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Abstract

Individual differences in the spatial organization of resting state networks have received
increased attention in recent years. Measures of individual-specific spatial organization of brain
networks and overlapping network organization have been linked to important behavioral and
clinical traits and are therefore potential biomarker targets for personalized psychiatry
approaches. To better understand individual-specific spatial brain organization, this paper
addressed three key goals. First, we determined whether it is possible to reliably estimate
weighted (non-binarized) resting state network maps using data from only a single individual,
while also maintaining maximum spatial correspondence across individuals. Second, we
determined the degree of spatial overlap between distinct networks, using test-retest and twin
data. Third, we systematically tested multiple hypotheses (spatial mixing, temporal switching,
and coupling) as candidate explanations for why networks overlap spatially. To estimate
weighted network organization, we adopt the Probabilistic Functional Modes (PROFUMO)
algorithm, which implements a Bayesian framework with hemodynamic and connectivity priors
to supplement optimization for spatial sparsity/independence. Our findings showed that
replicable individual-specific estimates of weighted resting state networks can be derived using
high quality fMRI data within individual subjects. Network organization estimates using only data
from each individual subject closely resembled group-informed network estimates (which was
not explicity modeled in our individual-specific analyses), suggesting that cross-subject
correspondence was largely maintained. Furthermore, our results confirmed the presence of
spatial overlap in network organization, which was replicable across sessions within individuals
and in monozygotic twin pairs. Intriguingly, our findings provide evidence that network overlap is
indicative of linear additive coupling. These results suggest that regions of network overlap
concurrently process information from all contributing networks, potentially pointing to the role of
overlapping network organization in the integration of information across multiple brain systems.
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1. Introduction

Recent studies have revealed substantial inter-individual variability in the spatial organization of
the brain as measured with resting state functional MRI (rfMRI) (Braga & Buckner, 2017;
Glasser et al.,, 2016; Gordon, Laumann, Adeyemo, & Petersen, 2017; Gordon, Laumann,
Adeyemo, Gilmore, et al., 2017; Gordon, Laumann, Gilmore, et al., 2017; Laumann et al., 2015;
D. Wang et al.,, 2015). Importantly, such inter-individual spatial variability in functional brain
organization is strongly associated with behavioral traits (Bijsterbosch et al., 2018; Kong et al.,
2019). The overarching objective of this paper is to characterize weighted (i.e., non-binarized)
spatial organization of resting state networks within individuals, with a specific focus on gaining
insights into spatially overlapping network organization.

Identifying network organization at the individual level rather than using group information raises
multiple challenges. First, individual estimates of network organization are noisier than group
estimates, partly because group estimates benefit from collating data across participants. This
challenge can be partially addressed by obtaining large amounts of data from each individual
(precision functional mapping approach (Gratton et al., 2020)), but such extensive data
acquisition may not be feasible in all participants and settings. Second, although a purely
individual-specific set of network maps represents the most accurate and unbiased estimate of
the individual’s brain organization (Gordon, Laumann, Gilmore, et al., 2017), it may lack network
correspondence across individuals. Assuming the presence of cross-participant commonalities
in their network structure, such group correspondence is valuable for network labeling and
interpretability, and essential for group-level and between-subject analytical comparisons.
Group-based estimates applied to individuals have built-in correspondence, but these individual
estimates may be biased towards the group estimate (Bijsterbosch et al., 2019). Probabilistic
Functional Modes (PROFUMO) is a Hierarchical Bayesian algorithm developed to try to
optimize this trade-off by using group-level priors to achieve correspondence, whilst optimizing
individual-specific estimates to maximize the accuracy of individual network maps (Harrison et
al., 2015). Although PROFUMO has been successfully applied in group data (Bijsterbosch et al.,
2018; Farahibozorg et al., 2021; Harrison et al., 2020), an open question is whether it can be
robustly applied to data from only a single individual without sacrificing correspondence, which
is of particular interest in the context of personalized psychiatry and translational work in
non-human primates and other animal models. The first goal of this paper was to determine
whether PROFUMO can reliably estimate weighted (i.e., non-binarized) resting state networks
using only data from a single subject, while also achieving substantial “non-enforced”
correspondence across individuals (i.e., without an explicit hierarchical model for
correspondence).

Spatial overlap between rfMRI networks beyond classical ‘hub regions’ has been observed
across a variety of analytical brain representations (Lee et al., 2016; Lin et al., 2018; Najafi et
al., 2016), and has been linked to behavioral traits (Bijsterbosch et al., 2019). PROFUMO
accurately estimates spatial overlap in rfMRI network organization (Bijsterbosch et al., 2019),
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which is a key advantage compared to approaches that aim for a ‘hard’ binarized parcellation or
approaches that enforce spatial independence between networks (Bijsterbosch et al., 2020).
Despite broad interest in ‘hub’ regions within the graph theory domain that typically adopts hard
parcellations (Bertolero et al., 2018; Buckner et al., 2009; Warren et al., 2014), a detailed spatial
investigation into individual-specific overlap between weighted estimates of network
organization is lacking. Studying the overlapping properties of individualized brain networks is of
interest because network overlap may be a sensitive marker for use in personalized psychiatry
settings (Gratton et al., 2020; Insel, 2014; Williams, 2016) given prior evidence of behavioral
relevance (Bijsterbosch et al., 2019), provided that it can be robustly and reliably detected in
individuals. Furthermore, this work contributes to the broader literature on precision functional
mapping (Gordon, Laumann, Gilmore, et al., 2017; Gratton et al., 2018; Poldrack, 2017,
Poldrack et al.,, 2015). The second goal of this paper was to characterize network overlap
among weighted individual-specific resting state networks estimated using PROFUMO.

