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Abstract	1	

Many	motor	 skills	 consist	 of	 continuous	 sequential	 actions,	 such	 as	 a	 tennis	 serve.	 It	 is	2	

currently	 unclear	 how	 these	 surprisingly	 understudied	 behaviors	 are	 learned,	 with	 the	3	

leading	 hypothesis	 being	 that	 sequences	 of	 single	 actions	 become	 <chunked=	 into	 larger	4	

single	executable	units.	Under	this	hypothesis,	continuous	sequential	actions	should	become	5	

more	task-specific	and	less	generalizable	with	practice.	To	test	this,	we	developed	a	video	6	

game	that	requires	participants	to	hold	a	tablet	with	both	hands	and	steer	a	virtual	car		(the	7	

<ant	car=)	along	a	curving	track.	We	tested	participants9	ability	to	generalize	their	skill	to	a	8	

probe	track	that	required	a	different	sequence	of	turns.		Across	days	of	practice,	task	success	9	

increased,	and	movement	variability	decreased.	On	the	probe	track,	movement	quality	at	the	10	

level	of	kinematics	fully	generalized	but	performance	at	the	level	of	task	success	showed	a	11	

consistent	decrement.	To	address	this	apparent	paradox,	we	empirically	derived	the	control	12	

policy	participants	used	at	their	maximal	skill	level	on	the	training	track.		Notably,	this	policy	13	

was	 fully	 transferred	 to	 the	 probe	 track,	 but	 there	 were	 more	 instances	 of	 momentary	14	

deviations	from	it	(lapses),	which	explains	the	worse	performance	despite	equivalent	skill.		15	

We	conclude	that	continuous	motor	skills	are	acquired	through	learning	of	a	flexible	control	16	

policy	that	maps	states	onto	actions	and	not	through	chunking	or	automatizing	of	a	specific	17	

sequence	of	actions.		18	

	19	

Introduction	20	

Many	human	motor	skills	require	precise	execution	of	continuous	sequential	actions.	For	21	

example,	a	tennis	serve	is	made	up	of	subcomponent	movements	that	blend	seamlessly,	22	

and	each	subcomponent	is	also	made	up	of	a	continuous	sequence	of	joint	rotations	and	23	
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muscle	activations.		Learning	to	better	execute	continuous	sequential	actions	is	less	well	1	

studied	than	learning	to	produce	discrete	sequences	of	actions	(Verwey,	2001;	Diedrichsen	2	

and	Kornysheva,	2015;	Hardwick	et	al.,	2019).	Discrete	sequence	learning	paradigms	3	

emphasize	learning	to	select	the	right	actions	rather	than	improving	movement	execution	4	

of	each	individual	action,	which	are	usually	over-learned.		For	example,	in	a	sequence	of	5	

button	presses,	each	button	press	is	itself	easy.				6	

	7	

One	theory	of	how	performance	improves	as	discrete	sequences	are	learned	is	that		8	

individual	sequence	elements	are	grouped		into	longer	sequence	fragments	(often	called	9	

chunks),	which	can	then	be	executed	as	a	single	unit	(Povel	and	Collard,	1982;	Berns	and	10	

Sejnowski,	1998;	David	A.	Rosenbaum	et	al.,	2001;	Yamaguchi	and	Logan,	2014;	11	

Diedrichsen	and	Kornysheva,	2015).	Recent	work	suggests	that	chunking	in	discrete	12	

sequence	tasks	is	primarily	related	to	cognition	rather	than	to	motor	execution,	which	is	to	13	

say	that	it	is	knowledge	of	the	order	of	actions	that	is	chunked	rather	than	the	commands	14	

for	their	execution	(Diedrichsen	and	Kornysheva,	2015;	Wong	et	al.,	2015;	Zimnik	and	15	

Churchland,	2021).	For	example,	knowing	one9s	ATM	number	as	a	single	unit	may	exist	at	a	16	

cognitive	level,	with	this	order	then	communicated	to	motor	cortex	one	element	at	a	time	17	

for	execution.	In	this	example,	no	motor	chunking	is	necessary.			18	

	19	

Critically,	what	distinguishes	continuous	sequential	actions	from	discrete	sequences	of	20	

actions	is	that	improvement	occurs	at	the	level	of	movement	execution	3	a	tennis	player9s	21	

forehand	gets	faster	and	more	accurate.	Chunking	at	the	knowledge	level	for	such	22	

continuous	sequential	actions	could	be	a	challenge,	as	there	are	no	clear	divides	between	23	
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movement	elements.	It	is	therefore	interesting	to	consider	the	possibility	that	chunking	1	

does	occur	for	these	tasks,	but	at	the	level	of	movement	execution	rather	than	action	2	

selection.		3	

	4	

In	a	previous	study	to	address	how		continuous	sequential	actions	improve	at	the	level	of	5	

movement	execution,	we	developed	a	wrist-controlled	cursor	task	(the	arc-pointing	task)	6	

that	required	participants	to	control	a	cursor	to	make	a	fast	trajectory	through	a	U-shaped	7	

channel	without	touching	or	crossing	its	edges	(Shmuelof	et	al.,	2012).	Participants	learned	8	

to	get	through	the	channel,	a	binary	outcome,	with	increasing	success.			Additionally,	9	

continuous	trajectory	kinematics	became	smoother	and	less	variable,	and	feedback	control	10	

improved,	leading	to	improved	motor	execution	and	greater	task	success.	Other	studies	of	11	

continuous	sequential	actions	have	also	shown	shifts	in	the	speed-accuracy	trade-off	12	

function	(Reis	et	al.,	2009).		The	improvements	in	movement	execution	seen	in	the	arc-13	

pointing	task,	what		we	called	<motor	acuity=	,	could	arguably	have	been		due	either	to	14	

chunking	of	a	sequence	of	actions	or	by	learning	a	de	novo	control	policy	that	maps	a	15	

sequence	of	states	onto	actions	(Telgen	et	al.,	2014;	Yang	et	al.,	2021;	Hadjiosif	et	al.,	2022).		16	

	17	

To	distinguish	whether	continuous	sequential	actions	are	learned	by	means	of	a	continuous	18	

control	policy	or	by	chunking	a	sequence	of	actions,	and	to	better	understand	how	the	19	

quality	of	execution	improves	with	practice,	we	created	a	novel	tablet	computer-based	20	

video	game	(Figure	1a)	that	requires	continuous	bilateral	movements	of	the	arms	and	21	

wrists	to	steer	a	virtual	car	along	a	narrow,	curved	track	(Figure	1b)	at	constant	speed.	22	

Participants	practiced	the	game	for	1-,	3-,	5-,	or	10-days	prior	to	a	<probe=	of	generalization	23	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2023. ; https://doi.org/10.1101/2023.09.21.558913doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.21.558913
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5	

(Figure	1d)	on	the	mirrored	version	of	the	track	(figure	1c).	Successful	generalization	of	1	

this	skill	to	the	novel	kinematics	required	on	the	mirrored	track	would	be	inconsistent	with	2	

having	learned	to	chunk	a	fixed	sequence	of	actions	(see	Supplemental	Figure	1).	3	

