and MCell3-R [12], which were themselves
270 extensively tested prior to their release. One can obtain byte for byte identical results with MCell3/MCell3-R
271 and MCell4 by using specific options during compilation. These options ensure that the molecules are
272 simulated in the same order and with the same stream of random numbers in MCell3/MCell3-R and MCell4.

273 We have created a test suite (included in the MCell source code repository) containing more than 350
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BNGL

begin parameters
# provide diffusion constant for used molecule species
MCELL_DIFFUSION_CONSTANT_3D_A 1.0e-6
MCELL_DIFFUSION_CONSTANT_3D_B 2.0e-6
MCELL_DIFFUSION_CONSTANT_3D_C 1.3e-6

end parameters

begin compartments
# 3D (volume) compartment with volume lum™3
CP 31

end compartments

begin seed species
# release 100 molecules of A and 100 of B in compartment CP
A@CP 100
B@CP 100

end seed species

begin reaction rules
# a simple rule for reaction between A and B creating C as the product
# the reaction rate constant is assumed to be in units um”~3x1/Nx1/s
A+ B ->C 100

end reaction rules

Figure 10: BNGL file that defines a compartment CP, and instantiates release of 100 molecules of A and 100 molecules of
B into it. It then implements a reaction rule in which A and B react to form the product C.

MCell4 Python API

import mcell as m
model = m.Model()

# specify that this model uses BioNetGen units (see Table 1)
model.config.use_bng_units = True

# load the information on species (diffusion constants),

# reaction rules, also creates compartment CP as a box with

# volume lum™3 and creates release sites for molecules A and B
model. load_bngl('sybsystem.bngl"')

model.initialize() # initialize simulation state
model.run_iterations(10) # simulate 10 iterations
model.end_simulation() # final simulation step

Figure 11: Python code for an MCell4 model that will implement loading of the BNGL file shown in Fig (referenced as
subsystem.bngl). In this example the entire BNGL file is read. It is also possible to load only specific parts of the BNGL
file, for example only reaction rules or only compartment and molecule release information. It is also possible to replace
BNGL compartments with actual 3D geometry.
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274 validation tests that verify correct results in MCell3 and MCell3-R tests. We obtain byte for byte identical
275 results of these tests between MCell3, MCell3-R and MCell4. Simulation results were also validated against
276 results with a BioNetGen ODE solver [6] and with NFSim [14] by running equivalent models in MCell4 and
277 in BioNetGen, running with up to 1024 different random seeds. The diffusion constants in MCell4 were
278 set to a high value to emulate a well-mixed solution. We then compared the shape of the time course of
279 the averaged counts (and variance of counts) of molecules of a given species. Some tests cases have an
280 analytic solution. The results of all tests agreed well between simulators, and with analytic solutions, and
281 were always within the measured variance in all cases. More than 45 of such tests are included in the MCell4

282 test suite [28]. Some of these tests are referenced as examples in MCell4’s API reference manual [29].

283 3.1.1 SNARE Complex

284 We implemented a model of the SNARE complex, a cooperative dual Ca?* sensor model for neurotransmitter
285 release [30], as an example of an MCell4 model containing a BioNetGen specification. The model includes
285 the binding of up to five calcium ions to the sensor and synchronous or asynchronous modes of release
287 of neurotransmitters. An adapted version of this model was previously implemented in an older version
288 of MCell [31]. The model is composed of SNARES with 18 state variables, calcium ions and 63 reactions.
289 There are different possible implementations of the model in BNGL. The one presented here is compatible
200 with MCell4, and allows simulation of the model in BioNetGen and MCell4 without modifying the code. It
291 consists of three molecules types and ten reaction rules (Fig.[I2). The snare complex (represented as snare)
202 is an elementary molecule that has eight components: five s, that represent the binding site for calcium
203 molecules in the synchronous sensor; two a components that represent the binding sites for calcium in the
204 asynchronous sensor; and one component called dv with two states (~ 0 ~ 1), that represents docking of
205 a vesicle to the snare complex (~ 1) or its absence (~ 0). Calcium ions (Ca”") can bind and unbind to the
206 complex. The release of neurotransmitters is tracked via a dummy molecule type called V_release(), which
207 captures the timing of the release but does not actually release molecules of neurotransmitter (see the next
208 section for an implementation of the release in MCell4). Fig shows code implementing the states of the
209 model, and the synchronous and asynchronous release. Assuming well-mixed conditions, a large volume
300 containing the surface complexes, a large number of complexes and a constant calcium concentration, the
301 results obtained with BioNetGen ODE simulations and the spatial model in MCell4 give qualitatively similar

s02  results (Fig[I3B). The source code for this example can be found in [32].

