

Target-based discovery of a broad spectrum flukicide

Daniel J. Sprague^{1,2}, Sang-Kyu Park¹, Svenja Gramberg³, Lisa Bauer³, Claudia M. Rohr¹, Evgeny G. Chulkov¹, Emery Smith⁴, Louis Scampavia⁴, Timothy P. Spicer⁴,
Simone Haeberlein³, Jonathan S. Marchant^{1*}

¹Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.

²Program in Chemical Biology, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.

³BFS, Institute of Parasitology, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany.

⁴UF Scripps Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, 33458, USA.

*Correspondence: JMarchant@mcw.edu

Short Title: An activator of fluke TRPM_{PZQ}

Keywords: transient receptor potential channel, Ca²⁺ signaling, parasite, praziquantel.

Figures 4; Table 1

Supplementary Information (Supplementary Figures x5, Supplementary Tables x3, Supplementary Videos x4, Synthetic Procedures and Characterization Data)

1 **Diseases caused by parasitic flatworms impart a considerable healthcare burden**
2 **worldwide. Many of these diseases – for example, the parasitic blood fluke**
3 **infection, schistosomiasis – are treated with the drug praziquantel (PZQ).**
4 **However, PZQ is ineffective against disease caused by liver flukes from the**
5 **genus *Fasciola*. This is due to a single amino acid change within the target of**
6 **PZQ, a transient receptor potential ion channel (TRPM_{PZQ}), in *Fasciola* species.**
7 **Here we identify benzamidoquinazolinone analogs that are active against**
8 ***Fasciola* TRPM_{PZQ}. Structure-activity studies define an optimized ligand (BZQ)**
9 **that caused protracted paralysis and damage to the protective tegument of these**
10 **liver flukes. BZQ also retained activity against *Schistosoma mansoni* comparable**
11 **to PZQ and was active against TRPM_{PZQ} orthologs in all profiled species of**
12 **parasitic fluke. This broad spectrum activity was manifest as BZQ adopts a pose**
13 **within the binding pocket of TRPM_{PZQ} dependent on a ubiquitously conserved**
14 **residue. BZQ therefore acts as a universal activator of trematode TRPM_{PZQ} and a**
15 **first-in-class, broad spectrum flukicide.**

16 **Introduction**

17 Trematodes (parasitic flukes) cause various diseases in humans. Blood flukes from the
18 genus *Schistosoma* cause schistosomiasis, a disease that afflicts over 200 million
19 people worldwide. Liver fluke, lung flukes, as well as intestinal flukes cause various
20 food-borne trematodiases that add to the global neglected tropical disease burden.
21 These parasitic flatworm infections are treated using a drug called praziquantel (PZQ),
22 which has been the mainstay of clinical therapy for over 40 years [1-3].

23

24 However, PZQ is not effective against all types of flukes. Notably, PZQ lacks efficacy
25 against liver flukes from the genus *Fasciola* (for example, *Fasciola hepatica* and
26 *Fasciola gigantica*) [4, 5]. These parasites cause fasciolosis, a food-borne infection and
27 zoonosis afflicting both humans and livestock. Fasciolosis-related complications in
28 agriculture underpin considerable financial losses [6]. Fasciolosis is currently treated
29 with triclabendazole (TCBZ), however widespread agricultural exposure has led to
30 TCBZ resistance in Europe, South America, and Oceania [7-9]. Therefore, from a
31 perspective of both food security and efficacy in the clinic, there is an unmet need to
32 develop new drugs effective against these liver flukes [10, 11].

33

34 A logical strategy would be to understand why PZQ is ineffective against *Fasciola* spp.,
35 and then iterate solutions for broadening the spectrum of PZQ action. Such an
36 approach has been made feasible by the recent discovery of the parasite target of PZQ
37 [12], a transient receptor potential ion channel in the melastatin family called TRPM_{PZQ}
38 [12-14]. PZQ activates TRPM_{PZQ} by engaging a binding pocket within the voltage-

39 sensor like domain (transmembrane helices S1-S4) of the ion channel [15]. Critically,
40 TRPM_{PZQ} in *Fasciola spp.* exhibits a natural amino acid variant (a threonine in the S1
41 helix of the binding pocket compared to an asparagine found in all other flukes [15, 16]).
42 This difference likely removes a critical interaction needed for PZQ-evoked channel
43 activation, rendering PZQ inactive at *Fasciola* TRPM_{PZQ} [15, 16] and thereby ineffective
44 as a treatment for fasciolosis.

45

46 Based on this recent insight, we reasoned that a ligand that activates TRPM_{PZQ} but is
47 tolerant of this naturally occurring binding pocket variation would act as a broad
48 spectrum flukicide. This study reports the identification and characterization of such a
49 chemotype overcoming the insensitivity of *Fasciola spp.* to PZQ, and outperforming
50 TCBZ, the current gold-standard therapy.

51 **Results**

52 Target-based screening was used to identify TRPM_{PZQ} activators [17]. Using a
53 fluorometric Ca²⁺ reporter assay, HEK293 cells that inducibly expressed either
54 *Schistosoma mansoni* TRPM_{PZQ} (*Sm*.TRPM_{PZQ}) or *Fasciola hepatica* TRPM_{PZQ}
55 (*Fh*.TRPM_{PZQ}) were treated with increasing concentrations of different ligands. The
56 workflow prioritized identification of *Sm*.TRPM_{PZQ} agonists, given praziquantel ((±)-PZQ)
57 provided a known positive control for *Sm*.TRPM_{PZQ} activation. Racemic PZQ ((±)-PZQ)
58 activated *Sm*.TRPM_{PZQ} (**Figure 1A**) but not *Fh*.TRPM_{PZQ} (**Figure 1B**), acting as a
59 potent agonist of *Sm*.TRPM_{PZQ} (EC₅₀ of 0.18 ± 0.02 μM, **Figure 1C**). These data were
60 consistent with prior results [15, 16], and the known lack of effectiveness of PZQ in
61 treating fasciolosis. Using this approach, a larger pool of *Sm*.TRPM_{PZQ} activators
62 identified from in-house screens were counter-screened against *Fh*.TRPM_{PZQ}. This led
63 to the discovery of compound **1**, an *N*-benzamidoquinazolinone that activated both
64 *Sm*.TRPM_{PZQ} and *Fh*.TRPM_{PZQ} (**Figure 1D & E**). Compound **1** was an agonist at both
65 *Sm*.TRPM_{PZQ} (EC₅₀ = 1.15 ± 0.11 μM) and *Fh*.TRPM_{PZQ} (EC₅₀ = 3.0 ± 0.57 μM) active
66 in the low micromolar range (**Figure 1F**).

67

68 A structure-activity relationship (SAR) analysis was then performed to optimize the
69 activity of the *N*-benzamidoquinazolinone scaffold of (**1**) against TRPM_{PZQ}. Three
70 sterically and electronically modifiable regions of (**1**) were interrogated: the Northern
71 Hemisphere, Southern Hemisphere, and the aromatic core (**Figure 1G**).

72

73 Beginning with Northern Hemisphere analogs (**Table 1**), alterations at the 2-position of
74 the 2-fluorophenyl ring were evaluated. Replacement of the fluorine with chlorine (**2**),

75 trifluoromethyl (**3**), and nitro (**4**) groups resulted in inactive molecules at both
76 *Sm*.TRPM_{PZQ} and *Fh*.TRPM_{PZQ} (**Table 1**, entries 2-4). A methyl substituent at the 2-
77 position (**5**) was active at both channels, but less potent than (**1**) (Table 1, entry 5).
78 Substitutions at the 3-position of the phenyl ring were however tolerated. A 3-
79 fluorophenyl (**6**), 3-methylphenyl (**7**) and 3-methoxyphenyl (**8**) analog retained activity at
80 both TRPM_{PZQ} channels, whereas nitration of the 3-position (**9**) ablated activity (Table 1,
81 entries 6-9). Substitution at the 4-position of the aryl ring (4-fluorophenyl (**10**), 4-
82 methylphenyl (**11**), 4-nitrophenyl (**12**), and 4-methoxyphenyl (**13**) analogs) resulted in
83 inactive molecules (Table 1, entries 10-13). An aromatic ring was necessary as
84 cyclohexyl (**14**) and methyl (**15**) analogs were inactive at both TRPM_{PZQ} channels (Table
85 1, entries 14-15). Replacing the 2-fluorophenyl ring with 2-thiophene (**16**) and 3-
86 thiophene (**17**) analogs also produced molecules with decreased potency compared
87 with **1** (Table 1, entries 16-17), and 2-furyl (**18**) and 4-pyridyl (**19**) analogs were either
88 inactive or much less potent (Table 1, entries 18-19). Collectively, these results
89 underscored stringent structural requirements for efficacy at TRPM_{PZQ}.
90

