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MCell4 with BioNetGen

ABSTRACT

Biochemical signaling pathways in living cells are often highly organized into spatially

segregated volumes, membranes, scaffolds, subcellular compartments, and organelles

comprising small numbers of interacting molecules. At this level of granularity stochastic

behavior dominates, well-mixed continuum approximations based on concentrations break

down and a particle-based approach is more accurate and more efficient. We describe

and validate a new version of the open-source MCell simulation program (MCell4), which

supports generalized 3D Monte Carlo modeling of diffusion and chemical reaction of discrete

molecules and macromolecular complexes in solution, on surfaces representing membranes,

and combinations thereof. The main improvements in MCell4 compared to the previous

versions, MCell3 and MCell3-R, include a Python interface and native BioNetGen reaction

language (BNGL) support. MCell4’s Python interface opens up completely new possibilities

for interfacing with external simulators to allow creation of sophisticated event-driven

multiscale/multiphysics simulations. The native BNGL support, implemented through a

new open-source library libBNG (also introduced in this paper), provides the capability to

run a given BNGL model spatially resolved in MCell4 and, with appropriate simplifying

assumptions, also in the BioNetGen simulation environment, greatly accelerating and

simplifying model validation and comparison.

1 Introduction1

Living cells are complex structures in which biomolecules and biochemical processes are spatially organized2

and span the extracellular space, plasma membrane, cytosol and subcellular organelles. These biochemical3

processes are intrinsically multiscale in nature because they are based on molecular interactions on a4

small scale leading to emergent behavior of cells on a larger scale. Becajuse of the dynamic nature of5

biochemical processes on different temporal and spatial scales, appropriate mathematical tools are required6

to understand the underlying dynamics and to dissect the mechanisms that control system behavior [1].7

Overall, understanding how cellular design dictates function is essential to understanding health and disease8

in the brain, heart, and elsewhere. MCell (Monte Carlo Cell) is a biochemistry simulation tool that uses9

spatially realistic 3D cellular models and stochastic Monte Carlo algorithms to simulate the movements10

and interactions of discrete molecules within and between cells[2, 3, 4, 5]. Here we describe MCell4, a new11

version of MCell.12

One of the most important new features in MCell4 is a flexible Python application programming interface13

(API) that allows coupling between MCell and other simulation engines or other custom code. By itself14

MCell performs particle-based reaction-diffusion simulations on spatial and temporal scales from nm to µm15
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and from µs to 10s of seconds. MCell4’s Python API extends its capabilities by facilitating the generation of16

multiscale hybrid models, as we demonstrate here with an example.17

A second important addition to MCell4 is efficient support for rule-based modeling by making use of18

the BioNetGen (BNG) Language (BNGL). BNG is an open source software package for representing and19

simulating biochemical reactions [6]. Although powerful, BNG models are non-spatial. Support for models20

implemented in BNGL within MCell4 permits determination of the role of space in different reaction21

scenarios. This is not a trivial task because the time scales of diffusion and of reactions [7], as well as the22

spatial localization of proteins, influence the results.23

We first present the design principles of MCell4 and its API, and next we introduce the new BioNetGen24

library. Finally we demonstrate some of the new features in MCell 4 with examples and present a hybrid25

model that couples spatial simulations in MCell with ordinary differential equations (ODEs).26

1.1 Particle-Based Reaction Dynamics Tools27

In particle-based reaction-diffusion simulations, each molecule is represented as an individual agent.28

Molecules diffuse either within volumes or on membrane surfaces and may affect each other by react-29

ing upon collision. A review of currently maintained particle-based stochastic simulators which describes30

Smoldyn [7], eGFRD [8], SpringSaLaD [9], ReaDDy [10], and MCell3 was recently published in [11].31

MCell is a particle-based simulator that represents volume molecules as point particles and surface molecules32

as area-filling tiles on surfaces. The typical simulation time-step in MCell is 1 µs, and the simulated times33

can stretch from milliseconds to minutes. Briefly, MCell operates as follows. As a volume molecule diffuses34

through space by random Brownian motion, all volume molecules within a given radius (i.e. the interaction35

radius, rint) along its trajectory, or the single surface molecule located at the point of collision on a surface, are36

considered as possible reaction partners. As a surface molecule diffuses it is first moved to its final position37

after one time step and any surface molecules immediately adjacent to that final position are considered38

as possible reaction partners. Molecules diffusing in 3D volumes do not themselves have volume (i.e. no39

volume exclusion). The collision cross-section area for interactions among volume molecules is derived40

from rint. Molecules on membrane surfaces occupy a fixed area defined by the individual triangular grid41

elements (tiles) created by subdividing the surface mesh triangles with a barycentric grid. The collision42

cross-section for interactions between volume and surface molecules and among surface molecules is43

derived from the density of the barycentric surface grid. MCell is able to represent arbitrary geometries44

comprised of triangulated surface meshes. Thus complex models such as a 180 µm3 3 dimensional serial45

electron microscopic reconstruction of hippocampal neuropil have been used to construct a geometrically-46

precise and biophysically accurate simulation of synaptic transmission and calcium dynamics in neuronal47

synapses [5]. A detailed description of the mathematical foundations of MCell’s algorithms can be found in48

these references [2, 3, 4].49
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MCell3-R [12], a precursor of of MCell4, is an extension of MCell that supports BNGL [13] and allows50

modeling of protein complexes or polymers by using rule-based definition of reactions. MCell3-R uses a51

library called NFSim [14] to compute the products of reaction rules for reactions described in BNGL.52

MCell4 is an entirely new implementation of MCell, written in C++. It provides a versatile Python interface53

in addition to many other improvements. In particular it runs significantly faster when simulating complex54

reaction networks expressed as rules in BNGL. And most of the features of MCell that were introduced55

previously [4] have been retained. Here we briefly describe the motivations for introducing new features in56

MCell4.57

1.2 Motivation for the MCell4 Python Application Programming Interface58

We had two important motivations for the creation of the MCell4 Python API: 1) to give the users the freedom59

to customize their models in a full-featured modern programming language, and 2) to create an easy way to60

couple MCell4 with other simulation platforms to allow multi-scale, multi-physics simulations.61

The main goal when designing the new API for MCell4 was to allow definition of complex models combining62

many reaction pathways distributed over complex geometry. Thus, a main requirement was to enable63

modularity with reusable components that can be independently validated. With this feature one can build64

complex models by combining existing modules with new ones.65

As in the approach in the PySB modeling framework [15], a model in MCell4 is seen as a piece of software,66

allowing the same processes used in software development to be applied to biological model development.67

The most important such processes are: 1) incremental development where the model is built step by step,68

relying on solid foundations of modeling that has been validated previously, 2) modularity that provides the69

capability to create self-contained, reusable libraries, 3) unit testing and validation to verify that parts of the70

model behave as expected, and 4) human-readable and writable model code that can be stored with git or71

other code version control software. In addition to being essential for incremental development, this also72

allows code reviews [16] so that other team members can inspect the latest changes to the model and can73

contribute their own modules to the growing code base.74

1.3 Motivation for a New BioNetGen Library75

NFSim [14] is a C++ library that provides BioNetGen support, implements the network-free method, and76

is used in MCell3-R [12]. To use a BNGL model in MCell3-R, the BNGL file first needs to be parsed by77

the BioNetGen compiler; then, a converter generates a file containing MCell Model Description Language78