303 3.1.2 Event-Driven Release of Neurotransmitter by the SNARE Complex

304 To release neurotransmitter in an event-driven manner at the times captured by observing V_release() in
305 the SNARE example above, we employ a new feature in MCell4: callbacks. One of the most powerful
36 new features of MCell4 is the ability to implement python code to be executed (i.e. called) each time a

307 user-specified reaction or wall collision event occurs during a simulation; thus, the term "callback". In the
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BNGL

begin compartments
# Plasma membrane (PM) 2D compartment with volume 0.01 um x SA um™2
PM 2 6e-4
# Cytoplasm (CP) 3D volume compartment with volume le-3um”3
CP 3 le-3 PM
end compartments

begin molecule types
snare(s~0~1~2~3~4~5,a~0~1~2,dv~0~1)
Ca
V_release()

end molecule types

begin species
# SNARE complex are released in the PM
snare(s~0,a~0,dv~1)@PM 70
# Fixed calcium number in the cytosol
Ca@CP Ca0

end species

begin observables
Molecules SNARE_sync snare(s~5)
Molecules SNARE_async snare(a~2)
Molecules V_release V_release()
end observables

begin reaction rules
# Calcium binding to the synchronous component of the sensor

snare(s~0)@PM + Ca@CP <-> snare(s~1)@PM 5xksp, 1xb”0xksm
snare(s~1)@PM + Ca@CP <-> snare(s~2)@PM 4xksp, 2xb”~1lxksm
snare(s~2)@PM + Ca@CP <-> snare(s~3)@PM 3xksp, 3xb”2xksm
snare(s~3)@PM + Ca@CP <-> snare(s~4)@PM 2xksp, 4xb”3xksm
snare(s~4)@PM + Ca@CP <-> snare(s~5)@PM 1lxksp, 5xb”~4xksm

# Calcium binding to asynchronous component of the sensor
snare(a~0)@PM + Ca@CP <-> snare(a~1)@PM 2xkap, 1xb”~0xkam
snare(a~1)@PM + Ca@CP <-> snare(a~2)@PM lxkap, 2xb”~1xkam

# Synchronous vesicle release

sync: snare(s~5,dv~1)@PM -> snare(s~5,dv~0)@PM + V_release()@CP gamma

# Asynchronous vesicle release

async: snare(dv~1,a~2)@PM -> snare(dv~0,a~2)@PM + V_release()@CP axgamma
# Vesicle docking to SNARE

snare(dv~0) -> snare(dv~1) k_dock
end reaction rules

end model

Figure 12: Compartmental BNGL implementation of the SNARE complex model. One 3D compartment, cytosol (CP),
and its associated plasma membrane (PM) is defined. Molecule types are defined, and their released sites are specified:
SNARE molecules are released into the PM, and Calcium ions into the Cytosol. This code is followed by specification of
the observables, and the reaction rules governing the interactions.
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Figure 13: (A) Schematic diagram of the state variables of the SNARE complex model. It consists of 18 states, S and
A represent the synchronous and asynchronous components of the complex, which can be in five and two different
states respectively (B-D) Results of independent simulations of the model with ODEs in BioNetGen (dashed lines) and in
MCell4 (solid lines).

sce  MCell4 Python API the code to be executed when "called" by the event, is written as a function and this

309 function is referred to as a "callback function".

si0  In this case we created a callback function that will release a given number of neurotransmitter molecules,
311 at the time the synchronous or asynchronous reactions occur. We localize the release at the position
siz  of the individual SNARE complex that triggers the release. Here we briefly describe how this is ac-
sta complished. The full details and Python source code of the working MCell4 model can be found at

314 https://github.com/mcellteam/article_mcell4_1/tree/master/snare_complex/snare_w_callback.