91 On the basis of this 'tight' SAR, we decreased the sterics around the Northern
92 Hemisphere by removing all substituents from the phenyl ring. This produced compound
93 **20** (**Figure 1H**), a benzamidoquinazolinone that displayed improved potency compared
94 with (**1**) at both *Sm*.TRPM_{PZQ} ($EC_{50} = 0.09 \pm 0.02 \mu M$) and *Fh*.TRPM_{PZQ} ($EC_{50} = 1.08 \pm$
95 $0.06 \mu M$) (**Table 2**, entry 20 and **Figure 1I**). However, homologating the phenyl ring by
96 one carbon (**21**) yielded an inactive molecule (Table 1, entry 21). Methylating the amide
97 nitrogen also resulted in a molecule (**22**) inactive at both TRPM_{PZQ} channels (Table 1,

98 entry 22), demonstrating the **N-H** of the benzamide is necessary for channel activation.
99 Ultimately, the analog possessing an unsubstituted phenyl ring (**20**) was the most potent
100 agonist at both *Sm*.TRPM_{PZQ} and *Fh*.TRPM_{PZQ}, such that this analog was carried
101 forward as the optimal Northern Hemisphere. Next, SAR of the Southern Hemisphere
102 was investigated (**Supplementary Table 1**). A total of 15 compounds were made but no
103 improvements in potency were identified favoring retention of the 3-chlorophenyl
104 Southern Hemisphere in (**20**). Finally, substitutions around the core ring were profiled
105 (**Supplementary Table 2**). Again, no improvements over (**20**) were identified. A
106 complete summary of concentration-response curves for all 42 molecules synthesized
107 in this SAR campaign is provided in the Supplementary Results (**Supplementary**
108 **Figures 1-3**).

109
110 Considering all these SAR data, compound **20**, named here as **BZQ** (*N*-
111 benzamidoquinazolinone), emerged as the optimized candidate (Figure 1H). BZQ was
112 a potent activator of *Sm*.TRPM_{PZQ} and *Fh*.TRPM_{PZQ} (Figure 1I). BZQ also displayed
113 activity against other fluke TRPM_{PZQ} orthologs, assayed after transient transfection in
114 HEK293 cells. These TRPM_{PZQ} orthologs encompassed *Schistosoma haematobium*
115 TRPM_{PZQ} (*Sh*.TRPM_{PZQ}, EC₅₀ = 0.51 ± 0.07 μM), *Schistosoma japonicum* TRPM_{PZQ}
116 (*Sj*.TRPM_{PZQ}, EC₅₀ = 0.47 ± 0.05 μM), *Fasciola gigantica* TRPM_{PZQ} (*Fg*.TRPM_{PZQ}, EC₅₀
117 = 4.08 μM), *Echinostoma caproni* TRPM_{PZQ} (*Ec*.TRPM_{PZQ}, EC₅₀ = 0.25 ± 0.05 μM),
118 *Clonorchis sinensis* TRPM_{PZQ} (*Cs*.TRPM_{PZQ}, EC₅₀ = 0.47 ± 0.09 μM), and *Opisthorchis*
119 *viverrini* TRPM_{PZQ} (*Ov*.TRPM_{PZQ}, EC₅₀ = 0.71 ± 0.19 μM) (**Figure 1J**). **BZQ** therefore

120 acted as a potent, broad spectrum TRPM_{PZQ} agonist active against every fluke
121 TRPM_{PZQ} that was profiled.

122
123 Electrophysiological analyses were then executed as an orthogonal assay to validate
124 the action of the benzamidoquinazolinone analogs (**Figure 2**). Analog **1** and **BZQ** were
125 first profiled in whole cell current measurements. Each compound elicited inward
126 currents through both *Sm*.TRPM_{PZQ} or *Fh*.TRPM_{PZQ} that were sensitive to La³⁺ blockade
127 (e.g., *Fh*.TRPM_{PZQ} activated by **1**, **Figure 2A**). Peak currents for both analogs were
128 similar, but **BZQ** was more potent than **1** at both *Sm*.TRPM_{PZQ} (EC₅₀ for **BZQ** = 0.11 ±
129 0.02 μM versus EC₅₀ for **1** = 2.2 ± 0.34 μM) and *Fh*.TRPM_{PZQ} (EC₅₀ for **BZQ** = 0.27 ±
130 0.08 μM versus EC₅₀ for **1** = 3.08 ± 0.58 μM) (**Figure 2B**). In recordings made from cell-
131 attached patches, **BZQ** evoked single channel activity in cells expressing either
132 *Fh*.TRPM_{PZQ} or *Sm*.TRPM_{PZQ}, whereas PZQ only activated *Sm*.TRPM_{PZQ} (**Figure 2C**).
133 The current-voltage relationships for responses to **BZQ** were linear, consistent with
134 activation of a non-voltage dependent current with a conductance of 152 ± 12 pS at
135 *Sm*.TRPM_{PZQ} and 138 ± 4 pS at *Fh*.TRPM_{PZQ} (**Figure 2D**). This compared to a
136 conductance of 116 ± 3 pS evoked by PZQ at *Sm*.TRPM_{PZQ} (Figure 2D). The P_{open}
137 values for *Fh*.TRPM_{PZQ} activated by **BZQ** and for *Sm*.TRPM_{PZQ} activated by either **BZQ**
138 or (±)-PZQ were all similar (**Figure 2E**). **BZQ** was therefore confirmed as a potent
139 activator of both *Sm*.TRPM_{PZQ} and *Fh*.TRPM_{PZQ} with BZQ exhibiting properties similar to
140 the actions of (±)-PZQ at *Sm*.TRPM_{PZQ}.

141

142 The action of **(±)-PZQ** and **BZQ** was then profiled against *Schistosoma mansoni* and
143 *Fasciola hepatica* flukes *ex vivo*. PZQ is known to cause a rapid, spastic paralysis of
144 schistosomes accompanied with widespread damage to the tegument [13]. Consistent
145 with prior work, **(±)-PZQ** (500 nM) induced a rapid contraction of adult *S. mansoni*
146 worms when compared with vehicle-treated worms (**Figure 3A**). Administration of **BZQ**
147 (500 nM) to *S. mansoni* also caused a rapid, spastic paralysis (Figure 3A). However,
148 treatment of adult *F. hepatica* with **(±)-PZQ** failed to evoke contraction (**Figure 3B, left**),
149 resembling vehicle-treated worms even when applied at high concentration (50 μ M). In
150 contrast, **BZQ** (6.25 μ M) caused contraction and paralysis of the liver fluke, (**Figure 3B**),
151 and flukes exposed to **BZQ** did not respond to mechanical stimulation.

152
153 Fluke surface ultrastructure was examined after drug exposure. In *S. mansoni*, the
154 integrity of the tegument (**Figure 3C**) was disrupted by **BZQ** (**Figure 3D**). The normal
155 tegumental appearance of *F. hepatica* (**Figures 3E&F**) was also disrupted by exposure
156 to **BZQ** (6.25 μ M, 24 h), with widespread bleb formation (**Figures 3G&H**). After 72
157 hours, these small blebs had fused to form large collapsed blisters on the fluke surface
158 (**Supplementary Figure 4**). Therefore **BZQ**, unlike **(±)-PZQ**, caused muscle contraction
159 and surface damage in *F. hepatica*, mimicking the phenotypes caused by **(±)-PZQ** in
160 schistosomes.

161
162 **BZQ** was considerably more potent against liver flukes than the reference drug TCBZ.
163 Parasite motility drastically decreased within 10 min of **BZQ** exposure, while the effects
164 of TCBZ on motility were slower to manifest and required higher drug concentrations

165 (Figure 3I). The effects of these treatments on adult *F. hepatica* motility are shown in
166 the Supplementary Videos (Supplementary Videos 1-4). In assays using either TCBZ-
167 sensitive (Figure 3J) or TCBZ-resistant immature liver flukes (Figure 3K), **BZQ** also
168 caused a rapid, protracted paralysis. The IC_{50} of **BZQ** on motility of immature and adult
169 *F. hepatica* was $1.12 \pm 0.11 \mu\text{M}$ and $2.72 \pm 0.21 \mu\text{M}$ respectively (Figure 3L). These
170 values were consistent with the potency of **BZQ** at *Fh*.TRPM_{PZQ} ($EC_{50} = 1.08 \pm 0.06$
171 μM , Figure 1H). Thus, BZQ is highly potent against different *Fasciola* strains and life
172 stages, unlike most other currently available drugs [18]. Similar effects (inhibition of
173 motility, tegument damage) were also seen with other benzamidoquinazolinones shown
174 to be active at *Fh*.TRPM_{PZQ} (Supplementary Figure 5).