Each type of resting state fMRI analysis provides a different low-dimensional representation of
the dataset (Bijsterbosch et al., 2020). Although optimized to best fit the data (Bijsterbosch et
al., 2021), these brain representations are necessarily lossy given the intrinsic goal of
dimensionality reduction. In the case of PROFUMO, a set of stationary large-scale modes of
brain organization are derived that collapse fine grained spatial structure and simplify temporally
dynamic processes. As such, there are multiple potential mechanisms that may give rise to
spatially overlapping network organization as observed between network maps estimated with
PROFUMO. First, it is possible that a brain region in which two networks appear to overlap may
in fact be a spatially heterogeneous mixture of cortical patches that are individually part of either
network 1 or network 2, implying no real functional “link” between the two networks as a result of
the overlap (Fig. 1A). Such a spatially heterogeneous overlap region may, for example, result
from network interdigitation (Braga et al., 2019; Braga & Buckner, 2017), or regional gradients
(Blazquez Freches et al., 2020; Haak et al., 2018). Second, the region of network overlap may
dynamically switch its network allegiance over time to be part of either network 1 or network 2 at
any given moment (Hutchison et al., 2013) (Fig. 1B). Such dynamic switching would appear as
a spatially overlapping network structure given the stationary (time-averaging) nature of the
PROFUMO model. Third, network overlap might indicate that signals from network 1 and
network 2 are jointly processed and “deeply functionally integrated” within regions of network
overlap (Fig. 1C). This third hypothesis is perhaps the most intriguing as it may indicate
information coupling involving a specific functional role of overlap regions, and contributing to
between-network communication. The third goal of this paper was to systematically compare
these spatial mixture, dynamic switching, and coupling hypotheses of network overlap.
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Figure 1: Graphical summary of the three hypotheses of network overlap. A) The spatial mixing
hypothesis suggests that individual vertices (illustrated as neurons) within a region of network overlap
may be part of either Network 1 (red) or Network 2 (blue). B) The dynamic switching hypothesis suggests
that a region of network overlap may be spatially homogeneous but may switch network allegiance
between Network 1 (red) and Network 2 (blue) over time. C) The coupling hypothesis suggests that a
region of network overlap may integrate information from both Networks 1 and 2.

In this paper we leveraged a unique subset of the Human Connectome Project Young Adult data
(Van Essen et al., 2013), by focusing on individuals who underwent three complete resting state
sessions (3T, 3T re-scan, and 7T) for a total of approximately 3 hours of rfMRI data per
individual. The resulting sample of N=20 that met this criteria further included 8 monozygotic
twin pairs, providing a rich cohort to investigate individual-specific weighted network
organization. Our focus on a small sample of densely sampled individuals was informed by the
interest in individual-specific network organization. Although no brain-behavior associations
were feasible given the small sample (Marek et al., 2022), prior work has extensively studied
individual differences in PROFUMO including behavioral associations with spatial organization
(Bijsterbosch et al., 2018), heritability (Harrison et al., 2020), and network variants as a function
of dimensionality (Farahibozorg et al., 2021). The results of this work support the application of
PROFUMO weighted networks in individual participants, which paves the way for future
applications in a personalized psychiatry framework. Furthermore, our findings suggest a
linearly additive coupling mechanism underlying spatially overlapping network organization,
which supports the hypothesis that regions of network overlap play an important functional role
in terms of cross-network coupling (Gordon et al., 2018).


https://paperpile.com/c/fZVcbV/HF6Ik
https://paperpile.com/c/fZVcbV/5lpT
https://paperpile.com/c/fZVcbV/Yhr7
https://paperpile.com/c/fZVcbV/vWP9
https://paperpile.com/c/fZVcbV/mnZs
https://paperpile.com/c/fZVcbV/2ZKZ
https://doi.org/10.1101/2023.09.21.558809
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.21.558809; this version posted September 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

2. Methods

2.1 Dataset

We used high quality data from the Human Connectome Project (HCP) (Van Essen et al., 2013),
focusing on N=20 individuals (including 8 monozygotic twin pairs) who underwent a complete
set of four 3T, four 7T and four retest 3T runs, thereby accumulating approximately three hours
(13,200 timepoints) of rfMRI data across 12 scans per individual. This HCP-YA sub-sample was
80% female with a mean age of 30.1 years (standard deviation = 3.84; range 22-34). Briefly, the
3T rfMRI data were acquired at 2mm isotropic voxel size using a multiband factor of 8, a TR of
0.72 seconds, and a TE of 33 ms; the 7T rfMRI were acquired at 1.6mm isotropic voxel size, a
multiband acceleration of 5, in-plane acceleration 2, a TR of 1.0 seconds, and a TE of 22.2ms
(see further details in (Smith et al., 2013; T Vu et al., 2017; Van Essen et al., 2013)). Data were
preprocessed using the HCP minimal processing pipelines (Glasser et al., 2013). All 3T and 7T
data were analyzed in the Connectivity Informatics Technology Initiative (CIFTI) format, which
consists of 91,282 grayordinates with approximately 2-mm spatial resolution (i.e., 7T data were
downsampled to match the 3T spatial resolution). ICA-FIX was then applied to remove
structured noise (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), and data were aligned
using multimodal surface matching (MSM-AIl; (Robinson et al., 2014)) to align areal features
(myelin and RSNs).

2.2 PROFUMO estimation

PROFUMO is a matrix factorization approach for the estimation of resting state networks that
adopts spatial prior, temporal priors, and a noise model in a hierarchical Bayesian model (see
(Harrison et al., 2015, 2020) and Supplementary Tables 1 and 2). PROFUMO was applied in
several distinct ways:

1. Classic group-PROFUMO was performed in which data from all 12 runs across all 20
participants were used and modeled hierarchically according to the levels of subjects
and (beneath that) runs. Notably, this version of PROFUMO is recommended for studies
that include only one or a small number of sessions per individual.

