

1 **Consequences of light spectra for pigment composition and gene expression in the**
2 **cryptophyte *Rhodomonas salina***

3

4 Rachel A. Schomaker^{1*}, Tammi L. Richardson^{2,3}, Jeffry L. Dudycha².

5 ¹Department of Biology

6 Minot State University, Minot, ND, USA

7 ²Department of Biological Sciences & ³School of the Earth, Ocean, & Environment

8 University of South Carolina, Columbia, SC, USA

9 *Author for correspondence, rachel.schomaker@ndus.edu

10

11 Keywords: light capture, phycoerythrin, photosynthesis, Cryptophyte, chromatic adaptation,
12 high-energy acclimation, sex, glycolysis

13

14 Author contributions: JLD and TLR conceived the work, RAS generated and analyzed data,
15 RAS, TLR, and JLD wrote the manuscript.

16

17

18

19

20

21

22

23

24

25

26

27 **Originality-Significance Statement**

28 Most work on light and algal photophysiology focuses on light intensity rather than light
29 spectrum. Given the large spectral variation of light in aquatic systems, explaining how such
30 algae respond to spectral variation will provide a better foundation for understanding the base of
31 aquatic food webs. Much of the light spectrum is poorly absorbed by chlorophyll, which creates
32 an opportunity for photosynthetic species with other pigments. We quantified physiological and
33 genetic responses to light spectrum in replicate experimental populations of *Rhodomonas salina*,
34 an alga with a phycoerythrin in addition to chlorophylls. We predicted photophysiology and gene
35 expression would change to maximize *R. salina*'s capacity to capture available light, in
36 accordance with the theory of chromatic acclimation. Our results show that responses to light
37 spectra are more complex than predicted. Some aspects of photophysiology did support the
38 theory's predictions, but gene expression was generally unrelated to variation of light spectrum
39 or photophysiology. This not only suggests that chromatic acclimation is potentially regulated
40 post-transcriptionally, but also that physiological processes – notably glycolysis and the
41 transition to sexual reproduction – that may be regulated by light spectrum. Our work adds to the
42 generally limited work on light spectrum and physiology by investigating a eukaryote from a
43 phylum with a great diversity of photosynthetic pigments.

44

45 **Summary**

46 Algae with a more diverse suite of pigments can, in principle, exploit a broader swath of
47 the light spectrum through chromatic acclimation, the ability to maximize light capture via
48 plasticity of pigment composition. We grew *Rhodomonas salina* in wide-spectrum, red, green,

49 and blue environments and measured how pigment composition differed. We also measured
50 expression of key light-capture and photosynthesis-related genes and performed a transcriptome-
51 wide expression analysis. We observed the highest concentration of phycoerythrin in green light,
52 consistent with chromatic acclimation. Other pigments showed trends inconsistent with
53 chromatic acclimation, possibly due to feedback loops among pigments or high-energy light
54 acclimation. Expression of some photosynthesis-related genes was sensitive to spectrum,
55 although expression of most was not. The phycoerythrin α -subunit was expressed two-orders of
56 magnitude greater than the β -subunit even though the peptides are needed in an equimolar ratio.
57 Expression of genes related to chlorophyll-binding and phycoerythrin concentration were
58 correlated, indicating a potential synthesis relationship. Pigment concentrations and expression
59 of related genes were generally uncorrelated, implying post-transcriptional regulation of
60 pigments. Overall, most differentially expressed genes were not related to photosynthesis; thus,
61 examining associations between light spectrum and other organismal functions, including sexual
62 reproduction and glycolysis, may be important.

63

64 **Introduction**

65 Photosynthesis is the remarkable metabolic process whereby organisms capture light energy
66 and use it to fix carbon dioxide into organic carbon compounds. The evolution of photosynthesis
67 resulted in an explosion of biodiversity across the globe, and understanding the functionality,
68 plasticity, and ecological consequences of this process remains an area of substantial interest.
69 Modern photosynthetic organisms have evolved to use chlorophyll-*a* in their reaction centers to
70 funnel light energy through the photosynthetic pathway. Chlorophyll-*a* is excellent at absorbing
71 blue (~400 – 490 nm) and red (~620 – 700 nm) wavelengths of the visible spectrum but it does

72 not efficiently absorb the remaining wavelengths, leaving a wide range of potentially untapped
73 energy that could be used for photosynthesis (Mackinney 1941).

74 Accessory pigments are light-absorbing compounds that differ among algal taxa and work in
75 conjunction with chlorophyll-*a* by capturing light that chlorophyll-*a* absorbs poorly (Blinks
76 1954; Glazer 1977; Gantt 1980; Stengel *et al.* 2011). As a result, phytoplankton accessory
77 pigments may open spectral niches that were not previously available, which can lead to
78 increased biodiversity within ecosystems, altered community dynamics, and ecosystem
79 functioning (Stengel *et al.* 2011; Sanfilippo *et al.* 2019). These potential effects of niche
80 differentiation and exploitation can have substantial downstream effects at both the community
81 and ecosystem level, especially because the spectral characteristics of aquatic environments can
82 vary substantially in time and space. Aquatic habitats rich in colored dissolved organic material
83 (CDOM) tend to be dominated by red light because CDOM strongly absorbs blue and violet light
84 (Blough and Del Vecchio 2002). Offshore oceans tend to be dominated by blue light because
85 they have low CDOM and low phytoplankton concentrations (Kirk 1994; Blough & Del Vecchio
86 2002), while coastal oceans are often green in appearance, as nutrient inputs promote
87 phytoplankton growth and hence high chlorophyll-*a* concentrations. As anthropogenic land-use,
88 eutrophication, and CDOM input into aquatic environments rise, the amount of spectral variation
89 across aquatic habitats may become more extreme (Roulet & Moore 2006; Kritzberg 2017;
90 Dutkiewicz *et al.* 2019; Luimstra *et al.* 2020). These changes could force natural phytoplankton
91 populations into new spectral environments, which can alter the ecosystem if the resident
92 organisms are unable to effectively occupy them.

93 One way phytoplankton can respond to shifts in the spectral environment is by adjusting the
94 ratio of various pigments in response to the spectral environment (Sanfilippo *et al.* 2019; Sebelik

95 *et al.* 2020). Known as chromatic acclimation (or chromatic “adaptation”), this is a form of
96 reversible phenotypic plasticity where photophysiology is adjusted to maximize light absorption
97 (Engelmann 1883; Gaidukov 1903; Hattori & Fujita 1959a,b; Fujita & Hattori, 1960a,b, 1962a,b,
98 1963; Bennett & Bogorad 1973). Chromatic acclimation is well-studied in cyanobacteria because
99 many species maintain a diverse pigment complement, including the accessory pigments
100 phycocyanin and phycoerythrin, which primarily absorb red (569-650nm) and green light (538-
101 568nm) respectively, along with chlorophylls (Campbell 1996; Stengel *et al.* 2011; Xia *et al.*
102 2016). Cyanobacteria shift their pigment composition and adjust the size of their phycobilisomes
103 to best suit the light characteristics of their habitats, broadening their fundamental niche and
104 giving them a competitive advantage where spectral variation occurs (Grossman 2003; Stomp *et*
105 *al.* 2004; Stomp *et al.* 2007; Montgomery 2017). Beyond cyanobacteria, physiological responses
106 to light spectrum are widespread across many different eukaryotic phytoplankton (Wallen &
107 Geen 1971; Rivkin 1989; Algarra *et al.* 1991; Figueroa *et al.* 1995; Granbom *et al.* 2001; Mouget
108 *et al.* 2004; Vadiveloo *et al.* 2017), and light spectrum has been shown to affect not only pigment
109 composition in eukaryotic phytoplankton, but growth rate, as well (Heidenreich & Richardson
110 2019), suggesting that light spectrum has major implications for phytoplankton fitness. However,
111 the molecular mechanisms of these responses are poorly known and research on how gene
112 expression in algae responds to changes in spectral irradiance is largely lacking; most such work
113 in algae involves the effects of light intensity but not light spectrum (e.g., Ho *et al.* 2009; Park *et*
114 *al.* 2010; Xiang *et al.* 2015; Nan *et al.* 2018; Li *et al.* 2019). Our aim is to begin remedying this
115 gap for a eukaryotic alga that has multiple photosynthetic pigments. Cryptophytes are a phylum
116 of single-celled eukaryotic algae that are ubiquitous across nearly all aquatic habitats and exhibit
117 remarkable diversity in visible pigmentation. Photosynthetic cryptophytes contain chlorophyll-*a*

118 and also maintain the accessory pigments chlorophyll-*c*₂, alloxanthin, α -carotene, and
119 phycobiliproteins (cryptophyte phycoerythrin and cryptophyte phycocyanin). Unlike
120 cyanobacteria, cryptophyte species each have only one type of phycobiliprotein (appearing either
121 green or red), which are the main light-harvesting pigments in cryptophytes (Glazer 1983; Hill &
122 Rowan 1989; Vesk *et al.* 1992; Blankenship 2002). These pigments are composed of two α
123 and β protein subunits, plus four chromophores known as phycobilins. The molecular structure
124 of the protein-chromophore complex is directly related to the wavelengths of light the pigment
125 can capture (Doust *et al.* 2004; Overkamp *et al.* 2014).