sts There are two types of callback functions supported in the MCell4 Python AP]I, "reaction callback functions"
st6 and "wall hit callback functions". In the SNARE complex example we have created a reaction callback
317 function that will be called upon the stochastic occurrence of the "sync" or "async" reactions specified in
s1is  Fig. We name this reaction callback function "release_event_callback” and associate it with the reactions
st9  using the "register_reaction_callback()" command provided in the APIL. During simulation of the model,
320 whenever a sync or async reaction occurs, the MCell4 physics kernel will execute "release_event_callback()".
21 To specify which species of neurotransmitter to release, how much, and where the register_reaction_callback()
s22 command allows additional metadata (called "context") to be passed to the callback function. In this example

323 we created a Python class called "ReleaseEventCallbackContext” which contains the name of the species
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324 and number to be released, as well as the relative release location. Release_event_callback() can then make
325 use of this context to perform the desired operations. See file "customization.py" in the working model for

326 complete details.

sz 3.1.3 CaMKII Model with Large Reaction Network

328 To demonstrate results for a system with a large reaction networks, we use a model of a CaMKII dodecamer

320 which is an extension of a model described in [33].

330 The CaMKII dodecamer (a "protein complex") is composed of two CaMKII hexameric rings stacked on top of
331 each other. Each CaMKII monomer with its calmodulin (CaM) binding site can be in one of 18 states. Then
332 the total number of states possible for a CaMKII dodecamer CaMKII is then 18'2/12 ~ 10'2 (the division
333 by 12 is to remove symmetric states). This is an example of the combinatorial complexity mentioned in
ssa  section[2.4]for which it is simply not feasible to expand all the reaction rules and generate the entire reaction
335 network to be stored in memory, and thus a network-free approach is necessary. Fig.|14{shows the results of
s3s validation of this model against BioNetGen/NFSim, MCell3R, and MCell4.

337 We also present an extension of the aforementioned model [33], in which we can now observe the effects
s3s  of the geometry of the compartment on the simulation results by modeling in MCell4. Figure [15[shows
s39 three different variations of the model. The first variation distributes the molecules homogeneously in the
340 compartment (equivalent to the well-mixed versioned published previously, Figure[15 A). Two additional
341 variations include a small subcompartment, located near the top of the larger compartment, that is not trans-
342 parent to diffusion of CaMKII and CaM molecules. In the first variation all the molecules are homogeneously
343 distributed throughout the compartment, but the the CaMKII and CaM molecules in the subcompartment do
sa4  not mix with the rest of the compartment (Figure[I5|B). In the second variation, half of the CaMKII molecules
345 are placed in the subcompartment and the other half in the remainder of the compartment, while CaM is still

ass  distributed homogeneously throughout the entire volume (Figure [15C).

347 We sought to observe the effect of these three conditions on CaMKII phosphorylation as a result of Ca®*
g influx into the compartment. In all three conditions a Ca?* influx is simulated from a single point source
a49  located in the center of the top face of the large compartment. As in [33] the Ca®* influx was such that at the
350 peak the free calcium concentration was ~ 10uM, and it returned to near the steady state level within 100 ms.
351 These spatial differences have a small but significant effect on CaMKII phosphorylation levels in response to
52 the Ca®* influx. These differences would have been impossible to investigate without the combination of the

353 network-free simulations and the diffusion in space implemented in MCell4.

354 3.1.4 Volume-Surface and Surface-Surface Reactions: Membrane Localization Model

355  We used a membrane localization model from [34]] (section 2A) to validate volume-surface and surface-

356 surface reactions.
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Figure 14: Validation of MCell4 simulation against BioNetGen/NFSim and MCell3R using a CaMKII model. The input
BNGL model for NFSim was obtained by automatic BNGL export of BNGL from the MCell4 model. The simulation ran
for 100000 iterations (0.1 s). Lines in the graphs are averages from 256 runs with different random seeds, and bands

represent one standard deviation. Molecules in MCell3R and MCell4 use diffusion constant of 10~3cm? /s to emulate

a well-mixed solution (the usual value is around 10~%cm? /s). The names of the observed species are indicated in the
graph titles: CaM1C is CaM(C~1, N~0, camkii); CaM1N is CaM(C~0, N~1, camkii); KCaM2N is CaMKII(T286~U,
cam!1).CaM(C~0, N~2, camkii!l). The simulation was initiated far from equilibrium; therefore there was an initial jump
in the molecule numbers. The molecule names are explained in [33].