Introducing	the	probe	on	different	days	of	training	across	the	four	groups	allowed	us	to	4	

ascertain	whether	generalization	properties	changed	as	the	attained	skill	level	increased.		5	

	6	

Figure	1:	The	ant-car	game..	a,	The	game9s	artistic	design	and	control	actions.	The	car	was	styled	like	an	insect	7	
and	the	track	was	demarcated	by	an	orange	ribbon	on	a	polka-dotted	background.	The	roll	and	pitch	of	the	8	
tablet	computer	determined	the	direction	of	acceleration	of	the	car.	b,	Sample	recordings	of	the	trajectory	of	the	9	
car	and	the	direction	of	the	tablet	tilt.	c,	Training	and	Probe	tracks.	d,	Training	and	Probe	trial	assignments	per	10	
group.	Groups	trained	for	varying	numbers	of	days	(grey	bars),	up	to	a	maximum	of	ten	days,	and	were	probed	11	
for	generalization	at	different	times	throughout	learning	(white	boxes).	12	

	13	

	14	
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Results	 	1	

Participants	practiced	a	novel	video	game	for	up	to	two	weeks	that	required	navigating	a	2	

cartoon	car	(the	<ant-car=)	along	a	narrow	and	winding	track	(see	methods	for	details).	3	

After	practice,	participants	became	able	to	travel	further	along	the	track	without	falling	off,	4	

generating	smoother	and	more	consistent	ant-car	(Figure	2a)	and	tablet	tilt	(Figure	2b)	5	

trajectories.	The	distance	travelled	along	the	track	increased	with	practice.	Linear	models	6	

fit	to	performance	in	windows	of	25	trials	(Figure	3a)	demonstrated	significant	changes	in	7	

average	distance	travelled	across	practice	for	each	group	(Linear	regression;	D1:	F(82)	=	8	

25.38,	p	<	.001;	D3:	F(605)	=	288.4,	p	<	0.001;	D5:	F(757)	=	122.1,	p	<	0.001;	D10:	F(1474)	9	

=	402.4,	p	<	0.001).		10	

	11	

Figure	2:	Behavior	changed	across	days	of	practice.	a,	Car	paths	and	b,	tablet	tilt	signals	from	a	12	
representative	participant	from	group	D10.	13	

At	different	points	during	learning,	each	group	performed	a	series	of	probe	trials	in	which	14	

the	layout	of	the	track	was	mirror-reversed	compared	to	training.	For	participants	who	15	

experienced	the	probe	during	the	first	day	of	training	(Group	D1),	performance	during	the	16	
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probe	trials	was	comparable	to	the	immediately	preceding	training	trials.		In	contrast,	for	1	

participants	probed	during	days	3,	5,	or	10	of	training	(Groups	D3,	D5,	and	D10),	the	2	

distance	travelled	decreased	during	probe	trials	compared	to	the	pre-probe	window		3	

(Figure	3b).	This	performance	decrease	in	the	probe	trials	had	two	components:	an	4	

immediate	drop	during	the	initial	five	trials	(ANOVA:	F(3)	=	7.06,	p	<	0.001;	t-tests:	D1:	t	=	5	

1.34,	p	=	0.19;	D3:	t	=	-3.05,	p	<	0.01;	D5:	t	=	-3.55,	p	<	0.01;	D10:	t	=	-4.44,	p	<	0.001)	6	

followed	by	recovery	to	an	asymptote	that	remained	approximately	constant	for	the	7	

remainder	of	the	probe	window	(Figure	3c	&	d).		8	

	9	

For	the	asymptotic	period,	defined	as	the	final	45	trials	of	the	probe	block,	the	difference	in	10	

distance	travelled	between	the	probe	and	pre-probe	windows	was	significantly	different	11	

among	groups	(ANOVA:	F(3)	=	9.59,	p	<	0.001),	and	groups	D3,	D5,	and	D10	had	12	

significantly	lower	distance	travelled	during	probes	(t-tests:	D1:	t	=	-1.15,	p	=	0.26;	D3:	t	=	-13	

2.71,	p	<	0.05;	D5:	t	=	-2.62,	p	<	0.05;	D10:	t	=	-5.33,	p	<	0.001).	Thus,	beyond	a	threshold	of	14	

practice,	i.e.	by	day	3,	there	was	a	significant	drop	in	performance	in	the	probe	trials	that	15	

was	not	fully	recovered	throughout	the	entire	probe	period.	Notably,	a	similar	transient	16	

decrease	in	performance	was	also	apparent	on	the	return	from	the	probe	track	to	the	17	

training	track,	suggesting	that	it	was	not	specific	to	the	training	track.	The	sustained	18	

decrease	in	performance,	however,	suggested	a	genuine	limitation	of	participants9	ability	to	19	

perform	the	task	on	the	mirror-reversed	track.		20	
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	1	

Figure	3:	The	distance	traveled	on	the	Training	track	increased	with	practice	but	decreased	in	a	2	
consistent	way	during	Probes	after	Day	1.	a,	The	mean	distance	travelled	along	the	path	within	bins	of	25	3	
trials,	averaged	across	participants	(mean	±	standard	error)	for	each	group.	Vertical	lines	indicate	overnight	4	
breaks.	Grey	bars	indicate	a	block	of	Probe	trials.	b,	The	distance	travelled	in	bins	of	five	trials	and	averaged	5	
across	participants	(mean	±	standard	error)	during	days	when	a	Probe	was	encountered.	c,	The	average	mean	±	6	
standard	error	of	the	distance	travelled	in	the	first	five	trials	after	the	onset	of	a	block	of	Probe	trials	(left	panel)	7	
and	in	the	final	45	trials	of	a	block	of	Probe	trials	(right	panel).	d,	The	average	distance	travelled	in	blocks	of	five	8	
trials	relative	to	the	previous	50	trials	for	a	day	of	training	trials	(grey	trace)	and	for	each	block	of	probe	trials	9	
(yellow,	red,	green,	and	blue	traces).	10	

	11	

We	suspected	that	the	chance	of	falling	off	was	not	uniform	along	the	length	of	the	track,	12	

and	so	derived	an	alternative	and	more	fine-grained	measure	of	task	performance	using	13	
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the	hazard	rate.	The	hazard	rate	describes	the	chances	of	falling	off	at	each	length	along	the	1	

track,	accounting	for	the	fact	that	the	ant-car	has	already	reached	that	length	(Simes	and	2	

Zelen,	1985).	We	found	that	the	hazard	rate	was	non-uniform	along	the	length	of	the	track	3	

(Figure	4a).	We	also	considered	the	closely	related	survival	function	3	the	probability	for	a	4	

given	distance	along	the	track	that	participants	will	make	it	at	least	that	far.	(Survival	is,	5	

essentially,	the	integral	of	the	hazard	rate;	see	Methods).	Survival	(Figure	4b)	significantly	6	

improved	across	days	of	practice	(log-likelihood	ratio	test	between	survival	on	days	1	&	10:	7	