126 Phycobiliprotein evolution is associated with changes in light capture in cryptophytes
127 (Greenwold *et al.* 2019), but studies examining chromatic acclimation are conflicting or differ
128 greatly among clades (Ojala 1993; Kamiya & Miyachi 1984 a,b; Lawrenz & Richardson 2017;
129 Heidenreich & Richardson 2017). Our study aims to build off these previous observations in
130 order to better understand cryptophytes' ability to respond to light spectrum and to investigate
131 the molecular responses, which have not been studied previously. To do this, we investigated the
132 plasticity of pigment composition and gene expression (i.e., whether pigment composition and
133 expression level changes) in the cryptophyte *Rhodomonas salina* (which has cryptophyte
134 phycoerythrin-545) grown in different spectral environments. We asked the following questions:
135 1) How do the concentrations of pigments change in response to different spectral irradiance but
136 equal intensity? and 2) How does gene expression differ among spectral environments? We
137 examined the pigment and transcriptional responses for experimental populations grown in blue,
138 red, and green spectra. The blue vs. red light comparison represents the widest energy difference
139 between spectra (as one blue photon is more energetic than one red photon) and reflects distinct
140 habitats in the natural world. Green vs. red light also reflects distinct real-world habitats but

141 maximizes the differences in the expected light absorption due to molecular physiology. In
142 contrast, blue vs. green light comparisons represent distinct habitats that present more limited
143 energetic and light absorption differences. We also collected data for the wide-spectrum
144 environment our culture of *R. salina* had been growing in prior to the experiment as a baseline.
145 Based on the theory of chromatic acclimation, we expected that *R. salina* would respond to
146 maximize its capacity to capture available light; if *R. salina* was not plastically responsive to light
147 color, we expected to see no change in *R. salina*'s physiology or gene expression across light
148 spectra.

149 We investigated transcriptional responses at three different scales. First, we examined
150 expression of transcripts that encode the peptide components of cryptophyte phycobiliproteins,
151 predicting that they would correlate with concentration of the pigment and maximize available
152 light capture. For example, we expected to see an increase in phycoerythrin concentration in
153 green light, and we expected to see the genes encoding for the phycoerythrin subunit proteins to
154 be upregulated in green light to mirror this shift in concentration. Assuming changes in
155 concentration maximized light capture, we expected changes in concentration and gene
156 expression to remain stable in order to maintain this ability. Second, we examined expression of
157 99 genes that were *a priori* identified as participating in light capture or photosynthesis,
158 predicting that these loci would be most sensitive to light spectrum, but the direction of
159 regulation would be dependent upon each gene's function. Third, we examined genome-wide
160 expression to identify molecular processes that interact with light spectrum but may not have
161 obvious connections to light capture or photosynthesis. Because we do not know the specific
162 function of every gene in the *R. salina* genome, we did not have any specific hypotheses for the
163 direction of regulation we expected for many genes. We further sought to link our assessment of

164 pigment plasticity (change in pigment composition) and expression plasticity (change in
165 expression level) by testing for correlations between the two across our entire experiment.

166

167 **Results**

168 *Pigment Data*

169 ***Total pigments.*** Overall, there were no significant differences in total pigment across
170 spectra. Concentrations were highest in green light (10.80 ± 1.72 pg/cell) followed by wide-
171 spectrum cells, (7.40 ± 2.34 pg/cell), then blue (7.40 ± 2.80 pg/cell), and red light (7.10 ± 3.87
172 pg/cell). In all spectral environments, cryptophyte phycoerythrin comprised the greatest
173 percentage of the total pigment concentration, followed by chlorophyll-*a*, chlorophyll-*c₂*,
174 alloxanthin, and α -carotene.

175 ***Phycoerythrin concentrations.*** We saw the highest cryptophyte phycoerythrin
176 concentrations in cultures grown under green light (6.2 ± 0.60 pg/cell) and the lowest in those
177 grown in red light (2.7 ± 0.60 pg/cell) (Figure 1a). Populations grown in blue light and the wide-
178 spectrum light had average cryptophyte phycoerythrin concentrations of 4.6 ± 0.60 pg/cell and
179 3.8 ± 0.90 pg/cell, respectively (Figure 1a). The cryptophyte phycoerythrin concentrations were
180 significantly different between populations grown in green and red light (*p*-value = 0.0069; *F*-
181 value = 7.85; *df* = 2). We did not observe any other significant differences between the blue vs.
182 red or blue vs. green comparisons. For wide-spectrum, blue, and green light environments,
183 cryptophyte phycoerythrin comprised 50% or more of the total cellular pigment concentration
184 (50.5%, 62.0%, and 57.4% for wide, blue, and green light, respectively). Cryptophyte
185 phycoerythrin concentrations comprised only 37% of the total cellular pigment for cultures
186 grown in red light (Figure 2).

187 **Non-PBP pigment concentrations.** Chlorophyll-*a* concentrations were significantly
188 different between populations grown in red (2.5 ± 0.40 pg/cell) and blue light (1.4 ± 0.20
189 pg/cell) (*p*-value = 0.045; $Z = -2.00$). Populations grown in green light had an average
190 chlorophyll-*a* concentration of 2.6 ± 0.60 pg/cell, while those grown in the wide-spectrum
191 environment had 1.7 ± 0.20 pg/cell (Figure 1b). While populations grown in green light
192 exhibited the highest average chlorophyll-*a* concentrations compared to the other spectral
193 habitats, there were no significant differences observed between green light chlorophyll-*a*
194 concentrations and the other spectra. The percentage of total cellular pigment that is chlorophyll-
195 *a* differed with environment, with wide-spectrum, blue, green, and red-light environments
196 exhibiting chlorophyll-*a* percentages of 23.3, 18.6, 24.3, and 35.6%, respectively. Chlorophyll-*c2*
197 concentrations differed slightly across the different spectral environments, but there were no
198 significant differences between any spectral comparisons (Figure 2).

199 Alloxanthin and α -carotene concentrations (Figure 1c) were both significantly different
200 between and red and blue treatments (alloxanthin *p*-value = 0.037; $Z = -2.09$; α -carotene *p*-value
201 = 0.0061; $Z = -2.74$). Alloxanthin concentrations ranged from 4.0 ± 0.04 , 3.1 ± 0.03 , 4.4 ± 0.12 ,
202 and 6.8 ± 0.07 pg/cell in wide-spectrum, blue, green, and red light, respectively, while α -carotene
203 concentrations were 1.7 ± 0.04 , 1.0 ± 0.02 , 3.2 ± 0.13 , and 6.7 ± 0.11 pg/cell.

204

205 **Transcriptome Assembly**

206 Our final transcriptome assembly contained 24,167 contigs, had an N50 of 2,431 bp, and
207 had a GC content of 58.75%. Publicly available cryptophyte transcriptome assemblies of species
208 from the *Hemiselmis*, *Proteomonas*, *Cryptomonas*, *Chroomonas*, *Guillardia*, and *Rhodomonas*
209 clades (Marine Microbial Eukaryote Transcriptome Sequencing Project) range from 24,119 to

210 41,208 contigs with varying assembly metrics. Our *R. salina* assembly statistics thus fall within
211 the expected published range of cryptophyte transcriptomes. A previously assembled *R. salina*
212 transcriptome based on 50 bp reads assembled with Abyss (MMETSP1047-20130122) had
213 31,523 contigs and an N50 of only 1,650. Any disparities observed are likely due to differences
214 in assembly methods, sequencing depth, read length, or species' biological variation.

215 Of the 24,167 contigs in our assembly, we were able to identify 13,170 (54.50%)
216 transcripts by matching them to protein annotations from the Pfam-A, Rfam, OrthoDB, and
217 uniref90 databases. The remaining transcripts did not return an annotation hit across the protein
218 databases.