357 The model analyzes how membrane localization stabilizes protein-protein interactions. A pair of protein
358 binding partners A and B are localized to the membrane surface by binding a lipid molecule M. This binding
359 to the membrane constrains the space in which the molecules diffuse and thus promotes complex formation.
30 The model is created within a box of dimensions 0.47 x 0.47 x 5um?3. Surface molecules M are released on
ss1 one of the smaller sides of the box. The 4 edges of this side are set to be reflective, so the surface molecules

se2 cannot diffuse onto the other sides.

33 MCell subdivides the surface areas of geometric objects into small tiles. A maximum of one molecule can
364 occupy one tile at a time - this tiling simulates volume exclusion for surface molecules. A parameter named
ses 'surface grid density" sets the density (and size) of the tiles and the thus the maximum packing density of
se6  surface molecules. The initial density of surface molecules in this model is 17000 molecules / um?, and we set
se7  the surface grid density to 40000 tiles/um? giving an occupied area fraction of 42.5%. (SAY MORE ABOUT
sss RESULTS OF VALIDATION TESTS IN FIG 16. DEFINE NERDDS. ADD SMOLDYN RESULT TO FIG 16)

se9  3.1.5 Stochastic Fluctuations in a System with Multiple Steady States: Autophosphorylation

s7o  Another validation model from [34] (section 2B) shows stochastic fluctuations in a system with multiple
s71  steady states. A deterministic ODE solution does not show these multiple steady states and almost imme-
a2 diately stabilizes in one of them. In Fig.[T7]we show the output of an MCell4 simulation and a simulation
a73  of the same model simulated in NFSim using the BNGL exported from the MCell4 model (more details on
574 BNGL export are in[2.4.2). We also illustrate the steady states reached with ODE solutions.
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Figure 15: The effect on CaMKII phosphorylation of trapping CaMKII and CaM inside a subcompartment named PSD .
Three different conditions where simulated. (A) All molecules are homogeneously distributed throughout the entire
compartment. (B) A small subcompartment, termed PSD, which is reflective to CaMKII and CaM, but is transparent
to calcium ions and PP1, is added near the top of the larger compartment. All the molecules are homogeneously
distributed throughout both compartments. (C) The subcompartment is reflective to CaMKII and CaM and 50% of the
CaMKII molecules are trapped inside the subcompartment, and the rest of the molecules are distributed homogeneously
throughout the remainder of the larger compartment. The plots show an average of 60 runs, lighter shaded bands
represent standard error of the mean.

Figure 16: Simulation results for the membrane localization

90T = MCalia 1A del. The plot sh bers of a surf lecul
— MGell3 MA model. The plot shows copy numbers of a surface molecule
125 F |\ — NERDSS MA MA (surface molecule M with a bound volume molecule
' ODE MA A). MCell4 and MCell3 results show a good match with the

100

— PDE MA NERDDS simulator (NERDDS results are from from [34],
the data ended at time 1.75 s). The results computed with
ODE and PDE solutions produced by VCell reach the same
equilibrium (VCell results are from from [34] simulated with
VCell 7.2.0.39). (ADD SMOLDYN RESULTS) MCell3 and
MCell4 results are an average of 512 runs with different
random seeds.
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a7zs 3.2 Performance

aze  With relatively small reaction networks (less than 100 or so reactions), the performance of MCell4 is similar
377 to MCell3 as shown in Fig.[18|(A). MCell3 is already highly optimized. MCell3 contains optimization of
s7e  cache performance that speeds up models with large geometries; this optimization is not present in MCell4.
379 Thus MCell3 is faster for large models such as models created in neuropil reconstructions containing on the
a0 order of 4 million triangles defining their geometry. The situation is different when comparing MCell4 and
ss1  MCell3-R with models that use large BNGL-defined reaction networks ([I8B). MCell3-R uses the NFSim
g2 library to compute reaction products for BNG reactions. With large reaction networks containing as many as
ssa 10'0 reactions or more, MCelI3-R stores all the reactions that occur during run-time in memory and thus
ss4 gradually slows down. We have not been able to implement reaction cache cleanup in MCell3-R. MCell4
385 with the BNG library keeps track of the number of molecules of each species in the system during simulation