X2(1)	=	355.1,	p	<	0.001).		8	

	9	

The	survival-based	analysis	of	performance	in	probe	trials	resulted	in	a	similar	pattern	of	10	

results	as	the	analysis	based	on	distance	travelled	(Figure	4c).	Survival	on	probe	days	was	11	

significantly	different	across	the	groups	(log-likelihood	ratio	test:	X2	=	5320.3,	p	<	0.001),	12	

indicating	a	practice	benefit.	Survival	also	differed	during	the	probe	windows	compared	to	13	

the	pre-probe	windows	(log-likelihood	ratio	test:	X2	=	285.42,	p	<	0.001),	demonstrating	14	

the	drop	in	performance	during	probes.	There	was	also	a	significant	interaction	between	15	

group	and	probe	window	(log-likelihood	ratio	test:	X2	=1117.1,	p	<	0.001).		16	

	17	

This	analysis	confirmed	that	performance	deteriorated	during	probes,	and	that	the	extent	18	

of	this	change	differed	significantly	depending	on	the	day	it	was	experienced.	Post-hoc	tests	19	

revealed	that	there	was	no	detectable	difference	in	survival	between	pre-probe	and	probe	20	

windows	for	group	D1	(log-likelihood	ratio	test:	X2	=	0.33,	p	<	0.57),	but	there	was	a	21	

significant	change	in	survival	during	the	probes	for	each	other	group	(log-likelihood	ratio	22	

tests:	D3:	X2	=	50.6,	p	<	0.001,	D5:	X2	=	80.0,	p	<	0.001,	D10:	X2	=	123.8,	p	<	0.001).	These	23	
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findings	are	consistent	with	those	from	the	distance	travelled	measure	and	confirm	that	1	

task	success	decreased	in	the	probe	from	day	3	onward.		2	

	3	

Figure	4:	Falloff	risk	decreased	with	practice.	a,	The	hazard	rate	(fall	offs	per	0.02	of	track	length)	as	a	4	
function	of	track	length,	pooling	across	all	groups	and	days.	b,	The	survival	functions	across	days	of	training.	5	
Darker	curves	signify	later	days.	c,	Survival	curves	during	blocks	of	Probe	trials	compared	to	Training	trials	on	6	
the	same	day	as	the	Probe.	7	

While	performance	during	probes	experienced	a	consistent	drop	relative	to	pre-probe	8	

trials	from	day	3	onward,	performance	during	probes	nevertheless	increased	across	days	9	

of	training	(linear	regression:	F(1,	67)	=	25.9,	p	<	.001).	The	fact	that	performance	during	10	
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probes	improved	with	practice	on	the	training	track	demonstrates	that	this	continuous	1	

motor	skill	is	generalizable.	Furthermore,	the	fact	that	the	performance	decrement	during	2	

probes	was	of	similar	magnitude	after	3,	5,	and	10	days	of	training	shows	that	there	was	3	

not	an	increasing	divergence	between	the	training	and	probe	tracks	that	would	suggest	4	

increasing	task	specificity.	These	findings	are	inconsistent	with	the	theory	that	continuous	5	

sequential	actions	are	generated	by	executing	a	chunked	sequence	of	actions.	Nevertheless,	6	

the	fact	that	performance	during	probes	did	drop	consistently	relative	to	same-day	7	

performance	on	the	training	track	could	indicate	some	component	of	performance	may	8	

have	been	attributable	to	chunking.		9	

	10	

Purely	analyzing	metrics	of	task	success	based	on	whether	and	when	participants	fell	off	11	

the	track	is	limited	since	there	are	multiple	possible	reasons	that	a	participant	may	have	12	

failed	on	a	given	trial,	including		poor	selection	of	actions,	noisy	execution	of	actions	or,	13	

alternatively,	momentary	lapses	of	control	(Wichmann	and	Hill,	2001;	Pisupati	et	al.,	2021;	14	

Ashwood	et	al.,	2022).	Therefore,	to	better	understand	the	reasons	behind	participants9	15	

improved	performance	across	days	and	the	drop	in	performance	on	the	probe	trials,	we	16	

analyzed	the	kinematics	of	the	ant-car	trajectories.		17	

	18	

We	first	measured	ant-car	trajectory	variability	(Figure	5a),	which	we	quantified	as	the	19	

dispersion	across	trials	in	windows	of	25-trials	using	the	first	five	principal	components	of	20	

kinematic	data	(see	Methods).	The	dispersion	systematically	decreased	with	practice	on	21	

the	training	track	(Figure	5b;	Linear	regression;	F(1,	2657)	=	206,	p	<	0.0001).	We	then	22	

compared	trajectory	kinematics	on	the	probe	track	to	those	on	the	training	track.	Given	23	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2023. ; https://doi.org/10.1101/2023.09.21.558913doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.21.558913
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12	

that	performance	deteriorated	at	the	level	of	task	success,	it	might	be	expected	that	1	

kinematics	would	likewise	revert	to	a	level	seen	with	fewer	days	of	training.		2	

	3	

Figure	5:	Trajectories	became	more	stereotyped	with	practice.	a,	Sample	trajectories	from	a	portion	of	the	4	
Training	track	from	a	representative	participant	on	Days	1,	5,	and	10,	and	from	a	portion	of	the	Probe	track.	b,	5	
Trajectory	dispersion	for	each	group	across	trials	of	practice.	c,	The	difference	in	trajectory	dispersion,	as	defined	6	
in	b.	7	

This	is	not	what	we	found,	however;	there	was	no	detectable	difference	in	dispersion	8	

between	probes	and	the	pre-probe	training	period	(Figure	5c).	An	analysis	of	variance	test	9	

conducted	on	the	difference	in	dispersion	between	the	probe	and	pre-probe	windows	10	

across	groups	failed	to	detect	a	difference	(ANOVA:	F(3)	=	0.126,	p	=	0.94).	Nor	did	any	11	

group	individually	experience	a	significant	change	in	dispersion	during	the	probe	(Linear	12	

regression;	D1:	t	=	-0.600,	p	=	0.55;	D3:	t	=	0.537,	p	=	0.59;	D5:	t	=	0.546,	p	=	0.59;	D10:	t	=	13	

0.344,	p	=	0.73).	However,	the	lack	of	a	significant	difference	is	not	sufficient	evidence	for	14	
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the	absence	of	an	effect	of	the	probe.	We	therefore	also	computed	the	Bayes	Factor	(BF)	of	1	

a	linear	model	fit	to	the	difference	between	probes	and	pre-probe	windows	as	a	function	of	2	

the	day	at	which	the	probe	occurred,	using	a	uniform	prior	(Wagenmakers,	2007).	This	3	

analysis	revealed	a	BF	of	0.002,	which	is	considered	very	weak	evidence	for	there	being	a	4	

relationship.	Note	that	measures	of	dispersion	were	calculated	based	only	on	successful	5	

trials.	While	this	might	at	first	appear	circular,	we	emphasize	that	it	was	still	possible	to	6	

observe	clear	differences	in	dispersion	across	days	using	this	approach	and	therefore,	the	7	

similarity	of	the	dispersion	between	probe	and	pre-probe	windows	was	not	inevitable.	8	