219 The results of our BUSCO analysis revealed that 63.0% of expected eukaryotic orthologs
220 (determined by the number of total complete BUSCOs, both single copy and duplicated) are
221 present in our assembly, while 32.7% and 46.5% of the complete chlorophyte and protist
222 BUSCOs were present, respectively (Table 1) (Simao *et al.* 2015).

223

224 *Differential Gene Expression Analysis and Exploration*

225 We found that neither of the cryptophyte phycoerythrin subunit genes were significantly
226 differentially expressed in any of our three spectral comparisons (FDR *p*-value < 0.05 and a \log_2
227 foldchange ≥ 2). To evaluate the potential for false negatives, we relaxed the FDR and
228 foldchange; this had no effect on the outcome in the blue vs. red or blue vs. green comparisons.
229 However, when the FDR cutoff was adjusted to 0.1 with a foldchange of 1.5, then expression of
230 the cryptophyte phycoerythrin β subunit gene was significantly downregulated in green light
231 compared to red light – opposite the pattern of the pigment's concentration. The cryptophyte
232 phycoerythrin α and β subunit gene expression patterns did not match that of the cryptophyte

233 phycoerythrin concentrations. For the α -subunit gene(s), we observed the highest expression in
234 wide-spectrum light (2,254 TPM) and the lowest in blue (1,306 TPM) and red light (1,301
235 TPM), but for the β subunit, red light cultures exhibited the highest expression (103 TPM), while
236 the wide-spectrum, blue, and green light cultures were nearly the same (72, 71, and 65 TPM,
237 respectively) (Figure 3).

238 When we performed these same comparisons for our *a priori* photosynthesis gene set, we
239 found that very few photosynthesis-related genes were significantly differentially expressed
240 between light spectra. With the standard FDR of 0.05, 9 genes were differentially expressed in
241 the blue vs. red treatments, while there were none in either the green vs. red or green vs. blue
242 comparisons. When we relaxed the FDR to 0.1 with a \log_2 foldchange ≥ 2 , we saw 12
243 differentially expressed genes in blue vs. red, 5 for green vs. blue, and still none for green vs.
244 red. We did not see any evidence for differential expression of photosynthetic genes in the green
245 vs. red comparison until we reached an FDR of 0.14 with no specified \log_2 foldchange, where we
246 then had 2 genes returned. The top annotated differentially expressed genes for each of our
247 photosynthetic comparisons are outlined in Table 2A-C.

248 When we ran the analysis for the complete gene set, we found that 1,290 genes were
249 significantly differentially expressed in the blue vs. red comparison with an FDR *p*-value < 0.05
250 and a \log_2 foldchange ≥ 2 . Of these, 990 were upregulated in blue light, while 300 were
251 upregulated in red light (Figure 4; Figure 5; Figure S2a). Our gene ontology results suggest that
252 the genes upregulated in blue light were involved in a wide array of functions, including
253 oxidation-reduction processes, translation, transmembrane transport, carbohydrate metabolic
254 processes, transcriptional regulation, cell signaling, transduction, and communication, and
255 various biosynthetic processes, such as phospholipid and nucleotide biosynthesis. Those

256 upregulated in red light were primarily involved in translation, transmembrane proteins and ion
257 transport, oxidation-reduction processes, and photosynthetic electron transport.

258 For the green vs. red comparison, 1,826 genes were significantly differentially expressed
259 (FDR p-value < 0.05; \log_2 foldchange ≥ 2) (Figure 4; Figure 5; Figure S2b). Of these 1,826, only
260 232 were upregulated in red light and 1,594 were upregulated in green light. Both green- and
261 red-light environments saw an upregulation of different genes involved in biological processes
262 primarily involved in oxidation-reduction processes, transmembrane transport, and protein
263 phosphorylation. Green light also upregulated genes involved in carbohydrate metabolic
264 processes, transcription and translational regulation, DNA replication and repair, and multiple
265 RNA processing mechanisms, including mRNA, rRNA, and tRNA processing, mRNA splicing,
266 RNA polymerase regulation, and mRNA catabolism.

267 Only fifty genes were significantly differentially expressed between blue and green light.
268 Of these, 39 were upregulated in blue light, while 11 were upregulated in green light (FDR p-
269 value < 0.05; \log_2 foldchange ≥ 2) (Figure 4; Figure 5; Figure S2c). The fifty genes included
270 ones that were functionally involved in methyltransferase activity, tyrosine phosphatase function,
271 DNA binding, transcriptional regulation, and protein folding and transport.

272 Many of the top differentially expressed genes could not be identified across any of the
273 protein databases used in our dammit annotation pipeline, nor when we tried identifying their
274 potential annotation using the NCBI conserved domain database (CDD) (Lu *et al.* 2020). Thus, it
275 is apparent that some transcriptionally active and spectrally responsive regions of the *R. salina*
276 genome are currently unannotated and may require extension or deeper exploration.

277

278 *Correlation Analysis*

279 We found no significant correlations between cryptophyte phycoerythrin pigment
280 concentration and protein subunit expression (both α and β subunits). When we tested for
281 correlations among expression patterns of the photosynthetic gene set and the various pigment
282 concentrations, we found a total of 14 genes were significantly (p -value < 0.05) correlated with
283 chlorophyll- a and chlorophyll- c_2 concentration (Supplemental Table 2). Most of these genes
284 were related to PSI and PSII synthesis, chlorophyll binding proteins, or ATP synthesis, and two
285 were related to cryptophyte phycoerythrin synthesis or function. One gene encoding for a
286 chlorophyll A-B binding protein (transcript 22761 in our assembly), a protein that binds to
287 chlorophyll to form light-harvesting complexes (Dittami *et al.* 2010; Sturm *et al.* 2013; Hey and
288 Grimm 2020), was significantly correlated with cryptophyte phycoerythrin concentration
289 (coefficient = 0.499, p -value = 0.049). Twenty-four genes were significantly correlated with the
290 photoprotective pigments (Supplemental Table 3). Of these twenty-four, six were chlorophyll
291 binding proteins that all exhibited negative correlations; five were related to ATP synthesis that
292 all had positive correlations; nine were proteins for PSI or PSII synthesis and function, which
293 were mostly positively correlated; and one was the RuBisCo large subunit (*rbcL*), which had a
294 significantly positive correlation.

295

296 **Discussion**

297 For aquatic photosynthetic organisms, light is often a major limiting resource and cause
298 of competition, thus organisms efficient at exploiting a broader range of light colors should have
299 an advantage over those with more limited absorption options. We examined the physiological
300 plasticity in pigment composition and gene expression in *R. salina* grown in wide-spectrum,
301 blue, green, and red light. We expected that differences in pigmentation would follow the general

302 theory of chromatic acclimation (Engelmann 1883, 1902; Gaiducov 1902, 1903), where
303 pigments (type and concentrations) adjust to optimize absorption of wavelengths of available
304 light, and we expected gene expression of pigment-related genes to follow the same pattern. We
305 also predicted that other photosynthesis-related genes would have high expression sensitivity to
306 changes in light color, but we did not expect that many non-photosynthesis-related genes would
307 respond to spectrum. Our data partially supported the theory of chromatic acclimation, but some
308 deviations from expected pigment concentrations and the lack of clear drivers at the level of gene
309 expression suggest that plastic responses to light spectrum are more complex than the theory
310 assumes.

311

312 *Are cryptophyte pigments maximizing their capacity to capture available light?*

313 *R. salina* contains cryptophyte phycoerythrin 545, which efficiently absorbs green
314 wavelengths of light (with a maximum absorption peak at 545 nm). Because of this, we expected
315 that the absolute concentration of phycoerythrin would increase when *R. salina* grew in a green-
316 dominated environment. Our results supported this prediction. Because the cryptophyte
317 phycoerythrin is the major light-harvesting pigment in *R. salina* and it absorbs green light better
318 than chlorophylls do, this suggests that *R. salina* is maximizing its ability to capture light in
319 green wavelengths. In red light, we saw that as a proportion of total cellular pigments
320 cryptophyte phycoerythrin decreased by 12% compared to the wide-spectrum control;
321 chlorophyll-*a* counterbalanced this with a 12% increase (though this was not statistically
322 significant). This suggests that *R. salina* exhibited an investment tradeoff in pigment composition
323 in red light, perhaps using chlorophyll-*a*, which absorbs red better than phycoerythrin does, as
324 the primary photosynthetic absorption compound. These particular differences of pigment

325 concentrations and ratios in green and red light were the strongest we observed and are
326 consistent with the theory of chromatic acclimation.