sss and periodically removes from the cache reactions and species that are not used. This facilitates simulation
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Figure 17: An example of a stochastic simulation of a system that exhibits switching between multiple steady states.
Copy numbers of unphosphorylated kinase A and its phosphorylated variant Ap are shown for a single simulation run
in MCell4, MCell3, and NFSim. The NFSim model was obtained by automatically exporting the MCell4 model into
BNGL. The graphs also show solutions obtained with a deterministic ODE model for which data from [34] were used.
The results demonstrate that the MCell results correctly reach one of the stable steady states shown in the ODE results.
The simulation stays in such a state, and then due to stochastic behavior, a switch another steady state occurs.
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Figure 18: For selected benchmarks, we measured elapsed
time for how long the simulation ran starting from the sec-
ond iteration (after all initializations) and ending when the
simulation finished. Time was measured on AMD Ryzen 9
3900X@3.8GHz. Both MCell3 and MCell4 use a single exe-
cution thread. Relative performance shown in the graphs is
computed as time for MCell3 or MCell3-R divided by time
for MCell4. The sources of the models are as follows: Presy-
naptic Ca Homeostasis [31]]; Rat Neuromuscular Junction
model with updated geometry (shown in FigE[), Neuropil [5];
Mitochondrion Model [35]; Membrane Localization [34]; Au-
tophosphorylation [34]; CaMKII Monomers [33]; CaMKII
Holoenzyme [33]; SynGAP with TARP (not yet published).

of complex reaction networks with a potentially infinite number of species and reactions without excessive

impact on memory usage and performance.

3.3 Hybrid Simulation Example

MCell4’s Python API supports interaction with an MCell4 simulation while it is running. Here we show

a model in which the progression over time of one molecular species is encoded in Python code with a

differential equation and the remaining species are encoded in MCell4 as particles behaving stochastically.

As a basis for this demonstration we used a model of a circadian clock published in article [34], originally

based on article [36].

22


https://doi.org/10.1101/2022.05.17.492333
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.17.492333; this version posted September 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

MCell4 with BioNetGen

395 The model simulates the behavior of an activator protein A and repressor protein R that are produced from
355 MRNA transcribed from a single copy of a gene (one for each protein). Coupling of A and R expression is
397 driven by positive feedback of the activator A, which binds to each gene’s promoters to enhance transcription.
se  Protein R also binds to A to degrade it. All other proteins and mRNA are degraded spontaneously at a

399 constant rate.

s00 Compared to the original model in [36], authors of [34] increased the reaction rates in the model from hours
a0t to seconds by multiplying the reaction rates by 3600. Because the purpose of this example is to demonstrate a
a2 hybrid model in MCell4 and its validation, which requires many runs, we made another change to accelerate
03 the simulation; we reduced the simulation volume by a factor of 268 to 0.25 um which increased the rate of

a4 bimolecular reactions. We also increased the unimolecular reaction rates by the same factor.

405 In the hybrid model, protein R is simulated as a changing concentration, under well-mixed conditions,
406 whose concentration value is updated by finite difference expressions. The other species are simulated as
407 particles. In the base MCell4 model, there are 4 reactions that consume or produce R (Fig.[19). We replaced
a8 two of these with reactions that do not model R as a particle and the remaining two reactions were replaced
409 with finite difference expressions Fig.[20). The hybrid coupling of the finite difference calculations with

s10  MCell4’s particle-based calculations is shown in the pseudo-code representing the main simulation loop in

411 Fig. @
BNGL Reactions

A_and_R_to_AR: A+ R -> AR AR_kon # 1/Mx1/s
R_to_0: R ->0 R_koff # 1/s
mRNA_R_to_mRNA_R_plus_R: mRNA_R -> mRNA_R + R mRNA_R_koff # 1/s
AR_to_R: AR -> R AR_koff # 1/s

Figure 19: Reaction rules affecting protein R in the particle-only model.