Thus,	kinematic	variability	on	the	probe	track	did	not	appear	to	differ	systematically	from	9	

the	training	track,	even	though	variability	changed	significantly	across	learning.	Therefore,	10	

although	the	improvement	in	task	success	over	days	was	consistent	with	a	reduction	in	11	

kinematic	variability	with	practice,	the	drop	in	task	success	in	probe	trials	was	not	12	

attributable	to	increased	kinematic	variability.	13	

	14	

To	address	the	apparent	paradox	of	there	being	decreased	overall	success	on	the	probe	15	

track	(falling	off	more	often)	even	though	skill	at	the	level	of	kinematics	fully	generalized	16	

from	the	training	track	to	the	probe	track,	we	more	closely	examined	the	failures.	17	

Importantly,	failure	trials	were	not	included	in	the	variability	measure	of	skill,	which	was	18	

derived	from	only	successful	trials.	It	is	possible	that	there	was	a	categorical	difference	in	19	

training	and	probe	trials	in	the	nature	of	the	failures	rather	than	the	successes.	Analyzing	20	

failure	trials	is	challenging	since	each	failure	is	unique	(unlike	success	trials	which	are	all	21	

similar	and	can	be	easily	analyzed	collectively).	To	understand	how	and	why	failures	22	

differed	from	successful	trials,	we	empirically	determined	participants9	state-dependent	23	
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control	policy	based	on	their	successes	on	the	training	track	after	extensive	practice	(on	1	

day	10).	This	allowed	us	to	quantify	the	deviation	of	participants9	actions	from	this	ideal	2	

policy	throughout	individual	trials	(Figure	6a,	see	methods	for	more	details).		We	found	3	

that,	in	failure	trials,	there	was	a	stereotyped	increase	in	policy	deviation	just	before	the	4	

point	of	fall-off	compared	to	successful	trials	at	corresponding	segments	of	track	(figure	5	

6b),	suggesting	that	performance	was	perfectly	good	in	failure	trials	up	until	a	specific	6	

point	where	the	failure	began.	Critically,	this	pattern	of	failure	appeared	to	be	almost	7	

identical	for	the	training	and	probe	tracks	for	any	amount	of	practice	(3,	5	or	10	days).	That	8	

is	to	say,	fall-off	trials	had	the	same	kinematic	form	on	either	track;	there	was	no	detectable	9	

difference	in	policy	deviation	between	the	probe	and	pre-probe	periods	for	any	group	on	10	

failure	trials	(t-test:	D1:	t	=	-0.92,	p	=	.037;	D3:	t	=	-0.12,	p	=	0.90;	D5:	t	=	0.67,	p	=	0.51;	D10:	11	

t	=	0.56,	p	=	0.58).	Thus,	it	appears	that	the	failures	were	largely	attributable	to	momentary	12	

lapses.	Indeed,	there	was	a	difference	in	the	probability	of	a	trial	being	successful	between	13	

probe	and	Training	trials	for	groups	D3,	D5,	and	D10	(Figure	6e;	t	=	1.05,	p	<0.01).	We	14	

therefore	conclude	that	overall	performance	differences	between	the	training	and	probe	15	

tracks	were	due	to	momentary	lapses	in	control	occurring	more	frequently	on	the	probe	16	

tracks,	rather	than	an	overall	decrease	in	the	general	quality	of	control	on	the	probe	track.				17	

	18	
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	1	
Figure	6:	Deviations	from	the	tablet	tilt	policy	reduced	with	practice	and	were	invariant	during	Probes.	2	
a,	The	policy	was	defined	as	the	mean	and	variance	of	the	tablet	tilt	at	each	discrete	state	among	trials	that	3	
successfully	reached	track	length	0.7.	The	policy	is	shown	collapsed	across	the	multiple	car	direction	states.	Red	4	
lines	indicate	the	average	tilt	direction	among	successful	trials	for	each	state;	blue	lines	indicate	the	tilt	direction	5	
for	example	trials,	brown	traces	are	the	trajectories	for	those	trials	among	successes,	grey	traces	are	the	6	
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trajectories	for	those	trials	among	failures.	b,	The	deviation	from	policy	among	Successes	(trials	that	reached	at	1	
least	0.8	track	lengths)	and	among	Failures	(trials	that	did	not	reach	0.8	track	lengths).	c,	Policy	deviation	2	
during	Probes	and	Pre-Probes,	broken	out	by	day	and	whether	the	trial	was	successful	or	not.	d,	Variability	in	the	3	
location	of	failure	start	points	(the	track	location	at	which	the	policy	deviation	began	to	diverge	for	failure	4	
trials).	e,	The	probability	of	success	for	probe	and	pre-probe	trials.	5	

	6	

One	potential	objection	to	the	idea	that	the	increased	rate	of	failures	on	the	probe	track	7	

was	due	to	categorical	lapses	is	that	a	small	loss	of	skill	might	be	apparent	in	a	difference	in	8	

the	states	from	which	failures	occurred	on	the	two	tracks,	i.e.,	they	failed	in	a	similar	way	9	

but	not	from	the	same	places.	Thus,	we	tested	whether	the	distribution	of	states	from	10	

which	failures	occurred	differed	between	the	pre-probe	and	probe	windows.	We	used	the	11	

policy	deviation	signal	of	failure	trials	to	identify	the	state	from	which	trials	began	to	12	

deviate,	applied	principal	component	analysis	to	that	distribution	of	multidimensional	13	

states	(position	and	velocity	of	the	ant-car),	and	computed	the	standard	deviation	of	the	14	

first	principal	component	(Figure	6d).	We	only	applied	this	analysis	to	groups	D3,	D5,	and	15	

D10,	where	we	observed	a	sustained	drop	in	performance	on	the	probe	track.	The	variance	16	

differed	between	the	pre-probe	and	probe	windows	for	group	D3	only	(permutation	test,	p	17	

<	.001);	for	groups	D5	and	D10	there	was	no	detectable	difference	in	variance	18	

(permutation	test,	D5:	p	=	0.073,	D10:	p	=	0.67).	This	suggests	that	the	apparently	abrupt	19	

onset	of	failures	was	not	due	to	participants	having	gradually	lost	control	and	drifted	into	20	

undesirable	states;	failures	began	at	states	that	were	also	typically	occupied	during	21	

successful	trials.		22	

	23	

In	summary,	we	found	that	there	was	a	practice-related	increase	in	skill	across	days	and	24	

this	skill	fully	generalized	to	a	mirror	track	in	terms	of	trajectory	variability,	control	policy,	25	

and	the	states	visited.	Full	generalization	was	masked	by	an	overall	performance	26	
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asymmetry	explained	by	the	fact	that	subjects	showed	more	lapses	in	policy	compliance	on	1	

the	probe	track	than	on	the	training	track.		There	was	no	evidence	for	decreased	2	

generalization	at	the	level	of	kinematics	as	skill	increased,	arguing	against	convergence	on	3	

a	chunked	sequential	action.		4	

				5	

Methods	6	

Participants	7	

81	human	participants	(47	female)	completed	this	study.	All	participants	were	18	to	40	8	

years	of	age,	had	no	known	neurological	disorders,	were	self-reported	right	(76)	or	left	(5)	9	

hand	dominant,	and	provided	informed	consent	to	participate.	The	Johns	Hopkins	10	