175
176 The activity of **BZQ** was compared with (\pm)-PZQ in a murine model of schistosomiasis.
177 Both molecules were administered at equivalent doses (50 mg/kg, 1x/day, 3 days), and
178 both proved equally effective at reducing worm burden *in vivo* (Figure 3M). Untreated
179 mice had a worm burden of 56 ± 14 worms and mice treated with vehicle had a worm
180 burden of 60 ± 15 worms. In contrast, (\pm)-PZQ treated mice had a worm burden of $18 \pm$
181 11 worms (a 68% reduction), and **BZQ** treated mice had a worm burden of 17 ± 10
182 worms (a 70% reduction). These residual worms recovered from **BZQ** injected mice
183 were contracted and immobile. Thus, the activity of **BZQ** was apparent at the target
184 (Figures 1&2), and against worms assayed *ex vivo* (Figures 3A&B) or *in vivo* (Figure
185 3M) validating **BZQ** as a highly promising anthelmintic candidate.

186

187 How does **BZQ** activate both *Sm*.TRPM_{PZQ} and *Fh*.TRPM_{PZQ}? PZQ activates
188 *Sm*.TRPM_{PZQ} via engagement of a binding pocket at the base of the voltage sensing-
189 like domain (VSLD) of the ion channel [15]. This binding pocket is framed by
190 transmembrane helices S1-S4, and the cytoplasmic TRP helix (**Figure 4A**). Three
191 groups of interactions have been shown to be essential for PZQ activity. First, an
192 interaction between the S1 helix and the internal carbonyl of PZQ (**Figure 4B**). Second,
193 an interaction between the S4 helix (R1514 in S4) and the external carbonyl of PZQ
194 (**Figure 4B**). Finally, interactions between PZQ and the TRP domain (Y1678 and R1681
195 form additional hydrogen bonds with the internal carbonyl of PZQ, **Figure 4B**).
196
197 Computational modeling was applied to understand how **BZQ** engages *Fh*.TRPM_{PZQ}.
198 Induced-fit docking (IFD) resulted in a pose of **BZQ** within the VSLD of *Sm*.TRPM_{PZQ}
199 (**Figure 4C**). The VSLD binding pocket of *Fh*.TRPM_{PZQ} was well conserved compared
200 with *Sm*.TRPM_{PZQ}. Of the 23 amino acids that lie within 5Å of PZQ binding pose in
201 *Sm*.TRPM_{PZQ}, 22 of them were conserved in *Fh*.TRPM_{PZQ} [15]. The exception was a
202 threonine residue (T1270, S1) in *Fh*.TRPM_{PZQ}, in place of an asparagine residue
203 (N1388, S1) that was predicted to form a critical hydrogen bond between PZQ and
204 *Sm*.TRPM_{PZQ}. This natural variation underpins the inactivity of PZQ at *Fh*.TRPM_{PZQ} [15,
205 16]. The majority of key interactions seen in the **PZQ** binding pose (R1514, Y1678, and
206 R1681) were retained for **BZQ** in *Sm*.TRPM_{PZQ} (**Figure 4D**). The difference was that
207 **BZQ** was not predicted to interact with N1388, the variant S1 residue between the
208 *Sm*.TRPM_{PZQ} and *Fh*.TRPM_{PZQ} VSLD binding pockets. Instead, the amide **N-H** of **BZQ**

209 was predicted to form a hydrogen bond with the oxygen of the adjacent threonine
210 (T1389), one residue further along the S1 helix (Figure 4D).

211

212 To experimentally interrogate the **BZQ** binding pose prediction, point mutations were
213 generated and profiled in Ca^{2+} reporter assays. Whereas PZQ activation of
214 *Sm*.TRPM_{PZQ} was tolerant of mutation of this threonine residue (*Sm*.TRPM[T1389A],
215 **Figure 4E**), BZQ activation was not (*Sm*.TRPM[T1389A], **Figure 4F**). In contrast, PZQ
216 activation of *Sm*.TRPM_{PZQ} required the S1 asparagine (*Sm*.TRPM[N1388A]_{PZQ}, Figure
217 4E), whereas BZQ did not (*Sm*.TRPM[N1388A]_{PZQ}, Figure 4F). However, for both
218 ligands, R1514A (S4) and Y1678A (TRP) mutations abolished activity (Figure 4E&F),
219 consistent with the shared interactions predicted in the computational model (Figure
220 4B&D). Therefore, **BZQ** reproduced the same interactions as **(R)-PZQ** with the S4 helix
221 and the TRP domain of TRPM_{PZQ} but unlike **(R)-PZQ** the interaction with S1 was
222 predicted to utilize a conserved threonine residue present in both *Sm*.TRPM_{PZQ} and
223 *Fh*.TRPM_{PZQ}. These **BZQ**-interacting residues are retained across all fluke TRPM_{PZQ}
224 orthologs explaining the broad-spectrum activity of **BZQ**.

225 **Discussion**

226 Development of new leads to counter neglected tropical diseases is an urgent priority,
227 as current therapeutic portfolios are limited and, for many diseases, have remained
228 unchanged for decades. Fasciolosis provides an example of an infectious disease
229 where new drugs would be valuable from both a clinical and veterinary perspective,
230 given growing resistance to triclabendazole and the ineffectiveness of praziquantel.
231 Here, we have identified the benzamidoquinazolinone core and optimized a ligand,
232 **BZQ**, that displays efficacy against *Fasciola hepatica* comparable with the action of
233 PZQ against other trematodes.

234

235 **BZQ** was discovered by target-based screening of TRPM_{PZQ}, the parasitic flatworm
236 target of **(±)-PZQ** [12]. BZQ activated *Sm*.TRPM_{PZQ}, *Fh*.TRPM_{PZQ}, as well as TRPM_{PZQ}
237 orthologs from all other flukes tested (Figure 1). Electrophysiology studies validated
238 BZQ activity in an orthogonal assay (Figure 2), and BZQ mimicked the action of PZQ on
239 parasitic flatworms (Figure 3). That a molecule discovered from target-based screening
240 phenocopied PZQ activity on *Fasciola* spp. provide further support for correct validation
241 of TRPM_{PZQ} as the relevant target of PZQ.

242

243 Discovery of **BZQ** also validates TRPM_{PZQ} as a druggable target, although the SAR
244 tolerated within the VSLD cavity of TRPM_{PZQ} remained stringent. The majority of
245 derivatives of **BZQ** (Table 1, Supplementary Tables 1&2) were inactive or poorly active,
246 matching conclusions from prior SAR studies with praziquantel [15]. **(±)-PZQ** and **BZQ**
247 retain broadly similar properties (**Supplementary Table 3**). Both ligands are tetracyclic

248 bis(amides), with their hydrophobic extremities linked by a polar midriff. Both ligands are
249 similarly hydrophobic, and both present a similar polar surface area relative to their
250 molecular weight. This stringency likely reflects requirements for complementarity within
251 the hydrophobic VSLD binding pocket. Quinazolinones have broadly reported biological
252 activities, including antiparasitic [19] and antiviral activities [20]. Quinazolinone-type
253 benzamides have been studied from a synthetic standpoint on account of their chirality
254 and chiroptic properties [21, 22]. However, **BZQ**, with the *N*-benzamidoquinazolinone
255 scaffold harboring both 2- and 4-(N-N bond)substitutions, is a novel molecule that has
256 not been previously characterized.

257

258 Activity against *Fasciola* spp. was a result of **BZQ** binding to *Fh*.TRPM_{PZQ} in a manner
259 tolerant of the sequence variation present within the VSLD cavity of these particular liver
260 flukes, that renders PZQ ineffective [15, 16]. Comparison of the binding pose of (*R*)-
261 **PZQ** and **BZQ** in *Sm*.TRPM_{PZQ} highlights the general principles underpinning TRPM_{PZQ}
262 activation. Both chemotypes exhibit interactions with S4 (R1514) and the TRP helix
263 (R1681, Y1678) that surround the VSLD binding pocket (**Figure 4**). These interactions
264 are with residues conserved with the human TRPM8 binding pocket (R1514 ~R842 in
265 hTRPM8, R1681 ~R1008 in hTRPM8, Y1678 ~Y1005 in hTRPM8) that are known to
266 display mobility in their sidechain configuration permitting engagement of different
267 hTRPM8 chemotypes [23]. While these S4 and TRP domain residue interactions are
268 identical for both (*R*)-**PZQ** and **BZQ**, the site of S1 engagement differed – such that
269 **BZQ** bypassed the need to interact with the variant residue (**Figure 4**). Instead, **BZQ** is
270 predicted to interact with a conserved S1 threonine residue that is present in all fluke

271 TRPM_{PZQ} orthologs. The interaction of the amide nitrogen of **BZQ** with the threonine
272 oxygen in both orthologs is consistent with the SAR analysis where methylation of the
273 amide resulted in **22**, a molecule that failed to activate *Sm*.TRPM_{PZQ} or *Fh*.TRPM_{PZQ}
274 (**Table 1**). **BZQ** therefore not only overcomes the lack of efficacy of PZQ against
275 *Fasciola spp.*, but provides higher efficacy than the current gold standard TCBZ against
276 both TCBZ-susceptible and TCBZ-resistant parasite strains. BZQ also displays *in vivo*
277 antischistosomal activity comparable to PZQ. This establishes **BZQ** as a broad-
278 spectrum flukicide and a promising anthelmintic lead for further development.

