

1 **Continuous motor skills as flexible control policies: a video game study**

2

3 David M. Huberdeau¹, Adrian M. Haith², John W. Krakauer^{2,3,4,5}

4 1. Dept. of Biomedical Engineering, JHU

5 2. Dept. of Neurology, JHU

6 3. Dept of Neuroscience, JHU

7 4. Dept of Physical Medicine and Rehabilitation, JHU

8 5. The Santa Fe Institute

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 Address for correspondence:

31 David M. Huberdeau

32 david.huberdeau@gmail.com

33

34 Conflicts of Interest: We declare no conflicts of interest.

35

36 Acknowledgements: We thank Dr. Omar Ahmad and Promit Roy for programming the
37 antcar game. This work was supported by funds from The Johns Hopkins University
38 Science of Learning Institute.

1 **Abstract**

2 Many motor skills consist of continuous sequential actions, such as a tennis serve. It is
3 currently unclear how these surprisingly understudied behaviors are learned, with the
4 leading hypothesis being that sequences of single actions become “chunked” into larger
5 single executable units. Under this hypothesis, continuous sequential actions should become
6 more task-specific and less generalizable with practice. To test this, we developed a video
7 game that requires participants to hold a tablet with both hands and steer a virtual car (the
8 “ant car”) along a curving track. We tested participants’ ability to generalize their skill to a
9 probe track that required a different sequence of turns. Across days of practice, task success
10 increased, and movement variability decreased. On the probe track, movement quality at the
11 level of kinematics fully generalized but performance at the level of task success showed a
12 consistent decrement. To address this apparent paradox, we empirically derived the control
13 policy participants used at their maximal skill level on the training track. Notably, this policy
14 was fully transferred to the probe track, but there were more instances of momentary
15 deviations from it (lapses), which explains the worse performance despite equivalent skill.
16 We conclude that continuous motor skills are acquired through learning of a flexible control
17 policy that maps states onto actions and not through chunking or automatizing of a specific
18 sequence of actions.

19

20 **Introduction**

21 Many human motor skills require precise execution of continuous sequential actions. For
22 example, a tennis serve is made up of subcomponent movements that blend seamlessly,
23 and each subcomponent is also made up of a continuous sequence of joint rotations and

1 muscle activations. Learning to better execute continuous sequential actions is less well
2 studied than learning to produce discrete sequences of actions (Verwey, 2001; Diedrichsen
3 and Kornysheva, 2015; Hardwick et al., 2019). Discrete sequence learning paradigms
4 emphasize learning to select the right actions rather than improving movement execution
5 of each individual action, which are usually over-learned. For example, in a sequence of
6 button presses, each button press is itself easy.

7

8 One theory of how performance improves as discrete sequences are learned is that
9 individual sequence elements are grouped into longer sequence fragments (often called
10 chunks), which can then be executed as a single unit (Povel and Collard, 1982; Berns and
11 Sejnowski, 1998; David A. Rosenbaum et al., 2001; Yamaguchi and Logan, 2014;
12 Diedrichsen and Kornysheva, 2015). Recent work suggests that chunking in discrete
13 sequence tasks is primarily related to cognition rather than to motor execution, which is to
14 say that it is knowledge of the order of actions that is chunked rather than the commands
15 for their execution (Diedrichsen and Kornysheva, 2015; Wong et al., 2015; Zimnik and
16 Churchland, 2021). For example, knowing one's ATM number as a single unit may exist at a
17 cognitive level, with this order then communicated to motor cortex one element at a time
18 for execution. In this example, no motor chunking is necessary.

19

20 Critically, what distinguishes continuous sequential actions from discrete sequences of
21 actions is that improvement occurs at the level of movement execution – a tennis player's
22 forehand gets faster and more accurate. Chunking at the knowledge level for such
23 continuous sequential actions could be a challenge, as there are no clear divides between

1 movement elements. It is therefore interesting to consider the possibility that chunking
2 does occur for these tasks, but at the level of movement execution rather than action
3 selection.

4

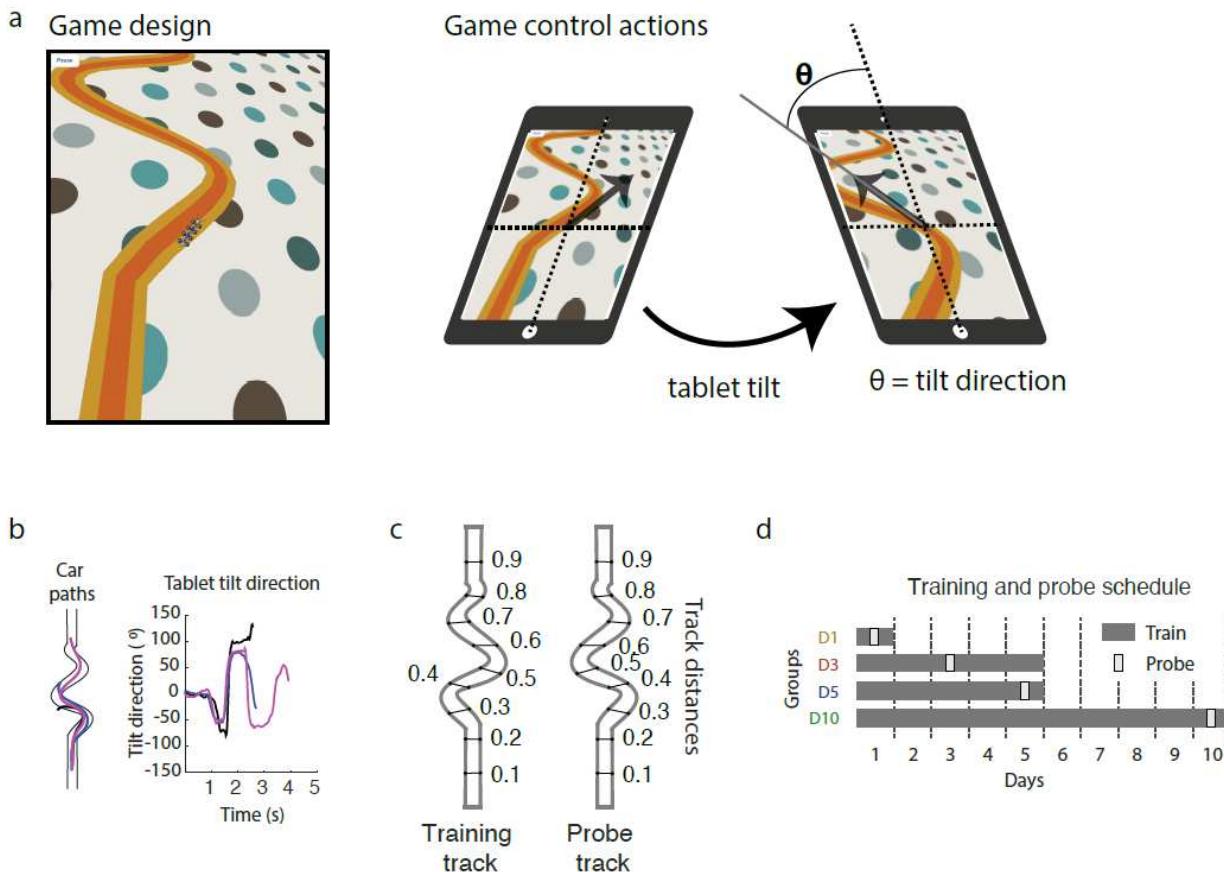
5 In a previous study to address how continuous sequential actions improve at the level of
6 movement execution, we developed a wrist-controlled cursor task (the arc-pointing task)
7 that required participants to control a cursor to make a fast trajectory through a U-shaped
8 channel without touching or crossing its edges (Shmuelof et al., 2012). Participants learned
9 to get through the channel, a binary outcome, with increasing success. Additionally,
10 continuous trajectory kinematics became smoother and less variable, and feedback control
11 improved, leading to improved motor execution and greater task success. Other studies of
12 continuous sequential actions have also shown shifts in the speed-accuracy trade-off
13 function (Reis et al., 2009). The improvements in movement execution seen in the arc-
14 pointing task, what we called “motor acuity”, could arguably have been due either to
15 chunking of a sequence of actions or by learning a de novo control policy that maps a
16 sequence of states onto actions (Telgen et al., 2014; Yang et al., 2021; Hadjisofis et al., 2022).