(MDL), a file with rule-based extensions to MDL (MDLR), and additional XML files required by the NFSim79

library. These files then constitute the model for simulation in MCell3-R. The disadvantage of this approach80

is that the original BNGL file is no longer present in the MCell3-R model. Thus each time changes are made81

to the model, the converter must be run again, and any changes made by hand to the MCell3-R model files82
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will be lost. MCell3-R also has performance and memory consumption problems when the simulated system83

has a large number of potential reactions.84

To create a seamless integration of BNGL with MCell4 we implemented a new library for the BioNetGen85

language that contains a BNGL parser and a network-free BNG reaction engine the main purpose of which is86

to compute reaction products for a given set of reaction rules and reactants. This BNG library (libBNG) was87

designed to be independent of MCell4 in mind so that it can be used in other simulation tools. libBNG does88

not yet support all of the special features and keywords of the BioNetGen tool suite. Most notably, BNGL89

functions are not supported, however the set of supported features is sufficient for any MCell4 model. And90

when a special function is needed, it can be represented in Python code with the MCell4 API. The source91

code of libBNG is available under the MIT license in Reference [17].92

1.4 Features of MCell493

Here we briefly describe some of the features of MCell4. In the results section we present a few relevant94

examples specifically to demonstrate some of these features. We indicate which example illustrates the95

mentioned feature.96

1.4.1 Python/C++ API for Model Creation and Execution97

All models can now be created in Python. CellBlender (see section 1.5) is useful for creation of many relatively98

simple models without the need to write Python code by hand. However, more complicated customized99

models will need to include a custom Python script. While CellBlender provides for inclusion of custom100

python scripts, for simplicity and explanatory power, all the examples presented in the results section of this101

paper are written solely in Python.102

1.4.2 Reactions are Now Written in BNGL103

In MCell4 the reaction language is BNGL [13]. Thus, MCell4 fully supports rule-based reactions and all104

models use this feature.105

Most importantly, the support for BNGL and NFSim means that MCell4 performs direct, agent-based evalu-106

ation of reaction rules and thus enables spatially-resolved network-free simulations of interactions between107

and among volume and surface molecules. The CaMKII holoenzyme model in the results section 3.1.3, for108

example, would not be possible without the spatial network-free algorithms implemented in MCell4.109

1.4.3 Ability to Go Back and Forth between MCell4 and BNG Simulator Environments110

The new BNG library [17] allows direct loading and parsing of a BNG model that can then be placed111

within a realistic 3D cellular geometry. This allows comparison of the results of non-spatial (simulated with112
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BioNetGen solvers) and spatial (simulated with MCell4) implementations of the same BNG model. Two of113

the examples in the results section demonstrate this feature: SNARE (3.1.1), and CaMKII (3.1.3).114

If the spatial features are found to be unimportant for a given model, and simulation speed is of more115

concern, the BNGL file can be run as a separate module with the BNG simulator. See section 2.4.3 for an116

example.117

1.4.4 Other Advanced Features118

Among the more advanced features introduced in MCell4 is the ability to implement transcellular and119

transmembrane interactions that occur between surface molecules located on separate membranes. MCell4120

also supports both coarse-grained and fine-grained customization of models by customizing the time-step121

customization and by introducing event-driven callbacks. Callbacks implement custom Python code that122

runs when a particular reaction occurs or when a collision occurs between a molecule and a wall. An example123

of the use of callbacks to implement release of neurotransmitter when a SNARE complex is activated is124

shown in section-3.1.2.125

Finally, the new Python API supports the ability to create multi-scale multi-physics hybrid simulations that126

take advantage of all the existing Python packages. For an example of a hybrid model see section 3.3.127

1.5 Model Creation and Visualization in CellBlender128

CellBlender is a Blender [18] addon that supports creation, execution, analysis, and visualization of MCell4129

models. CellBlender has been updated from its previous MCell3 version and includes several new features:130

automatic generation of well structured Python code from the CellBlender representations of complete131

MCell4 models; execution, analysis, and visualization of these models; and visualization of simulation data132

generated by simulations of externally created Python-only models. CellBlender offers an easy way to begin133

using MCell through built-in examples (Fig. 1 shows an example of a model of the Rat Neuromuscular134

Junction), and tutorials [19].135

2 Design and Implementation136

2.1 MCell4: a Bird’s Eye View137

We will briefly review MCell4’s architecture and fundamental aspects of its API, starting with Fig. 2.138

MCell simulations progress through time by a series of iterations. The duration of an iteration is given139

by a user-defined time step (usually 1 µs). The Scheduler keeps track of events to be run in each iteration.140

The main simulation loop implemented in the all-inclusive object called "World" requests the Scheduler to141

handle the all the events that occur in each iteration (Fig. 3) until the desired number of iterations have been142

completed.143
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Figure 1: MCell4 models can be created, executed, and visualized using CellBlender, an addon for Blender. The
capabilities of Blender are indispensable for creating complex geometries for MCell4 models.

BNG Library

MCell4 Engine

Scheduler Events

Simulation State

PyMCell

MCell3 MDL 
Parser Species Reactions

Python Interface

Model Representation

Figure 2: MCell4 is comprised of four main components: 1) The PyMCell library provides a Python interface and contains
classes to hold the model representation, 2) The MCell4 engine implements the simulation algorithms, 3) The BNG
(BioNetGen) library provides methods to resolve BioNetGen reactions, and 4) The MDL (Model Description Language)
parser enables backwards compatibility with MCell3.

Scheduler BaseEvent

ReleaseEvent
- create new 

molecules

World

DiffuseReactEvent
- diffuse molecules 

MolRxnCountEvent
- count molecules or 

reactions

VizOutputEvent
- dump molecule 

positions 

Figure 3: The Scheduler executes time step iterations which consist of discrete events executed in this order: 1) A
ReleaseEvent creates new molecules, 2) A MolRxnCountEvent counts numbers of molecules or how many times a reaction
occurrs, 3) A VizOutputEvent stores molecule locations for visualization in CellBlender, and 4) A DiffuseReactEvent
implements diffusion of molecules, checks collisions, and executes reactions. Only the DiffuseReactEvent must be
executed at each time step to move the time forward. The other events listed here are optional.
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2.2 Python API Generator: A Closer Look144

The MCell4 physics engine is implemented in C++. To ensure reliable correspondence between the represen-145

tation of a model in Python and in C++, we have implemented a Python API generator which is used when146

building the MCell4 executable and Python module from source code. The API generator reads a high-level147

definition file in the YAML format and automatically generates all the base C++ classes, their corresponding148

Python API representations, code for informative error messages, and documentation. A consistent Python149

and C++ API contributes to the quality of the user experience when creating a model, and facilitates well150

maintained documentation.151

The presence of the API generator, schematically represented in Fig. 4, ensures that when new features are152

added to MCell4, one only needs to modify a single API definition in the YAML format to ensure that both153

the API and the documentation reflect the new features.154

Definition of API 
classes in YAML 
format

Python interface to C++ code through
pybind11

Base C++ classes that hold the model 
representation

API definition for Python code editors

Documentation in RST markup language 

API 
generator C++ code to export model representation 

as Python code, e.g., for checkpointing

Figure 4: When MCell4 is built from its source code, the API generator reads a high-level definition of the MCell4 Python
interface and generates code and documentation. Automatic generation of an API makes it possible to easily modify or
extend the API while ensuring that all parts including documentation stay consistent. The API generator is a general
tool that can also be used (with minor modifications) for other software tools that combine C++ and Python [20].