327 Other patterns, however, cannot be explained by chromatic acclimation. For example,
328 phycoerythrin was present in red light and both chlorophylls were present in green light even
329 though these pigments do not efficiently absorb these corresponding wavelengths. It is unclear
330 why these pigments were not degraded in environments where other pigments would be more
331 useful. Second, pigment composition in a blue environment runs counter to expectations from
332 chromatic acclimation. Chlorophylls absorb blue light better than cryptophyte phycoerythrin, yet
333 in our blue environment *R. salina* produced a large amount of phycoerythrin and a modest
334 amount of chlorophylls, exhibiting the lowest percent of chlorophyll relative to the total pigment
335 concentration in blue light compared to all other treatments. Third, *R. salina* produced an
336 unexpectedly large amount of chlorophyll-*a* in green light. While some chlorophyll-*a* is always
337 necessary for photosynthesis (because chlorophyll complexes mediate the transfer of energy
338 from phycoerythrin to photosystem II in cryptophytes; Scholes, *et al.* 2006), the lower amounts
339 in blue and wide-spectrum light suggest an excess is being produced in green light. Even though
340 other aspects of pigments in red and green light support chromatic acclimation, the high
341 chlorophyll-*a* in green light, the high phycoerythrin in red light, and the preferential presence of
342 phycoerythrin in blue light shows that in some circumstances *R. salina* invests in producing
343 pigments poorly suited to the ambient light environment.

344 After ten mitotic generations of acclimation in constant environments, it is implausible to
345 attribute these ineffectual pigments to persistence from the past. We therefore examined possible
346 relationships between pigment concentrations to evaluate the plausibility that connections
347 between synthesis pathways could explain these observations. Our analysis did not reveal any

348 significant correlations between chlorophyll and phycoerythrin concentrations, so linked
349 biosynthesis pathways also cannot directly explain our patterns of pigment plasticity. However,
350 we did find a suggestive correlation between transcription of a chlorophyll binding protein gene
351 (chlorophyll A-B binding protein) and phycoerythrin concentration, and two genes related to
352 phycoerythrin synthesis (a phycoerythrin lyase and a potential phycoerythrin α -subunit)
353 correlated with chlorophyll concentrations. These genes are strong candidates for further study of
354 how chlorophyll and phycoerythrin synthesis may be related at a molecular level. It is possible
355 that chlorophyll synthesis may be partially linked to phycoerythrin synthesis in *R. salina*, even
356 though this isn't reflected in the pigment concentrations themselves. While we have an
357 understanding of how the synthesis pathways for the cryptophyte phycobilins and chlorophylls
358 are structured (Hill & Rowan 1989; Gantt 1996; Scholes *et al.* 2006; Dammeyer & Frankenberg-
359 Dinkel 2008; Overkamp *et al.* 2014), we do not know if or how these synthesis pathways may be
360 co-regulated, particularly with respect to light spectrum. We do, however, know that the
361 chlorophyll binding proteins work to pass energy from membrane chlorophylls and accessory
362 pigments to the photoreaction centers, and this energy transfer is much more efficient between
363 membrane chlorophylls, phycobiliproteins, and the reaction centers than it is between the
364 carotenoids and the reaction centers (Rathbone *et al.* 2020; Sibelik *et al.* 2020), which could
365 explain why 1) we see a suggestive correlation between chlorophyll binding proteins and
366 phycoerythrin concentration and 2) why we see unexpected discrepancies in how other accessory
367 pigments respond to the various light spectra.

368 The surprisingly low concentrations of chlorophylls in blue light point toward another
369 mechanism contributing to pigment spectral plasticity: high-energy light acclimation of
370 chlorophyll via a mechanism other than quantity. The absorption and photosynthetic efficiency

371 of chlorophyll-*a* is influenced by light spectrum, such that the overall quantum yield of
372 photosynthesis (measured by the amount of oxygen produced per quantum absorbed) increases in
373 high-energy wavelengths, i.e., blue light (Yocum & Blinks 1957; Vadiveloo *et al.* 2015). As a
374 result, there may be less chlorophyll-*a* when *R. salina* is grown in this environment because the
375 chlorophyll-*a* itself became more efficient when acclimated to blue light compared to red or
376 green light. This is consistent with Heidenreich and Richardson (2019), who saw a decrease in
377 cellular chlorophyll concentrations when both phycoerythrin- and phycocyanin-containing
378 cryptophytes were shifted from wide-spectrum to blue-spectrum light, suggesting a possible
379 acclimation response similar to those induced by high light intensity.

380 Light interception by photoprotective pigments may also influence light available for
381 capture by photosynthetic pigments, and thereby influence photosynthetic pigment composition.
382 Cryptophyte photoprotective pigments, alloxanthin and α -carotene, have been shown to respond
383 to high light intensities (Mendes *et al.* 2018; Kana *et al.* 2019), but less is known about how they
384 respond to changes in light color. Even though alloxanthin and α -carotene both absorb blue
385 wavelengths efficiently, we found the photoprotective pigment concentrations to be lowest in
386 blue light. It is possible that, as with chlorophyll-*a*, absorption efficiency changes with spectrum,
387 and fewer pigment molecules are then needed to absorb the same amount of energy in blue light
388 as in longer wavelengths, but we know of no evidence to indicate whether that happens.

389

390 *How do cryptophyte phycoerythrin genes respond to light spectrum at the transcript level?*

391 We expected to see an increase in expression of the cryptophyte phycoerythrin α and β
392 subunit genes in green light to drive chromatic acclimation, and we predicted that expression of
393 these genes would show the same pattern as the pigment concentration. Although our estimate of

394 α subunit gene expression was higher in green than blue or red light, this was not statistically
395 significant, and the overall pattern did not match that of the phycoerythrin pigment. This
396 suggests that post-transcriptional regulatory mechanisms are the primary determinants of
397 phycoerythrin concentrations.

398 Most striking, however, was the expression disparity between the α and β subunits. The α
399 subunit gene was expressed at a much higher level on average (~1,670 TPM) compared to the β
400 subunit (~78 TPM) across all four treatments, and expression of the two subunits was not
401 correlated. This is noteworthy since they compose the overall cryptophyte phycoerythrin
402 structure in a 1:1 molar ratio ($\alpha\alpha'\beta\beta$), and thus we expected them to be expressed at similar
403 levels and to covary (Richardson 2022). This unexpected relationship between α and β subunit
404 expression could be due to the differences in evolutionary history between the two subunit genes.
405 The α subunit is encoded in the nucleus (Apt et al. 1995; Douglas & Penny 1999; Curtis et al.
406 2012), which originated from a hypothesized cryptophyte heterotrophic ancestor, and the β
407 subunit is found in the chloroplast genome (Douglas & Penny 1999; Khan et al. 2007; Donaher
408 et al. 2009; Harrop et al. 2014; Kim et al. 2015; Kim et al. 2017), originally descended from the
409 red-algal endosymbiont. A combination of nuclear and plastid photosynthesis-encoding genes is
410 common in many photosynthetic organisms, where genes located in the nucleus encoding
411 proteins that must be imported into the chloroplast (Eberhard *et al.* 2008; Keeling, 2013; Ute *et*
412 *al.* 2013). Once these proteins are in the chloroplast, they are assembled into larger complexes
413 for full functionality (Celedon and Cline 2013). Proteins that must be assembled in the thylakoid
414 luminal space must cross multiple barriers between the nuclear envelope and the chloroplast
415 membranes. It is possible that increased expression of nuclear genes ensures that sufficient
416 peptides make it to their final destination and any excess proteins are degraded (Eberhard *et al.*

417 2008), though Gould *et al.* (2007) showed that the phycoerythrin α -subunit isolated from the
418 cryptophyte *Guillardia theta* was able to cross the five membranes between the nucleus where it
419 is synthesized and the thylakoid lumen where it is processed. Alternatively, since chloroplast-
420 encoded transcripts are long-lived (Hosler *et al.* 1989), it is possible that the chloroplast-encoded
421 phycoerythrin β subunit does not need to be transcribed at the same level as the nuclear-encoded
422 α subunit for the overall cryptophyte phycoerythrin protein complex to be synthesized and
423 assembled (Hosler *et al.* 1989; Kim *et al.* 1993).