17

18 To distinguish whether continuous sequential actions are learned by means of a continuous
19 control policy or by chunking a sequence of actions, and to better understand how the
20 quality of execution improves with practice, we created a novel tablet computer-based
21 video game (Figure 1a) that requires continuous bilateral movements of the arms and
22 wrists to steer a virtual car along a narrow, curved track (Figure 1b) at constant speed.
23 Participants practiced the game for 1-, 3-, 5-, or 10-days prior to a “probe” of generalization

1 (Figure 1d) on the mirrored version of the track (figure 1c). Successful generalization of
2 this skill to the novel kinematics required on the mirrored track would be inconsistent with
3 having learned to chunk a fixed sequence of actions (see Supplemental Figure 1).
4 Introducing the probe on different days of training across the four groups allowed us to
5 ascertain whether generalization properties changed as the attained skill level increased.

Figure 1



6
7 **Figure 1: The ant-car game..** a, The game's artistic design and control actions. The car was styled like an insect
8 and the track was demarcated by an orange ribbon on a polka-dotted background. The roll and pitch of the
9 tablet computer determined the direction of acceleration of the car. b, Sample recordings of the trajectory of the
10 car and the direction of the tablet tilt. c, Training and Probe tracks. d, Training and Probe trial assignments per
11 group. Groups trained for varying numbers of days (grey bars), up to a maximum of ten days, and were probed
12 for generalization at different times throughout learning (white boxes).

13

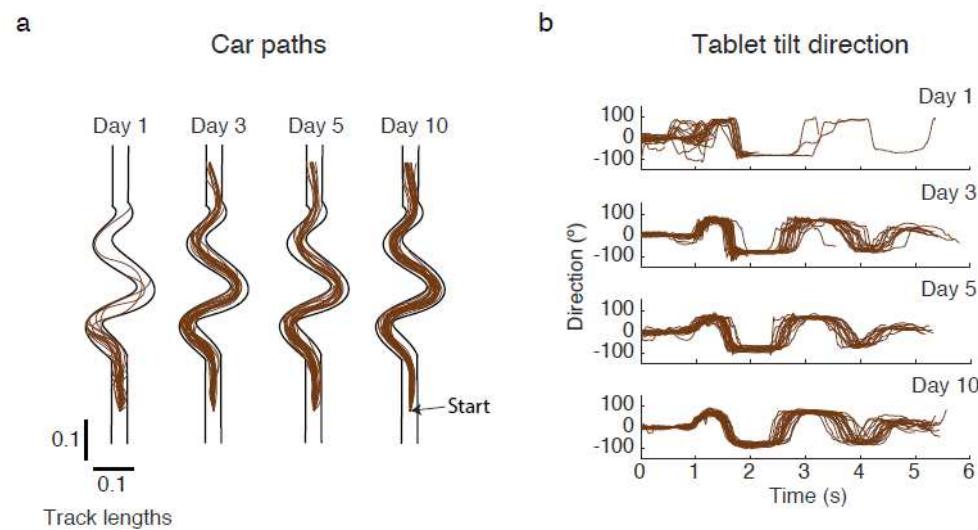
14

1 Results

2 Participants practiced a novel video game for up to two weeks that required navigating a
3 cartoon car (the “ant-car”) along a narrow and winding track (see methods for details).
4 After practice, participants became able to travel further along the track without falling off,
5 generating smoother and more consistent ant-car (Figure 2a) and tablet tilt (Figure 2b)
6 trajectories. The distance travelled along the track increased with practice. Linear models
7 fit to performance in windows of 25 trials (Figure 3a) demonstrated significant changes in
8 average distance travelled across practice for each group (Linear regression; D1: $F(82) =$
9 $25.38, p < .001$; D3: $F(605) = 288.4, p < 0.001$; D5: $F(757) = 122.1, p < 0.001$; D10: $F(1474)$
10 $= 402.4, p < 0.001$).

Figure 2

Representative Participant



11 Track lengths

12 **Figure 2: Behavior changed across days of practice.** a, Car paths and b, tablet tilt signals from a
13 representative participant from group D10.

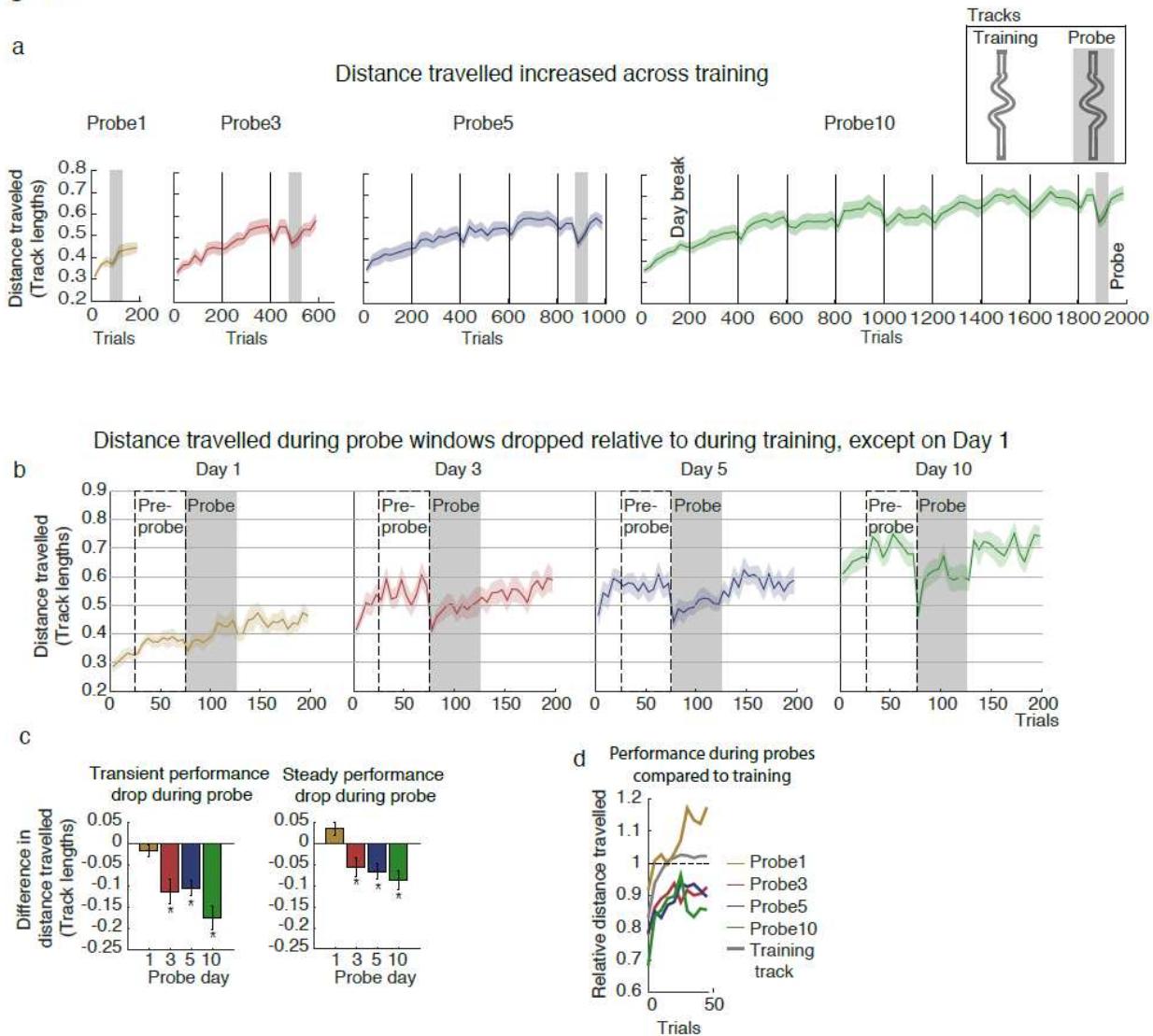
14 At different points during learning, each group performed a series of probe trials in which
15 the layout of the track was mirror-reversed compared to training. For participants who
16 experienced the probe during the first day of training (Group D1), performance during the

1 probe trials was comparable to the immediately preceding training trials. In contrast, for
2 participants probed during days 3, 5, or 10 of training (Groups D3, D5, and D10), the
3 distance travelled decreased during probe trials compared to the pre-probe window
4 (Figure 3b). This performance decrease in the probe trials had two components: an
5 immediate drop during the initial five trials (ANOVA: $F(3) = 7.06$, $p < 0.001$; t-tests: D1: $t =$
6 1.34 , $p = 0.19$; D3: $t = -3.05$, $p < 0.01$; D5: $t = -3.55$, $p < 0.01$; D10: $t = -4.44$, $p < 0.001$)
7 followed by recovery to an asymptote that remained approximately constant for the
8 remainder of the probe window (Figure 3c & d).