2.3 MCell4 Model Structure155

A predefined model structure is important to enable reusability of model components (e.g., [21]). With a156

predefined model structure every piece of code for a given component (such as reaction definitions, geometry,157

initial model state, and observables) is in a file with a specified name and follows a predefined coding style.158

Such standardized model structure (shown in Fig. 5) aids in the reuse of code and simplifies creation of new159

models by leveraging existing model components. Another advantage of a predefined model structure is the160

capability to combine parts of existing models into one model (Fig. 6).161

2.3.1 Example Model Using the MCell4 Python API162

A simple example that shows the MCell4 API including Subsystem, Instantiation, and Model classes is163

shown in Fig. 7. Because of the simplicity of this example, we do not show the division into the separate files164

illustrated in Fig. 5.165
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model.py

subsystem.py
  or 
subsystem.bngl

instantiation.py

geometry.py

observables.py

arrows show dependencies

parameters.py
(used by all 
other files)

Figure 5: The main files included in a standard MCell4 model are: 1) parameters.py with all the model parameters, 2)
subsystem.py that captures information on species and reactions in a way that is independent of a particular model
and can be used as a reusable module, 3) geometry.py with a definition of 3D geometry objects, 4) instantiation.py that
usually defines the initial model state, i.e., which geometry objects are created in the simulation and the number and
positions of molecules to be released at a given time, 5) observables.py with lists of characteristics to be measured and
saved in files during simulation, and 6) model.py in which all the parts of the model are assembled together and in which
the the simulation loop with optional interactions with external simulators is defined. Model.py is the only required file.

model

geometry of a 
presynaptic 
terminal

observables:

what do I 
need to know 
about my 
simulated 
system

parameters & 
subsystem 1:

definition of a 
new synaptic 
pathway that I 
am studying

parameters & 
subsystem 2:

definition of 
presynaptic 
pathways

not all dependencies are shown

geometry of a 
synaptic spine

parameters & 
subsystem 3:

definition of 
postsynaptic 
pathways

instantiation 3:

releases of 
molecules in 
an instantiated 
synaptic spine
 

instantiation 2:

releases of 
molecules in an 
instantiated 
presynaptic 
terminal

instantiation 1:

releases of 
molecules 
interacting in the 
new synaptic 
pathway

Figure 6: Modularity of a model allows assembly of multiple subsystem definitions into a single model. In the example
shown here, individual modules are assembled to construct a model of a new synaptic pathway that is affected by other
processes. The complete model includes modules that individually define the presynaptic terminal with its presynaptic
pathways and the postsynaptic spine with its postsynaptic pathways.

2.4 Graph-Based Approach To Protein Modeling166

BNGL [23] supports intuitive modeling of protein complexes by representing them as undirected graphs.167

Such graphs contain two types of nodes: elementary molecules and components. Component nodes represent168

binding sites of the protein and can also express the state of the whole protein or of a binding site. A169

graph representing a single protein is implemented as an elementary molecule node with component nodes170

connected to it through edges. To form a dimer, two individual components of different proteins are bound171

by creating an edge between them. A graph with one or more elementary molecules with their components172

is called a complex. A reaction rule defines a graph transformation that manipulates the graph of reactants.173

A reaction rule usually manipulates edges to connect or disconnect complexes or change the state of a174

component. It can also modify the elementary molecules such as in the reaction A + B -> C where we do not175
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MCell4 Python API

import mcell as m

subsystem = m.Subsystem()
a = m.Species(

name = 'a', # this species will be called 'a',
diffusion_constant_3d = 1e-6 # molecules of 'a' are volume

# molecules and diffuse in 3D space
)
subsystem.add_species(a)

instantiation = m.Instantiation()
# ReleaseSite defines which and how many molecules will be released
# either when simulation starts (default) or at a predefined time
rel_a = m.ReleaseSite(

name = 'rel_a',
complex = a, # molecules of which species to release
number_to_release = 10, # copy number
location = (0, 0, 0) # all these molecules will be released

# at (x, y, z) location (0, 0, 0)
)
instantiation.add_release_site(rel_a)

model = m.Model()
model.add_subsystem(subsystem) # include information on species
model.add_instantiation(instantiation) # include molecule release site

model.initialize() # initialize simulation state
model.run_iterations(10) # simulate 10 iterations
model.end_simulation() # final simulation step

Figure 7: Example of a simple MCell4 model that releases 10 volume molecules of species ‘a’ and simulates their
diffusion for 10 iterations with a default time step of 1 µs. Note that for this and following examples, a system variable,
PYTHONPATH, must be set so that the Python interpreter knows where to find the MCell4 module [22].
Alternatively one can append to python’s search path from within the model file with the statement: import
sys; sys.path.append("/path/to/mcell4/libs")

care about the molecular details and do not need to model individual binding sites. An example of applying176

a reaction rule that connects complexes and changes the state is shown in Fig. 8. Note that what we call177

an "elementary molecule type" here is called a "molecule type" in BioNetGen. In MCell, "molecules" are178

defined as whole molecules such as protein complexes that act as individual agents in the simulation. For179

better clarity, we adopt the name "elementary molecule" for the base building blocks of complexes. The tool180

SpringSaLaD [9] uses the same distinction.181

This graph-based approach is essential when dealing with combinatorial complexity. To model a protein that182

has 10 sites, in which each can be unphosphorylated, phosphorylated, or bound to another protein with183

ordinary differential equations (ODEs) requires 310 (i.e. 59049) simultaneous ODEs [24]. For comparison, a184

BNGL model of the same protein will have just 6 reversible reaction rules (assuming no interaction between185

these 10 sites). Such a model can then be simulated using network-free simulation methods [25].186
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   A(c0~R)        +        B(c1)                    ->     A(c0~S!1).B(c1!1)

c0~S
A

c0~R c1~U
B

c2~X c0~S

A

c0~S c1~U

B

c2~X

c0~S
A

c0~R c1~U
B

c2~X

A

c0~R c1~*

B

A

c0~S c1~unchanged

B

c0~S
A

c0~S c1~U
B

c2~X

   A(c0~R) + B(c1)

A(c0~S!1).B(c1!1)

(A) Reaction 
rule

(B) Reactants 
and product

(D) Reactants

(E) Rule -  
reactant 
patterns

(F) Rule - 
product 

(G) Reactants 
changed into 
products

A(c0~S,c0~R)     +       B(c1~U,c2~X)       ->       A(c0~S,c0~S!1).B(c1~U!1,c2~X)

(C) Graph 
representation 
of reactants 
and products

1) Map reactant patterns onto 
reactants

2) Map product(s) onto 
reactant patterns and 
determine changes

3) Apply changes determined 
in step 2) onto reactants

Figure 8: Example of a graph transformation with BNG reaction rules. In this example, reactants are defined with
molecule types A(c0∼R∼S,c0∼R∼S) and B(c1∼U∼V,c2∼X∼Y) where A and B are names of the molecule types, c0 is a
component of A that can be in one of the states R and S, and similarly c2 and c3 are components of B. (A) is the example
reaction rule, (B) are example species reactants and products in the BNGL syntax, and (C) shows a graph representation
of the rule in (B).
Application of the rule is done in the following steps: 1) a mapping from each molecule and each component from
reactant patterns (E) onto reactants (D) is computed (dotted arrows), if the state of a component is set in the pattern, the
corresponding reactant’s component state must match. The next step 2) is to compute a mapping of the rule product
pattern (F) onto reactant patterns (E). The difference between the reaction rule product pattern and the reactant patterns
tells what changes need to be made to generate the product. In this example, a bond between A’s component c0 with
state R and B’s component c1 is created. The state of A’s component c0 is changed to S. Once the mappings are computed,
we follow the arrows leading from the reaction rule product pattern (F) to reactant patterns (E) and then to reactants (D)
and 3) perform changes on the reactants resulting in the product graph (G). Each graph component of the product graph
is a separate product and there is exactly one product in this example.

