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Abstract 

RNA is not only playing a core role in the central dogma as mRNA between DNA and protein, but 
also many non-coding RNAs have been discovered to have unique and diverse biological functions. 
As genome sequences become increasingly available and our knowledge of RNA sequences grows, 
the study of RNA's structure and function has become more demanding. However, experimental 
determination of three-dimensional RNA structures is both costly and time-consuming, resulting 
in a substantial disparity between RNA sequence data and structural insights. In response to this 
challenge, we propose a novel computational approach that harnesses state-of-the-art deep learning 
architecture NuFold to accurately predict RNA tertiary structures. This approach aims to offer a 
cost-effective and efficient means of bridging the gap between RNA sequence information and 
structural comprehension. NuFold implements a nucleobase center representation, which allows it 
to reproduce all possible nucleotide conformations accurately. 
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1. Introduction 

 Ribonucleic acid (RNA) molecules are crucial for living organisms. One of the major roles 
of RNA is that of mRNA, one of the three components of the central dogma. Recent advances in 
high-throughput sequencing technologies and bioinformatics have unveiled a multitude of RNA 
molecules within cells that serve functions beyond mRNA 1. One of the most representative of 
these non-coding RNAs (ncRNA) are ribosomal RNA (rRNA) and transfer RNA (tRNA), which 
are important as part of a crucial machinery for translation from mRNA to protein. In addition to 
this, there are many varieties of ncRNAs that have their own unique functions, such as gene 
regulation or modification, and it is studied actively 2,3. Recently, these ncRNAs have been 
drawing attention, especially from the drug designing field by inhibiting or mimicking the activity 
of these functional RNAs 4. Knowledge of these ncRNA structures is critical to understanding the 
mechanism of function and designing brand-new RNA with specific functions since the three-
dimensional structure directly affects its function. Understanding the three-dimensional structure 
of RNA is necessary for advancing RNA research in various ways. However, our knowledge of 
the RNA structures is limited compared to proteins, despite RNAcentral 5 keeping thirty million 
ncRNA sequences. For example, only around 6,000 entries include RNAs in the Protein Data Bank 
(PDB). This is only about 3 % of the entire PDB entries. Moreover, the Rfam database (v14.8) 6 
has 4,094 families in their database, but only 124 (3.0 %) of them have at least one structure 
released in PDB. Therefore, computational methods predicting RNA tertiary structure with high 
accuracy have been demanded to close the gap between our sequence and structure knowledge. 
 Previously, a number of methods have been developed to predict RNA tertiary structure. 
There are two mainstream methodologies, template-based and simulation-based methods. 
Examples of template-based prediction methods include RNAbuilder 7 and ModeRNA 8. However, 
the three-dimensional structure of RNA known so far is even more limited compared to that of 
proteins, as we mentioned before, so this method has major limitations. Simulation-based 
prediction methods include SimRNA9 and FARFAR2 10. These prediction methods sample while 
changing the structure to minimize internal energy. Although these methods are widely applicable 
compared to template-based methods, they require extensive computation to obtain good 
predictions. Also, the size should be less than a couple of hundred nucleotides to go through 
enough search space in a reasonable time. Furthermore, selecting the best structures from a large 
pool of thousands of structures remains a completely unresolved problem. Recently, ARES 11 has 
been proposed as a scoring method using deep learning that can solve this problem. Although 
ARES is not a structure prediction method per se, it can give a score to structures generated by 
other methods, increasing the likelihood of selecting a conformation that is better than the original 
energy score. 