9

10 For the asymptotic period, defined as the final 45 trials of the probe block, the difference in
11 distance travelled between the probe and pre-probe windows was significantly different
12 among groups (ANOVA: $F(3) = 9.59$, $p < 0.001$), and groups D3, D5, and D10 had
13 significantly lower distance travelled during probes (t-tests: D1: $t = -1.15$, $p = 0.26$; D3: $t = -$
14 2.71 , $p < 0.05$; D5: $t = -2.62$, $p < 0.05$; D10: $t = -5.33$, $p < 0.001$). Thus, beyond a threshold of
15 practice, i.e. by day 3, there was a significant drop in performance in the probe trials that
16 was not fully recovered throughout the entire probe period. Notably, a similar transient
17 decrease in performance was also apparent on the return from the probe track to the
18 training track, suggesting that it was not specific to the training track. The sustained
19 decrease in performance, however, suggested a genuine limitation of participants' ability to
20 perform the task on the mirror-reversed track.

Figure 3



1

2 **Figure 3: The distance traveled on the Training track increased with practice but decreased in a**
3 **consistent way during Probes after Day 1.** a, The mean distance travelled along the path within bins of 25

4 trials, averaged across participants (mean \pm standard error) for each group. Vertical lines indicate overnight
5 breaks. Grey bars indicate a block of Probe trials. b, The distance travelled in bins of five trials and averaged
6 across participants (mean \pm standard error) during days when a Probe was encountered. c, The average mean \pm
7 standard error of the distance travelled in the first five trials after the onset of a block of Probe trials (left panel)
8 and in the final 45 trials of a block of Probe trials (right panel). d, The average distance travelled in blocks of five
9 trials relative to the previous 50 trials for a day of training trials (grey trace) and for each block of probe trials
10 (yellow, red, green, and blue traces).

11

12 We suspected that the chance of falling off was not uniform along the length of the track,
13 and so derived an alternative and more fine-grained measure of task performance using

1 the hazard rate. The hazard rate describes the chances of falling off at each length along the
2 track, accounting for the fact that the ant-car has already reached that length (Simes and
3 Zelen, 1985). We found that the hazard rate was non-uniform along the length of the track
4 (Figure 4a). We also considered the closely related survival function – the probability for a
5 given distance along the track that participants will make it at least that far. (Survival is,
6 essentially, the integral of the hazard rate; see Methods). Survival (Figure 4b) significantly
7 improved across days of practice (log-likelihood ratio test between survival on days 1 & 10:
8 $\chi^2(1) = 355.1$, $p < 0.001$).

9

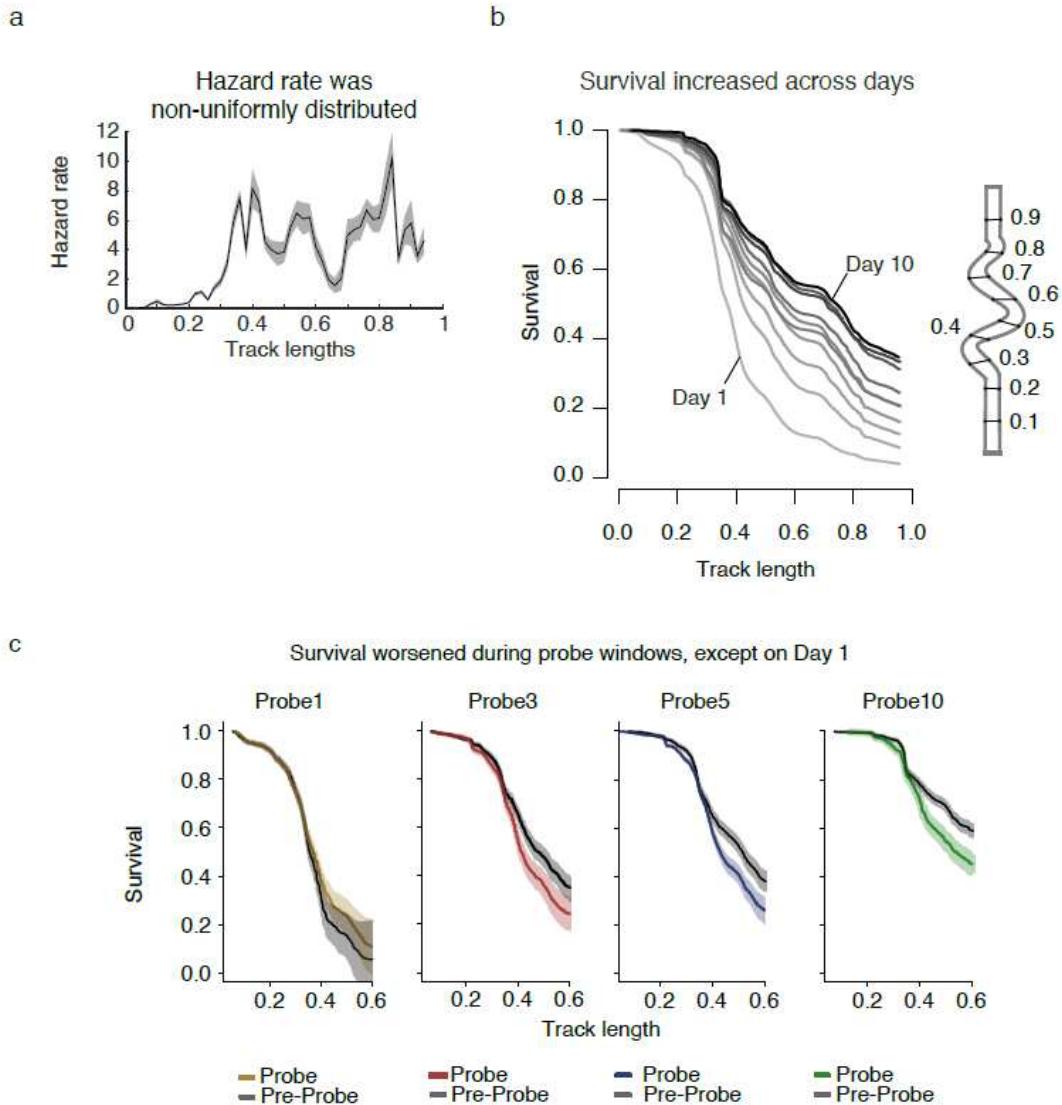
10 The survival-based analysis of performance in probe trials resulted in a similar pattern of
11 results as the analysis based on distance travelled (Figure 4c). Survival on probe days was
12 significantly different across the groups (log-likelihood ratio test: $\chi^2 = 5320.3$, $p < 0.001$),
13 indicating a practice benefit. Survival also differed during the probe windows compared to
14 the pre-probe windows (log-likelihood ratio test: $\chi^2 = 285.42$, $p < 0.001$), demonstrating
15 the drop in performance during probes. There was also a significant interaction between
16 group and probe window (log-likelihood ratio test: $\chi^2 = 1117.1$, $p < 0.001$).