2.4.1 Extension of BNGL for Volume-Surface Reactions187

BNGL compartments [26] allow the definition of hierarchical volumes or surfaces where simulated molecules188

are located. To model a transport reaction that moves a volume molecule from one compartment through a189

channel (located in a membrane) into another volume compartment, one must specify the direction of this190

transport. We show such a reaction which implements hierarchy of compartments in Fig. 9.191

In BNGL, a reaction that defines the transport of A from compartment EC into CP through transporter T is192

represented with the following rule:193

A@EC + T@PM -> A@CP + T@PM194
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 PM

 ECCP

AT

Figure 9: An example of compartments: EC is extracellular space, PM is the plasma membrane, and CP is cytoplasm. A
is a molecule that diffuses freely in 3D space, and T is a molecule located in the plasma membrane.

To model multiple instances of cells or organelles, this definition needs to be replicated with different195

compartments as follows:196

A@EC + T@PM1 -> A@CP1 + T@PM1197

A@EC + T@PM2 -> A@CP2 + T@PM2198

...199

MCell3 uses a general specification of orientations [4] in which the rule above is represented as:200

A' + T' -> A, + T'201

On the reactant side of the reaction, A’ (A followed by an apostrophe) means that molecule A hits molecule202

T from the "outside" (as defined below) of the compartment, and T’ means that the surface molecule T must203

be oriented in the membrane facing towards the outside. On the product side of the reaction, A, (A followed204

by a comma) means that the product A will be created on the inside of the compartment and T’ means that205

T will still be oriented towards the outside. Geometric objects in MCell are composed of triangles. The206

"outside" of a triangle is defined as the direction in which the normal vector of the triangle points. More207

details on molecule orientations defined in MCell3 can be found in [4].208

Because the MCell3 representation of orientation is not compatible with the grammar of BNGL, and to avoid209

repetition of reaction rules for each compartment, we have defined an extension to BNGL that allows two210

special compartment classes called @IN and @OUT to be used in MCell4. With this extension reactions with211

compartments are then more generally defined as:212

A@OUT + T -> A@IN + T213

Note that only bimolecular reactions where a volume and a surface reactant interact may use the @IN or214

@OUT compartment classes. When the rule is used at simulation time the actual membrane compartment215

containing the surface reactant (T here) along with the volumetric compartment containing the volume216

reactant (A here) are used to correctly interpret the geometric meaning of the @IN and @OUT compartment217

class associated with the volume reactant. For example when this rule is applied to reactants A@EC (i.e A218

located in EC) and T@PM (i.e. T located in PM) at simulation time, MCell4 will first interpret the @OUT219

compartment class in the rule and find that compartment EC is outside of PM, and satisfies the left-hand220
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side of the rule. Next MCell4 finds that that compartment CP is inside of PM, and finalizes the mapping of221

the generic compartment class @IN to the specific compartment class @CP MCell4 then inserts this specific222

compartment information into the rule A@OUT + T -> A@IN + T to get the runtime rule A@EC + T@PM ->223

A@CP + T@PM which is the same as the example rule we started with.224

One more situation that we considered is how to define the orientation of the transporter in the membrane.225

One might need to model flippases and floppases (e.g., [27]) that change the orientation of a receptor in a226

membrane. In MCell3, this is handled by an orientation syntax in which a comma indicates an inward-facing227

orientation, and an apostrophe indicates an outward-facing orientation. In MCell4, when a molecule is228

created in a membrane, its orientation is always facing outwards (equivalent to T’ in the MCell3 notation).229

If one needs to define orientation explicitly, a component of an elementary molecule can be defined. For230

example one can extend the definition the molecule type T to contain a component called ‘o’ with two states231

called INWARDS and OUTWARDS. The rule defined for a specific state of the transporter will then be:232

A@OUT + T(o~OUTWARDS) -> A@IN + T(o~OUTWARDS)233

To flip the orientation of T, a standard BNGL rule F + T(o∼OUTWARDS) -> F + T(o∼INWARDS) can be234

defined; Here, F is a surface molecule flippase.235

To summarize, we introduced an extension to BNGL in which compartment classes @IN and @OUT are used236

to define general volume+surface molecule reaction rules that can be applied to any specific compartments237

at simulation time.238

2.4.2 Units and Interoperability between MCell4 and BioNetGen239

Usage of the BioNetGen language offers an excellent interchange format. Model definitions in BNGL can240

be executed by MCell, and BioNetGen itself implements various simulation approaches such as ODE, SSA,241

PLA, and NFSim. BioNetGen does not have pre-described units so that the user is free to use any unit system242

they deem suitable and that is compatible with the underlying algorithms. To facilitate model interchange,243

we define a set of units to be used when BNGL models are implemented in MCell4 and when the model is244

exported for use within BioNetGen as shown in Table 1.245

An MCell4 model is typically implemented as a combination of Python and BNGL code. Although the246

approach that we recommended is to capture all the reaction rules and initial molecule states in BNGL, it247

may sometimes be beneficial to use Python code for these definitions (e.g., to generate reaction networks248

programmatically). There are also aspects of spatial models that cannot be captured by BNGL. To simplify249

model validation, MCell4 provides an automated means to export a model that has been implemented as a250

combination of Python and BNGL into pure BNGL. Since not all features (especially spatial distributions)251

of an MCell4 model can be mapped to pure BNGL, a best-effort approach is used during this export. All252

model features that can be translated into BNGL are exported and error messages are printed identifying the253

model aspects that have no equivalent in BNGL. If the exported model includes all essential model aspects it254
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Simulation tool
and mode of usage

Volume-volume or
volume-surface bi-
molecular reaction
rate

Surface-
surface
bimolecular
reaction rate

Unimolecular
reaction rate

Compartment
volume

Seed species
(initial
molecule
release)
value

MCell4 with de-
fault units

M−1 s−1 µm2 N−1s−1 s−1 µm3 N

MCell with BNG
units; BioNetGen
ODE, SSA, PLA

µm3 N−1s−1 µm3N−1s−1 s−1 µm3 N

BioNetGen NFSim N−1s−1 N−1s−1 s−1 ignored N

Table 1: Units used in MCell and suggested units for BioNetGen. Unit N represents the number of molecules and
M is molar concentration. BioNetGen interprets membranes (2D compartments) as thin volumes of thickness 10 nm.
NFSim in BioNetGen does not fully support compartmental BNGL yet and the volume of the compartment must be
incorporated into the rate units of the reactions occurring in that compartment, therefore NFSim’s bimolecular reaction
rate unit does not contain a volumetric component. Additional units in MCell include: length in µm and diffusion

constants in cm2 s−1.