Here, we propose NuFold, our novel de novo RNA structure prediction method. NuFold 
takes an RNA sequence and produces a corresponding tertiary structure. Recently, AlphaFold12 
marked a great performance in CASP14 (Critical Assessment of Structure Prediction) in 202013, 
and this continues in CASP15 in 2022. CASP is the protein structure prediction competition held 
every two years, and more than a hundred participating groups will be given the sequence and 
submit its predicted structure. NuFold seeks to push the boundaries of current computational 
biology by making it possible to predict the three-dimensional structure of RNA from its sequence. 
NuFold implements nucleobase center representation to allow more flexible representation of each 
nucleobase. This allows us to reproduce any flexibility that exists in the base backbone, allowing 
us to create base shapes more accurately. 
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 Three-dimensional structure prediction using machine learning is considered a difficult 
task because the available structural data is extremely limited compared to its spatial degree of 
freedom. In particular, the number of available RNA structures is even smaller than that of proteins, 
making this an even more difficult task. To overcome this difficulty, we employed a self-
distillation technique to compensate for the lack of training data. This is a method that uses a 
network trained using existing data to assign labels to data that doesn't have correct labels, and 
uses that data for further training of the network. It is known to be an effective method in the field 
of image recognition14. Here, we adopted a method that predicts the structure of an RNA sequence 
for which only the sequence is known, but the three-dimensional structure is unknown and utilized 
them as a true label in the training data. 

 

2. Materials and Methods 

2.1 Overview of the Nufold Architecture 

 Figure 1(a) shows the overall architecture of NuFold. NuFold shares the basic framework 
of deep learning architecture as AlphaFold, but with several key modification for folding RNA. In 
short, AlphaFold is an end-to-end protein structure prediction method from its sequence. 
AlphaFold takes a sequence, multiple sequence alignment (MSA), and template structures as the 
input features, and then directly outputs an atomic model of proteins. The AlphaFold framework 
consists of two major components, the Evoformer and the structure module. We can simply think 
of the former as an encoder and the latter as a decoder. In the first module, Evoformer, evolutionary 
information is extracted from the input MSAs and embedded into single and pair representations. 
Evoformer is trained in the same manner as the language model such as BERT, self-supervised by 
predicting masked words. Both representations are updated through Evoformer blocks by sort of 
attention networks. Pair representation especially keeps the information related to the relative 
position of each nucleotide. AlphaFold used 48 blocks of Evoformer. These two embeddings are 
used as input for the next module, the structure module, which consists mainly of the special 
attention mechanism called Invariant Point Attention (IPA). The structure module eventually 
predicts the rigid body translation and rotation of each base frame in Euclidean space along with 
updated single representation from both single and pair representation. AlphaFold used 8 blocks 
of the structure modules which shared the weights. AlphaFold is designed as end-to-end 
differentiable, losses came from every part of the network, including Evoformer's BERT-style 
MSA loss, FAPE (Frame Aligned Point Error) loss which indicates structural misalignment, 
torsion angle prediction loss, and other auxiliary losses, are minimized during optimization. 
 To be able to predict RNA tertiary structures, we implemented several key modifications 
atop the original AlphaFold framework. One of the most significant alterations pertains to the 
reference definition of RNA nucleotide shapes (A, C, G, and U), including considerations for the 
relative distances between atoms and hinge angles. In the NuFold approach, we define the base 
frame using four atoms: O4', C1', C2', and the first N of the base (N1 for C and U, N9 for G and 
A). All other atoms are partitioned into ten frames, which are then iteratively bonded using 
predicted torsion angles on the bonds between frames as a guiding principle (as illustrated in Figure 
1b). It's worth noting that these definitions were initially hardcoded for the 20 amino acids in 
AlphaFold and needed adaptation for RNA. This representation of the RNA nucleotides with  
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Figure 1. Overview of NuFold. (a) The architecture of NuFold. NuFold is an end-to-end architecture for 
RNA tertiary structure prediction, taking target sequence information and generating corresponding full-
atom tertiary structures. The query sequence is initially used to construct a multiple sequence alignment 
(MSA), which, along with predicted secondary structure information, serves as input to the NuFold 
network. The NuFold network comprises two components: EvoFormer, a transformer model that extracts 
co-evolutional information from MSA and embeds it into both single and pair representations; and the 
structure module, which further processes the embedded information into 3D structures. These processes 
are iteratively performed in a recycling process to refine predictions. (b) The network predicts two key 
components for full-atom structure prediction: the translation and rotation of the base frame, along with a 
set of torsion angles derived from the base frame. These torsion angles are used to extend new atoms. (c) 
Assessing sugar puckering reproducibility. Green and magenta structures represent ground truth and 
predicted structures, respectively. NuFold predicts torsion angles not only for the main chain or chi angles 
but also for the ribose ring, allowing for the reproduction of sugar-puckering formations. 
 