279 **Materials and Methods**

280

281 *Materials & Reagents.* (\pm)-PZQ was purchased from Sigma. All cell culture reagents
282 were from ThermoFisher. Synthetic procedures and characterization data are detailed in
283 the Supplementary Information.

284

285 *Cell culture.* HEK-293 cell lines were sourced from ATCC (CRL-1573) and
286 authenticated by STR profiling (ATCC). Cells were screened negative for mycoplasma
287 contamination by monthly scheduled testing (LookOut[®] Mycoplasma PCR Detection Kit,
288 Sigma). Stable cell lines expressing *Sm*.TRPM_{PZQ} or *Fh*.TRPM_{PZQ} were generated
289 using the Flp-In T-REX core kit (Invitrogen) as follows. Flp-In T-REx 293 cells were co-
290 transfected with pOG44 (Invitrogen) and a TRPM_{PZQ} expression plasmid (*Sm*.TRPM_{PZQ}
291 or *Fh*.TRPM_{PZQ}) containing a Flp recombination target (FRT) site (pcDNA5/FRT) at a
292 3:1 ratio using Lipofectamine 2000 (Invitrogen). Two days following transfection, cells
293 were trypsinized and seeded into 100 mm dishes and selection was initiated with 10
294 μ g/ml blasticidin (Invivogen) and 200 μ g/ml hygromycin B (Invitrogen) for a period of 7-
295 10 days. Single colonies were isolated, and the expression of *Sm*.TRPM_{PZQ} or
296 *Fh*.TRPM_{PZQ} compared using the FLIPR Ca²⁺ assay. Clones exhibiting an optimal signal
297 to noise were prioritized for experiments. Prior to assays, stable cells expressing
298 *Sm*.TRPM_{PZQ} or *Fh*.TRPM_{PZQ} were induced by addition of tetracycline (2 μ g/ml, 24 h).
299 Transient transfections were performed using Lipofectamine 2000 as reported
300 previously [15].

301

302 *FLIPR Ca²⁺ assay.* The Fluorescence Imaging Plate Reader (FLIPR) Ca²⁺ reporter
303 assay was performed in black-walled, clear-bottomed 384-well plates coated with poly-
304 D-lysine (Greiner Bio-One, Germany). Briefly, non-transfected or transfected HEK293
305 cells were seeded (20,000 cells/well) in DMEM growth media containing 10% FBS. After
306 24 hours, medium was removed, and replaced with 20 µl of Fluo-4 NW dye loading
307 solution (Molecular Devices), previously reconstituted in assay buffer (Hanks' balanced
308 salt solution with Ca²⁺, Mg²⁺, 20 mM HEPES and 2.5 mM probenecid). Cells were
309 incubated for 30 min at 37°C (5% CO₂) followed by an additional 30 min incubation at
310 room temperature. Drug dilutions were prepared in assay buffer, but without probenecid
311 and fluorescent dye, in 384-well plates (Greiner Bio-One). Using a FLIPR^{TETRA}
312 (Molecular Devices), basal fluorescence (filter settings $\lambda_{\text{ex}}=470\text{-}495$ nm, $\lambda_{\text{em}}=515\text{-}575$
313 nm) from each well was monitored for 20 s, then 5 µl of drug or vehicle solution was
314 added (25 µl total volume) and the signal was recorded over 250 s. Changes in
315 fluorescence were represented as relative fluorescence units after subtracting the
316 average basal fluorescence (average basal fluorescence over 20 s) from the recorded
317 values. Concentration-response analysis was performed using sigmoidal curve fitting
318 functions in Prism using data from $n \geq 3$ independent transfections, with $n \geq 3$ technical
319 replicates per assay.

320

321 *Electrophysiology.* For whole cell current measurements, assays were performed using
322 the Patchliner automated patch-clamp system (Nanion, Germany). HEK293 cells stably
323 expressing *Sm.TRPM_{PZQ}* or *Fh.TRPM_{PZQ}* were grown in a T25 flask and harvested at
324 60-80% confluency using Accutase (ThermoFisher) (~0.5 ml per T25 flask, treated for 5

325 mins). The suspension was diluted with 3 ml of extracellular buffer (140 mM NaCl, 5 mM
326 glucose, 4 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, pH 7.4) and the resulting suspension
327 used for assays. Cells were trapped on the assay chip (NPC-16, medium resistance)
328 using negative pressure, and tight contact was achieved using a seal enhancement
329 solution (130 mM NaCl, 5 mM glucose, 4 mM KCl, 10 mM CaCl₂, 1 mM MgCl₂, pH 7.4).
330 After a gigaohm seal was obtained, a vacuum pulse was sent to the chip to obtain a
331 whole-cell patch. Recordings were made using an intracellular buffer of 130 mM CsF,
332 10 mM CsCl, 10 mM NaCl, 10 mM EGTA, 10 mM HEPES, pH 7.4. Compounds were
333 perfused through the microfluidic system at various concentrations prior to perfusion
334 with La³⁺ (1 nM to 10 mM) to follow current inactivation at the end of each assay. For
335 single-channel recordings, HEK293 cells expressing *Sm*.TRPM_{PZQ} or *Fh*.TRPM_{PZQ} were
336 placed in symmetrical buffer (145 mM NaCl, 10 mM HEPES, 1 mM EGTA, pH 7.4) and
337 treated with compound **1** (10 µM), **BZQ** (10 µM), or **(±)-PZQ** (10 µM).

338
339 *Computational Procedures.* Modeling was performed in the Schrodinger Computational
340 Suite (v2022-4 or v2023-1), using the Maestro GUI (v13.1). All modeling was performed
341 with default settings unless otherwise noted. Generation of the homology model of
342 *Sm*.TRPM_{PZQ}, along with the complex with (R)-PZQ, has been previously described and
343 validated [15, 16]. To prepare BZQ for modeling, the molecule was drawn in ChemDraw
344 Professional (v21.0.0), imported into the Maestro GUI, and minimized using the LigPrep
345 tool in the OPLS4 force field at pH=7.4. The output structure was used for subsequent
346 studies. Induced-Fit Docking (IFD), a model that employs flexibility of both ligand and
347 protein in the docking procedure, was performed in an iterative fashion. With a grid

348 generated around (*R*)-PZQ in the *Sm.TRPMPZQ* homology model, IFD of BZQ was
349 performed with both the channel and ligand van der Waals scaling set to 0.30. Standard
350 precision (SP) settings were used for initial redocking, and residues were optimized
351 within 8.0 Å of the poses. Poses were manually examined, and the highest-ranking
352 pose that displayed interactions consistent with functional data was prioritized. From
353 this pose, model refinement was performed with IFD with default scaling settings and
354 using the XP protocol, a more precise algorithm, for glide redocking. This resulted in the
355 reproducibly stable poses depicted in Figure 4.

356

357 *Analysis of the effects of drugs on parasitic flukes.* For ex vivo drug screening
358 experiments using *F. hepatica*, liver flukes were obtained from male Wistar rats
359 RjHan:WI (Janvier, France) experimentally infected with 20-25 metacercariae of an
360 Italian strain (Ridgeway Research, UK). Immature flukes were collected from livers at 4
361 weeks post-infection (p.i.), and adult flukes from bile ducts at 12 weeks p.i. Animal
362 experiments were in accordance with Directive 2010/63/EU on the protection of animals
363 used for scientific purposes and the German Animal Welfare Act . The experiments
364 were approved by the Regional Council (Regierungspraesidium) Giessen (V54-19c20
365 15 h 02 GI 18/10 Nr. A16/2018). Anthelmintic activity of benzamidoquinazolinone
366 analogs (0.19-12.5 µM) was assessed *in vitro* by culturing worms in RPMI medium
367 (supplemented with 5% chicken serum, 1% ABAM-solution (10,000 units penicillin, 10
368 mg streptomycin and 25 mg amphotericin B per ml), all from Gibco) for up to 72 h at
369 37°C in a 5% CO₂ atmosphere. Triclabendazole (25-50 µM) was used as the positive
370 control, and DMSO as the solvent control. Medium and compounds were refreshed

371 every 24 h, and inhibitor-induced effects on worm motility assessed using a stereo
372 microscope at 10x magnification (M125 C, Leica, Germany) using the following scores:
373 3 (normal motility), 2 (reduced motility), 1 (weak and sporadic movements), 0.5 (minimal
374 movement only upon mechanical stimulation) and 0 (dead).