2. Single-subject PROFUMO was performed independently for each of the 20 participants,
using all 12 runs for each, those 12 being considered as separate ‘subjects’ in the
estimation of PROFUMO’s Gaussian mixture model (Harrison et al., 2020).

3. Classic group-PROFUMO was performed similar to case (#1), using 12 individual runs
from 12 separate participants. This was in order to obtain a group-level estimation of
modes using the same amount of data available for the separate subject runs (case (#2),
i.e., matching the effective signal to noise ratio; SNR).

4. Test-retest single-subject PROFUMO was performed independently for each of the 20
participants and independently using two sets of 6 runs each (split evenly across 3T, 7T,
and retest data; and always including a pair of opposite phase-encode directions).
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5. Single-subject PROFUMO similar to case (#2) was performed stepwise on cut-down
versions of the 12 runs that included a progressively increasing number of timepoints (in
increments of 1/12th of the run timepoints) to determine how much data are needed to
obtain reliable network estimates. This approach was taken to ensure that all PROFUMO
runs included equal contributions from 3T, retest, and 7T data across all phase-encode
directions.

All of the PROFUMO runs were performed at a dimensionality of 20 to focus on the spatial
organization of large scale resting state networks. Furthermore, classic group-PROFUMO (#1)
was repeated at dimensionalities 30, 40, and 50 to determine the stability of the selected
networks across PROFUMO decomposition dimensionalities. Beyond the key parameter of
dimensionality (number of networks), all PROFUMO parameters were set to the default. A
summary of all PROFUMO parameters, hyperparameters, and hyperpriors can be seen in
Supplementary Tables S1 and S2. Beyond these PROFUMO parameters, additional key
measures of interest for this paper include the similarity between group and individual network
estimates indicative of correspondence and the test-retest reliability of network spatial maps
representative of stable and reliable network estimates (described further below in sections 2.3
and 2.4).

2.3 PROFUMO mode selection

The Hungarian algorithm (a.k.a. ‘munkres’ algorithm) was used to reorder PROFUMO modes
(i.e., “networks”) for each of the single-subject runs (#2 above), the split 1 and split 2
single-subject runs (#4 above), and the 12-run group run (#3 above) to best-match the mode
order obtained from the full group results. Briefly, the Hungarian algorithm solves the
assignment problem by permuting rows to minimize the trace of the permuted cost matrix (Kuhn,
1955; Munkres, 1957). For each of the 20 modes we estimated the test-retest correlation per
subject as the Pearson correlation across all 91,282 CIFTI grayordinates between split 1 and
split 2 single-subject runs. For each of the 20 modes we also estimated the subject-group
correlation per subject as the Pearson correlation across all 91,282 vertices between the map
from the subject run (#2 above) and the subject-specific estimated map from the group run (#1
above). This ‘group-individual run’ measure addresses the question of correspondence across
individuals because it compares classic group PROFUMO modes (which benefit from explicit
correspondence through the group prior in the hierarchical Bayesian algorithm) to single-subject
PROFUMO modes (which do not involve any group information). Modes that achieved both a
median (across subjects) test-retest correlation of 0.7 or greater and a median (across subjects)
group-individual correlation of 0.7 or greater were used in subsequent analyses. Out of the 20
PROFUMO modes, 12 modes met these requirements. Within these 12 modes, individual
participants’ missing modes were defined as modes with both a test-retest correlation lower
than 0.2 and a subject-group correlation lower than 0.2 (both estimated at the subject level).
Missing modes were ignored in subsequent analyses. For naming purposes, modes were
spatially mapped onto the Yeo-7 parcellation (Yeo et al., 2011) and we followed the network
naming taxonomy suggested by (Uddin et al., 2019).
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2.4 PROFUMO mode stability

We assessed the stability of spatial maps in several ways. As described in section 2.3, the first
two measures of mode stability were within-participant test-retest reliability between splits 1 and
2, and within-subject similarity (group-individual run) correlations between the subject run (#2
above) and the subject estimates obtained in the group run (#1 above). We also tested twin
similarity (individual runs) and twin similarity (group run) by correlating each PROFUMO mode
within each monozygotic twin pair using modes from separate subject runs (#2 above) or
subject-specific estimates from the group run (#1 above), respectively. For comparison, we also
investigated between-subject similarity (individual runs) and between-subject similarity (group
run), reflecting the same across-subject correlations for all possible non-twin pairs of
participants. All mode stability measures were performed on each spatial map (correlation
across 91,282 vertices), on the temporal connectivity matrix (correlation across the 66 edges in
the lower triangle, where edges represent the partial correlation between mode timeseries), and
on the spatial overlap matrix (correlation across the 66 edges in the lower triangle, where edges
represent the correlation between mode maps; see section 2.5 and (Bijsterbosch et al., 2019)).

2.5 Spatial overlap measures

To quantify spatial overlap across all twelve modes, we generated a spatial overlap matrix by
estimating the Pearson’s correlation coefficients across grayordinates between all possible pairs
across the 12 network maps, as developed in (Bijsterbosch et al., 2019). Correlation coefficients
were z-transformed prior to averaging across individuals. Stability of individual specific spatial
overlap matrices was calculated as described in section 2.4. To estimate spatial maps of
network overlap in individual participants, each mode was binarized using a threshold of 1, and
the number of overlapping modes were counted at each vertex. A threshold of 1 represents the
96.5" percentile across all map weights and therefore offers a relatively conservative estimate of
spatial overlap that is driven only by vertices with strong network contributions.