424 Kieselbach *et al.* (2018) showed that *Guillardia theta*, another phycoerythrin-containing
425 cryptophyte, has 20 α -subunit genes that can be expressed at the protein level for cells grown in
426 wide-spectrum light. This indicates that there may be a wide pool of α -subunit genes in some
427 cryptophytes that are available when new phycobiliproteins need to be created, and that
428 cryptophytes may alter their phycobiliprotein α -subunit structure as needed by expressing
429 different α subunit genes. This has been suggested as an alternative way that cryptophytes may
430 respond to changes in light availability in place of chromatic acclimation. If this hypothesis were
431 true, then it is logical to think that the α gene expression may be expected to be higher than the β .
432 Spangler *et al.* (2022), however, showed that other cryptophytes with phycoerythrin, such as
433 *Proteomonas sulcata*, did not modify their phycobiliprotein α -subunits when exposed to blue or
434 green light for two weeks, which is the approximate length of time *R. salina* was left in various
435 spectra in this study. Because of duration of our experiment, it is unlikely that even if there were
436 multiple α subunits available in the *R. salina* genome, that the protein structure would be altered,
437 but more research into the actual phycobiliprotein structural differences in various spectra is
438 needed to determine this for certain.

439

440 *How do photosynthesis-related genes respond to light spectrum at the transcript level?*

441 We saw changes in expression of phycoerythrin subunits and chlorophyll binding
442 proteins in the different spectral environments as mentioned above, along with various
443 photosystem I and II encoding proteins. Of the sixty-six transcripts annotated as potential
444 chlorophyll binding proteins in our assembly, only three were significantly differentially
445 expressed. We also had only three transcripts encoding for phycoerythrin subunits and lyases that
446 were significantly differentially expressed in any of our spectral comparisons. Curiously, these
447 genes did not have any consistent pattern (i.e., not all the chlorophyll binding proteins were
448 upregulated in red or blue light; not all of the phycoerythrin subunits were upregulated in green
449 light, etc.). Transcripts encoding various chlorophyll binding proteins were upregulated in blue
450 light, red light, and green light; transcripts encoding different phycoerythrin subunits and lyases
451 were also upregulated in all three light spectra. Determining why this is so will require detailed
452 functional investigation into the individual proteins.

453 We found that genes for the RuBisCo large subunit (rbcL) were significantly upregulated
454 in red light compared to blue, even though the small subunit (rbcS) was not differentially
455 expressed across any of the comparisons. RuBisCo is directly involved in carbon assimilation
456 during photosynthesis and is considered the ultimate rate-limiting component in carbon fixation.
457 Changes to RuBisCo subunit gene expression leads to a change in RuBisCo protein synthesis and
458 overall carbon fixation (Pichard *et al.* 1993; Pichard *et al.* 1996; Patel and Berry 2008; Kim *et al.*
459 2014). Generally, RuBisCo activity and protein synthesis is directly related to light intensity, but
460 spectrum has been suggested to influence RuBisCo gene expression and protein synthesis as
461 well. Eskins *et al.* (1991) found that blue light enhanced protein synthesis and activity over red
462 light in soybean plants, but that this effect was diminished with the addition of far-red light. In a

463 study using *Chlorella vulgaris*, Kim *et al.* (2014) found that rbcL expression was higher in blue
464 light compared to red or wide-spectrum light. Our results possibly differ from these previous
465 studies because of differences in the study organisms and their corresponding pigment
466 complements, leading to increased carbon fixation in red light compared to blue light. However,
467 information on carbon fixation and photosynthesis rates would be needed to determine this with
468 more certainty.

469 Overall, we did not see many significant differences in expression of pigment-related
470 genes across the different treatments, which is somewhat unexpected in comparisons where we
471 saw significant differences in pigment composition. This discrepancy between the gene
472 expression profile and pigment composition may be a result of post-transcriptional and post-
473 translational modification (Rochaix 1992, 1996; Gruisse 1993), which has been shown to
474 occur in response to changes in light intensity and spectrum in plants (Deng *et al.* 1989). Also,
475 decreasing the transcription of chloroplast-encoded genes does not always affect the rates of their
476 corresponding protein synthesis, so it could be that the transcription levels for the pigment-
477 related genes do not reflect the actual pigment concentrations for this reason (i.e., the mRNA
478 transcript:translated protein product ratio is not necessarily 1:1 (Kim *et al.* 1993)). We note that
479 we did not measure pigment concentration and gene expression at multiple time points to
480 determine if the concentrations and levels of expression change over the length of exposure to
481 the treatment environments, so we cannot conclude for certain that these discrepancies are a
482 result of post-transcriptional or post-translational regulation or if this discrepancy is instead an
483 acclimation response (i.e., perhaps at the time in which we sampled for gene expression,
484 transcription of the genes was reduced, but the pigment concentrations still remained higher from
485 previous generations since being placed in the new environments).

486

487 *What other functions respond to light spectrum at the transcript level?*

488 Last, we ran differential expression analysis of our complete gene set to test for
489 significant differences in expression of non-photosynthetic genes across spectra. One particularly
490 interesting gene encodes for a domain of an “algal minus-dominance protein,” which is a protein
491 related to the differentiation of mating types in other algal taxa. This gene was upregulated in
492 blue light compared to all other spectral environments in our experiment. In the green alga
493 *Chlamydomonas reinhardtii*, this gene is involved in gametic differentiation and can be regulated
494 by a combination of nitrogen starvation and blue wavelengths, where nitrogen starvation initiates
495 gametogenesis and blue light triggers the completion of the process (Beck and Haring 1996;
496 Ferris and Goodenough 1997; Lin and Goodenough 2007; Chardin *et al.* 2014). Additionally, our
497 annotation pipeline identified 56 genes (though they were not differentially expressed with light
498 spectra) with putative functions similar to the RWP-RK domain-containing transcription factors,
499 which have been shown to be involved in regulating cell differentiation, sexual reproduction, and
500 nitrogen responses in vascular plants, slime molds, and green algae (Konishi & Yanagisawa
501 2013; Chardin *et al.* 2014; Tedeschi *et al.* 2016; Ota *et al.* 2019). Cryptophytes reproduce
502 asexually, but there has been speculation that sexual reproduction is possible due to observations
503 of cellular fusions (Hoef-Emden & Archibald 2016; Kugrens & Lee 1988) and accounts of
504 dimorphism in clonal cultures (Hill & Wetherbee 1986; Hoef-Emden & Melkonian 2003).
505 Changes in cell signaling due to shifts in light spectra is a mechanism that has been shown to
506 trigger reproductive switches in other algal groups (Dring 1987; Hoham *et al.* 1997; Hoham *et*
507 *al.* 2000; Tardu *et al.* 2016) and may be a potential avenue of investigation for understanding
508 switches between reproductive mechanisms in cryptophytes.

509 We also saw a change in glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
510 expression, which was upregulated in red light compared to green. GAPDH catalyzes the sixth
511 step of glycolysis, though it can also be involved in mRNA regulation, tRNA export, and DNA
512 replication or repair (Huang *et al.* 1989; Sirover 1998; Qiu *et al.* 2020). This shift in GAPDH
513 expression may be indicative of a shift in carbon metabolism or trophic strategy, such as
514 decreasing photosynthetic function in favor of heterotrophic function (i.e., performing
515 mixotrophy). Mixotrophy has been suggested as a form of metabolic function in cryptophytes
516 (Kugrens & Lee 1990; Gervais 1997; Roberts & Laybourn-Parry 1999; Yoo *et al.* 2017),
517 including in *R. salina* (Lewitus *et al.* 1991), though there would need to be more experimentation
518 to investigate this in greater detail. Generally, trophic strategy modification and switches in
519 carbon metabolism have been extensively studied with regard to light *intensity* (e.g. Lewitus *et*
520 *al.* 1991; Caron *et al.* 1993; Rottberger *et al.* 2013; McKie-Krisberg *et al.* 2015), but there are
521 fewer studies on the effects of light *spectrum* on carbon metabolism (e.g., Hamada *et al.* 2003;
522 Das *et al.* 2011).

523 Many studies examining the physiological effects of red and blue spectral habitats exist
524 (e.g. Figueroa *et al.* 1994; Hoham *et al.* 1997; Ullrich *et al.* 1998; Aguilera *et al.* 2000; Korbee *et*
525 *al.* 2005; Kim *et al.* 2019), and gene expression work has increased over the years, including
526 work with green algae (Hermsmeier *et al.* 1991; Lee *et al.* 2018; Li *et al.* 2020), brown algae
527 (Deng *et al.* 2012; Wang *et al.* 2013), red algae (Lopez-Figueroa 1991; Tardu *et al.* 2016), and
528 stramenopiles (Takahashi *et al.* 2007; Losi & Gartner 2008). In many of these gene expression
529 studies, blue wavelengths result in a greater number of upregulated genes than red wavelengths,
530 which we also observed in *R. salina*. In all our comparisons, the higher-energy wavelengths of
531 each pairing (blue light in the blue vs. red; green light in the green vs. red; blue light in the blue

532 vs. green) resulted in the greatest number of significantly upregulated genes, regardless of
533 whether the genes were related to photosynthetic function or not. We are unsure if this is a result
534 of high-energy acclimation or if this is simply because higher-energy light triggers a broader net
535 of molecular pathways (potential photomorphogenesis, photoprotection, DNA repair, pigment
536 biosynthesis, etc.) than the lower-energy wavelengths.