17

18 This analysis confirmed that performance deteriorated during probes, and that the extent
19 of this change differed significantly depending on the day it was experienced. Post-hoc tests
20 revealed that there was no detectable difference in survival between pre-probe and probe
21 windows for group D1 (log-likelihood ratio test: $\chi^2 = 0.33$, $p < 0.57$), but there was a
22 significant change in survival during the probes for each other group (log-likelihood ratio
23 tests: D3: $\chi^2 = 50.6$, $p < 0.001$, D5: $\chi^2 = 80.0$, $p < 0.001$, D10: $\chi^2 = 123.8$, $p < 0.001$). These

1 findings are consistent with those from the distance travelled measure and confirm that
2 task success decreased in the probe from day 3 onward.

Figure 4



4 **Figure 4: Falloff risk decreased with practice.** a, The hazard rate (fall offs per 0.02 of track length) as a
5 function of track length, pooling across all groups and days. b, The survival functions across days of training.
6 Darker curves signify later days. c, Survival curves during blocks of Probe trials compared to Training trials on
7 the same day as the Probe.

8 While performance during probes experienced a consistent drop relative to pre-probe
9 trials from day 3 onward, performance during probes nevertheless increased across days
10 of training (linear regression: $F(1, 67) = 25.9, p < .001$). The fact that performance during

1 probes improved with practice on the training track demonstrates that this continuous
2 motor skill is generalizable. Furthermore, the fact that the performance decrement during
3 probes was of similar magnitude after 3, 5, and 10 days of training shows that there was
4 not an increasing divergence between the training and probe tracks that would suggest
5 increasing task specificity. These findings are inconsistent with the theory that continuous
6 sequential actions are generated by executing a chunked sequence of actions. Nevertheless,
7 the fact that performance during probes did drop consistently relative to same-day
8 performance on the training track could indicate some component of performance may
9 have been attributable to chunking.

10

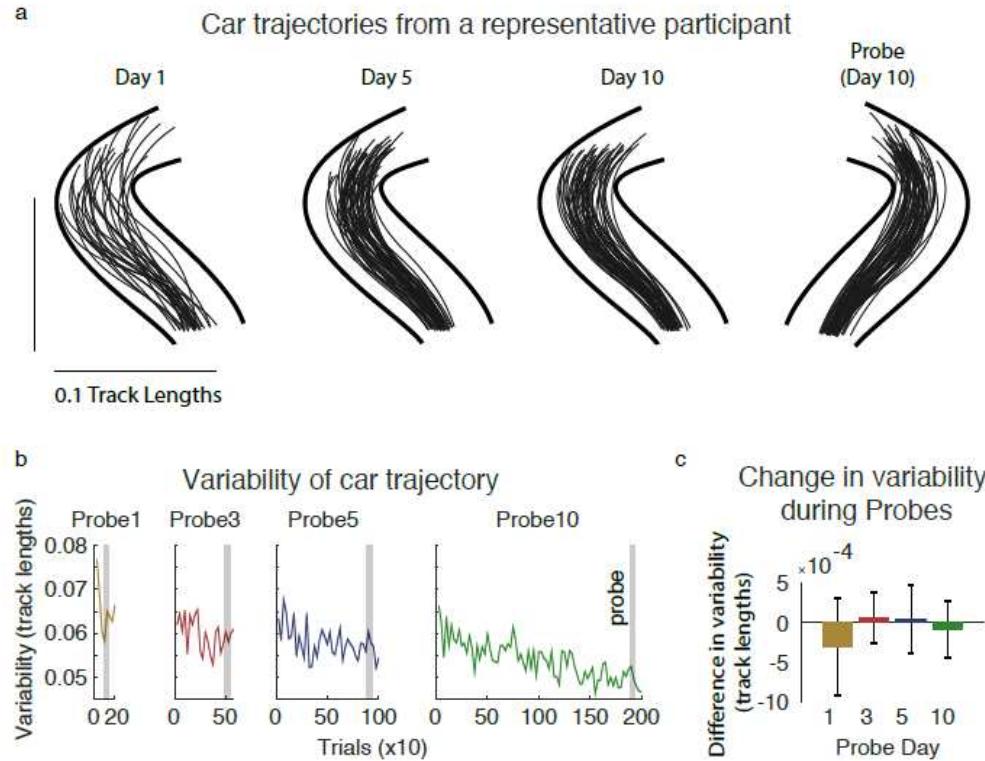
11 Purely analyzing metrics of task success based on whether and when participants fell off
12 the track is limited since there are multiple possible reasons that a participant may have
13 failed on a given trial, including poor selection of actions, noisy execution of actions or,
14 alternatively, momentary lapses of control (Wichmann and Hill, 2001; Pisupati et al., 2021;
15 Ashwood et al., 2022). Therefore, to better understand the reasons behind participants'
16 improved performance across days and the drop in performance on the probe trials, we
17 analyzed the kinematics of the ant-car trajectories.

18

19 We first measured ant-car trajectory variability (Figure 5a), which we quantified as the
20 dispersion across trials in windows of 25-trials using the first five principal components of
21 kinematic data (see Methods). The dispersion systematically decreased with practice on
22 the training track (Figure 5b; Linear regression; $F(1, 2657) = 206, p < 0.0001$). We then
23 compared trajectory kinematics on the probe track to those on the training track. Given

1 that performance deteriorated at the level of task success, it might be expected that
2 kinematics would likewise revert to a level seen with fewer days of training.

Figure 5



3
4 **Figure 5: Trajectories became more stereotyped with practice.** a, Sample trajectories from a portion of the
5 Training track from a representative participant on Days 1, 5, and 10, and from a portion of the Probe track. b,
6 Trajectory dispersion for each group across trials of practice. c, The difference in trajectory dispersion, as defined
7 in b.

8 This is not what we found, however; there was no detectable difference in dispersion
9 between probes and the pre-probe training period (Figure 5c). An analysis of variance test
10 conducted on the difference in dispersion between the probe and pre-probe windows
11 across groups failed to detect a difference (ANOVA: $F(3) = 0.126$, $p = 0.94$). Nor did any
12 group individually experience a significant change in dispersion during the probe (Linear
13 regression; D1: $t = -0.600$, $p = 0.55$; D3: $t = 0.537$, $p = 0.59$; D5: $t = 0.546$, $p = 0.59$; D10: $t =$
14 0.344 , $p = 0.73$). However, the lack of a significant difference is not sufficient evidence for