375
376 For *ex vivo* drug screening against *S. mansoni*, adult worms were isolated as described
377 [24]. Harvested schistosomes were washed in DMEM high glucose medium
378 supplemented with HEPES (25mM), pyruvate and 5% heat inactivated FBS (Gibco) and
379 penicillin-streptomycin (100 units/mL) and incubated overnight (37°C/5% CO₂) in vented
380 petri dishes (100x25mm). For movement analysis, assays were performed using 3 male
381 worms per well in a six well dish. Video recordings were captured using a Zeiss
382 Discovery v20 stereomicroscope with a QiCAM 12-bit cooled color CCD camera
383 controlled by Image-Pro imaging software (v. 11). Recordings (60 seconds) of worm
384 motility (1 image every 4 secs), before and after addition of different drugs were
385 analyzed as described previously [15]. For *in vivo* drug screening, female Swiss
386 Webster mice (infected with *S. mansoni* cercariae (NMRI strain) at between 4-6 weeks
387 old) were obtained from the Schistosomiasis Resource Center at the Biomedical
388 Research Institute (Rockville, MD) under contract HHSN272201000005I for distribution
389 via BEI Resources. At 7 weeks post-infection, mice were randomly sorted into 4 groups
390 of 13 individuals for drug efficacy assays. One group was left untreated as an infected
391 control. Experimental groups were treated with either vehicle, praziquantel (50 mg/kg,
392 intraperitoneal, 1x daily), or BZQ (50 mg/kg, intraperitoneal, 1x daily) for 3 sequential
393 days. These drug solutions were prepared fresh on every day of treatment. In the

394 following order, the solid was solubilized in 100% DMSO (15 μ L), diluted with PEG₄₀₀
395 (70 μ L), and vortexed for 1 min. Phosphate-buffered saline (50 μ L, containing 5% w/v
396 Trappsol[®]) was added 10 μ L at a time, with extensive vortexing between each addition
397 to ensure solubilization. These drug solutions were then used within 4 hours of
398 preparation. If any precipitation was observed upon standing, gentle warming in a
399 heating block resolubilized the compound. On the day after the third dose, mice were
400 euthanized by intraperitoneal injection of a pentobarbital solution, and the liver and
401 mesenteric vasculature was dissected and perfused to score worm burden. All animal
402 experiments for schistosome harvest followed ethical regulations approved by the MCW
403 IACUC committee.

404

405 *Electron microscopy.* Schistosomes were fixed in a mixture of glutaraldehyde (2.5%)
406 and paraformaldehyde (2%) in sodium cacodylate buffer (100 mM) for 3 h at ambient
407 temperature [25, 26]. The fixed worms were then washed with cacodylate buffer to
408 remove fixing solution and then post-fixed in aqueous osmium tetroxide (1%) for 1 h on
409 ice. Schistosomes were processed through a graded methanol series to 100% methanol
410 and then acetonitrile before being infiltrated with epoxy resin overnight at 4°C followed
411 by polymerization at 70°C for 8 h [26]. Polymerized resin blocks were sectioned (60 nm
412 thickness, RMC PTXL ultramicrotome). Sections were stained with uranyl acetate and
413 lead citrate and viewed under a JEOL 1400 Flash TEM. Images were captured on
414 Hamamatsu digital camera running AMT imaging software (v 7.0.1.422).

415

416 Immature *F. hepatica* flukes were prepared for scanning electron microscopy by fixation
417 in 100 mM cacodylate buffer containing 2.5% (v/v) glutaraldehyde and 1% (v/v)
418 formaldehyde for 24 h at 4°C. Fixed samples were stored in 0.1% (v/v) formaldehyde in
419 cacodylate buffer before postfixation in 1% (v/v) osmium tetroxide in 100 mM cacodylate
420 buffer for 1 h at ambient temperature. After rinsing twice with ultra-pure water, samples
421 were dehydrated through a graded ethanol series on ice to 100% ethanol. Samples
422 were dried in a CPD030 critical point dryer (BAL-TEC AG; Balzers, Liechtenstein) and
423 coated with gold transferred in a SCD004 sputter system (BAL-TEC AG). Images were
424 captured with a Gemini DSM 982 (Carl Zeiss Microscopy; Oberkochen, Germany),
425 operated at 3 kV.

426 **Acknowledgements.**

427 Funding was provided by the National Institutes of Health (R01 AI155405 to JSM), a
428 Catalyst Award from the Falk Medical Research Trust (to JSM), the German Research
429 Foundation (HA 6963/2-1 to SH) and the Hessen State Ministry of Higher Education,
430 Research, and the Arts (HMKW) (DRUID-C6 to SH). DJS acknowledges support from
431 the NIH (T32 HL134643) and the MCW Cardiovascular Center's A.O. Smith Fellowship
432 Scholars Program. Screening utilized equipment procured through a NIH equipment
433 grant (1S10OD032248-01 to TPS & LS). We acknowledge the Research Computing
434 Center at the Medical College of Wisconsin, Paul Kerber and Dr. Francis Peterson for
435 maintaining the MCW NMR facilities, the Indiana University Mass Spectrometry Center
436 for HRMS analysis, the MCW Electron Microscopy Core, and the Imaging Unit of the
437 Biomedical Research Center Seltersberg.

438

439 **Competing Interests.** JSM, DJS, LS, and TPS have pending patent applications for the
440 compounds described in this study.

441 **References**

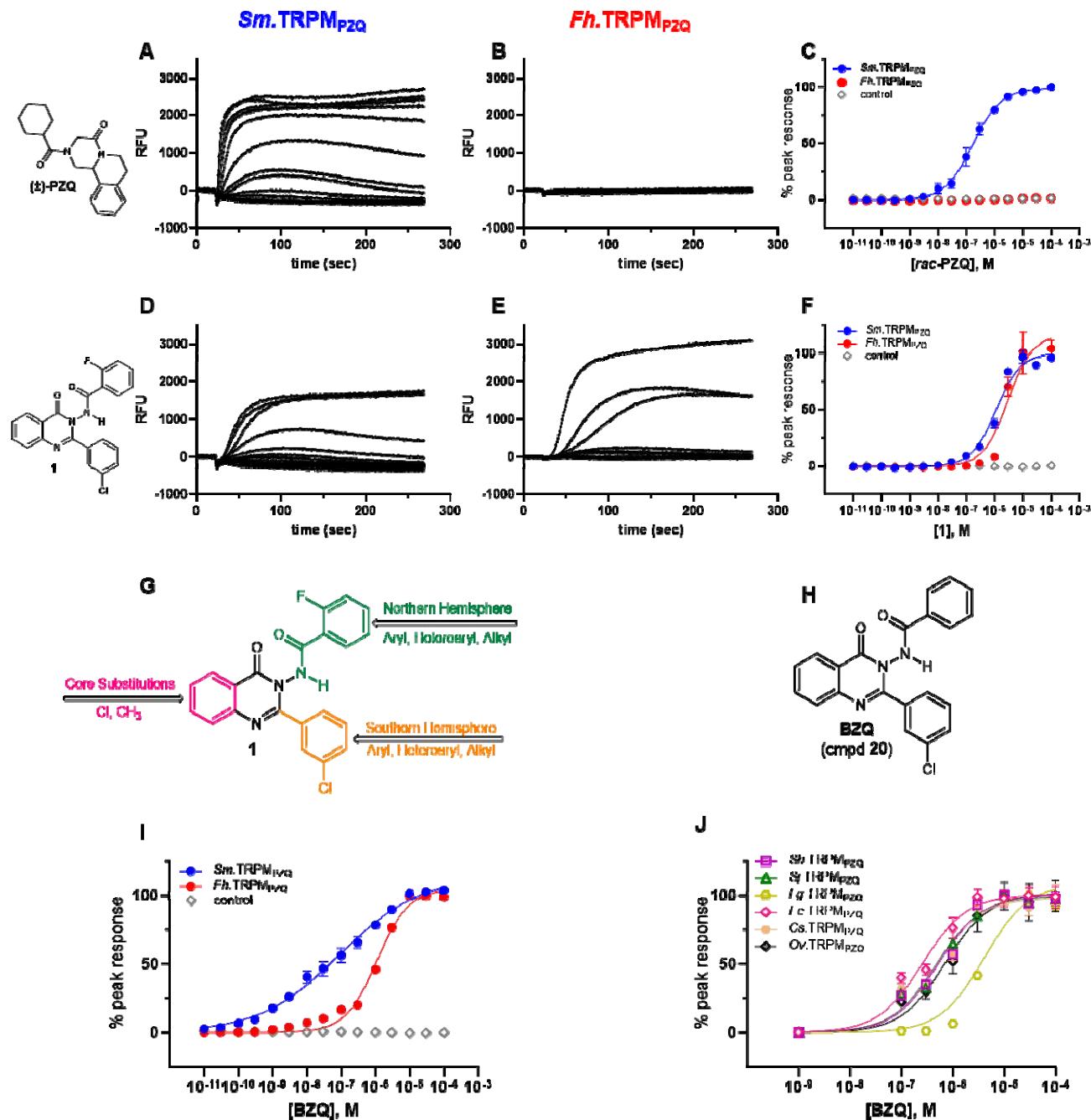
- 442 1. Andrews, P. et al. (1983) Praziquantel. *Med Res Rev* 3 (2), 147-200.
- 443 2. Waechtler, A. et al. (2023) Praziquantel - 50 years of research. *ChemMedChem*,
444 e202300154.
- 445 3. Spangenberg, T. (2021) Alternatives to Praziquantel for the Prevention and Control of
446 Schistosomiasis. *ACS Infect Dis* 7 (5), 939-942.
- 447 4. Farid, Z. et al. (1989) Praziquantel and *Fasciola hepatica* infection. *Trans R Soc Trop
448 Med Hyg* 83 (6), 813.
- 449 5. Arafa, W.M. et al. (2015) Comparing an in vivo egg reduction test and in vitro egg
450 hatching assay for different anthelmintics against *Fasciola* species, in cattle. *Vet
451 Parasitol* 214 (1-2), 152-8.
- 452 6. Mehmood, K. et al. (2017) A review on epidemiology, global prevalence and
453 economical losses of fasciolosis in ruminants. *Microb Pathog* 109, 253-262.
- 454 7. Beesley, N.J. et al. (2023) A major locus confers triclabendazole resistance in
455 *Fasciola hepatica* and shows dominant inheritance. *PLoS Pathog* 19 (1), e1011081.
- 456 8. Fairweather, I. et al. (2020) Drug resistance in liver flukes. *Int J Parasitol Drugs Drug
457 Resist* 12, 39-59.
- 458 9. Kelley, J.M. et al. (2016) Current Threat of Triclabendazole Resistance in *Fasciola*
459 *hepatica*. *Trends Parasitol* 32 (6), 458-469.
- 460 10. McVeigh, P. et al. (2018) Reasons to Be Nervous about Flukicide Discovery. *Trends
461 Parasitol* 34 (3), 184-196.
- 462 11. Selzer, P.M. and Epe, C. (2021) Antiparasitics in Animal Health: Quo Vadis? *Trends
463 Parasitol* 37 (1), 77-89.