537 Additionally, blue light has been shown to upregulate genes involved in pigment
538 biosynthesis, circadian rhythm, photoreactivation (DNA repair after exposure to UV-B light),
539 regulation of reactive oxygenic species (ROS) during photosynthesis, and photomorphogenesis
540 (growth and reproductive characteristics) (Wang *et al.* 2013; Tardu *et al.* 2016). Genes
541 upregulated in red light commonly include genes involved in light-harvesting proteins and
542 general photosynthetic function (Wang *et al.* 2013; Deng *et al.* 2012; Lee *et al.* 2018; Tardu *et*
543 *al.* 2016; Losi & Gartner 2008; Takahashi *et al.* 2007; Hermsmeier *et al.* 1991; Li *et al.* 2020),
544 which is consistent with what we have found in the present study. The potential effects of green
545 light on algal transcriptomes compared to other light spectra is still a widely unexplored avenue
546 of study, given that most of the existing work focuses on the physiological effects of green-light
547 dominated habitats on different algal species and does not include the molecular consequences
548 (Lopez-Figueroa 1991; Hoham *et al.* 1997; Heidenreich & Richardson 2019).

549

550 Conclusion

551 We quantified differences in pigment composition and gene expression by *R. salina*
552 cultures grown in wide-spectrum, blue-, green-, and red-light environments. *R. salina* appeared
553 to maximize its capacity to capture available wavelengths using its main light-harvesting
554 pigment (cryptophyte phycoerythrin), but the other pigments exhibited more complex responses

555 to light spectrum than can be predicted by the theory of chromatic acclimation. Additionally,
556 cryptophyte phycoerythrin concentrations and expression of phycoerythrin genes are not directly
557 correlated as we expected, and differences observed may be explained by the evolutionary
558 origins of the subunits and by post-transcriptional regulation. We hypothesize that post-
559 transcriptional and post-translational regulatory mechanisms are responsible for discrepancies
560 observed between broader photosynthetic-related gene expression and physiological results.

561 Overall, photosynthetic-related gene expression is not sensitive to light spectrum, while
562 some non-photosynthetic genes are regulated by light color, which was unexpected. Of particular
563 interest, we have found genes related to sexual reproduction in the *R. salina* transcriptome that
564 could be investigated further. Sexual reproduction in cryptophytes is not well understood and has
565 only been discussed in a handful of studies; thus, future work can use these genes to examine
566 potential triggers of sexual reproduction and to further our understanding of this process in the
567 cryptophyte group.

568 The mechanisms controlling photosynthetic gene expression and protein synthesis in *R.*
569 *salina*, and more broadly in the phylum Cryptophyta overall, remains poorly understood.
570 Because cryptophytes exhibit such a wide diversity of phycobilin types that are only partially
571 associated with phylogenetic history, questions also remain concerning how cryptophytes with
572 different pigment complements, and thus potentially different ecological niches, may respond to
573 shifts in spectral habitat.

574

575 **Experimental Procedures**

576 Growth and Treatment Conditions

577 **Baseline cultures.** We grew five replicate cultures of *Rhodomonas salina* CCMP 1319
578 (from the National Center for Marine Algae and Microbiota at the Bigelow Laboratory for Ocean
579 Sciences) in 150 mL of L1-Si media (Guillard & Ryther 1962) in a Conviron walk-in incubator
580 (Controlled Environments, Inc., Manitoba, Canada) kept at 20°C. These replicate cultures were
581 grown under a wide-spectrum light environment (LumiBar Pro LED Light strip, LU50001;
582 LumiGrow, Emeryville, CA, USA) at ~30 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ on a 12:12 hr light:dark cycle.
583 Gas exchange and pH was not monitored, but all cultures were grown in the same experimental
584 chamber and in the same media, so these conditions should not have varied. We swirled each
585 replicate culture by hand daily to prevent settling and help aeration.

586 **Experimental populations.** Once the baseline cultures reached mid-exponential phase (5-
587 7 days after inoculation), we used the five replicate cultures to inoculate four experimental
588 populations from each by transferring 5 mL of the culture into 300 mL of fresh media for a total
589 of 20 experimental populations. One experimental population derived from each replicate
590 baseline culture was randomly assigned to each light spectrum treatment.

591 **Treatment Conditions.** We placed all experimental populations in four separate light
592 environments: wide-spectrum; blue-dominated, green-dominated, and red-dominated, each
593 maintained at ~30 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ at 20°C, which is comparable to low-light conditions
594 cryptophytes usually inhabit in nature. Like the wide-spectrum environment, the blue and red
595 lights were maintained by LumiBar Pro LED light strips (LU50001; LumiGrow, Emeryville,
596 CA, USA), but the green light environment was provided by an EvenGlow® RGB LED panel
597 (Super Bright LEDs Inc., St. Louis, MO, USA). (Spectra for each environment can be found in
598 Supplemental Figure 1.) We left each population to acclimate in each treatment environment for
599 10 generations (assuming population intrinsic growth rates of 0.39, 0.43, 0.44, and 0.52, per day

600 in wide-spectrum, green, red, and blue light respectively, as quantified by Heidenreich and
601 Richardson 2019 in the same experimental chambers, meaning that the length of time to reach 10
602 generations for each treatment varied with growth rate). 10 generations is generally accepted as
603 the minimum requirement for algal species to reach balanced growth conditions in new
604 environments (Parkhill *et al.* 2001). During acclimation, we transferred the populations to new
605 media after ~5 generations (~7 days) to ensure they remained in nutrient-replete conditions.
606 After the populations were acclimated, we sampled for pigments and RNA.

607

608 Pigment Analyses

609 **Cryptophyte Phycoerythrin Analysis.** We calculated cryptophyte phycoerythrin
610 concentrations using the freeze-thaw centrifugation method of Lawrenz *et al.* (2011). We took 15
611 mL aliquots of each experimental population and centrifuged them at 2,054 g in a Sorvall RC-4B
612 centrifuge for 10 minutes. The supernatant was removed, and the cell pellet was resuspended in
613 0.1 M phosphate buffer (pH = 6). We then froze the samples at -20°C for a minimum of 24
614 hours. After freezing, we thawed the samples at 5°C for 24 hours. The thawed samples were then
615 centrifuged at 11,000 g in a Beckman Coulter 18 Microfuge for 5 minutes to remove excess cell
616 material. We measured the absorbance of the remaining supernatant against a phosphate buffer
617 blank in a 1 cm quartz glass cuvette using a Shimadzu UV-VIS 2450 dual-beam
618 spectrophotometer from 400 to 750 nm in 1 nm intervals. Data were scatter-corrected by
619 subtracting the absorbance at 750 nm from the maximum absorption peak (Lawrenz *et al.* 2011).
620 Information on how the concentrations were calculated can be found in the supplemental
621 information.

622 ***Non-Phycoerythrin Analyses.*** For determination of chlorophyll-*a*, chlorophyll-*c*₂,
623 alloxanthin, and α -carotene concentrations, we filtered 5 mL of each experimental population
624 onto a 25 mm Whatman GF/C filter (GE LifeSciences, Buckinghamshire, UK). These samples
625 were then processed using high performance liquid chromatography (HPLC) to obtain pigment
626 concentrations for each sample. Details for analyzing phytoplankton pigment samples using
627 HPLC can be found in Pinckney *et al.* (1996). Filters were freeze-dried overnight, then pigments
628 were extracted for 24 h at -20°C with 750 μ L of 90% acetone with 50 μ L of a synthetic carotenoid
629 as an internal standard. The extracted solution was filtered through a 0.45 μ m syringe filter, and
630 250 μ L was injected into a Shimadzu HPLC. Chromatograms were analyzed by comparing
631 retention times and absorption spectra to known standards (HDI, Horsholm, Denmark).
632 Phycobiliprotein concentration cannot be measured with HPLC, which is why the phycoerythrin
633 and non-phycoerythrin pigment concentration measurements were conducted with different
634 methods.