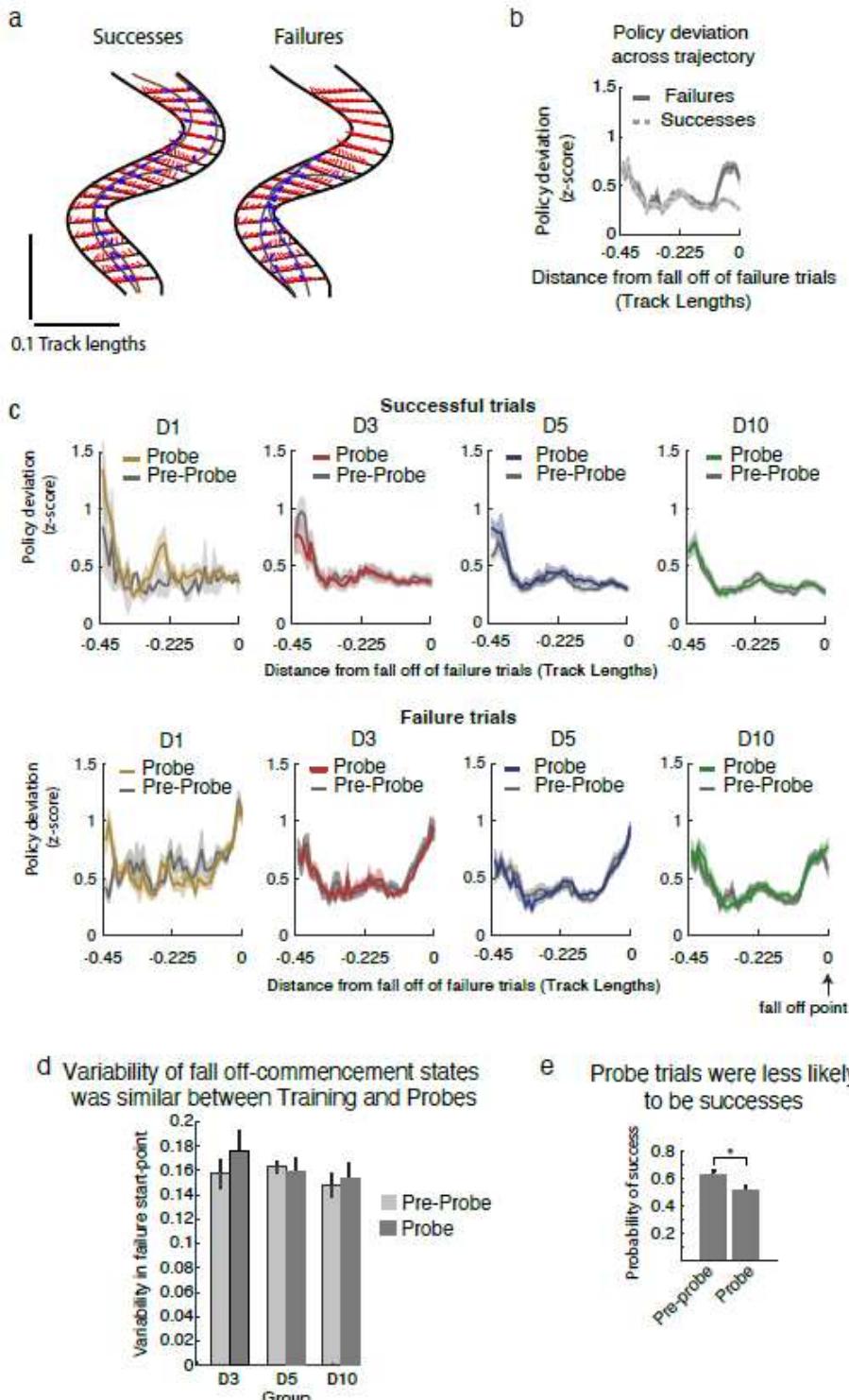
1 the absence of an effect of the probe. We therefore also computed the Bayes Factor (BF) of
2 a linear model fit to the difference between probes and pre-probe windows as a function of
3 the day at which the probe occurred, using a uniform prior (Wagenmakers, 2007). This
4 analysis revealed a BF of 0.002, which is considered very weak evidence for there being a
5 relationship. Note that measures of dispersion were calculated based only on successful
6 trials. While this might at first appear circular, we emphasize that it was still possible to
7 observe clear differences in dispersion across days using this approach and therefore, the
8 similarity of the dispersion between probe and pre-probe windows was not inevitable.
9 Thus, kinematic variability on the probe track did not appear to differ systematically from
10 the training track, even though variability changed significantly across learning. Therefore,
11 although the improvement in task success over days was consistent with a reduction in
12 kinematic variability with practice, the drop in task success in probe trials was not
13 attributable to increased kinematic variability.

14
15 To address the apparent paradox of there being decreased overall success on the probe
16 track (falling off more often) even though skill at the level of kinematics fully generalized
17 from the training track to the probe track, we more closely examined the failures.
18 Importantly, failure trials were not included in the variability measure of skill, which was
19 derived from only successful trials. It is possible that there was a categorical difference in
20 training and probe trials in the nature of the failures rather than the successes. Analyzing
21 failure trials is challenging since each failure is unique (unlike success trials which are all
22 similar and can be easily analyzed collectively). To understand how and why failures
23 differed from successful trials, we empirically determined participants' state-dependent

1 control policy based on their successes on the training track after extensive practice (on
2 day 10). This allowed us to quantify the deviation of participants' actions from this ideal
3 policy throughout individual trials (Figure 6a, see methods for more details). We found
4 that, in failure trials, there was a stereotyped increase in policy deviation just before the
5 point of fall-off compared to successful trials at corresponding segments of track (figure
6 6b), suggesting that performance was perfectly good in failure trials up until a specific
7 point where the failure began. Critically, this pattern of failure appeared to be almost
8 identical for the training and probe tracks for any amount of practice (3, 5 or 10 days). That
9 is to say, fall-off trials had the same kinematic form on either track; there was no detectable
10 difference in policy deviation between the probe and pre-probe periods for any group on
11 failure trials (t-test: D1: $t = -0.92$, $p = .037$; D3: $t = -0.12$, $p = 0.90$; D5: $t = 0.67$, $p = 0.51$; D10:
12 $t = 0.56$, $p = 0.58$). Thus, it appears that the failures were largely attributable to momentary
13 lapses. Indeed, there was a difference in the probability of a trial being successful between
14 probe and Training trials for groups D3, D5, and D10 (Figure 6e; $t = 1.05$, $p < 0.01$). We
15 therefore conclude that overall performance differences between the training and probe
16 tracks were due to momentary lapses in control occurring more frequently on the probe
17 tracks, rather than an overall decrease in the general quality of control on the probe track.

18

Figure 6



1
2 **Figure 6: Deviations from the tablet tilt policy reduced with practice and were invariant during Probes.**
3 *a*, The policy was defined as the mean and variance of the tablet tilt at each discrete state among trials that
4 successfully reached track length 0.7. The policy is shown collapsed across the multiple car direction states. Red
5 lines indicate the average tilt direction among successful trials for each state; blue lines indicate the tilt direction
6 for example trials, brown traces are the trajectories for those trials among successes, grey traces are the

1 *trajectories for those trials among failures. b, The deviation from policy among Successes (trials that reached at*
2 *least 0.8 track lengths) and among Failures (trials that did not reach 0.8 track lengths). c, Policy deviation*
3 *during Probes and Pre-Probes, broken out by day and whether the trial was successful or not. d, Variability in the*
4 *location of failure start points (the track location at which the policy deviation began to diverge for failure*
5 *trials). e, The probability of success for probe and pre-probe trials.*

6

7 One potential objection to the idea that the increased rate of failures on the probe track
8 was due to categorical lapses is that a small loss of skill might be apparent in a difference in
9 the states from which failures occurred on the two tracks, i.e., they failed in a similar way
10 but not from the same places. Thus, we tested whether the distribution of states from
11 which failures occurred differed between the pre-probe and probe windows. We used the
12 policy deviation signal of failure trials to identify the state from which trials began to
13 deviate, applied principal component analysis to that distribution of multidimensional
14 states (position and velocity of the ant-car), and computed the standard deviation of the
15 first principal component (Figure 6d). We only applied this analysis to groups D3, D5, and
16 D10, where we observed a sustained drop in performance on the probe track. The variance
17 differed between the pre-probe and probe windows for group D3 only (permutation test, p
18 $< .001$); for groups D5 and D10 there was no detectable difference in variance
19 (permutation test, D5: $p = 0.073$, D10: $p = 0.67$). This suggests that the apparently abrupt
20 onset of failures was not due to participants having gradually lost control and drifted into
21 undesirable states; failures began at states that were also typically occupied during
22 successful trials.

23

24 In summary, we found that there was a practice-related increase in skill across days and
25 this skill fully generalized to a mirror track in terms of trajectory variability, control policy,
26 and the states visited. Full generalization was masked by an overall performance

1 asymmetry explained by the fact that subjects showed more lapses in policy compliance on
2 the probe track than on the training track. There was no evidence for decreased
3 generalization at the level of kinematics as skill increased, arguing against convergence on
4 a chunked sequential action.

5

6 **Methods**

7 *Participants*
8 81 human participants (47 female) completed this study. All participants were 18 to 40
9 years of age, had no known neurological disorders, were self-reported right (76) or left (5)
10 hand dominant, and provided informed consent to participate. The Johns Hopkins
11 University School of Medicine Institutional Review Board approved this study and all of its
12 procedures.