can be used for cross-validation and comparison of results between the MCell4 and BioNetGen simulations.255

Verifying results with multiple tools can reveal errors in the model or in the simulation tools. Therefore, such256

validation is a recommended step in development of an MCell model.257

2.4.3 Example of an MCell4 Model with BioNetGen Specification258

To demonstrate the support for BNGL in MCell4, we show a simple example (Fig. 11) that imports (i.e. loads)259

information on species and reaction rules, molecule releases, and information about compartment from a260

BNGL file (Fig. 10).261

Note that the file in Fig. 10 is a standard BNGL file that can be used directly by other tools such as BioNetGen262

so that no extra conversion steps are needed for the BNGL file to be used elsewhere. This permits fast263

validation of a reaction network with BioNetGen’s ODE or other solvers. The model can be checked against264

the spatial simulation results in MCell4 without the need to have multiple representations of the same model.265

3 Results266

3.1 Testing & Validation267

We performed extensive testing and validation to ensure the accuracy of results generated by MCell4.268

We compared results from the previous versions, MCell3 [4] and MCell3-R [12], which were themselves269

extensively tested prior to their release. One can obtain byte for byte identical results with MCell3/MCell3-R270

and MCell4 by using specific options during compilation. These options ensure that the molecules are271

simulated in the same order and with the same stream of random numbers in MCell3/MCell3-R and MCell4.272

We have created a test suite (included in the MCell source code repository) containing more than 350273
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BNGL

begin parameters
# provide diffusion constant for used molecule species
MCELL_DIFFUSION_CONSTANT_3D_A 1.0e-6
MCELL_DIFFUSION_CONSTANT_3D_B 2.0e-6
MCELL_DIFFUSION_CONSTANT_3D_C 1.3e-6

end parameters

begin compartments
# 3D (volume) compartment with volume 1um^3
CP 3 1

end compartments

begin seed species
# release 100 molecules of A and 100 of B in compartment CP
A@CP 100
B@CP 100

end seed species

begin reaction rules
# a simple rule for reaction between A and B creating C as the product
# the reaction rate constant is assumed to be in units um^3*1/N*1/s
A + B -> C 100

end reaction rules

Figure 10: BNGL file that defines a compartment CP, and instantiates release of 100 molecules of A and 100 molecules of
B into it. It then implements a reaction rule in which A and B react to form the product C.

MCell4 Python API

import mcell as m

model = m.Model()

# specify that this model uses BioNetGen units (see Table 1)
model.config.use_bng_units = True

# load the information on species (diffusion constants),
# reaction rules, also creates compartment CP as a box with
# volume 1um^3 and creates release sites for molecules A and B
model.load_bngl('sybsystem.bngl')

model.initialize() # initialize simulation state
model.run_iterations(10) # simulate 10 iterations
model.end_simulation() # final simulation step

Figure 11: Python code for an MCell4 model that will implement loading of the BNGL file shown in Fig.10 (referenced as
subsystem.bngl). In this example the entire BNGL file is read. It is also possible to load only specific parts of the BNGL
file, for example only reaction rules or only compartment and molecule release information. It is also possible to replace
BNGL compartments with actual 3D geometry.
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validation tests that verify correct results in MCell3 and MCell3-R tests. We obtain byte for byte identical274

results of these tests between MCell3, MCell3-R and MCell4. Simulation results were also validated against275

results with a BioNetGen ODE solver [6] and with NFSim [14] by running equivalent models in MCell4 and276

in BioNetGen, running with up to 1024 different random seeds. The diffusion constants in MCell4 were277

set to a high value to emulate a well-mixed solution. We then compared the shape of the time course of278

the averaged counts (and variance of counts) of molecules of a given species. Some tests cases have an279

analytic solution. The results of all tests agreed well between simulators, and with analytic solutions, and280

were always within the measured variance in all cases. More than 45 of such tests are included in the MCell4281

test suite [28]. Some of these tests are referenced as examples in MCell4’s API reference manual [29].282

3.1.1 SNARE Complex283

We implemented a model of the SNARE complex, a cooperative dual Ca2+ sensor model for neurotransmitter284

release [30], as an example of an MCell4 model containing a BioNetGen specification. The model includes285

the binding of up to five calcium ions to the sensor and synchronous or asynchronous modes of release286

of neurotransmitters. An adapted version of this model was previously implemented in an older version287

of MCell [31]. The model is composed of SNARES with 18 state variables, calcium ions and 63 reactions.288

There are different possible implementations of the model in BNGL. The one presented here is compatible289

with MCell4, and allows simulation of the model in BioNetGen and MCell4 without modifying the code. It290

consists of three molecules types and ten reaction rules (Fig. 12). The snare complex (represented as snare)291

is an elementary molecule that has eight components: five s, that represent the binding site for calcium292

molecules in the synchronous sensor; two a components that represent the binding sites for calcium in the293

asynchronous sensor; and one component called dv with two states (∼ 0 ∼ 1), that represents docking of294

a vesicle to the snare complex (∼ 1) or its absence (∼ 0). Calcium ions (Ca2+) can bind and unbind to the295

complex. The release of neurotransmitters is tracked via a dummy molecule type called V_release(), which296

captures the timing of the release but does not actually release molecules of neurotransmitter (see the next297

section for an implementation of the release in MCell4). Fig 13A shows code implementing the states of the298

model, and the synchronous and asynchronous release. Assuming well-mixed conditions, a large volume299

containing the surface complexes, a large number of complexes and a constant calcium concentration, the300

results obtained with BioNetGen ODE simulations and the spatial model in MCell4 give qualitatively similar301

results (Fig 13B). The source code for this example can be found in [32].302

3.1.2 Event-Driven Release of Neurotransmitter by the SNARE Complex303

To release neurotransmitter in an event-driven manner at the times captured by observing V_release() in304

the SNARE example above, we employ a new feature in MCell4: callbacks. One of the most powerful305

new features of MCell4 is the ability to implement python code to be executed (i.e. called) each time a306

user-specified reaction or wall collision event occurs during a simulation; thus, the term "callback". In the307
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BNGL

begin compartments
# Plasma membrane (PM) 2D compartment with volume 0.01 um x SA um^2
PM 2 6e-4
# Cytoplasm (CP) 3D volume compartment with volume 1e-3um^3
CP 3 1e-3 PM

end compartments

begin molecule types
snare(s~0~1~2~3~4~5,a~0~1~2,dv~0~1)
Ca
V_release()

end molecule types

begin species
# SNARE complex are released in the PM
snare(s~0,a~0,dv~1)@PM 70
# Fixed calcium number in the cytosol
Ca@CP Ca0

end species

begin observables
Molecules SNARE_sync snare(s~5)
Molecules SNARE_async snare(a~2)
Molecules V_release V_release()

end observables

begin reaction rules
# Calcium binding to the synchronous component of the sensor
snare(s~0)@PM + Ca@CP <-> snare(s~1)@PM 5*ksp, 1*b^0*ksm
snare(s~1)@PM + Ca@CP <-> snare(s~2)@PM 4*ksp, 2*b^1*ksm
snare(s~2)@PM + Ca@CP <-> snare(s~3)@PM 3*ksp, 3*b^2*ksm
snare(s~3)@PM + Ca@CP <-> snare(s~4)@PM 2*ksp, 4*b^3*ksm
snare(s~4)@PM + Ca@CP <-> snare(s~5)@PM 1*ksp, 5*b^4*ksm