BNGL Reactions
A_to_AR: A -> AR A_koff # 1/s
# R_to_0: - modeled as ODE
# mMRNA_R_to_mRNA_R_plus_R: - modeled as ODE
AR_to_0: AR -> 0 AR_koff # 1/s

Figure 20: Reaction rules affecting protein R in the hybrid model.

s12 To validate that the results of the hybrid variant of the model are correct, we ran 1024 instances of stochastic
413 simulations with different initial random seeds. We also compared the effect of two different diffusion
414 constant values when using MCell. Results that showing the average oscillation frequencies are shown in

415 Fig.[22land the copy numbers of molecules A and R in Fig.

s16 When using a fast diffusion constant of 10~7cm? /s for all molecules, all simulation approaches produce

417 essentially the same results. A significant advantage of using hybrid modeling is often that the hybrid model
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MCell4 Pseudo-code

num_R = 0.0 in N, initial copy number of Rs,

modeled as a floating-point value

H* H#

T_STEP = 5e-7 # in us, simulation time step
NA = 6.0221409e+23 # in N/mol, Avogardo's constant
VOLUME 4.188993 x le-15 # in 1, simulated volume

for i in range(ITERATIONS):
# 1) Run particle-based simulation for 1 time step
model.run_iterations(1)

# 2) Update the concentration-based copy number of Rs

# 2.1) Rs consumed by original reaction A + R -> AR

dR_due_A_to_AR =
-model.get_number_of_reactions_in_last_iteration('A_to_AR')

# 2.2) Rs consumed by original reaction R -> 0
dR_due_R_to_0 =
-(num_R * R_koff * TIME_STEP)

# 2.3) Rs produced by original reaction mRNA_R -> mRNA_R + R
dR_due_mRNA_R =
model.get_number_of_molecules('mRNA_R') * mRNA_R_koff x T_STEP

# 2.4) Rs produced by original reaction AR -> R
dR_due_AR_to_0 =
model.get_number_of_reactions_in_last_iteration('AR_to_0')

# 2.5) Update the copy number of Rs
num_R +=
dR_due_A_to_AR + dR_due_R_to_0 + dR_due_mRNA_R + dR_due_AR _to_0

3) Update rate of reaction A -> AR (originally A + R -> AR):
Sets the rate A_koff using concentration of R effectively
converting a bimolecular reaction rate from 1/Mx1/s to a
unimolecular rate in 1/s.

Concentration is here computed with copy number of Rs
truncated to the closest integer to avoid reactions happening
when there is less than 1.0 Rs.

concentration_R = floor(numR) / NA / VOLUME # in 1/M
model.set_reaction_rate('A_to_AR', concentration_R * AR_kon)

HHHHHHHR

Figure 21: Pseudo-code of the main simulation loop that: 1) runs an iteration of the particle-based simulation, 2) updates
the copy number of R based on the current MCell state, and 3) updates the rate of reaction A -> AR that was originally a
bimolecular reaction A + R -> AR. N is a unit representing the copy number. This pseudo-code was adapted to show
the actual computations in a more comprehensible way. The runnable MCell4 Python code is available in the GitHub
repository accompanying this article [32].

24


https://doi.org/10.1101/2022.05.17.492333
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.17.492333; this version posted September 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

MCell4 with BioNetGen

N
o
o
o

— A — A (low pass)
R — R (low pass)

1000

# molecules

0

SSA

NFSim

hybrid D=10"°cm?/s
particle D=10>cm?/s
hybrid D=10~" cm?/s
particle D=10~7 cm?/s

0.00 0.02

$8¥gsss
§IIIIII i

0.06 0.08 0.10 0.12 0.14 0.16
time (s)

Figure 22: (A) Result of a stochastic simulation of a circadian clock model with NFSim. Copy numbers of molecules
A and R show periodic oscillation. A low pass frequency filter was used to smooth the values of A and R. The reason
for the smoothing was to get a numerical value related to the actual peak The peaks from low-pass filtered data do
not represent actual average peaks but can be used as a proxy to obtain the time of a peak for comparison with other
simulation methods. (B) The error bars capture the mean and standard deviation of the low pass filtered peak times for
different variants of the model and simulation algorithms. Each of the variants was run 1024 times. It is evident that the