frames and torsion angles can reproduce the full dynamics of nucleotide shapes (see Figure 1c). 
Moreover, we made changes in the character types (words) used for Multiple Sequence Alignment 
(MSA) within the Evoformer. The character type count transitioned from 20 + 3 (standard amino 
acids + unknown + gap + masked) to 4 + 3. We also introduced new auxiliary heads that consider 
the distance between C4' and P, as well as the dihedral angle between residue pairs. These auxiliary 
networks were constructed using three layers of 2D convolution, departing from the original linear 
layer used in AlphaFold. The input for NuFold is the sequence of query, MSA, and predicted 
secondary structure produced by IPknot 15,16 and the in-house modified version of IPknot, and the 
output is the all-atom coordinates of its structure. AlphaFold was using information from templates, 
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but it is substituted by secondary structure in NuFold. Given the limited availability of templates 
for RNA, we removed the template input network and adapted it to accept the predicted secondary 
structure as input. Additionally, we adopted C19 carbon for tasks originally associated with C³, 
such as lDDT-C³, and N1/N9 for tasks initially related to C³, such as the original distogram head. 
The NuFold network consists of two major components, the Evoformer and the structure module 
with the same number of blocks. Loss is also similar to AlphaFold, but some items have been 
added and the weight has been changed to accommodate NuFold's unique extensions (see section 
2.4). In addition, NuFold is adopting a well-engineered system from AlphaFold, such as recycling, 
which reuses the final output as input to iteratively improve its prediction.  
 Moreover, we utilized metagenome sequences for MSA construction. The quality of the 
sequences in the metagenome sequences is not always that good, but it is known that using those 
sequences to accumulate depth and diversity in the MSA increases the performance of the structure 
prediction. We gathered metagenome sequences from public datasets to construct our own 
metagenome sequence database for MSA construction. 
 

2.2 Dataset Construction 

For the training dataset, we sourced RNA tertiary structures from the Protein Data Bank 
(PDB) 17. Our selection criteria included structures solved through X-ray crystallography or Cryo-
electron microscopy with a resolution better than 5.0 Å and a sequence length ranging from 10 to 
1500 nucleotides. Additionally, we applied a masking procedure to exclude bases that were in 
close spatial proximity to other RNAs or proteins, retaining only strands with 10 or more 
consecutive unmasked bases. To ensure structural stability, we required each RNA to contain one 
or more standard Watson-Crick base pairs in non-masked regions. After applying these criteria, 
we identified 3,237 RNA chains that met our requirements. We supplemented this dataset with 
RNA chains used in the RNA-puzzles competition 18 and performed sequence clustering. 
Clustering employed complete linkage, considering global sequence identity between different 
RNA chains. Chains with a sequence identity exceeding 80% were grouped together. We used 
single-linkage clustering to ensure that distinct clusters did not contain similar RNA chains. This 
process resulted in a total of 499 clusters. From these clusters, 403, 48, and 48 clusters were 
allocated for training, validation, and testing, respectively. We also excluded targets from the test 
set that were not RNA-puzzles monomers, resulting in a final test set size of 36. The training 
dataset was expanded to encompass all the structures from 2,860 chains. 