2.6 Focusing on 2-Network overlap

To systematically compare our hypotheses regarding network overlap, we focused on spatial
overlap between pairs of networks. For each individual and each possible network pair (12!=66),
we identified vertices uniquely associated with network 1 as those vertices with a weight of 1 or
greater for network 1, a weight of less than 0.1 for network 2, and a summed weight across all
other 10 modes of less than 0.1 (Fig. 2B). Negative map weights were not included in the
estimation of network overlap, because the inclusion of negative vertices would dilute averaged
timeseries by canceling out positive vertices. A similar procedure was used to identify vertices
uniquely associated with network 2. To locate the spatial overlap region, we identified vertices
having a weight of 1 or greater for both network 1 and network 2 and a summed weight across
all other 10 modes of less than 0.1. This procedure was performed using mode maps estimated
from the individual subject PROFUMO runs (#2 above). PROFUMO spatial maps are calculated
by vertex-wise multiplying the probability (0-1) by the estimated mean (derived from Gaussian
mixture model). Resulting spatial map values in our data ranged from -3.6 to 7.1, and the
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applied threshold of 1 represents the 96.4th percentile. Hence, thresholds were applied to the
PROFUMO spatial maps as estimated by the PROFUMO algorithm without further transforms.
As such, we focused specifically on two-mode overlap vertices, by removing vertices with
significant contributions of additional modes (Fig. 2A). We focus on two-network overlap
because it offers a tightly controlled test-bed for the hypothesis testing element of our work.
Future work may expand into more complex overlapping network organization. Overlap regions
were defined based on the data-driven approach described above without any explicit
exclusions, and the resulting overlap patterns (see Supplementary Figure S1) comprehensively
cover all areas of potential interest.

The number of network pairs for further investigation was reduced from 66 (all possible pairs) by
selecting only those networks pairs in which the spatial overlap regions contained at least 25
vertices for at least half of the participants (n>=10). This network pair selection was performed
to focus on pairs with robust and replicable overlap, and to reduce the computational demands
for subsequent analyses. Out of the 66 possible network pairs, 20 pairs were selected for further
analysis (see Supplementary Figure S1).

For each of the 20 network pairs, three summary timeseries were calculated (Fig. 2B) by
averaging across: all vertices uniquely associated with network 1 (“N17), all vertices uniquely
associated with network 2 (“N2”), and all vertices in the overlap region (“O”). Each timeseries
was standardized to a mean of zero and a standard deviation of 1 within each of the 12 runs.
Any participants who did not have any vertices in the overlap region based on these criteria and
were excluded from subsequent analyses.


https://doi.org/10.1101/2023.09.21.558809
http://creativecommons.org/licenses/by-nc/4.0/

A. Networks of interest

B. Timeseries for Network 1, Network 2, and Overlap

s
Remove _ _
vertices Average ¢/l\,
contributing to timeseries Temporal Generate Inputs for
other networks across vertices correlation of simulated Hidden Markov
@ M-FPN 1 (N1) @ M-FPN1 (N1) realOand <«  versionsof —» Modeling
@ M-FPN2 (N2) @ M-FPN2 (N2) simulated O Overlap (HMM)
@ Overlap @ Overlap timeseries timeseries
|
\ J 4 v

C. Simulating Mixing Hypothesis

Random: Assign
each black vertex
randomly to a red or
blue vertex.
Re-average across all
black vertices.

Interdigitation:
Assign each black
vertex to a red/blue
vertex based on
highest spatial
»weight. Re-average.

D. Simulating Switching Hypothesis

Switch 50/25/10TRs:
Alternative between
N1 and N2 for
50/25/10 TRs
(10TR example
shown below)

E. Simulating Coupling Hypothesis

Max switching: pick
either N1 or N2,
based on which has
the largest (positive)
timepoint

Nonlinear

multiplicative:
multiply N1 and N2
at each timepoint

Linear additive: add
N1 and N2 at each
timepoint

Figure 2: graphical summary of overlap hypothesis testing methodology. A) Two spatially overlapping networks are selected and vertices are
assigned to either network 1, network 2, or network Overlap. Vertices contributing to additional networks are excluded. B) Average timeseries are
extracted per subject, per run for Network 1, Network 2, and Overlap. C) Mixing hypothesis-based semi-simulated (i.e., using actual timeseries
from non-overlap vertices) versions of the Overlap timeseries are generated based on random and interdigitation-based mixtures of Network 1 and
Network 2 vertices. D) Switching hypothesis-based semi-simulated versions of the Overlap timeseries are generated based on concatenated
segments from Network 1 and 2 timeseries. E) Coupling hypothesis-based semi-simulated versions of the Overlap timeseries are generated based
on additive or multiplicative combinations of Network 1 and 2 timeseries.
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2.7 Generating semi-simulated data for the overlap region

Multiple mechanistic hypotheses might in principle explain the occurrence of spatial overlap in
stationary maps estimated using PROFUMO, and it is currently unknown what drives the
observed (apparent) spatial overlap. To address this issue, we generated semi-simulated
versions of overlap timeseries to test different hypotheses as described below. The
semi-simulated version of overlap timeseries were compared to the original overlap timeseries
using direct timeseries correlation, frequency characteristics (see section 2.8 for further details),
and state means estimated with Hidden Markov Modeling (HMM; see section 2.9 for further
details).

2.7.1 Network switching hypothesis

One hypothesis is that the overlap region may dynamically switch network alliance between
networks 1 and 2 over time within a scanning run (Fig. 1B), with the constraint that one and only
one network is “active” at any given time (this is also a common constraint in the HMM
modeling). Such dynamic switching would appear as overlap when using stationary methods
such as PROFUMO, which effectively average across time. To test this hypothesis, we
semi-simulated four versions of the overlap timeseries using the real N1 and N2 timeseries for
each participant and run:

e Switch 50 TRs (Fig. 2D) starts with the first 50 timepoints from N1, then contains the
second 50 timepoints from N2, then the third 50 timepoints from N1 and so on. Notably,
potential phase shifts between original and semi-simulated data (i.e., mismatches in the
order between N1 and N2) may impact the correlation between the original and
semi-simulated versions of the timeseries. However, such phase discrepancies would
not impact our second comparison measure based on HMM state means, because these
are estimated independently of state timecourses.

e Switch 25 TRs (Fig. 2D) is the same as above, but switching between N1 and N2 every
25 timepoints.

e Switch 10 TRs (Fig. 2D) is the same as above, but switching between N1 and N2 every
10 timepoints.

e Max switching (Fig. 2D) assigns each timepoint in the semi-simulated overlap timeseries
as the maximum from either N1 or N2 based on whichever datapoint (in real data
timeseries N1 and N2) is higher for a given TR.