SSA, the NFSim, and the MCell model variants with a fast diffusion constant, D = 10~ 5¢m? /s, give essentially the same

results. The hybrid MCell model with the slower diffusion constant, D = 10~ 7cm? /s, shows faster oscillation than the
non-spatial models run with SSA and NFSim, and the MCell4 variants with faster diffusion. The pure particle-based

MCell4 model with D = 10~7cm? /s shows the fastest oscillations.

s18  runs much faster, as in this specific example, in which the simulation speed of the MCell4 hybrid model is 4x
419 faster. This is because: 1) The time step can be set to 5x longer because there is no need to model explicitly
a20 the diffusion of particle-based molecules for the fastest reactions. Note that the time step when all molecules
421 are modeled as particles must be 10~7s to accurately model these fast reactions. 2) species R in not modeled

422 as particles.

423 This is a relatively simple example in which we compute the ODE separately with Python code, however it
424 shows the strength of this approach in which one can couple other physics engines to MCell4 and achieve

425 multi-scale simulations.

26 4 Conclusions

427 41 Summary

428 We have described MCell4, a newly updated particle-based reaction-diffusion tool based on Monte Carlo
429 algorithms that allows spatially realistic simulation of volume and surface molecules in a detailed 3D
430 geometry. MCell4 builds on features of MCell3 (and MCell3-R), providing improved integration with the

431 BioNetGen Language as well as a Python API that enables control of a simulation through Python code.

a2 In MCell4, as opposed to MCell3, molecules and reactions are natively written in BNGL allowing a seamless
433 transition between MCell4 and BNG simulation environments. The update has dramatically improved the
434  ability to run network free simulations in the spatial MCell environment, when compared to the previous

435 MCell3-R which employed the NFSim engine to run reaction written in BNGL [12} [14].
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Figure 23: Comparison of copy numbers of A and R during simulations by different methods. (A) The average copy
numbers for A and R proteins from 1024 runs in NFSim, SSA, and MCell4 with a fast diffusion constant match. To get an
even better match,would require more than 1024 runs because stochastic molecular simulations show high variability
when the copy number of some of the species is low which is the case here for both A and R. (B) and (C) Average copy
numbers for MCell4 simulations with a slow diffusion constant. These are shown as separate plots to highlight the effect
of slow diffusion on spatial simulation results.

436 The new Python API, enables one to write Python code that can change geometry, reaction rates, create or
437 remove molecules, execute reactions, etc., during a simulation. This powerful new feature allows construction

438 and execution of multi-scale hybrid models.

439 As we have demonstrated here through examples, MCell4 adds many new features including the ability to
440 create fully spatial network-free molecular reaction models within realistic geometry. It adds the ability to
441 switch back and forth easily between MCell4 and BNG environments; and it adds the ability to simulate

442 transmembrane or transcellular interactions between surface molecules.

443 MCell4 is a significant improvement on the previous MCell3-R version with respect to simulation speed,
a4 number of features, as well as usability. It allows simulation of new classes of systems that could not be

445 modeled previously.

a6 4.2 Availability and Future Directions

47 MCell4 is available under the MIT license. For easy installation and usage, a package containing MCell,
a4 Blender, the Blender plugin CellBlender, and other tools is available along with detailed documentation
449 and on-line tutorials at [37]. MCell4 includes a new C++ library for parsing the BioNetGen language and
450 provides methods to process BioNetGen reactions. This library libBNG is also available under the MIT

451 license [17].

a2 MCell4 does not currently support the definition of spatially extended complexes that could be useful,
453 for instance, when modeling the post-synaptic density [5] or actin filament networks [38] where simply

454 replacing these polymers with a single point in space is inadequate. Furthermore, the ability to model
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455 volume exclusion by individual molecules and complexes will be an important goal for the future. We have
456 plans to combine particle-based simulation with concentration or well-mixed simulation algorithms such as
457 SSA [39] or the finite element method that uses PDEs (partial differential equations), e.g., [40]. Such hybrid
458 modeling will provide means to simulate longer timescales while still being spatially accurate and able to
459 correctly handle cases when the copy number of molecules is low. All these features will be the focus of

s60 future developments.
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