We employed the bpRNA-1m 19 dataset to construct a semi-supervised training dataset 
following the principles of Noisy Student learning. The need for a larger dataset was driven by the 
desire to enhance generalization performance, given the relatively small number of examples in 
the clean PDB dataset. Similar to our approach with the PDB dataset, we conducted sequence 
clustering on the bpRNA-1m dataset and selected 11,197 sequences distinct from those in the PDB 
dataset. Subsequently, we used trRosettaRNA 20 to predict three-dimensional structures for these 
sequences, focusing on those with one or more Watson-Crick base pairs. This process yielded a 
total of 11,101 structures, which served as our self-distillation dataset. 
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2.3 Input Feature Generation 

 We utilized two input features for our training. The first input feature was generated using 
multiple sequence alignments (MSA), which served as a source of co-evolutional information. To 
create the MSAs, we employed the rMSA pipeline 21 with default parameters. This pipeline 
leverages data from the RNA central database, NCBI nt database 22, and Rfam database 6, utilizing 
BLAST 23 and infernal algorithms 24 for searching. The second input feature incorporated predicted 
secondary structures. We employed IPknot to generate these predictions. To account for the lack 
of confidence or significance information in IPknot's output, we introduced a stochastic process. 
In this modified IPknot version, we randomly discarded 10% of the constraints and optimized the 
objective function through integer programming. This process was repeated ten times to identify 
the base pairings essential for valid RNA structures. The resulting binary base-pairing matrices 
were averaged to estimate the likelihood of base pairing between specific bases. This resulting 
LxL matrix, where L represents the length of the RNA chain, also served as an input feature for 
the predicted secondary structure. 

2.4 Training of NuFold 

 In the training of NuFold, we followed a methodology similar to that of AlphaFold, with 
some minor distinctions. Our loss function is defined as: 

!"## = 0.3	L!"#$ + 0.3	L%&'()*+ + 1.0	L,-./ + 2.0	L01- + 0.1	L'()*+ + 0.01	L*&&2 

 This loss function comprises several components. !3456 represents the aggregation of losses from 
three distogram heads, aiming to predict 40 evenly spaced distance bins spanning from 2 Å to 22 
Å,	and	loss	was	computed	using	cross-entropy. !%789:;< represents the loss from an auxiliary 
head responsible for predicting torsion angles between pseudo-bonds of two bases.  This loss is 
newly introduced in this study, and this involves predicting 24 even-sized bins with cross-entropy 
loss.  !=>?@, !AB>, !89:;<, and !;77C encompass the FAPE loss, BERT-like MSA loss, torsion 
angle loss, and plDDT prediction loss, respectively. We retained these components without 
modification. 
 During the fine-tuning step, we introduced a structural violation loss, denoted as !D4E; , 
which penalizes atom clashes and longer bonds. The total loss during fine-tuning becomes:  
!"## = 0.3!3456 + 0.3!%789:;< + 1.0!=>?@ + 2.0!AB> + 0.1!89:;< + 0.01!;77C + 1.0	!D4E; 

 For the training process, we utilized the Adam optimizer with a learning rate of 1e-3 for 
the initial training phase and 1e-4 for fine-tuning. The training was conducted in two steps. First, 
we trained without the violation loss. Once the loss converged, we proceeded with fine-tuning by 
increasing the weight of the violation loss. Unlike AlphaFold, our training did not incorporate a 
warm-up step. The batch size was set at 16, with gradient accumulation and gradient clipping 
applied at 0.01. 

2.5 Evaluation Metrics 

 In our evaluation, we relied on several key metrics to assess the accuracy of our predictions. 
C1'-RMSD (Root Mean Square Deviation) is a widely used metric that quantifies the structural 
similarity between the predicted and ground truth structures. It measures the average deviation 
between corresponding atoms in the two structures. GDT-TS (Global Distance Test) is another 
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metric used to evaluate the accuracy of the global structure. It measures the overall structural 
similarity between the predicted and ground truth structures. lDDT (local Distance Difference 
Test) assesses the accuracy of the local structure. It provides insights into how well the predicted 
local structure aligns with the ground truth. 