13

14 *Experimental Procedure*

15 The study was conducted using a custom-built video game (“the game”), developed by Max
16 and Haley, Inc. (Baltimore, MD) for the Kata Project at The Johns Hopkins University. The
17 game simulated a driving scenario. Participants steered a virtual arthropod (“the car”)
18 along a narrow track by tilting (i.e. changing the pitch and roll) an iPad (Apple, Inc.,
19 Cupertino, CA) computer (Figure 1a). The direction of the acceleration of the car was
20 obtained by projecting the vertical axis of a world-centered coordinate system onto the
21 tablet’s surface, giving a magnitude and direction vector; which, by analogy, would be the
22 direction and magnitude of acceleration of a marble rolling off of a flat surface if tilted. The
23 kinematics of the car in the game were obtained from a physics simulation that included

1 the interaction of the multiple car segments, which introduced nonlinearity in the mapping
2 between the tablet tilt input and the car's dynamics. These computations acted as a filter
3 that introduced a delay of approximately 50 ms between the tablet tilt and the response of
4 the car. The magnitude of the tablet tilt vector was set to a constant value, making the tilt
5 magnitude a control null-space and effectively constraining the speed of the car in the game
6 to a narrow range. The game's software had a frame rate of 60 Hz, and recorded the
7 magnitude and direction of the tablet tilt and the path of the car along the track (Figure 1b)
8 at 60 Hz.

9

10 The experiment included two tracks: a training track and a probe track (Figure 1c). The
11 probe track was the mirror image of the training track. This guaranteed that the two tracks
12 were matched for difficulty and that successfully navigating each track would require
13 unique actions in a novel sequence relative to one another (Supplemental Figure 1). The
14 track that was designated as probe or training was counter-balanced across participants in
15 each group.

16

17 Participants were assigned to one of four possible groups. Groups differed in the number of
18 days of training that were conducted using the training track before the probe track was
19 introduced (Figure 1d). Groups D1, D3, D5, and D10 experienced the probe track on the
20 first, third, fifth, or tenth day of training, respectively. Groups D3 and D5 each conducted
21 five total days of training. Group D1 completed the study after the first day of participation,
22 and group D10 completed the study after 10 days of participation.

23

1 Each day of practice included 200 trials and lasted approximately 30 minutes. Trials in
2 which the entire track was completed lasted approximately 5s. A 4s delay was imposed if
3 the car fell from the track, which would happen if the track's edge was breached. Inter trial
4 intervals (the time between the successful completion of one trial and the beginning of the
5 next, or the time after the 4s-delay of a failed trial and the beginning of the next trial) lasted
6 3s on average and were self-paced; participants pressed a button on the device's screen to
7 begin the next trial. The car's dynamics were invariant for the duration of the experiment
8 including on the probe Track. Probes consisted of a block of 50 contiguous trials in which
9 the probe track was attempted instead of the training track. Participants were not pre-
10 warned that a probe block would be experienced. 67 participants took part in the study in
11 the BLAM laboratory at the Johns Hopkins Hospital, and 14 had the game downloaded onto
12 their personal iPad devices and completed training for the study from home. All sessions
13 that included the probe track were conducted in the laboratory using the same individual
14 iPad on which each participant trained.

15

16 *Data Analysis*

17 Data were analyzed offline using Matlab (The Mathworks, Natick, MA, 2013) and R (The R
18 Project, www.r-project.org). All code is available online at
19 <https://github.com/dhuberdeau/iPadGame>. For each trial, the position along the track at
20 which the car fell off was detected by searching for breaches of the track boundary. The
21 length of track that the car reached by the fall off point was recorded in units of the fraction
22 of the total track length, a quantity between 0 and 1.

23

1 The fall-off hazard was assessed as a function of the length of the track. The hazard rate of
2 car falloffs, λ , as a function of track distance, t , is given by the conditional probability

3

4
$$\lambda(t) = \lim_{\Delta t \rightarrow 0} \left(\frac{Pr(t < T \leq t + \Delta t | T > t)}{\Delta t} \right) \quad (1)$$

5

6 where T is a continuous random variable representing the track length at which a car fall-
7 off event occurred. Suppose that T has the *pdf*, or probability density function, $f(t)$, and *cdf*,
8 or cumulative distribution function, $F(t)$, then the hazard rate function is related to the *pdf*
9 and the survival function, $S(t) = 1 - F(t)$, by the following equation.

10
$$\lambda(t) = \frac{f(t)}{S(t)} \quad (2)$$

11 An estimate of the survival function for each participant on each day of Training and during
12 probes was obtained using the Kaplan-Meir method (Borgan, 2001).

13

14 To analyze movement kinematics, a measure of the variability among car paths across
15 trials was computed for each participant. A segment of each trial's car path was isolated
16 from the time at which the car reached track length 0.25 and for 750 ms thereafter. Only
17 trials for which a fall off did not occur prior to or during this window of time were included
18 in the analysis of kinematics; we refer to such trials as qualifying. In order to compare
19 kinematics across participants that were assigned different track orientations, and to
20 compare between training and probe conditions, any car paths that used the orientation
21 depicted in Figure 1 as the probe track were flipped across the vertical axis to match the
22 training track.

23

1 The across-trial kinematic variability was computed as the dispersion (see Equation 3) of
2 the first five principal components after applying principal component analysis
3 decomposition to the car's path. For each participant, all qualifying trajectories from all
4 other participants were pooled together (a leave-one-out approach at the level of
5 participants) in order to form a basis. Trajectories from the given participant were then
6 projected into this basis. The top five principal components reliably accounted for over
7 99% of the variance in the data for each participant. All qualifying trajectories from each
8 participant were projected onto the axes corresponding to the first five principal
9 components, and the dispersion d of these samples was computed by taking the sum of the
10 Euclidean distance between each pair of distinct samples (x_i and x_j) and dividing by the
11 number of pairs.

$$12 \quad d = \frac{1}{n} \sum_i \sum_{j \neq i} \|x_i - x_j\|^2 \quad (3)$$

13
14 Any window of trials that had fewer than seven qualifying trajectories was excluded from
15 further analysis.

16
17 Another analysis was developed to measure the extent to which the tablet tilt signal on a
18 given trial deviated from the optimal policy. The track was discretized along its length into
19 90 bins, across its width into 30 bins, and across car direction headings into 100 bins. An
20 empirical state-dependent policy was computed that consisted of the average tablet tilt
21 direction at each state from among those trajectories that were ultimately successful
22 (Figure 6a). Trials were labelled successful if they reached at least to track distance 0.8. The
23 policy map was generated for the region of track between lengths 0.25 and 0.75, a region

1 that included the first two turns in the track and the first two peaks of the hazard rate. A
2 policy map for each individual was computed by pooling the kinematic data from Day 10 of
3 participants in group D10, including using a leave-one-out approach for participants in that
4 group. Only D10 participants were used to form the policy because this group experienced
5 the most training of all groups and were therefore assumed to have behavior closest to a
6 theoretical optimum. The policy deviation was then taken to be the difference between the
7 tablet tilt direction and the empirical policy at each state visited in a trajectory.

8

9 A comparison of behavior during probe and training conditions was done with respect to
10 distance travelled, hazard rate, car path kinematics, and policy. These comparisons were
11 done by testing for changes in each measure between the probe and pre-probe windows of
12 trials, excluding the first 5 trials of the probe. The pre-probe window included the 50 trials
13 immediately before the probe, and the probe window included trials 6 to 50 of the probe,
14 which itself lasted for 50 contiguous trials.

15

16 *Statistical analysis*

17 The distance travelled, kinematic variability, and policy deviation, were each used to test
18 for practice-related changes in behavior, and for differences in behavior between training
19 and probe tracks. Practice-related changes in behavior were assessed independently for
20 each metric by fitting a linear model to the average of that metric within windows of 25
21 trials. Differences between training and probe trials were assessed first by conducting an
22 analysis of variance test on the within-subject difference in mean of each metric between
23 the probe window and the pre-probe window, with group as the independent factor. In the

1 event of a significant group difference, independent pair-wise t-tests were conducted to
2 determine which group(s) differed from one another. An additional analysis was conducted
3 for each group to determine whether the difference in metric between the probe and pre-
4 probe windows was significantly different from zero. To test for changes in survival
5 between the probe and the pre-probe window, a proportional hazard model was fit to data
6 from each window and tested for changes using a cox mixed-effects model. All statistical
7 analyses were conducted in R (www.r-project.org).