635 **Statistical Analyses.** We first checked the normality and homogeneity of our data using
636 Shapiro-Wilk and Levene's tests. Then, we ran an Analysis of Variance (ANOVA) with a Tukey
637 post-hoc comparison or a Kruskal-Wallis test with a Dunn's Multiple Comparison of Means
638 post-hoc comparison to test for significant differences in pigment concentrations across all four
639 treatments. An ANOVA was used for normally-distributed data (phycoerythrin), while the
640 Kruskal-Wallis test was used if data were non-normally distributed (chlorophyll-*a*, chlorophyll-
641 *c*₂, alloxanthin, and α -carotene).

642

643 **RNA Extractions, Sequencing, and Transcriptome Assembly**

644 After taking samples for pigment analyses, we spun the remainder of each culture (270
645 mL) in 500 mL centrifuge bottles at 3024g for 30 minutes (Beckman Coulter J2-21 centrifuge;
646 JA-20 rotor) to pellet the cell material. The supernatant was removed, and the remaining cell
647 pellet was split into two pre-weighed 2 mL microcentrifuge tubes. We split each pelleted culture
648 into two samples: 1) to ensure we had at least one sample for sequencing if the RNA from one
649 extraction was of poor quality and 2) to allow us to send off technical replicates for sequencing
650 to test for variation within biological replicates.

651 We spun the microcentrifuge tubes at 3000g (Beckman Coulter 18 Microfuge) for 12
652 minutes. The supernatant was removed, and then the pellets were weighed. If the pellet mass was
653 between 50-100 mg, we lysed the cells with 1 mL of Bio-Rad PureZOL reagent; if the mass was
654 less than 50 mg, we used 0.5 mL of reagent. The remainder of our extraction protocol followed
655 the standard TRIzol RNA isolation procedure (detailed in the ThermoFisher Scientific Invitrogen
656 TRIzol Reagent User Guide, Pub. No. MAN0001271, Rev. B.0), with the exception of adding a
657 second ethanol wash step prior to elution to increase the purity of the RNA.

658 We sequenced each sample with 150bp paired-end Illumina sequencing, generating an
659 average of 30,892,204 reads per sample after trimming. Library preparation was performed at
660 Duke using the Illumina Tru-seq RNA poly-A tail enrichment sample library prep kit. We built
661 transcriptome assemblies with Trinity (Grabherr, et al 2011) and Velvet-Oases (Schulz, et al
662 2012), and combined them with EviGene (Gilbert 2013). Further quality control, RNA-
663 sequencing details and specifications, and transcriptome assembly and annotation protocols are
664 detailed in the Supplemental Material.

665
666

667 Building the a priori list of photosynthesis-related genes

668 Prior to differential gene expression analysis, we compiled a list of 99 photosynthesis-
669 related genes known to exist within cryptophyte genomes (Douglas and Penny 1998; Jarvis and
670 Soll 2001; Gould *et al.* 2007; Koziol *et al.* 2007; Khan *et al.* 2007; Overkamp 2014; Takaichi
671 2011; Neilson *et al.* 2017). These included genes related to pigment synthesis (e.g., the
672 phycoerythrin subunits, chlorophyll-binding proteins), photosystem assembly (e.g., photosystem
673 I and photosystem II proteins), energy synthesis and use (e.g., ATP synthase subunits,
674 cytochrome b6-f complex subunits), the dark reactions (e.g., RuBisCo subunits, light-
675 independent reductases), and helper proteins (e.g., translocons, transport proteins) (Supplemental
676 Table 1). Details of how we obtained the DNA sequences for these genes of interest can be found
677 in the Supplemental Material.

678

679 Differential Gene Expression Analysis

680 We mapped trimmed paired-end reads back to the final transcriptome assembly and
681 obtained read count data using kallisto (Bray *et al.* 2016). We first examined the distributions of
682 counts across samples and treatments to determine if any samples needed to be removed from the
683 analysis due to batch effects, and to compare data from our technical replicates. We used the
684 technical replication to test for repeatability of the procedures that occurred during sequencing.
685 There were no significant differences between our technical replicates as indicated by Degust's
686 quality control measurements (the distribution of counts across samples and treatments, variation
687 in library size, and boxplots of expression levels across technical replicates). Given these results,
688 we dropped the technical replicates from the remaining analyses to keep the dataset
689 approximately the same size for each biological replicate. However, we did end up dropping our

690 biological replicates from n=5 to n=4 because we found one biological replicate that exhibited
691 consistent outliers when using Degust's quality control measurements and thus dropped that
692 biological replicate from the remaining analysis.

693 For each spectral comparison (blue vs. red, green vs. red, and blue vs. green), we used
694 Degust (Powell 2019) to run edgeR with a false discovery rate (FDR) corrected *p*-value cutoff of
695 0.05 and a log fold-change (FC) cutoff of ± 2 . We ran this analysis at three different scales: first,
696 we tested the expression of cryptophyte phycoerythrin-subunit genes to determine if they were
697 differentially expressed among spectra; second, we tested the *a priori* list of photosynthesis-
698 related genes to investigate photosynthetic pathways more broadly; third, we tested the complete
699 gene set (the total number of contigs expressed in our assembly) to see whether other genes
700 respond to differences in light spectrum. For the photosynthesis gene set, we performed
701 additional analyses to guard against false negatives by relaxing FDR cutoffs to 0.1 and 0.2, as
702 well. Gene expression levels are reported in transcripts per million (TPM).

703

704 Correlation Analysis

705 We used Pearson's correlation coefficients (and Spearman's rank correlation coefficients
706 where data were non-parametric) to assess potential correlations between pigment concentrations
707 and gene expression independent of light treatment (i.e., the correlations detailed below were
708 performed across all 20 experimental populations, not across the 4 light spectra, to capture
709 variation within treatments). We used the corr.test R command with a Holm-Bonferroni
710 adjustment to control for multiple comparisons (part of the "stats" package) for running
711 individual comparisons of interest, which included identifying potential correlations between the
712 following: cryptophyte phycoerythrin pigment concentration and phycoerythrin protein subunits'

713 transcript expression (both alpha (α) and beta (β) subunits) and cryptophyte phycoerythrin and
714 chlorophyll concentrations. We also did a correlation analysis of the photosynthesis-related
715 genes to all pigment concentrations.

716

717 **Acknowledgements**

718 We would like to thank Matthew J. Greenwold for his assistance throughout the
719 transcriptome assembly process, as well as the National Center for Genome Analysis Support at
720 Indiana University and University of South Carolina's Research Computing center for data
721 storage, computing technology, and resources. We also thank Kristin Heidenreich, Eric
722 Lachenmeyer, and Brady Cunningham for their assistance with growing and maintaining cultures
723 and pigment analyses, Jake Swanson for editorial assistance on this draft, and Savannah Simon
724 and Dylan C. Davis for their help with gene annotation exploration. Last, we thank Jay Pinckney
725 for his guidance in HPLC protocols and statistical analyses, and Yen-Yi Ho and Robert
726 Friedman for their help in training RAS in transcriptomic and bioinformatic procedures. This
727 project was funded by an award from the U. S. National Science Foundation's Dimensions of
728 Biodiversity program (DEB 1542555) to TLR and JLD. We know of no conflicts of interest for
729 this manuscript.

730

731 *Availability of Supporting Data*

732 Raw sequence data has been deposited in the Sequence Read Archive (SRA) under the
733 accession PRJNA749794. This Transcriptome Shotgun Assembly project has been deposited at
734 DDBJ/EMBL/GenBank under the BioProject accession PRJNA749794. The version described in

735 this paper is the first version, PRJNA749794. Pigment and related data have been deposited in

736 Dryad under <https://doi.org/10.5061/dryad.8sf7m0cp4>.

737

738 **Table 1:** BUSCO results breakdown of the completed *R. salina* assembly against the eukaryote,
739 chlorophyte, and protist databases. C = Complete; S = Complete and single-copy; D = Complete
740 and duplicated; F = Fragmented; M = Missing.

BUSCO Category	Eukaryote Database	Chlorophyte Database	Protist Database
Complete BUSCOs (C) (includes single-copy and duplicated)	191 (63.0%)	710 (32.7%)	100 (46.5%)
Complete and single-copy BUSCOs (S)	158	573	86
Completed and duplicated BUSCOs(D)	33	137	14
Fragmented BUSCOs (F)	21 (6.9%)	92 (4.3%)	0 (0%)
Missing BUSCOs (M)	91 (30.1%)	1366 (63.0%)	115 (53.5%)
Total BUSCO groups searched	303	2168	215

741

742

743 **Table 2:** Significantly differentially expressed genes from the photosynthetic gene set for **A:**
744 Blue vs Red; **B:** Blue vs Green; and **C:** Green vs Red comparisons.