2.7.2 Coupling hypothesis
Another hypothesis is that the overlap region is integrating data from both network 1 and
network 2 at each TR (Fig. 1C). To test the coupling hypothesis, we semi-simulated two versions
of the overlap timeseries using the real N1 and N2 timeseries for each participant and run:
e Linear additive coupling (Fig. 2E) is the sum of N1 and N2 within each TR.
e Nonlinear multiplicative coupling (Fig. 2E) takes the element-wise product between N1
and N2 after setting N1 and N2 to zero min respectively.

2.7.3 Spatial mixture hypothesis
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A final hypothesis is that the overlap region is a spatial mixture of vertices linked to network 1
and network 2 (Fig. 1A), akin to the concept of network interdigitation (Braga & Buckner, 2017)
or within-region gradients (Haak et al., 2018). To test this hypothesis, we semi-simulated two
versions of the overlap timeseries using the real vertex timeseries uniquely associated with
either network 1 or network 2. In contrast to the other semi-simulated versions of the overlap
timeseries described above, this method does not use the mean N1 and N2 timeseries and
instead repeats the averaging across vertices.

e Spatial random mixture (Fig. 2C) assigns half of the vertices in the overlap region to a
randomly chosen vertex out of those uniquely associated with network 1 (with
replacement) and assigns the other half of the vertices in the overlap region to a
randomly chosen vertex out of those uniquely associated with network 2 (with
replacement). The semi-simulated overlap timeseries is then averaged across all
vertices and standardized as above.

e Spatial interdigitation (Fig. 2C) assigns each vertex in the overlap region based on
whether the spatial weight for that vertex was higher for network 1 or for network 2. If the
spatial weight for M-FPN 1 is higher, the timeseries of the vertex uniquely associated
with network 1 with the grayordinate that is closest in vectorized indexing is assigned to
that overlap vertex (with replacement). The semi-simulated overlap timeseries is then
averaged across all overlap vertices and standardized as above. We refer to this option
as ‘spatial interdigitation’ because the PROFUMO spatial weights reflect spatially
contiguous areas (see supplementary figure S2).

2.8 Frequency characteristics of semi-simulated timeseries

Fourier transforms were performed on the original overlap timeseries and each of the eight
semi-simulated overlap timeseries to compare the resulting frequency characteristics. Fourier
transforms were performed separately for each participant and each run using only the 3T runs
(8 per individual) for ease of comparison due to matched TR and timeseries length. Resulting
power spectra were normalized to a maximum of 1 for ease of comparison.

2.9 Hidden Markov Modeling

Hidden Markov Modeling (HMM) was used to decompose the input timeseries (comprising the
three regions or ‘channels’ of N1, N2, and O timeseries) into a finite number of states, where
each state is a multivariate Gaussian distribution modeled by the mean (Vidaurre et al., 2017).
HMM offers a valuable source of comparison of semi-simulated timeseries in addition to simple
timeseries correlations because it can detect more complex dynamic states of network
interaction and because it is insensitive to phase shifts which may arise from mismatches in
network order for the switching hypothesis timeseries. The state covariance was modeled as
one full covariance matrix for all states. The HMM was inferred separately for each participant,
treating the 12 runs as separate ‘segments’ within each participant. In each participant, the
HMM was repeated to test multiple options for the maximum number of states (2, 3, 4), which
were chosen to range from one fewer to one more than the number of input regions (3
‘channels’ including N1, N2, and O timeseries). As HMM is non-deterministic, we tested the
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stability of the HMM inference for each participant and for each maximum number of states by
repeating the HMM five times and calculating the gamma similarity between each pair of
repeats. The gamma similarity measures overlap between the state probabilities after optimally
reordering the states (Quinn et al., 2018).

The above HMM estimation procedure was performed separately for each of the 20 network
pairs using as input the original timeseries N1 and N2 in all cases, along with the original
timeseries for O and separately for each of the eight semi-simulated versions of O (switch 50
TRs, switch 25 TRs, switch 10 TRs, max switching, linear additive coupling, nonlinear
multiplicative coupling, spatial random mixture, spatial interdigitation). To compare the HMM
state means between the original and semi-simulated versions, the intraclass correlation
coefficient of absolute agreement (McGraw & Wong, 1996) was calculated after optimally
reordering the states.
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3. Results
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Figure 3: PROFUMO mode (i.e., “network”) maps derived from group PROFUMO using all 12 runs for all
20 participants. For naming purposes, modes were spatially mapped onto the Yeo-7 parcellation (Yeo et
al., 2011) and we followed the naming convention suggested in (Uddin et al., 2019). FPN = frontoparietal
network; L = lateral; D = dorsal; M = medial; ON = occipital network; PN = pericentral network. Figures
illustrate networks on the left hemisphere. All 12 networks showed strong bilateral symmetry.
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3.1 PROFUMO mode maps