# Calcium binding to asynchronous component of the sensor
snare(a~0)@PM + Ca@CP <-> snare(a~1)@PM 2*kap, 1*b^0*kam
snare(a~1)@PM + Ca@CP <-> snare(a~2)@PM 1*kap, 2*b^1*kam

# Synchronous vesicle release
sync: snare(s~5,dv~1)@PM -> snare(s~5,dv~0)@PM + V_release()@CP gamma
# Asynchronous vesicle release
async: snare(dv~1,a~2)@PM -> snare(dv~0,a~2)@PM + V_release()@CP a*gamma
# Vesicle docking to SNARE
snare(dv~0) -> snare(dv~1) k_dock
end reaction rules

end model

Figure 12: Compartmental BNGL implementation of the SNARE complex model. One 3D compartment, cytosol (CP),
and its associated plasma membrane (PM) is defined. Molecule types are defined, and their released sites are specified:
SNARE molecules are released into the PM, and Calcium ions into the Cytosol. This code is followed by specification of
the observables, and the reaction rules governing the interactions.
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Figure 13: (A) Schematic diagram of the state variables of the SNARE complex model. It consists of 18 states, S and
A represent the synchronous and asynchronous components of the complex, which can be in five and two different
states respectively (B-D) Results of independent simulations of the model with ODEs in BioNetGen (dashed lines) and in
MCell4 (solid lines).

MCell4 Python API the code to be executed when "called" by the event, is written as a function and this308

function is referred to as a "callback function".309

In this case we created a callback function that will release a given number of neurotransmitter molecules,310

at the time the synchronous or asynchronous reactions occur. We localize the release at the position311

of the individual SNARE complex that triggers the release. Here we briefly describe how this is ac-312

complished. The full details and Python source code of the working MCell4 model can be found at313

https://github.com/mcellteam/article_mcell4_1/tree/master/snare_complex/snare_w_callback.314

There are two types of callback functions supported in the MCell4 Python API, "reaction callback functions"315

and "wall hit callback functions". In the SNARE complex example we have created a reaction callback316

function that will be called upon the stochastic occurrence of the "sync" or "async" reactions specified in317

Fig. 12. We name this reaction callback function "release_event_callback" and associate it with the reactions318

using the "register_reaction_callback()" command provided in the API. During simulation of the model,319

whenever a sync or async reaction occurs, the MCell4 physics kernel will execute "release_event_callback()".320

To specify which species of neurotransmitter to release, how much, and where the register_reaction_callback()321

command allows additional metadata (called "context") to be passed to the callback function. In this example322

we created a Python class called "ReleaseEventCallbackContext" which contains the name of the species323
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and number to be released, as well as the relative release location. Release_event_callback() can then make324

use of this context to perform the desired operations. See file "customization.py" in the working model for325

complete details.326

3.1.3 CaMKII Model with Large Reaction Network327

To demonstrate results for a system with a large reaction networks, we use a model of a CaMKII dodecamer328

which is an extension of a model described in [33].329

The CaMKII dodecamer (a "protein complex") is composed of two CaMKII hexameric rings stacked on top of330

each other. Each CaMKII monomer with its calmodulin (CaM) binding site can be in one of 18 states. Then331

the total number of states possible for a CaMKII dodecamer CaMKII is then 1812/12 ≈ 1012 (the division332

by 12 is to remove symmetric states). This is an example of the combinatorial complexity mentioned in333

section 2.4 for which it is simply not feasible to expand all the reaction rules and generate the entire reaction334

network to be stored in memory, and thus a network-free approach is necessary. Fig. 14 shows the results of335

validation of this model against BioNetGen/NFSim, MCell3R, and MCell4.336

We also present an extension of the aforementioned model [33], in which we can now observe the effects337

of the geometry of the compartment on the simulation results by modeling in MCell4. Figure 15 shows338

three different variations of the model. The first variation distributes the molecules homogeneously in the339

compartment (equivalent to the well-mixed versioned published previously, Figure 15 A). Two additional340

variations include a small subcompartment, located near the top of the larger compartment, that is not trans-341

parent to diffusion of CaMKII and CaM molecules. In the first variation all the molecules are homogeneously342

distributed throughout the compartment, but the the CaMKII and CaM molecules in the subcompartment do343

not mix with the rest of the compartment (Figure 15 B). In the second variation, half of the CaMKII molecules344

are placed in the subcompartment and the other half in the remainder of the compartment, while CaM is still345

distributed homogeneously throughout the entire volume (Figure 15C).346

We sought to observe the effect of these three conditions on CaMKII phosphorylation as a result of Ca2+
347

influx into the compartment. In all three conditions a Ca2+ influx is simulated from a single point source348

located in the center of the top face of the large compartment. As in [33] the Ca2+ influx was such that at the349

peak the free calcium concentration was ∼ 10µM, and it returned to near the steady state level within 100 ms.350

These spatial differences have a small but significant effect on CaMKII phosphorylation levels in response to351

the Ca2+ influx. These differences would have been impossible to investigate without the combination of the352

network-free simulations and the diffusion in space implemented in MCell4.353

3.1.4 Volume-Surface and Surface-Surface Reactions: Membrane Localization Model354

We used a membrane localization model from [34] (section 2A) to validate volume-surface and surface-355

surface reactions.356
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Figure 14: Validation of MCell4 simulation against BioNetGen/NFSim and MCell3R using a CaMKII model. The input
BNGL model for NFSim was obtained by automatic BNGL export of BNGL from the MCell4 model. The simulation ran
for 100000 iterations (0.1 s). Lines in the graphs are averages from 256 runs with different random seeds, and bands

represent one standard deviation. Molecules in MCell3R and MCell4 use diffusion constant of 10−3cm2/s to emulate

a well-mixed solution (the usual value is around 10−6cm2/s). The names of the observed species are indicated in the
graph titles: CaM1C is CaM(C∼1, N∼0, camkii); CaM1N is CaM(C∼0, N∼1, camkii); KCaM2N is CaMKII(T286∼U,
cam!1).CaM(C∼0, N∼2, camkii!1). The simulation was initiated far from equilibrium; therefore there was an initial jump
in the molecule numbers. The molecule names are explained in [33].