University	School	of	Medicine	Institutional	Review	Board	approved	this	study	and	all	of	its	11	

procedures.		12	

	13	

Experimental	Procedure	14	

The	study	was	conducted	using	a	custom-built	video	game	(<the	game=),	developed	by	Max	15	

and	Haley,	Inc.	(Baltimore,	MD)	for	the	Kata	Project	at	The	Johns	Hopkins	University.		The	16	

game	simulated	a	driving	scenario.	Participants	steered	a	virtual	arthropod	(<the	car=)	17	

along	a	narrow	track	by	tilting	(i.e.	changing	the	pitch	and	roll)	an	iPad	(Apple,	Inc.,	18	

Cupertino,	CA)	computer	(Figure	1a).	The	direction	of	the	acceleration	of	the	car	was	19	

obtained	by	projecting	the	vertical	axis	of	a	world-centered	coordinate	system	onto	the	20	

tablet9s	surface,	giving	a	magnitude	and	direction	vector;	which,	by	analogy,	would	be	the	21	

direction	and	magnitude	of	acceleration	of	a	marble	rolling	off	of	a	flat	surface	if	tilted.	The	22	

kinematics	of	the	car	in	the	game	were	obtained	from	a	physics	simulation	that	included	23	
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the	interaction	of	the	multiple	car	segments,	which	introduced	nonlinearity	in	the	mapping	1	

between	the	tablet	tilt	input	and	the	car9s	dynamics.	These	computations	acted	as	a	filter	2	

that	introduced	a	delay	of	approximately	50	ms	between	the	tablet	tilt	and	the	response	of	3	

the	car.	The	magnitude	of	the	tablet	tilt	vector	was	set	to	a	constant	value,	making	the	tilt	4	

magnitude	a	control	null-space	and	effectively	constraining	the	speed	of	the	car	in	the	game	5	

to	a	narrow	range.	The	game9s	software	had	a	frame	rate	of	60	Hz,	and	recorded	the	6	

magnitude	and	direction	of	the	tablet	tilt	and	the	path	of	the	car	along	the	track	(Figure	1b)	7	

at	60	Hz.		8	

	9	

The	experiment	included	two	tracks:	a	training	track	and	a	probe	track	(Figure	1c).	The	10	

probe	track	was	the	mirror	image	of	the	training	track.	This	guaranteed	that	the	two	tracks	11	

were	matched	for	difficulty	and	that	successfully	navigating	each	track	would	require	12	

unique	actions	in	a	novel	sequence	relative	to	one	another	(Supplemental	Figure	1).	The	13	

track	that	was	designated	as	probe	or	training	was	counter-balanced	across	participants	in	14	

each	group.	15	

	16	

Participants	were	assigned	to	one	of	four	possible	groups.	Groups	differed	in	the	number	of	17	

days	of	training	that	were	conducted	using	the	training	track	before	the	probe	track	was	18	

introduced	(Figure	1d).	Groups	D1,	D3,	D5,	and	D10	experienced	the	probe	track	on	the	19	

first,	third,	fifth,	or	tenth	day	of	training,	respectively.	Groups	D3	and	D5	each	conducted	20	

five	total	days	of	training.	Group	D1	completed	the	study	after	the	first	day	of	participation,	21	

and	group	D10	completed	the	study	after	10	days	of	participation.		22	

	23	
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Each	day	of	practice	included	200	trials	and	lasted	approximately	30	minutes.	Trials	in	1	

which	the	entire	track	was	completed	lasted	approximately	5s.	A	4s	delay	was	imposed	if	2	

the	car	fell	from	the	track,	which	would	happen	if	the	track9s	edge	was	breached.	Inter	trial	3	

intervals	(the	time	between	the	successful	completion	of	one	trial	and	the	beginning	of	the	4	

next,	or	the	time	after	the	4s-delay	of	a	failed	trial	and	the	beginning	of	the	next	trial)	lasted	5	

3s	on	average	and	were	self-paced;	participants	pressed	a	button	on	the	device9s	screen	to	6	

begin	the	next	trial.	The	car9s	dynamics	were	invariant	for	the	duration	of	the	experiment	7	

including	on	the	probe	Track.	Probes	consisted	of	a	block	of	50	contiguous	trials	in	which	8	

the	probe	track	was	attempted	instead	of	the	training	track.		Participants	were	not	pre-9	

warned	that	a	probe	block	would	be	experienced.		67	participants	took	part	in	the	study	in	10	

the	BLAM	laboratory	at	the	Johns	Hopkins	Hospital,	and	14	had	the	game	downloaded	onto	11	

their	personal	iPad	devices	and	completed	training	for	the	study	from	home.	All	sessions	12	

that	included	the	probe	track	were	conducted	in	the	laboratory	using	the	same	individual	13	

iPad	on	which	each	participant	trained.	14	

	15	

Data	Analysis	16	

Data	were	analyzed	offline	using	Matlab	(The	Mathworks,	Natick,	MA,	2013)	and	R	(The	R	17	

Project,	www.r-project.org).	All	code	is	available	online	at	18	

https://github.com/dhuberdeau/iPadGame.	For	each	trial,	the	position	along	the	track	at	19	

which	the	car	fell	off	was	detected	by	searching	for	breaches	of	the	track	boundary.	The	20	

length	of	track	that	the	car	reached	by	the	fall	off	point	was	recorded	in	units	of	the	fraction	21	

of	the	total	track	length,	a	quantity	between	0	and	1.		22	

	23	
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The	fall-off	hazard	was	assessed	as	a	function	of	the	length	of	the	track.	The	hazard	rate	of	1	

car	falloffs,	l,	as	a	function	of	track	distance,	t,	is	given	by	the	conditional	probability		2	

	3	

�(�) = ���
&"³$

)%&	(")*	+",&"|*.")
&"

*																																																																									(1)	4	

	5	

where	T	is	a	continuous	random	variable	representing	the	track	length	at	which	a	car	fall-6	

off	event	occurred.	Suppose	that	T	has	the	pdf,	or	probability	density	function,	�(�),	and	cdf,	7	

or	cumulative	distribution	function,	F(t),	then	the	hazard	rate	function	is	related	to	the	pdf	8	

and	the	survival	function,	�(�) = 1 2 �(�),	by	the	following	equation.		9	

�(�) = 0(")