In addition to these metrics, we employed the Interaction Network Fidelity (INF) metric, 
as used in RNA-puzzles assessment 25. INF considers the entire RNA structure as an interaction 
network consisting of WC interactions, non-WC interactions, and base stacking. INF is defined as 
the Matthews correlation coefficient (MCC) of this network between the reference and predicted 
structures. A high INF score means that the relative positions of the bases are correctly reproduced. 
 

3. Results  

3.1 Analysis of Structure Prediction Performance  

First, we selected epochs with the best and second-best averaged RMSD in the validation 
dataset, which is named "ave. RMSD #1" and "ave. RMSD #2" in Table 1, respectively. Also, we 
selected the best GDT-TS performance, which is named "ave. GDT-TS #1" in Table 1. Finally, 
we selected the epoch based on the best Rosetta score, which is named "ave. Rosetta #1" in Table 
1 Additionally, we implemented a structural clustering strategy for the structures generated during 
different training epochs. The clustering aimed to mitigate the influence of outliers and reduce the 
possibility of selecting suboptimal structures. Two specific strategies emerged from this clustering. 
The first strategy selects the structure within the largest cluster that is closest to the cluster's 
average structure, which is named as "cluster #1" in Table 1. The second strategy chooses the 
structure with the lowest Rosetta score from the largest cluster, which is named as "cluster #2" in 
Table 1. We also considered a straightforward strategy that employs plDDT scores to select 
structures from a pool of candidates, which is named as "plDDT" in Table 1. While a larger 
structure pool may contain better structures, it also demands more computational resources to 
expand the pool size. Table 1 reports C1'-RMSD and GDT-TS metrics for the test datasets. Notably, 
the #2 RMSD model exhibits better overall performance in terms of both RMSD and GDT-TS. 
Consequently, this model serves as the baseline for subsequent analyses.  

To illustrate the characteristics of the structure produced by NuFold, we investigated the 
relationship between performance and factors that can directly affect prediction performance. 
Figure 2 shows the relationship between RMSD and (a) length of RNA, (b) number of sequences 
in MSA, and (c) effective sequence count in MSA, respectively. These analyses provide valuable 
insights into how specific target characteristics correlate with the accuracy of RNA structure 
predictions. We observe that longer RNA chains tend to give relatively larger RMSDs, but this 
relationship is not clear (Figure 2a). Larger MSAs provide more evolutionary insight and should 
therefore be inherently more prone to accurate predictions than smaller MSAs, but this trend was 
also not clearly observed (Figure 2b and c). 
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Table 1. Overall performance of NuFold using different model selection criteria. 

Criteria Steps 
RMSD (+) 

(validation) 

GDT-TS  
(validation) 

RMSD (+) 

(test) 

GDT-TS 
(test) 

# better than 

5 + (test) 

# win to 
baseline 
(win / tie / 
lose) 

ave. RMSD #1 124863 6.38 0.593 7.66 0.437 19 / 36 4 / 26 / 6 

ave. RMSD #2 146287 6.43 0.598 7.68 0.442 20 / 36 Baseline 

ave. GDT-TS #1 145263 6.48 0.598 7.55 0.443 19 / 36 5 / 29 / 2 

ave. Rosetta #1 110095 6.92 0.582 7.98 0.430 19 / 36 7 / 22 / 7 

cluster #1 - 6.56 0.467 7.81 0.433 19 / 36 5 / 26 / 5 

cluster #2 - 6.57 0.466 7.80 0.434 19 / 36 5 / 26 / 5 

plDDT - 6.51 0.471 7.79 0.451 22 / 36 7 / 24 / 5 

The criteria <ave. RMSD #1= and <ave. RMSD #2= is the best and second best model selected by average RMSD 

performance using validation dataset. <ave. GDT-TS #1= is the best model selected by the average GDT-TS score 

using validation dataset. <ave. Rosetta #1= is the best model selected by the average Rosetta score using validation 

dataset. <cluster #1= is the strategy that first structures generated by each network weights were clustered, and picked 

up the structure from the largest cluster which is closest to the averaged structure in the cluster. <cluster #2= is the 

same clustering strategy as previous, but the lowest Rosetta score structure was selected from largest cluster. <plDDT= 

is the strategy which we selected the structure which has highest plDDT score from the structures. 