The model analyzes how membrane localization stabilizes protein-protein interactions. A pair of protein357

binding partners A and B are localized to the membrane surface by binding a lipid molecule M. This binding358

to the membrane constrains the space in which the molecules diffuse and thus promotes complex formation.359

The model is created within a box of dimensions 0.47 × 0.47 × 5µm3. Surface molecules M are released on360

one of the smaller sides of the box. The 4 edges of this side are set to be reflective, so the surface molecules361

cannot diffuse onto the other sides.362

MCell subdivides the surface areas of geometric objects into small tiles. A maximum of one molecule can363

occupy one tile at a time - this tiling simulates volume exclusion for surface molecules. A parameter named364

"surface grid density" sets the density (and size) of the tiles and the thus the maximum packing density of365

surface molecules. The initial density of surface molecules in this model is 17000 molecules/µm2, and we set366

the surface grid density to 40000 tiles/µm2 giving an occupied area fraction of 42.5%. (SAY MORE ABOUT367

RESULTS OF VALIDATION TESTS IN FIG 16. DEFINE NERDDS. ADD SMOLDYN RESULT TO FIG 16)368

3.1.5 Stochastic Fluctuations in a System with Multiple Steady States: Autophosphorylation369

Another validation model from [34] (section 2B) shows stochastic fluctuations in a system with multiple370

steady states. A deterministic ODE solution does not show these multiple steady states and almost imme-371

diately stabilizes in one of them. In Fig. 17 we show the output of an MCell4 simulation and a simulation372

of the same model simulated in NFSim using the BNGL exported from the MCell4 model (more details on373

BNGL export are in 2.4.2). We also illustrate the steady states reached with ODE solutions.374
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Figure 15: The effect on CaMKII phosphorylation of trapping CaMKII and CaM inside a subcompartment named PSD .
Three different conditions where simulated. (A) All molecules are homogeneously distributed throughout the entire
compartment. (B) A small subcompartment, termed PSD, which is reflective to CaMKII and CaM, but is transparent
to calcium ions and PP1, is added near the top of the larger compartment. All the molecules are homogeneously
distributed throughout both compartments. (C) The subcompartment is reflective to CaMKII and CaM and 50% of the
CaMKII molecules are trapped inside the subcompartment, and the rest of the molecules are distributed homogeneously
throughout the remainder of the larger compartment. The plots show an average of 60 runs, lighter shaded bands
represent standard error of the mean.

Figure 16: Simulation results for the membrane localization
model. The plot shows copy numbers of a surface molecule
MA (surface molecule M with a bound volume molecule
A). MCell4 and MCell3 results show a good match with the
NERDDS simulator (NERDDS results are from from [34],
the data ended at time 1.75 s). The results computed with
ODE and PDE solutions produced by VCell reach the same
equilibrium (VCell results are from from [34] simulated with
VCell 7.2.0.39). (ADD SMOLDYN RESULTS) MCell3 and
MCell4 results are an average of 512 runs with different
random seeds.

3.2 Performance375

With relatively small reaction networks (less than 100 or so reactions), the performance of MCell4 is similar376

to MCell3 as shown in Fig. 18 (A). MCell3 is already highly optimized. MCell3 contains optimization of377

cache performance that speeds up models with large geometries; this optimization is not present in MCell4.378

Thus MCell3 is faster for large models such as models created in neuropil reconstructions containing on the379

order of 4 million triangles defining their geometry. The situation is different when comparing MCell4 and380

MCell3-R with models that use large BNGL-defined reaction networks ( 18B). MCell3-R uses the NFSim381

library to compute reaction products for BNG reactions. With large reaction networks containing as many as382

1010 reactions or more, MCell3-R stores all the reactions that occur during run-time in memory and thus383

gradually slows down. We have not been able to implement reaction cache cleanup in MCell3-R. MCell4384

with the BNG library keeps track of the number of molecules of each species in the system during simulation385

and periodically removes from the cache reactions and species that are not used. This facilitates simulation386
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Figure 17: An example of a stochastic simulation of a system that exhibits switching between multiple steady states.
Copy numbers of unphosphorylated kinase A and its phosphorylated variant Ap are shown for a single simulation run
in MCell4, MCell3, and NFSim. The NFSim model was obtained by automatically exporting the MCell4 model into
BNGL. The graphs also show solutions obtained with a deterministic ODE model for which data from [34] were used.
The results demonstrate that the MCell results correctly reach one of the stable steady states shown in the ODE results.
The simulation stays in such a state, and then due to stochastic behavior, a switch another steady state occurs.

Figure 18: For selected benchmarks, we measured elapsed
time for how long the simulation ran starting from the sec-
ond iteration (after all initializations) and ending when the
simulation finished. Time was measured on AMD Ryzen 9
3900X@3.8GHz. Both MCell3 and MCell4 use a single exe-
cution thread. Relative performance shown in the graphs is
computed as time for MCell3 or MCell3-R divided by time
for MCell4. The sources of the models are as follows: Presy-
naptic Ca Homeostasis [31]; Rat Neuromuscular Junction [2]
model with updated geometry (shown in Fig 1), Neuropil [5];
Mitochondrion Model [35]; Membrane Localization [34]; Au-
tophosphorylation [34]; CaMKII Monomers [33]; CaMKII
Holoenzyme [33]; SynGAP with TARP (not yet published).

of complex reaction networks with a potentially infinite number of species and reactions without excessive387

impact on memory usage and performance.388

3.3 Hybrid Simulation Example389

MCell4’s Python API supports interaction with an MCell4 simulation while it is running. Here we show390

a model in which the progression over time of one molecular species is encoded in Python code with a391

differential equation and the remaining species are encoded in MCell4 as particles behaving stochastically.392

As a basis for this demonstration we used a model of a circadian clock published in article [34], originally393

based on article [36].394
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The model simulates the behavior of an activator protein A and repressor protein R that are produced from395

mRNA transcribed from a single copy of a gene (one for each protein). Coupling of A and R expression is396

driven by positive feedback of the activator A, which binds to each gene’s promoters to enhance transcription.397

Protein R also binds to A to degrade it. All other proteins and mRNA are degraded spontaneously at a398

constant rate.399

Compared to the original model in [36], authors of [34] increased the reaction rates in the model from hours400

to seconds by multiplying the reaction rates by 3600. Because the purpose of this example is to demonstrate a401

hybrid model in MCell4 and its validation, which requires many runs, we made another change to accelerate402

the simulation; we reduced the simulation volume by a factor of 268 to 0.25 µm which increased the rate of403

bimolecular reactions. We also increased the unimolecular reaction rates by the same factor.404

In the hybrid model, protein R is simulated as a changing concentration, under well-mixed conditions,405

whose concentration value is updated by finite difference expressions. The other species are simulated as406

particles. In the base MCell4 model, there are 4 reactions that consume or produce R (Fig. 19). We replaced407

two of these with reactions that do not model R as a particle and the remaining two reactions were replaced408

with finite difference expressions Fig. 20). The hybrid coupling of the finite difference calculations with409

MCell4’s particle-based calculations is shown in the pseudo-code representing the main simulation loop in410

Fig. 21.411

BNGL Reactions

A_and_R_to_AR: A + R -> AR AR_kon # 1/M*1/s
R_to_0: R -> 0 R_koff # 1/s
mRNA_R_to_mRNA_R_plus_R: mRNA_R -> mRNA_R + R mRNA_R_koff # 1/s
AR_to_R: AR -> R AR_koff # 1/s

Figure 19: Reaction rules affecting protein R in the particle-only model.

BNGL Reactions

A_to_AR: A -> AR A_koff # 1/s
# R_to_0: - modeled as ODE
# mRNA_R_to_mRNA_R_plus_R: - modeled as ODE
AR_to_0: AR -> 0 AR_koff # 1/s

Figure 20: Reaction rules affecting protein R in the hybrid model.