- 464 12. Park, S.K. et al. (2019) The anthelmintic drug praziquantel activates a schistosome
465 transient receptor potential channel. *J Biol Chem* 294 (49), 18873-18880.
- 466 13. Park, S.K. and Marchant, J.S. (2020) The Journey to Discovering a Flatworm Target
467 of Praziquantel: A Long TRP. *Trends Parasitol* 36 (2), 182-194.
- 468 14. Harder, A. (2020) Activation of transient receptor potential channel
469 Sm.(*Schistosoma mansoni*)TRPMPZQ by PZQ, enhanced Ca(++) influx, spastic
470 paralysis, and tegumental disruption-the deadly cascade in parasitic schistosomes,
471 other trematodes, and cestodes. *Parasitol Res* 119 (8), 2371-2382.
- 472 15. Park, S.K. et al. (2021) Mechanism of praziquantel action at a parasitic flatworm ion
473 channel. *Sci Transl Med* 13 (625), eabj5832.
- 474 16. Rohr, C.M. et al. (2023) Natural variation in the binding pocket of a parasitic
475 flatworm TRPM channel resolves the basis for praziquantel sensitivity. *Proc Natl Acad
476 Sci U S A* 120 (1), e2217732120.
- 477 17. Chulkov, E.G. et al. (2021) Identification of novel modulators of a schistosome
478 transient receptor potential channel targeted by praziquantel. *PLoS Negl Trop Dis* 15
479 (11), e0009898.
- 480 18. Fairweather, I. and Boray, J.C. (1999) Fasciolicides: efficacy, actions, resistance
481 and its management. *Vet J* 158 (2), 81-112.
- 482 19. Setshedi, K.J. et al. (2023) 2-Aroyl quinazolinone: Synthesis and in vitro anti-
483 parasitic activity. *Chem Biol Drug Des* 102 (4), 763-772.
- 484 20. Ashraf-Uz-Zaman, M. et al. (2023) Quinazolinone Compounds Have Potent Antiviral
485 Activity against Zika and Dengue Virus. *J Med Chem* 66 (15), 10746-10760.
- 486 21. Pan, M. et al. (2022) Asymmetric Synthesis of N–N Axially Chiral Compounds by
487 Phase-Transfer-Catalyzed Alkylation. *Organic Letters* 24 (1), 374-378.

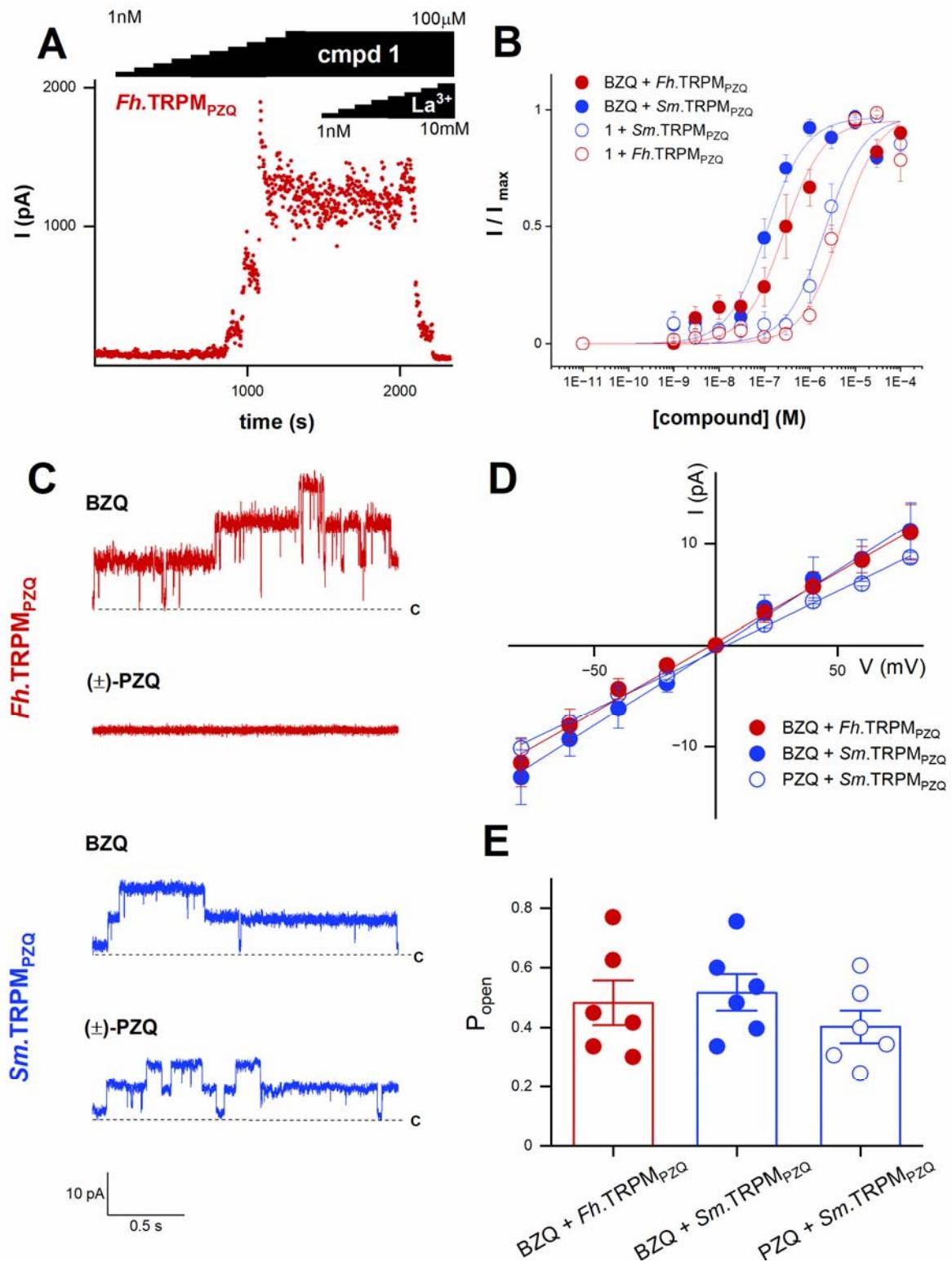
- 488 22. Lin, W. et al. (2022) Asymmetric synthesis of N–N axially chiral compounds via
489 organocatalytic atroposelective N-acylation. Chemical Science 13 (1), 141-148.
- 490 23. Yin, Y. and Lee, S.Y. (2020) Current View of Ligand and Lipid Recognition by the
491 Menthol Receptor TRPM8. Trends Biochem Sci 45 (9), 806-819.
- 492 24. Chulkov, E.G. et al. (2023) Praziquantel activates a native cation current in
493 *Schistosoma mansoni*. Biorxiv, 10.1101/2023.08.25.554840
- 494 25. Karnovsky, M.J. (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for
495 use in electron microscopy. J Cell Biol 27, 137-138A.
- 496 26. Glauert, A.M. and Lewis, P.R. (1998) Biological Specimen Preparation for
497 Transmission Electron Microscopy, Princeton University Press.
- 498
- 499