 
 

 
Figure 2. Comparison between RMSD and characteristics of targets. Lower RMSD means more 
accurate structure prediction. (a) Comparison between the length of query RNA sequence and RMSD. (b) 
Comparison between the depth of MSA and RMSD (+). (c) Comparison between the number of effective 
sequences (Nf) of the MSA and RMSD. 
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3.2 Effect of Recycling 

NuFold implements the same recycling mechanism as AlphaFold. After the first prediction 
is made, recycle mixes the output atomic coordinates and internal representation vectors with the 
original input and uses them as input for the network. This technique can be applied repeatedly, 
and the network is expected to improve its predictive performance by using its output as a guide. 
During training, 0 to 3 recycles were randomly selected for each batch. In inference, as a default, 
he uses three recycles. Although only up to three recycles were used during training, previous work 
revealed that increasing the number of recycles improves prediction performance for many 
proteins when analyzing Alphafold results 26. To investigate the effect of recycling on NuFold, 
we performed 30 recycles and examined the predicted performance at each recycle number. The 
relationship between the number of recycles and RMSD and plDDT is shown in Figure 3 (a). The 
performance gradually improves along with the number of recycles up to 17, but it ends up going 
worse with more number of recycles. Figures 3 (b), (c), and (d) show the comparison between the 
baseline, 17 times recycling, and 30 times recycling and selecting max plDDT model each other. 
Although the optimal number of recycles differs depending on the query, we can see that it is 
possible to select the optimal structure using plDDT after performing enough recycles.  
 

 
Figure 3. The effect of recycling. (a) The relationship between the number of recycling against RMSD 
(left axis, +) and plDDT (right axis).  (b) Comparison between the default recycling (rec=3, baseline) and 
minimum averaged recycling (n=17). The unit for both the x and y axes is RMSD in +. The three numbers 
in the title of each plot correspond to the number of points above the diagonal line, the number of points on 
the line, and the number of points below the diagonal line, respectively. (c) Comparison between the default 
recycling (rec=3, baseline) and the models picked by plDDT from all 30 recycling. (d) Comparison between 
minimum averaged recycling (n=17) and the models picked by plDDT from all 30 recycling. 
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3.3 Effect of Using Metagenome Sequence for MSA 

At Alphafold, MSA depth is known to be a crucial factor for its performance. Since 
EvoFormer is designed to extract co-evolutionary information between residues that is useful for 
structure prediction from MSA, prediction performance is generally greatly reduced when MSA 
has little information. Since NuFold has a very similar architecture and utilizes MSA as its primary 
source of information, we can reasonably infer that MSA depth affects its predictive performance. 

Since NuFold utilizes rMSA as MSA, its sequence database is limited to Rfam, RNA 
central, and NCBI nt. One breakthrough in the field of protein structure prediction is the 
observation that the use of metagenomic sequences improves prediction performance. Although 
NCBI nt partially contains metagenomic sequences, we decided to extend the sequence database 
to allow more metagenomic sequences to be available as MSAs. 

As a metagenome database, in addition to NCBI env_nt, we created a database using 
TARA Ocean Metagenome 27, Mgnify MAG 28, and all Mgnify contigs. The total size is around 
3.0 Tb, but this includes redundancy. Database searching is achieved by further extending the 
rMSA pipeline, similar to the last stage of rMSA, but essentially similar to the RNAcmap 
pipeline29. Briefly, the query sequence first searches the metagenome sequence database with 
BLASTn, and then creates a covariance model (CM) with infernal from the results. This CM is 
used as input for infernal's cmsearch, which searches the same metagenomic database. Finally, this 
resulting MSA is combined with the rMSA result to remove redundancies with hhfilter. 