To validate that the results of the hybrid variant of the model are correct, we ran 1024 instances of stochastic412

simulations with different initial random seeds. We also compared the effect of two different diffusion413

constant values when using MCell. Results that showing the average oscillation frequencies are shown in414

Fig. 22 and the copy numbers of molecules A and R in Fig. 23.415

When using a fast diffusion constant of 10−7cm2/s for all molecules, all simulation approaches produce416

essentially the same results. A significant advantage of using hybrid modeling is often that the hybrid model417
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MCell4 Pseudo-code

num_R = 0.0 # in N, initial copy number of Rs,
# modeled as a floating-point value

T_STEP = 5e-7 # in us, simulation time step
NA = 6.0221409e+23 # in N/mol, Avogardo's constant
VOLUME = 4.188993 * 1e-15 # in l, simulated volume

for i in range(ITERATIONS):
# 1) Run particle-based simulation for 1 time step
model.run_iterations(1)

# 2) Update the concentration-based copy number of Rs
# 2.1) Rs consumed by original reaction A + R -> AR
dR_due_A_to_AR =

-model.get_number_of_reactions_in_last_iteration('A_to_AR')

# 2.2) Rs consumed by original reaction R -> 0
dR_due_R_to_0 =

-(num_R * R_koff * TIME_STEP)

# 2.3) Rs produced by original reaction mRNA_R -> mRNA_R + R
dR_due_mRNA_R =

model.get_number_of_molecules('mRNA_R') * mRNA_R_koff * T_STEP

# 2.4) Rs produced by original reaction AR -> R
dR_due_AR_to_0 =

model.get_number_of_reactions_in_last_iteration('AR_to_0')

# 2.5) Update the copy number of Rs
num_R +=

dR_due_A_to_AR + dR_due_R_to_0 + dR_due_mRNA_R + dR_due_AR_to_0

# 3) Update rate of reaction A -> AR (originally A + R -> AR):
# Sets the rate A_koff using concentration of R effectively
# converting a bimolecular reaction rate from 1/M*1/s to a
# unimolecular rate in 1/s.
# Concentration is here computed with copy number of Rs
# truncated to the closest integer to avoid reactions happening
# when there is less than 1.0 Rs.
concentration_R = floor(numR) / NA / VOLUME # in 1/M
model.set_reaction_rate('A_to_AR', concentration_R * AR_kon)

Figure 21: Pseudo-code of the main simulation loop that: 1) runs an iteration of the particle-based simulation, 2) updates
the copy number of R based on the current MCell state, and 3) updates the rate of reaction A -> AR that was originally a
bimolecular reaction A + R -> AR. N is a unit representing the copy number. This pseudo-code was adapted to show
the actual computations in a more comprehensible way. The runnable MCell4 Python code is available in the GitHub
repository accompanying this article [32].
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Figure 22: (A) Result of a stochastic simulation of a circadian clock model with NFSim. Copy numbers of molecules
A and R show periodic oscillation. A low pass frequency filter was used to smooth the values of A and R. The reason
for the smoothing was to get a numerical value related to the actual peak The peaks from low-pass filtered data do
not represent actual average peaks but can be used as a proxy to obtain the time of a peak for comparison with other
simulation methods. (B) The error bars capture the mean and standard deviation of the low pass filtered peak times for
different variants of the model and simulation algorithms. Each of the variants was run 1024 times. It is evident that the

SSA, the NFSim, and the MCell model variants with a fast diffusion constant, D = 10−5cm2/s, give essentially the same

results. The hybrid MCell model with the slower diffusion constant, D = 10−7cm2/s, shows faster oscillation than the
non-spatial models run with SSA and NFSim, and the MCell4 variants with faster diffusion. The pure particle-based

MCell4 model with D = 10−7cm2/s shows the fastest oscillations.

runs much faster, as in this specific example, in which the simulation speed of the MCell4 hybrid model is 4x418

faster. This is because: 1) The time step can be set to 5x longer because there is no need to model explicitly419

the diffusion of particle-based molecules for the fastest reactions. Note that the time step when all molecules420

are modeled as particles must be 10−7s to accurately model these fast reactions. 2) species R in not modeled421

as particles.422

This is a relatively simple example in which we compute the ODE separately with Python code, however it423

shows the strength of this approach in which one can couple other physics engines to MCell4 and achieve424

multi-scale simulations.425

4 Conclusions426

4.1 Summary427

We have described MCell4, a newly updated particle-based reaction-diffusion tool based on Monte Carlo428

algorithms that allows spatially realistic simulation of volume and surface molecules in a detailed 3D429

geometry. MCell4 builds on features of MCell3 (and MCell3-R), providing improved integration with the430

BioNetGen Language as well as a Python API that enables control of a simulation through Python code.431

In MCell4, as opposed to MCell3, molecules and reactions are natively written in BNGL allowing a seamless432

transition between MCell4 and BNG simulation environments. The update has dramatically improved the433

ability to run network free simulations in the spatial MCell environment, when compared to the previous434

MCell3-R which employed the NFSim engine to run reaction written in BNGL [12, 14].435

25

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2023. ; https://doi.org/10.1101/2022.05.17.492333doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492333
http://creativecommons.org/licenses/by-nd/4.0/


MCell4 with BioNetGen

Figure 23: Comparison of copy numbers of A and R during simulations by different methods. (A) The average copy
numbers for A and R proteins from 1024 runs in NFSim, SSA, and MCell4 with a fast diffusion constant match. To get an
even better match,would require more than 1024 runs because stochastic molecular simulations show high variability
when the copy number of some of the species is low which is the case here for both A and R. (B) and (C) Average copy
numbers for MCell4 simulations with a slow diffusion constant. These are shown as separate plots to highlight the effect
of slow diffusion on spatial simulation results.

The new Python API, enables one to write Python code that can change geometry, reaction rates, create or436

remove molecules, execute reactions, etc., during a simulation. This powerful new feature allows construction437

and execution of multi-scale hybrid models.438

As we have demonstrated here through examples, MCell4 adds many new features including the ability to439

create fully spatial network-free molecular reaction models within realistic geometry. It adds the ability to440

switch back and forth easily between MCell4 and BNG environments; and it adds the ability to simulate441

transmembrane or transcellular interactions between surface molecules.442

MCell4 is a significant improvement on the previous MCell3-R version with respect to simulation speed,443

number of features, as well as usability. It allows simulation of new classes of systems that could not be444

modeled previously.445

4.2 Availability and Future Directions446

MCell4 is available under the MIT license. For easy installation and usage, a package containing MCell,447

Blender, the Blender plugin CellBlender, and other tools is available along with detailed documentation448

and on-line tutorials at [37]. MCell4 includes a new C++ library for parsing the BioNetGen language and449

provides methods to process BioNetGen reactions. This library libBNG is also available under the MIT450

license [17].451

MCell4 does not currently support the definition of spatially extended complexes that could be useful,452

for instance, when modeling the post-synaptic density [5] or actin filament networks [38] where simply453

replacing these polymers with a single point in space is inadequate. Furthermore, the ability to model454
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volume exclusion by individual molecules and complexes will be an important goal for the future. We have455

plans to combine particle-based simulation with concentration or well-mixed simulation algorithms such as456

SSA [39] or the finite element method that uses PDEs (partial differential equations), e.g., [40]. Such hybrid457

modeling will provide means to simulate longer timescales while still being spatially accurate and able to458

correctly handle cases when the copy number of molecules is low. All these features will be the focus of459

future developments.460
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