1(")
																																																																		(2)	10	

An	estimate	of	the	survival	function	for	each	participant	on	each	day	of	Training	and	during	11	

probes	was	obtained	using	the	Kaplan-Meir	method	(Borgan,	2001).	12	

	13	

To	analyze	movement	kinematics,	a	measure	of	the	variability	among	car	paths	across	14	

trials	was	computed	for	each	participant.	A	segment	of	each	trial9s	car	path	was	isolated	15	

from	the	time	at	which	the	car	reached	track	length	0.25	and	for	750	ms	thereafter.	Only	16	

trials	for	which	a	fall	off	did	not	occur	prior	to	or	during	this	window	of	time	were	included	17	

in	the	analysis	of	kinematics;	we	refer	to	such	trials	as	qualifying.	In	order	to	compare	18	

kinematics	across	participants	that	were	assigned	different	track	orientations,	and	to	19	

compare	between	training	and	probe	conditions,	any	car	paths	that	used	the	orientation	20	

depicted	in	Figure	1	as	the	probe	track	were	flipped	across	the	vertical	axis	to	match	the	21	

training	track.	22	

	23	
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The	across-trial	kinematic	variability	was	computed	as	the	dispersion	(see	Equation	3)	of	1	

the	first	five	principal	components	after	applying	principal	component	analysis	2	

decomposition	to	the	car9s	path.	For	each	participant,	all	qualifying	trajectories	from	all	3	

other	participants	were	pooled	together	(a	leave-one-out	approach	at	the	level	of	4	

participants)	in	order	to	form	a	basis.	Trajectories	from	the	given	participant	were	then	5	

projected	into	this	basis.	The	top	five	principal	components	reliably	accounted	for	over	6	

99%	of	the	variance	in	the	data	for	each	participant.	All	qualifying	trajectories	from	each	7	

participant	were	projected	onto	the	axes	corresponding	to	the	first	five	principal	8	

components,	and	the	dispersion	d	of	these	samples	was	computed	by	taking	the	sum	of	the	9	

Euclidean	distance	between	each	pair	of	distinct	samples	(xi	and	xj)	and	dividing	by	the	10	

number	of	pairs.		11	

� = 	 2
3
3 3 3�4 2 �53

6

5744 	 	 	 	 	 (3)	12	

	13	

Any	window	of	trials	that	had	fewer	than	seven	qualifying	trajectories	was	excluded	from	14	

further	analysis.		15	

	16	

Another	analysis	was	developed	to	measure	the	extent	to	which	the	tablet	tilt	signal	on	a	17	

given	trial	deviated	from	the	optimal	policy.	The	track	was	discretized	along	its	length	into	18	

90	bins,	across	its	width	into	30	bins,	and	across	car	direction	headings	into	100	bins.	An	19	

empirical	state-dependent	policy	was	computed	that	consisted	of	the	average	tablet	tilt	20	

direction	at	each	state	from	among	those	trajectories	that	were	ultimately	successful	21	

(Figure	6a).	Trials	were	labelled	successful	if	they	reached	at	least	to	track	distance	0.8.	The	22	

policy	map	was	generated	for	the	region	of	track	between	lengths	0.25	and	0.75,	a	region	23	
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that	included	the	first	two	turns	in	the	track	and	the	first	two	peaks	of	the	hazard	rate.	A	1	

policy	map	for	each	individual	was	computed	by	pooling	the	kinematic	data	from	Day	10	of	2	

participants	in	group	D10,	including	using	a	leave-one-out	approach	for	participants	in	that	3	

group.	Only	D10	participants	were	used	to	form	the	policy	because	this	group	experienced	4	

the	most	training	of	all	groups	and	were	therefore	assumed	to	have	behavior	closest	to	a	5	

theoretical	optimum.	The	policy	deviation	was	then	taken	to	be	the	difference	between	the	6	

tablet	tilt	direction	and	the	empirical	policy	at	each	state	visited	in	a	trajectory.	7	

	8	

A	comparison	of	behavior	during	probe	and	training	conditions	was	done	with	respect	to	9	

distance	travelled,	hazard	rate,	car	path	kinematics,	and	policy.	These	comparisons	were	10	

done	by	testing	for	changes	in	each	measure	between	the	probe	and	pre-probe	windows	of	11	

trials,	excluding	the	first	5	trials	of	the	probe.	The	pre-probe	window	included	the	50	trials	12	

immediately	before	the	probe,	and	the	probe	window	included	trials	6	to	50	of	the	probe,	13	

which	itself	lasted	for	50	contiguous	trials.		14	

	15	

Statistical	analysis	16	

The	distance	travelled,	kinematic	variability,	and	policy	deviation,	were	each	used	to	test	17	

for	practice-related	changes	in	behavior,	and	for	differences	in	behavior	between	training	18	

and	probe	tracks.	Practice-related	changes	in	behavior	were	assessed	independently	for	19	

each	metric	by	fitting	a	linear	model	to	the	average	of	that	metric	within	windows	of	25	20	

trials.	Differences	between	training	and	probe	trials	were	assessed	first	by	conducting	an	21	

analysis	of	variance	test	on	the	within-subject	difference	in	mean	of	each	metric	between	22	

the	probe	window	and	the	pre-probe	window,	with	group	as	the	independent	factor.	In	the	23	
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event	of	a	significant	group	difference,	independent	pair-wise	t-tests	were	conducted	to	1	

determine	which	group(s)	differed	from	one	another.	An	additional	analysis	was	conducted	2	

for	each	group	to	determine	whether	the	difference	in	metric	between	the	probe	and	pre-3	

probe	windows	was	significantly	different	from	zero.	To	test	for	changes	in	survival	4	

between	the	probe	and	the	pre-probe	window,	a	proportional	hazard	model	was	fit	to	data	5	

from	each	window	and	tested	for	changes	using	a	cox	mixed-effects	model.	All	statistical	6	

analyses	were	conducted	in	R	(www.r-project.org).		7	

	8	

Discussion	9	

Here,	 we	 created	 a	 novel	 video	 game	 to	 investigate	 how	 a	 movement	 skill	 made	 up	 of	10	

continuous	sequential	actions	is	acquired	through	practice.	We	reasoned	that	if	participants	11	

chunk	a	series	of	discrete	actions	(such	as	the	tablet	tilts	needed	to	successfully	complete	the	12	

turns	of	the	track)	then	they	would	show	poor	generalization	to	a	mirror-image	version	of	13	

the	track	that	required	different	actions	to	navigate.	If,	instead,	they	learned	a	flexible	control	14	

policy,	then	they	would	generalize.	We	found	that	practice	over	10	days	led	to	improved	task	15	

success	and	a	reduction	in	trajectory	variability	when	steering	along	a	curved	track.	There	16	

was	 full	 generalization	 to	 the	mirror-image	 track	 at	 the	 level	 of	 kinematics	 but	 not	 task	17	

performance.	The	performance	difference	found	between	the	training	and	probe	tracks	after	18	

day	1	was	not	due	to	a	failure	of	skill	generalization	but	to	a	greater	likelihood	to	lapse	from	19	

one9s	skilled	state	on	the	less	familiar	probe	track.		We	conclude	that	continuous	sequential	20	

actions	are	learned	as	control	policies	that	map	states	onto	actions.		21	

	22	
In	previous	work,	we	have	shown	that	for	a	task	that	required	fast	continuous	semi-circular	23	

movements	of	the	wrist	(arc	pointing	task,	APT),	participants	got	better	over	many	days	of	24	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2023. ; https://doi.org/10.1101/2023.09.21.558913doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.21.558913
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 24	

practice	(Shmuelof	et	al.,	2012).	This	improvement	was	measured	at	the	level	of	task	success	1	

as	a	shift	in	the	speed-accuracy	trade-off	and	at	the	level	of	execution	as	smoother	and	less	2	

variable	movement	trajectories.	A	critical	question	is	what	kind	of	representation	supports	3	

practice-driven	improvements	in	kinematic	performance	of	the	kind	observed	in	the	APT.		In	4	

the	sequence-learning	literature,	the	vast	majority	of	which	has	been	about	discrete	tasks,	a	5	

prominent	 idea	 has	 been	 that	 of	 chunking,	 whereby	 each	 individual	 movement	 gets	6	

incorporated	into	single	larger	motor	unit	(a	chunk)	that	can	then	be	expressed	all	at	once	7	