Overall, we showed that prediction performance can be improved by mixing metagenomic 
sequences with the original MSA. However, no correlation was found between increasing MSA 
size and increasing accuracy. Although the size of the MSA could not be an indicator to predict 
the structure prediction performance in advance, the plDDT of the prediction result was found to 
be an indicator that can be used to better select an MSA. Figure 4 shows a comparison of the 
baseline performance and the performance when selecting the largest plDDT from among the 
predicted structures of each of the four MSAs. By selecting the structure that maximizes plDDT 
from four inferences, the average RMSD improves by 1.05 +. Also, we could achieve the same 
or better RMSD with 28 targets (78%), but with 2 targets, the accuracy is lower with more than 
0.5 + margin. Overall, it can be seen that the metagenome sequence has the effect of improving 
structure prediction performance. What is noteworthy here is that the prediction performance is 
improved even though no metagenomic MSA is used during training. By using metagenomics 
during learning and retraining, metagenomic interpretation performance may improve and further 
performance improvements may be seen. 
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Figure 4. The effect of using metagenome sequences in MSAs. The unit for both the x and y axes is 
RMSD in +. The three numbers in the title of each plot correspond to the number of points above the 
diagonal line, the number of points on the line, and the number of points below the diagonal line, 
respectively. (a) Comparison between the default MSA (baseline) and inference using only metagenome 
MSA. (b) Comparison between the default MSA (baseline) and inference using metagenome MSA 
concatenated with original MSA. (c) Comparison between the default MSA (baseline) and inference using 
metagenome MSA filtered after concatenated with original MSA. (d) Comparison between the default MSA 
(baseline) and models picked by plDDT from 4 different MSAs including original MSA. 

3.4 Case Studies 

In order to better understand NuFold's performance, we present concrete examples 
illustrated in Figure 5. The first example is rp06 from RNA-puzzles (Figure 5a): This target is a 
168-base adenosylcobalamin riboswitch with PDB ID: 4GXY. NuFold achieved an all-atom 
RMSD of 3.4 Å. Notably, as of RNA-puzzles round 2 30, this target had a top all-atom RMSD of 
11.4 Å, marking a significant advancement by NuFold. The challenge with this relatively large 
riboswitch lay in efficiently determining the correct structure using traditional methods. Evaluation 
of RNA-puzzles indicated that the absence of a ligand to fill the riboswitch pocket could be the 
cause of incorrect predictions, although this effect was rarely observed in NuFold prediction. 

The second example is rp12 from RNA-puzzles (Figure 5b): This target is a 108-base ydaO 
riboswitch with PDB ID: 4QLM. While the structure of a c-di-GMP-binding riboswitch with a 
similar function had been previously solved at that time, the ydaO riboswitch presented a novel 
structural topology that made this target challenging to predict. NuFold successfully predicted this 
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structure with an all-atom RMSD of 3.5 Å. Remarkably, as of RNA-puzzles round 3 31, the top all-
atom RMSD for this target was 10 Å, indicating a significant improvement in performance by 
NuFold. Changes in available structural data may alter the target's difficulty over time, but it's 
worth noting that previously challenging targets can now be predicted with practical accuracy. 

The third example is 7OA3 from PDB. This case serves as a notable failure included in the 
validation dataset. The target is a relatively small RNA aptamer consisting of 52 bases, notable for 
its local G-quadruplex structure at the center. NuFold obtained an all-atom RMSD of 9.1 Å. 
NuFold tends to predict general RNA double helix structures, and accurately predicting G-
quadruplex structures remains a challenge due to their distinctiveness. Given the limited training 
data, generalizing such rare structures can be challenging. Such local structures must be able to be 
accurately predicted, as they may be essential for elucidating their function. 