8

9 **Discussion**

10 Here, we created a novel video game to investigate how a movement skill made up of
11 continuous sequential actions is acquired through practice. We reasoned that if participants
12 chunk a series of discrete actions (such as the tablet tilts needed to successfully complete the
13 turns of the track) then they would show poor generalization to a mirror-image version of
14 the track that required different actions to navigate. If, instead, they learned a flexible control
15 policy, then they would generalize. We found that practice over 10 days led to improved task
16 success and a reduction in trajectory variability when steering along a curved track. There
17 was full generalization to the mirror-image track at the level of kinematics but not task
18 performance. The performance difference found between the training and probe tracks after
19 day 1 was not due to a failure of skill generalization but to a greater likelihood to lapse from
20 one's skilled state on the less familiar probe track. We conclude that continuous sequential
21 actions are learned as control policies that map states onto actions.

22

23 In previous work, we have shown that for a task that required fast continuous semi-circular
24 movements of the wrist (arc pointing task, APT), participants got better over many days of

1 practice (Shmuelof et al., 2012). This improvement was measured at the level of task success
2 as a shift in the speed-accuracy trade-off and at the level of execution as smoother and less
3 variable movement trajectories. A critical question is what kind of representation supports
4 practice-driven improvements in kinematic performance of the kind observed in the APT. In
5 the sequence-learning literature, the vast majority of which has been about discrete tasks, a
6 prominent idea has been that of chunking, whereby each individual movement gets
7 incorporated into single larger motor unit (a chunk) that can then be expressed all at once
8 (Ramkumar et al., 2016; Krakauer et al., 2019; Yokoi and Diedrichsen, 2019; Berlot et al.,
9 2020). It seems intuitive when looking at the evolution of the continuous wrist movements
10 in the APT that they too went from a series of faltering sub-movements to a rapid single
11 swipe. Findings in that study, however, suggested otherwise. First, kinematic analysis
12 revealed that although the trajectories through the tube became smoother and less variable
13 with practice, sub-movement number remained invariant. Thus, the skill comprised better
14 concatenation of the execution primitives rather than fusing them into a single movement.
15 Second, we found evidence for improved feedback corrections; in the case when the
16 trajectories got too close to the edge, more practiced subjects showed superior ability to
17 steer away. These two results from our former study were clues that perhaps subjects were
18 not just chunking sub-movements into a stereotyped trajectory but instead were learning a
19 more effective feedback control policy, which would also reduce trajectory variability and
20 thus give the appearance of stereotypy. These conclusions were provisional, however, and a
21 follow-up study was required to support them.

22

1 Here, in the ant-car game we saw a similar reduction in trajectory variability along the track
2 as was seen in the APT. Additionally, however, we were able to show full generalization to
3 the probe track at the level of kinematics, which rules-out chunking and is consistent instead
4 with acquisition of a flexible feed-back control policy. Generalization was not due simply to
5 a concordance between the two tracks. An analysis of the relative similarity of the two tracks
6 revealed that they were dissimilar, and thus specific sequences or subsequences of actions
7 that would lead to success in one were unlikely to be successful in the other if applied
8 verbatim.

9
10 Based on the results here, we suggest that increases in skill in continuous control tasks do
11 not occur through selecting and combining movements into a sequence of actions that can
12 then be subsequently chunked (Johnson, 1970; Robertson, 2007; Wong et al., 2015; Wong
13 and Krakauer, 2019; Yokoi and Diedrichsen, 2019). Instead, a novel feedback control policy
14 must be learned from scratch and applied to a continuous sequence of states. The learning
15 of such *de novo* control policies is distinct from adaptation and discrete sequence learning
16 because it requires both rapid selection of a new response and proper execution of that
17 response (Yang et al., 2021). Thus, we would conjecture that chunking in motor learning only
18 occurs in those tasks that allow for an overt abstract or cognitive representation at the level
19 of action selection. For example, one can rapidly press the keys of a bank cash machine
20 because overt knowledge of the passcode has been chunked. This cognitive chunk is then fed
21 to a motor area for rapid serial execution of over-learned finger movements (Wong and
22 Krakauer, 2019; Yokoi and Diedrichsen, 2019; Zimnik and Churchland, 2021). Chunking is

1 not an available strategy for motor tasks that are not conducive to a cognitive action
2 representation phase and when motor execution itself must improve.
3
4 An interesting aspect of our study was that participants consistently showed deterioration
5 in performance at the level of task success on the probe track – a 10% drop from day 3
6 onwards. There was a need to resolve the apparent contradiction between full
7 generalization at the level of execution but not at the level of overall task performance. To
8 do this, we derived an empirical control policy from the best mean performance on the
9 training track at day 10. The usefulness of the measure is that it is independent of which
10 specific states are visited on the track, which may be suboptimal, but in any given state
11 there is nevertheless an optimal policy to follow. We reasoned that full generalization
12 would mean that participants could transfer this policy to the probe track: given a state
13 (position and velocity) on the track there is an optimal tilt angle. Interestingly, this is
14 indeed what we found; the policy profiles for successful trials were the same on both
15 tracks. One remaining difference, however, might have been that although the same policy
16 was being used at any given position on either track, participants might have been
17 choosing a different trajectory on the probe track compared to the training track, i.e., not
18 the mirror image. To address this we looked at the distribution of states visited on the two
19 tracks, and they were not different. The full transfer of the learned control policy from the
20 training track to the probe track corroborated the finding of an equivalent degree of
21 practice-related variability reduction on both tracks. Overall, there was no evidence for
22 any qualitative difference in skill when participants steered the car on the probe versus the
23 training track.

1
2 The policy deviation metric also allowed us to search for an alternative explanation for why
3 there were more failures on the probe track given that participants had the same level of
4 skill as on the training track. For the training track, visual inspection of the unfolding of the
5 control policy in trials where a fall-off occurred compared to neighboring trials that did not
6 fail, revealed that failures occurred through an abrupt error in control immediately prior to
7 the fall-off; control looked like successful trials right up to that point. Critically, just like in
8 the case of successful trials, the failure policy profiles on the probe track were the same as
9 those on the training track. The difference in overall performance between the two tracks
10 was instead attributable to an increase in the probability of making an abrupt error leading
11 to a fall-off, i.e., a *lapse*. Thus the probe track did not induce failure to generalize skill but
12 instead caused an increase in the probability of lapses of the same kind that occurred on
13 the training track.

14
15 Chomsky famously made the performance versus competence distinction in the context of
16 language (Chomsky, 1965). Performance can be hampered by false starts and slips of the
17 tongue, but this does not indicate loss of knowledge of the language. We conjecture that we
18 saw the analogous situation here: participants had equal skill (competence) on each track,
19 but exhibited more lapses, measured as a performance drop in terms of task success. Lapses
20 are ubiquitous in behavioral data and describe instances in which mistakes are made even
21 when they are predicted not to occur, such as in perceptual decision making tasks in the
22 presence of strong evidence for one decision outcome over another (Wichmann and Hill,
23 2001). Lapses have been hypothesized to arise from inattention or from errors of execution,

1 such as motor noise. However, a more recent suggestion is that they indicate targeted
2 exploration in the presence of uncertainty (Pisupati et al., 2021) or deliberate alternation
3 between behavioral strategies (Ashwood et al., 2022). While lapses have been rarely studied
4 or discussed for motor behaviors, any of these putative mechanisms for lapses could account
5 for the results we found here, such as inattention, strategic exploration in the presence of a
6 novel set of states, or even possibly a reduction in motivation (Wong et al., 2015).

7

8 Here we draw two main conclusions. First, skilled execution of a continuous sequential
9 action is achieved by *de novo* learning of a feedback control policy that maps states onto
10 actions and not through chunking of a sequence of actions. This suggests a fundamental
11 difference in how motor skills are acquired when they require improvements in movement
12 execution versus those that require selection between movement elements that can already
13 be well executed. Second, performance can vary across contexts for the same level of skill
14 because of differences in the frequency of lapses. This is intriguing and potentially profound,
15 as it suggests that motor skills are only as good as our ability to consistently express them.
16 This is well known in the sports world; there are athletes recognized for their brilliant skill,
17 but they seem unable to maintain their highest-level performance from one game to another.