(Ramkumar	et	al.,	2016;	Krakauer	et	al.,	2019;	Yokoi	and	Diedrichsen,	2019;	Berlot	et	al.,	8	

2020).	It	seems	intuitive	when	looking	at	the	evolution	of	the	continuous	wrist	movements	9	

in	 the	APT	that	 they	 too	went	 from	a	series	of	 faltering	sub-movements	 to	a	rapid	single	10	

swipe.	 	 Findings	 in	 that	 study,	 however,	 suggested	 otherwise.	 First,	 kinematic	 analysis	11	

revealed	that	although	the	trajectories	through	the	tube	became	smoother	and	less	variable	12	

with	practice,	sub-movement	number	remained	invariant.		Thus,	the	skill	comprised	better	13	

concatenation	of	the	execution	primitives	rather	than	fusing	them	into	a	single	movement.	14	

Second,	 we	 found	 evidence	 for	 improved	 feedback	 corrections;	 in	 the	 case	 when	 the	15	

trajectories	got	 too	close	 to	 the	edge,	more	practiced	subjects	 showed	superior	ability	 to	16	

steer	away.	These	two	results	from	our	former	study	were	clues	that	perhaps	subjects	were	17	

not	just	chunking	sub-movements	into	a	stereotyped	trajectory	but	instead	were	learning	a	18	

more	effective	feedback	control	policy,	which	would	also	reduce	trajectory	variability	and	19	

thus	give	the	appearance	of	stereotypy.	These	conclusions	were	provisional,	however,	and	a	20	

follow-up	study	was	required	to	support	them.		21	

	22	
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Here,	in	the	ant-car	game	we	saw	a	similar	reduction	in	trajectory	variability	along	the	track	1	

as	was	seen	in	the	APT.	Additionally,	however,	we	were	able	to	show	full	generalization	to	2	

the	probe	track	at	the	level	of	kinematics,	which	rules-out	chunking	and	is	consistent	instead	3	

with	acquisition	of	a	flexible	feed-back	control	policy.	Generalization	was	not	due	simply	to	4	

a	concordance	between	the	two	tracks.	An	analysis	of	the	relative	similarity	of	the	two	tracks	5	

revealed	that	they	were	dissimilar,	and	thus	specific	sequences	or	subsequences	of	actions	6	

that	 would	 lead	 to	 success	 in	 one	were	 unlikely	 to	 be	 successful	 in	 the	 other	 if	 applied	7	

verbatim.		8	

	9	

Based	on	the	results	here,	we	suggest	that	increases	in	skill	in	continuous	control	tasks	do	10	

not	occur	through	selecting	and	combining	movements	into	a	sequence	of	actions	that	can	11	

then	be	subsequently	chunked	(Johnson,	1970;	Robertson,	2007;	Wong	et	al.,	2015;	Wong	12	

and	Krakauer,	2019;	Yokoi	and	Diedrichsen,	2019).	Instead,	a	novel	feedback	control	policy	13	

must	be	learned	from	scratch	and	applied	to	a	continuous	sequence	of	states.	The	learning	14	

of	such	de	novo	control	policies	is	distinct	from	adaptation	and	discrete	sequence	learning	15	

because	 it	 requires	 both	 rapid	 selection	 of	 a	 new	 response	 and	proper	 execution	 of	 that	16	

response	(Yang	et	al.,	2021).	Thus,	we	would	conjecture	that	chunking	in	motor	learning	only	17	

occurs	in	those	tasks	that	allow	for	an	overt	abstract	or	cognitive	representation	at	the	level	18	

of	 action	 selection.	 For	 example,	 one	 can	 rapidly	 press	 the	 keys	 of	 a	 bank	 cash	machine	19	

because	overt	knowledge	of	the	passcode	has	been	chunked.	This	cognitive	chunk	is	then	fed	20	

to	 a	motor	 area	 for	 rapid	 serial	 execution	 of	 over-learned	 finger	movements	 (Wong	 and	21	

Krakauer,	2019;	Yokoi	and	Diedrichsen,	2019;	Zimnik	and	Churchland,	2021).	Chunking	is	22	
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not	 an	 available	 strategy	 for	 motor	 tasks	 that	 are	 not	 conducive	 to	 a	 cognitive	 action	1	

representation	phase	and	when	motor	execution	itself	must	improve.			2	

	3	

An	interesting	aspect	of	our	study	was	that	participants	consistently	showed	deterioration	4	

in	performance	at	the	level	of	task	success	on	the	probe	track	3	a	10%	drop	from	day	3	5	

onwards.	There	was	a	need	to	resolve	the	apparent	contradiction	between	full	6	

generalization	at	the	level	of	execution	but	not	at	the	level	of	overall	task	performance.		To	7	

do	this,	we	derived	an	empirical	control	policy	from	the	best	mean	performance	on	the	8	

training	track	at	day	10.	The	usefulness	of	the	measure	is	that	it	is	independent	of	which	9	

specific	states	are	visited	on	the	track,	which	may	be	suboptimal,	but	in	any	given	state	10	

there	is	nevertheless	an	optimal	policy	to	follow.		We	reasoned	that	full	generalization	11	

would	mean	that	participants	could	transfer	this	policy	to	the	probe	track:		given	a	state	12	