Out of the total of 20 modes, 12 met the test-retest and subject-group criteria to be considered
for further analyses (see section 2.3). The 12 modes (Fig. 3) covered well-known occipital
(visual), pericentral (somatomotor), dorsal frontoparietal (attention), lateral frontoparietal
(control), and medial frontoparietal (default) networks (Uddin et al., 2019). These 12 modes
were highly replicable across different dimensionalities of PROFUMO (Supplementary Fig. S3).
Individual participants had on average 1.4 missing modes (range 0-4; Supplementary Fig. S4).
Group maps were stable across the group-PROFUMO using all data and group-PROFUMO
using only 12 runs to match subject analyses, albeit with lower weights in the 12-run results
reflecting the reduction in SNR (Fig 4 top row). Mode maps for two example participants derived
from single-subject PROFUMO reveal detailed individual specific organization that closely
matches maps from the same participants derived from the classic PROFUMO group analysis
(Fig. 4 middle and bottom rows). The example participants were chosen as non-twin individuals
with a complete set of 12 modes and are representative in terms of all other indices (as shown
by highlighting the blue and red data points in Figures 4, 5, 7, S4, S6, S7, S8). Subject-specific
networks and twin comparisons are shown in Supplementary Fig S5.
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A. M-FPN 1 (Default 1) B. M-FPN 2 (Default 2)
Group Group
Group (matched SNR) Group (matched SNR)
Subject 195041 Subject 195041 Subject 195041 Subject 195041
(individual run) (group run) (individual run) (group run)

Subject 125525 Subject 125525 Subject 125525 Subject 125525
(individual run) (group run) (individual run) {group run)

O ‘o]

Figure 4: Comparison of two modes across different PROFUMO runs. A) M-FPN 1 (default 1). B) M-FPN
2 (default 2). Results display the matched mode from: classic group PROFUMO, classic group
PROFUMO using only 12 scans PROFUMO runs, single-subject PROFUMO for two separate example
participants, and subject-specific estimates derived from classic group PROFUMO (same two example
participants). Results reveal individual differences between single-subject PROFUMO results that
accurately match the estimates derived from classic group PROFUMO, confirming that PROFUMO can
be used to estimate network organization using only data from a single subject. For example, the cyan
arrows in (A) point to a ‘hole’ in the M-FPN 1 network that is consistently observed in subject 195041 and
not in subject 125525, and the magenta arrows in (B) point to reproducible but subject-specific frontal
patterns in the M-FPN 2 network.
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3.2 PROFUMO mode stability

An initial objective was to determine whether PROFUMO can reliably estimate resting state
maps using only data from a single participant. Fig. 5 shows that the highest similarity occurs for
single-subject PROFUMO spatial maps (test-retest reliability and within-subject similarity in
columns 1&2, respectively; mean r=0.80+0.18); the next highest similarity occurs for twin
correlations (Fig 5 columns 3&4; mean r=0.70£0.14); and the lowest similarity occurs between
non-twin participants (Fig 5 columns 5&6; mean r=0.59+0.15). Each similarity pattern shows a
‘tail’ of networks having lower stability (Fig. 5), which on further inspection appeared to be
distributed across participants and across networks. When all modes are included (i.e., not only
the 12 selected modes and not removing ‘missing’ individual modes), these tails are further
expanded but the findings described above regarding comparisons between columns remain
evident (see supplementary figure S6). Single-subject PROFUMO spatial maps derived using
the 12 runs for the participant (i.e., not including data from other participants) were also highly
similar to the estimated subject maps derived from the group data informed by all 20 subjects
with 12 runs each (Fig 5 column 2; mean group-subject r=0.861£0.11), suggesting reasonable
correspondence at least at this dimensionality. Spatial maps estimates informed by group data
achieved slightly higher similarity compared to maps estimated from individual runs (Fig 5
column 4 > 3 and column 6 > 5), revealing the impact of the group prior when performing classic
hierarchical PROFUMO. Stability estimates for second order statistics, including temporal
connectivity matrices and spatial overlap matrices, are shown in Supplementary Figures S7 and
S8.
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Figure 5: Stability of PROFUMO spatial networks. Results show high within-subject test-retest stability
and similarity between individual and group estimates. Similarity within twins is lower than within
individuals, but higher than between non-twin participants. Red and blue dots indicate results from the
example participants used throughout this paper (separate dots are separate modes).

17


https://doi.org/10.1101/2023.09.21.558809
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.21.558809; this version posted September 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

3.3 Amount of data needed to estimate single-subject modes using PROFUMO

To test how much data from an individual participant were needed to obtain good estimates from
single-subject PROFUMO, we systematically varied the number of timepoints (in increments of
1/12th of the run timepoints), and compared the resulting spatial maps to the results that
included all timepoints. Mean similarity across the selected (non-missing) mode maps increased
when the number of timepoints were increased (Fig. 6) and was near asymptotic above ~5000
TRs (approximately 1 hour of data per participant).
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Figure 6: Comparison between subject maps using cut-down versions of the data relative to the subject
maps obtained using the full dataset. Each dot represents a single mode-map for a single participant.
Thin black lines indicate the mean and thick black lines indicate the median.

3.4 Spatial overlap

Consistent with previous work (Bijsterbosch et al., 2019), our results indicate substantial spatial
correlation across PROFUMO modes (Fig. 7A). Figure 7A shows the spatial overlap matrix
calculated by correlating pairs of weighted PROFUMO group spatial maps. Notably, spatial
overlap is ignored in the find-the-biggest overview in Supplementary Fig. S5, in which vertices
are assigned to a single PROFUMO mode with the highest spatial weight to enable concise
visualization of all subject maps. Spatial overlap was primarily localized in the lateral parietal
cortex and posterior cingulate - precuneus regions (Fig. 7C&D), consistent with prior work
(Bijsterbosch et al., 2019). Spatial overlap maps for two example participants are shown in Fig.
7C and D; Supplementary Figure S9 shows maps for all participants and across twin pairs, and
Supplementary Figure S1 shows maps for the selected set of 20 2-network overlap pairs.
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D. Overlap map for participant 125525

Figure 7: Overview of spatial overlap. A) Group average spatial overlap matrix, showing pairwise
correlations between spatial maps. B) Number of vertices with 2, 3, 4, 5+ overlapping networks for each
individual. Red and blue dots indicate results from the examples participants used throughout this paper.