500 **Figure Legends**

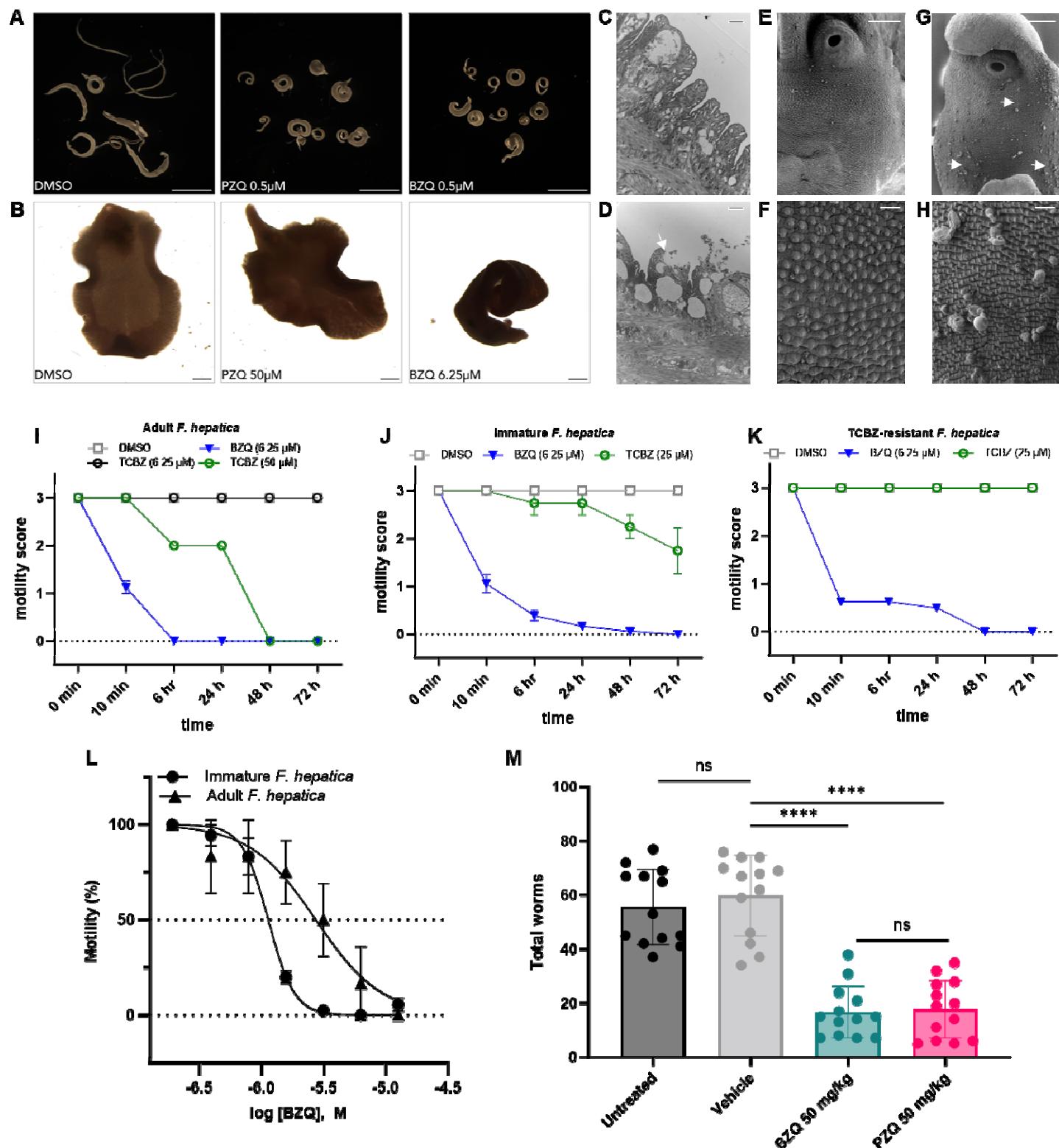
501
502 **Figure 1. Functional profiling of TRPM_{PZQ} orthologs.** Representative Ca²⁺ flux traces
503 depicting the effect of (A, B) (±)-PZQ or (D, E) compound 1 in HEK293 cells stably expressing
504 (A,D) *Sm*.TRPM_{PZQ} or (B,E) *Fh*.TRPM_{PZQ}. Cells were treated with increasing concentrations (0-
505 100 μM) of each drug added after ~20 s of sampling the baseline fluorescence emission. (C&F)
506 Concentration-response curves resulting from activation of *Sm*.TRPM_{PZQ} (blue circles) or
507 *Fh*.TRPM_{PZQ} (red circles) by (C) (±)-PZQ or (F) compound 1. Control responses in HEK293 cells
508 lacking TRPM_{PZQ} are shown (grey diamonds). (G) Schematic of modifiable regions on
509 compound 1. Three regions on the *N*-benzamidoquinazolinone core were targeted for
510 modification. The Northern Hemisphere (green), Southern Hemisphere (orange), and the
511 aromatic core (pink). (H) Chemical structure of the optimized benzamidoquinazolinone, BZQ,
512 after SAR studies. (I) Concentration-response curves for BZQ in HEK293 cells stably
513 expressing *Sm*.TRPM_{PZQ} (blue circles) or *Fh*.TRPM_{PZQ} (red circles), compared to control
514 responses (grey diamonds). (J) Concentration-response curves for BZQ in cells transiently
515 expressing various TRPM_{PZQ} orthologs. These were: *Schistosoma mansoni* (*Sm*.TRPM_{PZQ},
516 closed blue circles), *Fasciola hepatica* (*Fh*.TRPM_{PZQ}, closed red circles), *Schistosoma*
517 *haematobium* (*Sh*.TRPM_{PZQ}, open purple squares), *Schistosoma japonicum* (*Sj*.TRPM_{PZQ}, open
518 green triangles), *Fasciola gigantica* (*Fg*.TRPM_{PZQ}, open gold hexagons), *Echinostoma caproni*
519 (*Ec*.TRPM_{PZQ}, open grey diamonds), *Clonorchis sinensis* (*Cs*.TRPM_{PZQ}), and *Opisthorchis*
520 *viverrini* (*Ov*.TRPM_{PZQ}, open black diamonds). Concentration-response curves were normalized
521 to the maximum response at each channel and represent the mean ± SE of n ≥ 3 independent
522 experiments, each comprised of technical duplicates.