(position	and	velocity)	on	the	track	there	is	an	optimal	tilt	angle.	Interestingly,	this	is	13	

indeed	what	we	found;	the	policy	profiles	for	successful	trials	were	the	same	on	both	14	

tracks.	One	remaining	difference,	however,	might	have	been	that	although	the	same	policy	15	

was	being	used	at	any	given	position	on	either	track,	participants	might	have	been	16	

choosing	a	different	trajectory	on	the	probe	track	compared	to	the	training	track,	i.e.,	not	17	

the	mirror	image.			To	address	this	we	looked	at	the	distribution	of	states	visited	on	the	two	18	

tracks,	and	they	were	not	different.	The	full	transfer	of	the	learned	control	policy	from	the	19	

training	track	to	the	probe	track	corroborated	the	finding	of	an	equivalent	degree	of	20	

practice-related	variability	reduction	on	both	tracks.		Overall,	there	was	no	evidence	for	21	

any	qualitative	difference	in	skill	when	participants	steered	the	car	on	the	probe	versus	the	22	

training	track.		23	
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	1	

The	policy	deviation	metric	also	allowed	us	to	search	for	an	alternative	explanation	for	why	2	

there	were	more	failures	on	the	probe	track	given	that	participants	had	the	same	level	of	3	

skill	as	on	the	training	track.	For	the	training	track,	visual	inspection	of	the	unfolding	of	the	4	

control	policy	in	trials	where	a	fall-off	occurred	compared	to	neighboring	trials	that	did	not	5	

fail,	revealed	that	failures	occurred	through	an	abrupt	error	in	control	immediately	prior	to	6	

the	fall-off;	control	looked	like	successful	trials	right	up	to	that	point.	Critically,	just	like	in	7	

the	case	of	successful	trials,	the	failure	policy	profiles	on	the	probe	track	were	the	same	as	8	

those	on	the	training	track.		The	difference	in	overall	performance	between	the	two	tracks	9	

was	instead	attributable	to	an	increase	in	the	probability	of	making	an	abrupt	error	leading	10	

to	a	fall-off,	i.e,.	a	lapse.	Thus	the	probe	track	did	not	induce	failure	to	generalize	skill	but	11	

instead	caused	an	increase	in	the	probability	of	lapses	of	the	same	kind	that	occurred	on	12	

the	training	track.		13	

	14	

Chomsky	famously	made	the	performance	versus	competence	distinction	in	the	context	of	15	

language	(Chomsky,	1965).	Performance	can	be	hampered	by	 false	starts	and	slips	of	 the	16	

tongue,	but	this	does	not	indicate	loss	of	knowledge	of	the	language.	We	conjecture	that	we	17	

saw	the	analogous	situation	here:	participants	had	equal	skill	(competence)	on	each	track,	18	

but	exhibited	more	lapses,	measured	as	a	performance	drop	in	terms	of	task	success.	Lapses	19	

are	ubiquitous	in	behavioral	data	and	describe	instances	in	which	mistakes	are	made	even	20	

when	they	are	predicted	not	 to	occur,	 such	as	 in	perceptual	decision	making	 tasks	 in	 the	21	

presence	of	 strong	evidence	 for	one	decision	outcome	over	another	 (Wichmann	and	Hill,	22	

2001).	Lapses	have	been	hypothesized	to	arise	from	inattention	or	from	errors	of	execution,	23	
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such	 as	 motor	 noise.	 However,	 a	 more	 recent	 suggestion	 is	 that	 they	 indicate	 targeted	1	

exploration	in	the	presence	of	uncertainty	(Pisupati	et	al.,	2021)	or	deliberate	alternation	2	

between	behavioral	strategies	(Ashwood	et	al.,	2022).	While	lapses	have	been	rarely	studied	3	

or	discussed	for	motor	behaviors,	any	of	these	putative	mechanisms	for	lapses	could	account	4	

for	the	results	we	found	here,	such	as	inattention,	strategic		exploration	in	the	presence	of	a	5	

novel	set	of	states,	or	even	possibly	a	reduction	in	motivation	(Wong	et	al.,	2015).		6	

	7	

Here	 we	 draw	 two	main	 conclusions.	 First,	 skilled	 execution	 of	 a	 continuous	 sequential	8	

action	 is	achieved	by	de	novo	 learning	of	a	 feedback	control	policy	 that	maps	states	onto	9	

actions	 and	 not	 through	 chunking	 of	 a	 sequence	 of	 actions.	 This	 suggests	 a	 fundamental	10	

difference	in	how	motor	skills	are	acquired	when	they	require	improvements	in	movement	11	

execution	versus	those	that	require	selection	between	movement	elements	that	can	already	12	

be	well	executed.	Second,	performance	can	vary	across	contexts	for	the	same	level	of	skill	13	

because	of	differences	in	the	frequency	of	lapses.	This	is	intriguing	and	potentially	profound,	14	

as	it	suggests	that	motor	skills	are	only	as	good	as	our	ability	to	consistently	express	them.	15	

This	is	well	known	in	the	sports	world;	there	are	athletes	recognized	for	their	brilliant	skill,	16	

but	they	seem	unable	to	maintain	their	highest-level	performance	from	one	game	to	another.		17	

	18	
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Supplemental	Materials	1	

We	sought	to	quantify	the	extent	to	which	tablet	tilt	signals	for	successful	trials	were	2	

similar	between	the	probe	and	training	tracks.	Highly	similar	tablet	tilt	signals	could	3	

potentially	account	for	any	generalization	of	performance	across	track	types,	while	4	

dissimilar	signals	would	make	generalization	on	account	of	the	similarity	between	the	5	

tracks	themselves	less	likely.	Signal	similarity	was	computed	as	the	Euclidean	distance	6	

between	a	segment	of	the	tablet	tilt	signal	from	each	probe	trial	and	the	best	matched	7	

segment	of	equal	length	from	among	tablet	tilt	signals	of	training	trials.	The	window	8	

lengths	used	to	isolate	signal	segments	were	0.1s,	0.2s,	0.3s,	0.5s,	1s,	and	2s.	Signal	9	

similarity	was	computed	across	the	length	of	the	track	in	step	sizes	of	33%	of	the	width	of	10	

the	window.	Only	trials	that	had	completed	the	track	were	included	in	this	analysis.	Since	11	

segment	window	size	affects	the	Euclidean	distance,	relative	signal	difference	was	12	

computed	as	the	ratio	of	the	Euclidean	distance	between	the	training	and	probe	signals	to	13	

the	Euclidean	distance	between	training	trials	taken	before	and	after	the	probe	(inverting	14	

the	pre-probe	signal	so	that	it	matched	the	signals	from	probe	trials).	Large	Euclidean	15	

distances	between	probe	and	training	tracks	would	signify	that	the	two	track	types	were	16	

not	similar,	and	thus	would	rule	out	the	possibility	that	any	generalization	of	performance	17	

during	probe	trials	was	due	to	similarity	between	the	tracks.		18	
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	1	
Supplemental	Figure	1:	Probe	track	required	different	kinematics	than	the	Training	track.	a,	The	two	2	
tracks	used	as	Probe	or	Training.	The	analysis	of	kinematic	similarity	attempts	to	determine	if	segments	of	3	
kinematics	that	would	be	successful	in	one	track	would	also	be	successful	in	the	other.	b,	Optimal	match	of	a	4	
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segment	of	kinematics	(yellow	highlight)	from	a	tablet	tilt	signal	from	the	Training	track	against	the	average	1	
Tablet	tilt	signal	of	Training	tracks.	c,	Optimal	match	of	a	segment	of	kinematics	(yellow	highlight)	from	a	tablet	2	
tilt	signal	from	the	Probe	track	against	the	average	Tablet	tilt	signal	of	Training	tracks.	d,	The	normalized	3	
euclidean	distance	between	Probe	track	kinematics	and	Training	track	kinematics	of	the	tilt	direction	signal.	e,	4	
As	in	d	but	for	the	derivative	of	the	tilt	direction	signal	5	
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