C and D) Overlap maps for the same two example participants shown in Fig. 4 (overlap maps for all
participants can be found in supplementary Figure S9). For reference, the borders of the HCP_MMP1.0
cortical parcellation from (Glasser et al., 2016) are shown in gray in figures C and D.

3.5 Semi-simulated data for 2-network overlap

We derived semi-simulated versions of the overlap timeseries based on combinations of
network 1 and network 2 timeseries (Fig. 2C,D,E). We assessed how similar the semi-simulated
timeseries for the overlap region were, compared to the original overlap timeseries (O) by
estimating the Pearson’s correlation coefficient separately for each network pair, each subject
and each run. The highest similarity was observed for the linear additive coupling hypothesis,
which achieved a median correlation of 0.783 (Fig. 8). This result was significantly different from
the next highest correlation (median of 0.767), observed for the nonlinear multiplicative coupling
hypothesis (T=6.3, p=3.2*10", estimated after z-transformation of the correlation values).
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Figure 8: Correlations between the true overlap timeseries and different versions of the semi-simulated
overlap timeseries. Thin black lines indicate the mean and thick black lines indicate the median. Highest
similarity was observed for the linear additive coupling semi-simulated overlap timeseries in bright green.

Data were combined across all network pairs and all participants, see supplementary figure S10 for
separate figures per network pair.

Across the 20 different network pairs, the linear additive semi-simulated timeseries achieved the
highest correlation for 16 network pairs, and the nonlinear multiplicative semi-simulated
timeseries achieved the highest correlation for the remaining 4 network pairs (see
Supplementary Fig. S10). Notably, each of the 4 network pairs with highest correlations for the
nonlinear multiplicative semi-simulated timeseries involved the L-FPN 1 (paired with M-FPN 2,
L-FPN 2, L-FPN 3, and L-FPN 4 respectively). The L-FPN 1 network includes a specific
subregion (‘POS2’) of the parietal-occipital sulcus that is highly distinctive from neighboring
regions in its myelin, thickness, connectivity, and task activation (Glasser et al., 2016). As such,
the L-FPN 1 network (and POS2 area in particular) warrant future research into their distinctive
features, including nonlinear origins of network overlap.
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Frequency characteristics were highly similar between the original overlap timeseries and all
semi-simulated timeseries (see supplementary figure S11), although spatial interdigitation
timeseries exhibited a slightly raised tail and the temporal switching hypothesis (every 10 TRs)
has somewhat increased power at 0.1 Hz.

3.6 Hidden Markov Modeling

Out of the semi-simulated results, spatial random mixture achieved the highest absolute
agreement of HMM state means (mean 0.79, median 0.92), followed by spatial interdigitation
(mean 0.76, median 0.88), and linear additive coupling (mean 0.75, median 0.85). HMM stability
and mean similarity were consistently higher for the 2-state solution compared to the 3 and
4-state solutions (supplementary figure S12). Results separated per network pair are in
Supplementary Figures S13, S14, and S15. Taken together, the HMM results provide support
for the spatial mixing hypothesis despite overall lower timeseries correlations observed in Fig. 8,
whilst also supporting high state similarity for linear additive coupling.
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Figure 9: Absolute agreement between the HMM state means estimated when using the true overlap
timeseries compared to different versions of the semi-simulated overlap timeseries. Thin black lines
indicate the mean and thick black lines indicate the median. Data were combined across all network pairs,
all participants, and all state solutions. Additional results separated for 2, 3, and 4 state solutions are in
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Supplementary Figure S12 and separate results per network pair are shown in Supplementary Figures
S13 (2-state), S14 (3-state), and S15 (4-state).

Discussion

Our first aim was to determine whether weighted resting state spatial networks can be robustly
derived from single-subject data without sacrificing correspondence. The results revealed twelve
resting state networks with high test-retest reliability and remarkably good incidental (i.e.,
non-modeled) correspondence with group-informed network estimates (Fig. 4). Notably, the
test-retest reliability of these individual-specific network maps (cosine similarity ~0.8 based on
Fig. 10A in (Harrison et al., 2020)) matches or exceeds many previous estimates of reliability of
resting state metrics (e.g., average intraclass correlation 0.29 for temporal functional
connectivity from meta analysis across 25 studies; (Noble et al., 2019)) (Andellini et al., 2015;
Braun et al., 2012; Dutt et al., 2021; Fiecas et al., 2013; Liao et al., 2013; Nemani & Lowe,
2021; Noble et al., 2019; Termenon et al., 2016; J. Wang et al., 2017; J.-H. Wang et al., 2011;
Yang et al.,, 2021). These findings support the possibility of future personalized psychiatry
approaches where data from an individual would be separately analyzed and compared to a
reference cohort to inform clinical decision making. It is possible that increasing the
dimensionality to extract more finer-grained resting state networks (beyond the 12 selected
networks out of 20 used here) may reduce test-retest reliability and correspondence. However,
we showed high stability of the selected networks across higher dimensionalities of PROFUMO
(Supplementary Fig. S1), and previous work in networks defined with independent component
analysis reported good reliability up to at least 150 networks (Ma & MacDonald, 2021).
Importantly, the functional organization of the brain can meaningfully be studied at multiple
levels of complexity along its organizational hierarchy (Bijsterbosch et al., 2021). Here, we
specifically chose to investigate the organization of macroscale networks (i.e., low
dimensionality) because it describes functional organization in relation to widely studied
canonical networks that are consistently observed across datasets, analysis methods, and
states (Smith et al., 2009; Uddin et al., 2019; Yeo et al., 2011).