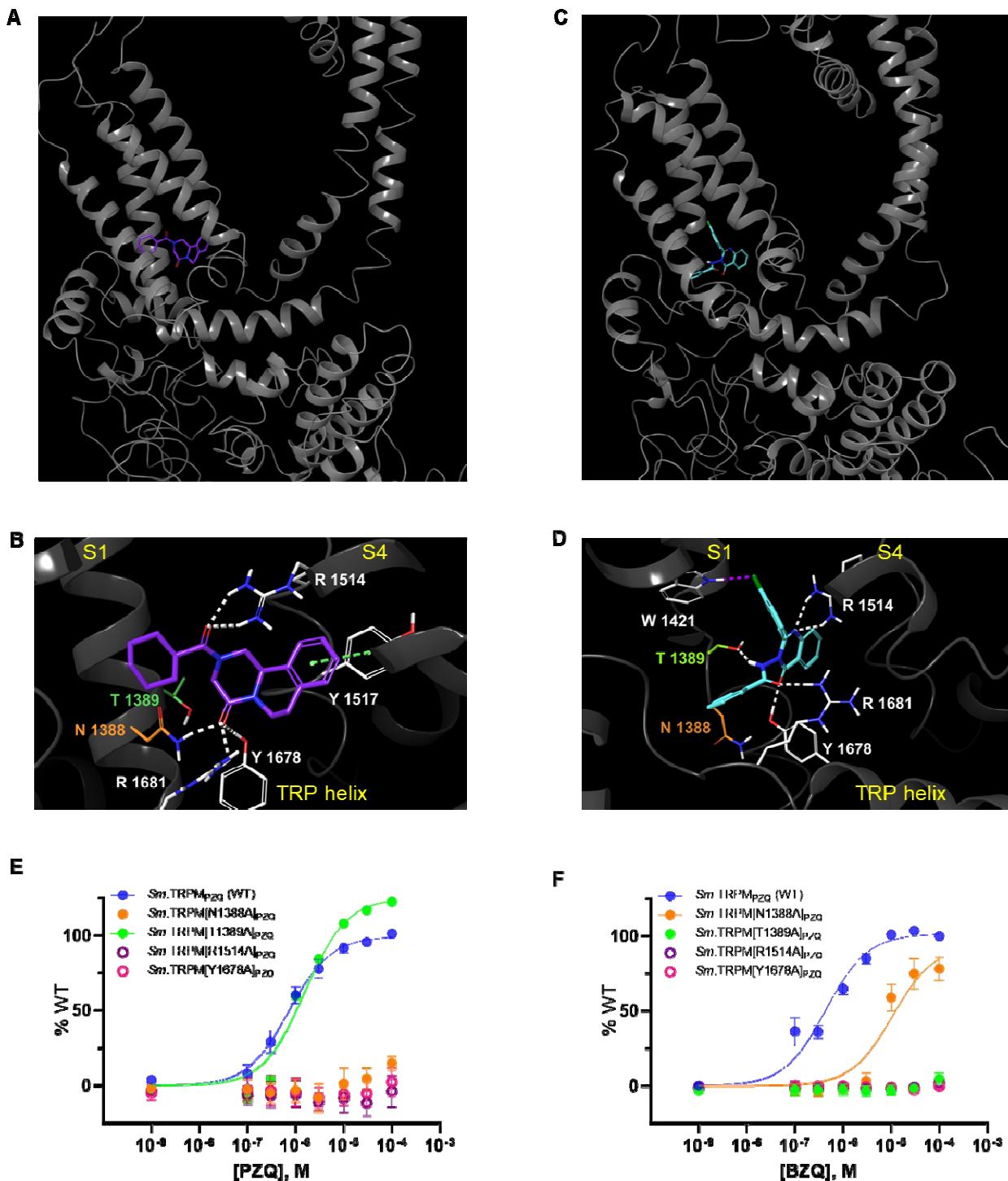

523
524 **Figure 2. Electrophysiological analysis of BZQ action.** (A) Whole-cell current (pA) versus
525 time (s) plot of *Fh*.TRPM_{PZQ} expressing HEK293 cell perfused with different concentrations of
526 compound 1 (1 nM to 100 μM) prior to addition of LaCl₃ (1 nM to 10 mM). Extracellular solution:
527 140 mM NaCl, 5 mM glucose, 4 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, pH 7.4 with NaOH.
528 Intracellular solution: 130 mM CsF, 10 mM CsCl, 10 mM NaCl, 10 mM EGTA, 10 mM HEPES,
529 pH 7.4 with NaOH. (B) Concentration response curves for BZQ and 1 from experiments such as
530 shown in (A) recorded from *Fh*.TRPM_{PZQ} (red) or *Sm*.TRPM_{PZQ} (blue) expressing HEK293 cells.
531 Data are shown as mean ± SE, n≥6. (C) Representative cell-attached recordings from
532 *Fh*.TRPM_{PZQ} or *Sm*.TRPM_{PZQ} expressing HEK293 cells in the presence of (±)-PZQ (10 μM) or
533 BZQ (10 μM) in the bath solution. Bath solution: 145 mM NaCl, 10 mM HEPES, 1 mM EGTA,
534 pH 7.4. Pipette solution: 145 mM NaCl, 10 mM HEPES, 1 mM EGTA, pH 7.4. c, closed state.
535 Holding voltage, 60mV. (D) Current-voltage plot for *Sm*.TRPM_{PZQ} (blue) activated by BZQ
536 (closed circle, 10 μM) or (±)-PZQ (open circle, 10 μM) and *Fh*.TRPM_{PZQ} activated by BZQ (red,
537 10 μM). Data are shown as mean ± SE, n≥3. (E) Single channel open probability (P_{open}) of
538 *Fh*.TRPM_{PZQ} (red) or *Sm*.TRPM_{PZQ} (blue) activated by BZQ or (±)-PZQ (each at 10 μM) in the
539 bath solution. Data are shown as mean ± SE, n≥6.

540
541 **Figure 3. Effects of BZQ and (±)-PZQ on parasitic flukes.** (A&B) Exposure of *S. mansoni*
542 and *F. hepatica* to (±)-PZQ or BZQ compared with DMSO (1-1.25%, control). A rapid
543 contraction of schistosomes to (±)-PZQ (0.5 μM) or BZQ (0.5 μM) was apparent. BZQ (6.25
544 μM), but not (±)-PZQ (50 μM), caused spastic paralysis of adult liver flukes. (C-H) Studies of the
545 ultrastructure of BZQ-treated flukes. Transmission electron microscopy of drug-induced damage
546 to *S. mansoni* tegument (C) without treatment or (D) after treatment with BZQ (1 μM). Scanning
547 electron microscopy of drug-induced damage to immature *F. hepatica* tegument after treatment
548 with: (E&F) DMSO (1.25%, control) or (G&H) BZQ (6.25 μM, 24 h exposure). BZQ caused
549 blebs to occur on the fluke surface (arrows). (I-K) Motility of (I) adult, (J) triclabendazole
550 (TCBZ)-sensitive immature, and (K) TCBZ-resistant immature *F. hepatica* after treatment with


551 **BZQ** (blue triangles) or triclabendazole (black/green circles) compared with application of
552 DMSO (1.25%, control, grey squares). Motility scores are reported as the mean \pm SE of $n \geq 3$
553 independent experiments. (L) Dose-response curve for motility of adult (triangle) and immature
554 (circle) *F. hepatica* treated with BZQ. (M) **BZQ** activity in a murine model of schistosomiasis.
555 Mice, infected with schistosomes, were treated at 7 weeks post-infection with either **BZQ** or **(\pm)-PZQ**.
556 Mice were dosed once daily with each drug for three sequential days (50 mg/kg,
557 intraperitoneally), and worm burden was evaluated on the fourth day after initiation of treatment.
558 Worm burden was reduced by treatment with **BZQ** or **(\pm)-PZQ** compared with either untreated
559 or vehicle-treated mice as described in the methods. $N = 13$ mice per group; data are shown as
560 mean \pm SD and analyzed using the Mann-Whitney test. **** = $p \leq 0.0001$, ns = not significant.
561 Scale bars for (A) = 250 μ m, (B) = 1 mm; (C&D) = 1 μ M, (E&G) = 500 μ m, (F&H) = 10 μ m.
562

563 **Figure 4. TRPM_{PZQ} engagement by BZQ.** *In silico* binding pose for (A&B) (*R*)-PZQ and (C&D)
564 **BZQ** in *Sm*.TRPM_{PZQ}. Concentration-response curves for (E) (\pm)-PZQ and (F) BZQ in specified
565 *Sm*.TRPM_{PZQ} mutants. WT = blue circles, *Sm*.TRPM[N1388]A_{PZQ} = orange circles,
566 *Sm*.TRPM[T1389A]_{PZQ} = green circles, *Sm*.TRPM[R1514A]_{PZQ} = open purple circles,
567 *Sm*.TRPM[Y1678A]_{PZQ} = open pink circles. Data are presented as mean \pm SEM of biological
568 triplicates performed in technical duplicate.


Figure 1


Figure 2

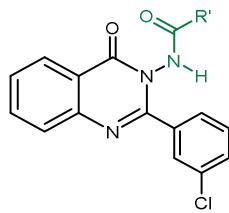

Figure 3

Figure 4

Table 1

Entry	Compound	R'	Sm.TRPM _{PZQ} (μM)	Fh.TRPM _{PZQ} (μM)
1	1	2-F-Ph	1.15 ± 0.11	3.0 ± 0.57
2	2	2-Cl-Ph	inactive	inactive
3	3	2-CF ₃ -Ph	inactive	inactive
4	4	2-NO ₂ -Ph	inactive	inactive
5	5	2-CH ₃ -Ph	> 10	> 10
6	6	3-F-Ph	1.42 ± 0.16	6.82 ± 2.51
7	7	3-CH ₃ -Ph	4.30 ± 0.80	12.1 ± 0.73
8	8	3-OCH ₃ -Ph	1.12 ± 0.23	3.72 ± 0.44
9	9	3-NO ₂ -Ph	inactive	inactive
10	10	4-F-Ph	inactive	inactive
11	11	4-CH ₃ -Ph	inactive	inactive
12	12	4-NO ₂ -Ph	inactive	inactive
13	13	4-OCH ₃ -Ph	inactive	inactive
14	14	Cyclohexyl	inactive	inactive
15	15	Methyl	inactive	inactive
16	16	2-Thiophene	5.50 ± 1.00	5.50 ± 0.77
17	17	3-Thiophene	2.43 ± 0.25	>10
18	18	2-Furyl	inactive	inactive
19	19	4-Pyridyl	>50	>50
20	20	Phenyl	0.090 ± 0.02	1.08 ± 0.06
21	21	Bn	inactive	inactive
22	22		inactive	inactive

Table 1. SAR of the Northern Hemisphere.