 

 
Figure 5. Case studies of the predictions of NuFold. The native structures and predicted structures are 
superimposed and shown in green and magenta, respectively. (a) The prediction of rp05. (b) rp12 (c) One 
of the failed cases with G- quadruplex local structure. The native structure contains two potassium ions in 
the middle of two stories G- quadruplex motif. NuFold prediction (right, magenta) could not reproduce 
this motif and got 12 +	RMSD. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2023. ; https://doi.org/10.1101/2023.09.20.558715doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.20.558715
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

4. Discussion  

 In this paper, we have introduced NuFold, a novel de novo structure prediction method for 
RNA. The three-dimensional structures of non-coding RNAs (ncRNAs) are intricately linked to 
their functions, mirroring the relationship between structure and function in proteins. However, 
unlike proteins, the available experimental structures for ncRNAs are more limited in variety and 
quantity. This disparity has underscored the pressing need for accurate and computationally 
efficient methods for predicting RNA structures. NuFold draws inspiration from the architectural 
success of AlphaFold, a renowned protein structure prediction method, and shares the basic 
computational framework. Yet, the development of machine learning-based RNA structure 
prediction methods faces a unique challenge: a paucity of structural data for training. To surmount 
this challenge, we leveraged self-distillation data, a strategy akin to NoisyStudent, to augment our 
training dataset and enhance the predictive power of NuFold. Additionally, we were able to 
confirm that NuFold's recycling function was effective. It was observed that having a sufficient 
number of recycles is important for better performance, but it was also observed that too many 
recycles had a negative impact on performance. We also observed that enriching MSA with 
metagenomic sequences contributed to significant performance improvements. For both strategies, 
plDDT was found to be an efficient metric for selecting good predictive structures. 

While the results achieved by NuFold may not reach the same groundbreaking level as 
those of AlphaFold for proteins, several noteworthy distinctions emerge from our observations. 
Notably, we observed variations in certain aspects, such as the relationship between Multiple 
Sequence Alignment (MSA) depth and predictive performance. Unlike AlphaFold, where MSA 
depth has been reported to correlate with performance, NuFold did not exhibit a significant 
relationship in this regard. Several factors may contribute to this disparity. 

One possible explanation lies in the intrinsic differences between RNA and protein 
structure prediction. For RNA secondary structure prediction, which is similar to contact 
prediction in the protein field, there exists a baseline level of predictive performance even in 
methods that do not rely heavily on MSA. This contrasts with protein structure prediction, where 
MSA depth plays a more critical role. RNA secondary structure prediction benefits from the 
inherent nature of RNA, where the formation of hydrogen bonds between base pairs largely 
governs thermal structural stability. This problem can be addressed with dynamic programming 
techniques traditionally, offering a more straightforward solution compared to the complexities 
involved in protein folding. 

Additionally, the diverse structural motifs found in RNA molecules, including bulges, 
internal loops, and pseudoknots, present unique challenges. These motifs often deviate from the 
regular secondary structure patterns commonly seen in proteins. Therefore, NuFold's architecture 
and training approach can be tailored to account for these distinctive RNA structural features more. 
Furthermore, the varying degrees of structural conservation across RNA families can influence the 
effectiveness of MSA in predicting RNA structures. Unlike proteins, where conserved structural 
motifs are more prevalent, RNA structures can exhibit greater variability even within closely 
related sequences, making it challenging to extract universally applicable rules from MSAs. 

In recent bioinformatics, the application of machine learning has paved the way for solving 
a multitude of problems. This progress hinges on a symbiotic relationship between the extensive 
data collected by experimentalists and the continuous development of machine learning techniques. 
While AlphaFold's architecture stands as a testament to engineering ingenuity in the realm of 
protein structure prediction, the limited availability of RNA data underscores the necessity for a 
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multifaceted approach. To propel RNA structure prediction forward, the field demands not only 
increased data but also innovative architectural advances. These dual imperatives represent the 
path toward further breakthroughs in the field of computational biology. 
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Data and Code Availability 

The trained model we used in the paper and all the codes for inference will be available 
after we clean up the codes. 
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