18

19 **References:**

20 Ashwood ZC, Roy NA, Stone IR, International Brain Laboratory, Urai AE, Churchland AK,
21 Pouget A, Pillow JW (2022) Mice alternate between discrete strategies during
22 perceptual decision-making. *Nat Neurosci* 25:201–212.

23 Berlot E, Popp NJ, Diedrichsen J (2020) A critical re-evaluation of fMRI signatures of motor
24 sequence learning Peelen MV, de Lange FP, Wong AL, eds. *eLife* 9:e55241.

1 Berns GS, Sejnowski TJ (1998) A computational model of how the basal ganglia produce
2 sequences. *J Cogn Neurosci* 10:108–121.

3 Borgan Ø (2001) Modeling Survival Data: Extending the Cox Model. Terry M. Therneau and
4 Patricia M. Grambsch, Springer-Verlag, New York, 2000. No. of pages: xiii+ 350. ISBN
5 0-387-98784-3. *Stat Med* 20:2053–2054.

6 Chomsky N (1965) Aspects of the Theory of Syntax, 50th ed. The MIT Press. Available at:
7 <https://www.jstor.org/stable/j.ctt17kk81z>.

8 David A. Rosenbaum, Richard A. Carlson, Gilmore and RO (2001) Acquisition of Intellectual
9 and Perceptual-Motor Skills. *Annu Rev Psychol* 52:453–470.

10 Diedrichsen J, Kornysheva K (2015) Motor skill learning between selection and execution.
11 *Trends Cogn Sci* 19:227–233.

12 Hadjiosif AM, Branscheidt M, Anaya MA, Runnalls KD, Keller J, Bastian AJ, Celnik PA,
13 Krakauer JW (2022) Dissociation between abnormal motor synergies and impaired
14 reaching dexterity after stroke. *J Neurophysiol* 127:856–868.

15 Hardwick RM, Forrence AD, Krakauer JW, Haith AM (2019) Time-dependent competition
16 between goal-directed and habitual response preparation. *Nat Hum Behav* 3:1252–
17 1262.

18 Johnson NF (1970) The Role of Chunking and Organization in The Process of Recall1. In:
19 Psychology of Learning and Motivation (Bower GH, ed), pp 171–247. Academic
20 Press. Available at:
21 <http://www.sciencedirect.com/science/article/pii/S0079742108604326>.

22 Krakauer JW, Hadjiosif AM, Xu J, Wong AL, Haith AM (2019) Motor Learning. In:
23 Comprehensive Physiology, pp 613–663. John Wiley & Sons, Ltd. Available at:
24 <https://onlinelibrary.wiley.com/doi/abs/10.1002/cphy.c170043>.

25 Pisupati S, Chartarifsky-Lynn L, Khanal A, Churchland AK (2021) Lapses in perceptual
26 decisions reflect exploration. *eLife* 10:e55490.

27 Povel DJ, Collard R (1982) Structural factors in patterned finger tapping. *Acta Psychol
28 (Amst)* 52:107–123.

29 Ramkumar P, Acuna DE, Berniker M, Grafton ST, Turner RS, Kording KP (2016) Chunking
30 as the result of an efficiency computation trade-off. *Nat Commun* 7:12176.

31 Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, Celnik PA, Krakauer JW
32 (2009) Noninvasive cortical stimulation enhances motor skill acquisition over
33 multiple days through an effect on consolidation. *Proc Natl Acad Sci U S A*
34 106:1590–1595.

1 Robertson EM (2007) The Serial Reaction Time Task: Implicit Motor Skill Learning? *J
2 Neurosci* 27:10073–10075.

3 Shmuelof L, Krakauer JW, Mazzoni P (2012) How is a motor skill learned? Change and
4 invariance at the levels of task success and trajectory control. *J Neurophysiol*
5 108:578–594.

6 Simes RJ, Zelen M (1985) Exploratory data analysis and the use of the hazard function for
7 interpreting survival data: an investigator's primer. *J Clin Oncol* 3:1418–1431.

8 Telgen S, Parvin D, Diedrichsen J (2014) Mirror Reversal and Visual Rotation Are Learned
9 and Consolidated via Separate Mechanisms: Recalibrating or Learning De Novo? *J
10 Neurosci* 34:13768–13779.

11 Verwey W (2001) Concatenating familiar movement sequences: the versatile cognitive
12 processor. *Acta Psychol (Amst)* 106:69–95.

13 Wagenmakers E-J (2007) A practical solution to the pervasive problems of p values.
14 *Psychon Bull Rev* 14:779–804.

15 Wichmann FA, Hill NJ (2001) The psychometric function: I. Fitting, sampling, and goodness
16 of fit. *Percept Psychophys* 63:1293–1313.

17 Wong AL, Krakauer JW (2019) Why Are Sequence Representations in Primary Motor
18 Cortex So Elusive? *Neuron* 103:956–958.

19 Wong AL, Lindquist MA, Haith AM, Krakauer JW (2015) Explicit knowledge enhances motor
20 vigor and performance: motivation versus practice in sequence tasks. *J
21 Neurophysiol* 114:219–232.

22 Yamaguchi M, Logan GD (2014) Pushing typists back on the learning curve: Revealing
23 chunking in skilled typewriting. *J Exp Psychol Hum Percept Perform* 40:592–612.

24 Yang CS, Cowan NJ, Haith AM (2021) De novo learning versus adaptation of continuous
25 control in a manual tracking task Verstynen T, Makin TR, Verstynen T, eds. *eLife*
26 10:e62578.

27 Yokoi A, Diedrichsen J (2019) Neural Organization of Hierarchical Motor Sequence
28 Representations in the Human Neocortex. *Neuron* 103:1178-1190.e7.

29 Zimnik AJ, Churchland MM (2021) Independent generation of sequence elements by motor
30 cortex. *Nat Neurosci*:1–13.

31

32

1 **Supplemental Materials**

2 We sought to quantify the extent to which tablet tilt signals for successful trials were
3 similar between the probe and training tracks. Highly similar tablet tilt signals could
4 potentially account for any generalization of performance across track types, while
5 dissimilar signals would make generalization on account of the similarity between the
6 tracks themselves less likely. Signal similarity was computed as the Euclidean distance
7 between a segment of the tablet tilt signal from each probe trial and the best matched
8 segment of equal length from among tablet tilt signals of training trials. The window
9 lengths used to isolate signal segments were 0.1s, 0.2s, 0.3s, 0.5s, 1s, and 2s. Signal
10 similarity was computed across the length of the track in step sizes of 33% of the width of
11 the window. Only trials that had completed the track were included in this analysis. Since
12 segment window size affects the Euclidean distance, relative signal difference was
13 computed as the ratio of the Euclidean distance between the training and probe signals to
14 the Euclidean distance between training trials taken before and after the probe (inverting
15 the pre-probe signal so that it matched the signals from probe trials). Large Euclidean
16 distances between probe and training tracks would signify that the two track types were
17 not similar, and thus would rule out the possibility that any generalization of performance
18 during probe trials was due to similarity between the tracks.

19

Figure S1



1
2 **Supplemental Figure 1: Probe track required different kinematics than the Training track.** a, The two
3 tracks used as Probe or Training. The analysis of kinematic similarity attempts to determine if segments of
4 kinematics that would be successful in one track would also be successful in the other. b, Optimal match of a

1 segment of kinematics (yellow highlight) from a tablet tilt signal from the Training track against the average
2 Tablet tilt signal of Training tracks. c, Optimal match of a segment of kinematics (yellow highlight) from a tablet
3 tilt signal from the Probe track against the average Tablet tilt signal of Training tracks. d, The normalized
4 euclidean distance between Probe track kinematics and Training track kinematics of the tilt direction signal. e,
5 As in d but for the derivative of the tilt direction signal

6