Our second aim was to determine the degree of spatially overlapping network organization. Our
findings confirm the presence of extensive and stable network overlap in networks estimated
from single-subject data. Patterns of spatially overlapping network organization vary extensively
across individuals (Fig. 7 & Supplementary Fig. S6), and previous work has shown that
individual differences in these overlap patterns are strongly associated with behavior
(Bijsterbosch et al., 2019). As such, the lower dimensional spatial overlap matrix (Fig. 7A) may
provide a key summary measure of behaviorally-relevant aspects of spatial organization, while
reducing the multiple-comparison burden of vertex-wise analysis of spatial organization.

Spatial overlap between individual-specific weighted resting state network maps also offers a

complementary approach to investigate hub regions. As opposed to traditional hub identification
methods that rely on temporal correlations, our weighted network approach emphasizes the role
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of shared brain regions as part of the spatial organization of functional networks. It is currently
unclear whether these distinct temporal versus spatial definitions of hub regions have
dissociable or shared neurobiological implications. Some evidence suggests that spatial
networks and hubs may maintain functional integrity over time, potentially for homeostatic
purposes (Laumann & Snyder, 2021), whereas flexible hubs that can rapidly change their
temporal connectivity may provide coordination and switching functions to support cognitive
control (Cocuzza et al.,, 2020; Cole et al., 2013; Gordon et al., 2018). Consistent with this
hypothesis, we have shown that spatial overlap was more strongly associated with stable
trait-like behavior (Bijsterbosch et al., 2018), whereas temporal correlations tracked transitions
between sensorimotor states (Harrison et al., 2020). However, our prior work also suggests that
effects of spatial network organization and overlap are observed as temporal correlation
estimates when unaccounted for in the parcellation (Bijsterbosch et al., 2018, 2019), which may
indicate that the distinction between spatial and temporal hubs could be purely analytical, driven
by differences in model cost functions and priors, without distinct neurobiological interpretations.
Hence, spatial network overlap and temporally strongly connected nodes may serve distinct
functional purposes (e.g., homeostasis versus switching), or may represent alternative analytical
estimates of the same underlying neural phenomenon. Further work is needed to gain insight
into spatial versus temporal hub definitions and their neurobiological functions.

Our third aim was to systematically test different hypotheses (spatial mixture, dynamic
switching, and coupling hypotheses; Fig. 1) regarding the nature of brain regions in which
multiple resting state networks appear to overlap. Our findings supported the linear additive
coupling hypothesis (Figs. 8&9). Given that regions of network overlap appear to be actively
engaged in processing information from all contributing networks, this suggests that network
overlap may play an important role in the integration of information across multiple brain
systems. Alternatively, the linear additive hypothesis may suggest that multiple networks may
coexist within overlap regions without influencing one another. Specifically, the combined signal
may indicate that both networks behave as they do in non-overlap regions without any
cross-network modulation or integration. The nonlinear hypothesis, on the other hand, requires
cross-network integration. Prior work has reported that nonlinear binding between multiple task
conditions in conjunction hubs (i.e., brain regions that selectively integrate activations) was
essential for predicting task activation patterns from functional connectivity data (Ito et al.,
2022). Intriguingly, the timeseries correlation results (Supplementary Figure S10) offered some
support for the nonlinear multiplicative hypothesis for network pairs involving the L-FPN 2, which
may indicate the presence of network interaction. Importantly, it remains a possibility that spatial
mixing and/or dynamic switching may occur at finer spatial and temporal resolutions that cannot
be resolved using resting state MRI data. Furthermore, it is possible that temporally lagged
correlation structure may play a role in regions of spatial overlap, which can be challenging to
accurately discern using functional MRI data (Smith et al., 2011) but may be feasible in some
situations using deconvolution approaches (Mill et al., 2017). Although beyond the scope of the
current paper, we plan to test spatial mixing, dynamic switching, and temporally lagged
hypotheses at sub-MRI scales in future research using invasive recording techniques in
non-human primates.
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Despite offering novel insights into weighted resting state networks estimated within individual
participants, this work also has several limitations. First, we investigated network organization at
a relatively coarse level by setting the PROFUMO dimensionality to 20 and investigating 12
resulting networks of high stability. Notably, the 12 networks under investigations were obtained
with very high stability across a range of PROFUMO dimensionalities (Supplementary Fig. S1).
Nevertheless, network overlap may behave differently at higher dimensions of network
decomposition (Farahibozorg et al., 2021). Second, our vertex assignments to network 1,
network 2, and overlap regions involved thresholding, which is necessarily a simplification of the
weighted network organization. However, the strict threshold for exclusion and inclusion of
vertices enforced a relatively conservative definition of overlap that was necessary to make the
results interpretable. Importantly, we recommend the use of the unthresholded spatial overlap
matrix (Fig. 7A) for brain-behavior investigations of network overlap. Third, the estimation of
network overlap, whether based on weighted or thresholded maps, interacts with the
contrast-to-noise ratio (CNR) of the data, which varies across the cortex and is higher in the
lateral parietal region. As such, potential future efforts to develop a conclusive map of network
overlap in the brain should perform careful scaling/normalization to remove any bias resulting
from CNR variability across the cortex. Furthermore, individual difference studies should match
the amount of data used across individuals to avoid biased estimates of network overlap that
may arise from CNR variability across individuals. Fourth, our findings indicating support for the
linear additive coupling hypothesis are consistent with the underlying outer product model used
in PROFUMO (and similar methods such as ICA). In future work, it will be of interest to test
mechanistic hypotheses of network overlap using alternative approaches to define the overlap
region that do not rely on the outer product model. Notably, alternative tools for the definition of
network overlap (such as (Karahanoglu & Van De Ville, 2015; Li et al., 2017)) might render
different overlap results and might have different reliability and data-needs.

Taken together, we showed that weighted resting state networks derived from single-subject
data are stable, correspond closely to group-informed networks, and capture overlapping
network organization, and are therefore important targets for clinical biomarker research. We
also showed that overlapping network organization is indicative of linear coupling between
networks, providing a mechanistic hypothesis for the functional role of these regions.
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