745

746 **A: Blue vs Red – FDR of 0.1; no specified log₂ foldchange (i.e. log₂ foldchange ≥ 0)**

Transcript ID from Assembly	Annotation	FDR p-value	Observed fold-change	Expression Direction
Transcript_22761	Chlorophyll binding protein	0.0000526	2.76	Up in Blue
Transcript_16447	RUBISCO Large Subunit	0.000221	2.64	Up in Red
Transcript_23199	ATP synthase CF1 alpha subunit	0.00141	4.81	Up in Red
Transcript_16630	Photosystem I P700 chlorophyll a apoprotein A1	0.00123	2.82	Up in Red
Transcript_21753	Potential phycoerythrin α -subunit	0.00109	2.84	Up in Blue
Transcript_5484	Photosystem II protein Y	0.00269	1.40	Up in Blue
Transcript_4751	Chlorophyll binding protein	0.00326	1.13	Up in Red
Transcript_8725	PSII Factor/Component	0.00299	1.77	Up in Red
Transcript_2439	Chlorophyll binding protein	0.00432	1.38	Up in Red
Transcript_8558	PSII Factor/Component	0.00530	1.11	Up in Red
Transcript_9593	Photosystem II protein W	0.01	1.51	Up in Blue
Transcript_2914	Potential phycoerythrin α -subunit	0.01	0.95	Up in Red

747

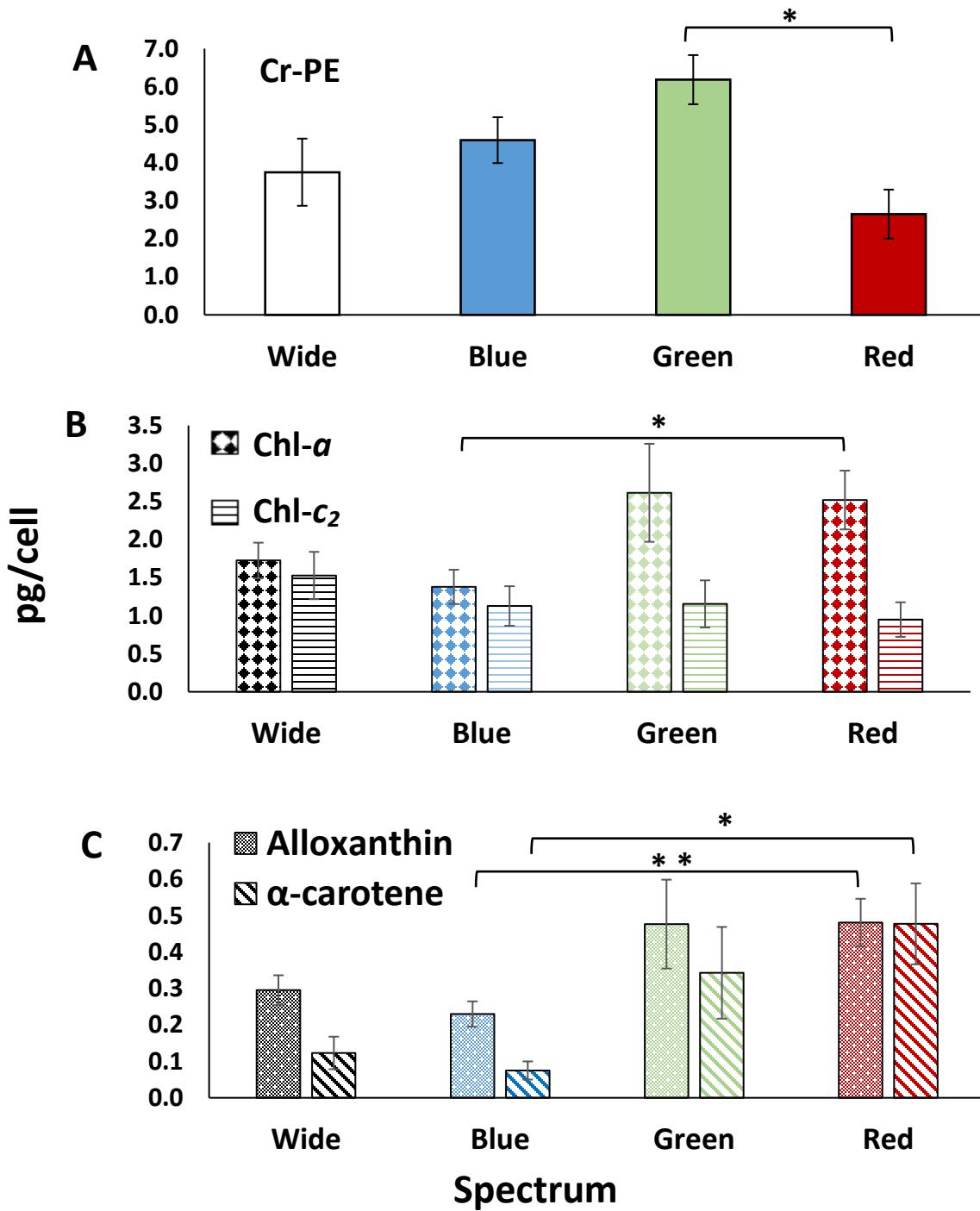
748

749

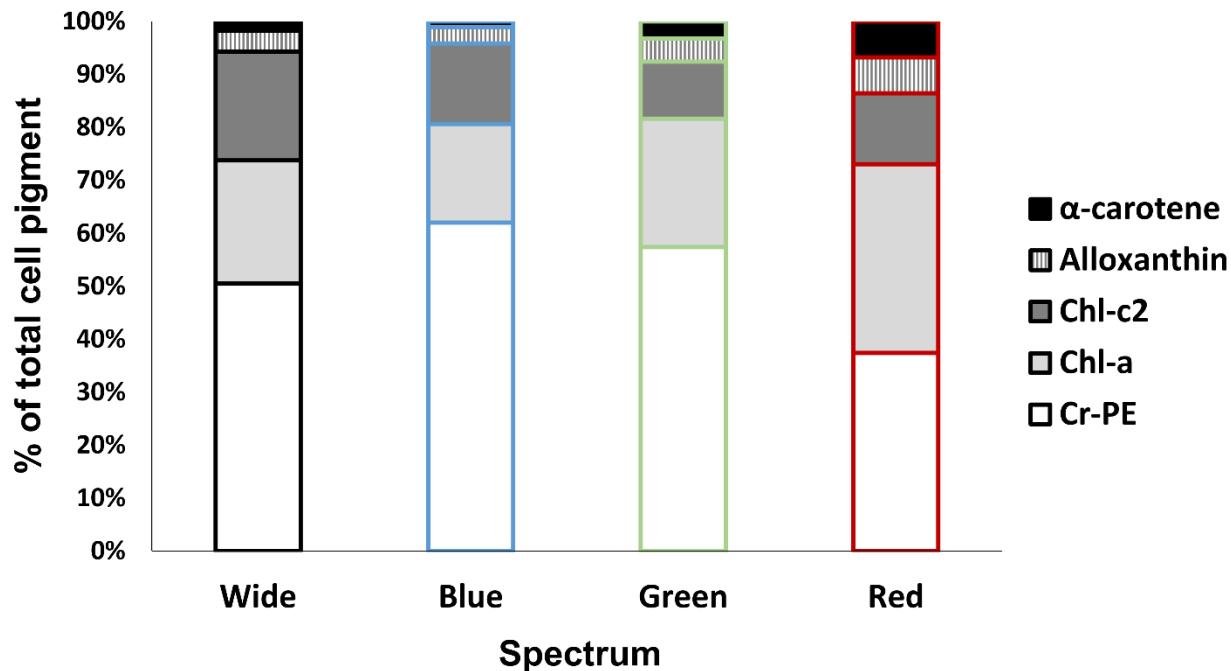
750 **B: Blue vs Green - FDR of 0.1; no specified \log_2 foldchange (i.e. \log_2 foldchange ≥ 0)**

Transcript ID from Assembly	Annotation	FDR p-value	Observed fold-change	Expression Direction
Transcript_2914	Potential α -phycoerythrin subunit	0.00316	1.12	Up in Green
Transcript_21753	Potential α -phycoerythrin subunit	0.00224	2.50	Up in Blue
Transcript_2439	Chlorophyll binding protein	0.00140	1.56	Up in Green
Transcript_22761	Chlorophyll binding protein	0.00153	2.02	Up in Blue
Transcript_4815	Phycoerythrin lyase	0.00345	1.19	Up in Blue

751


752 **C: Green vs Red - FDR of 0.14; no specified \log_2 foldchange (i.e. \log_2 foldchange ≥ 0)**

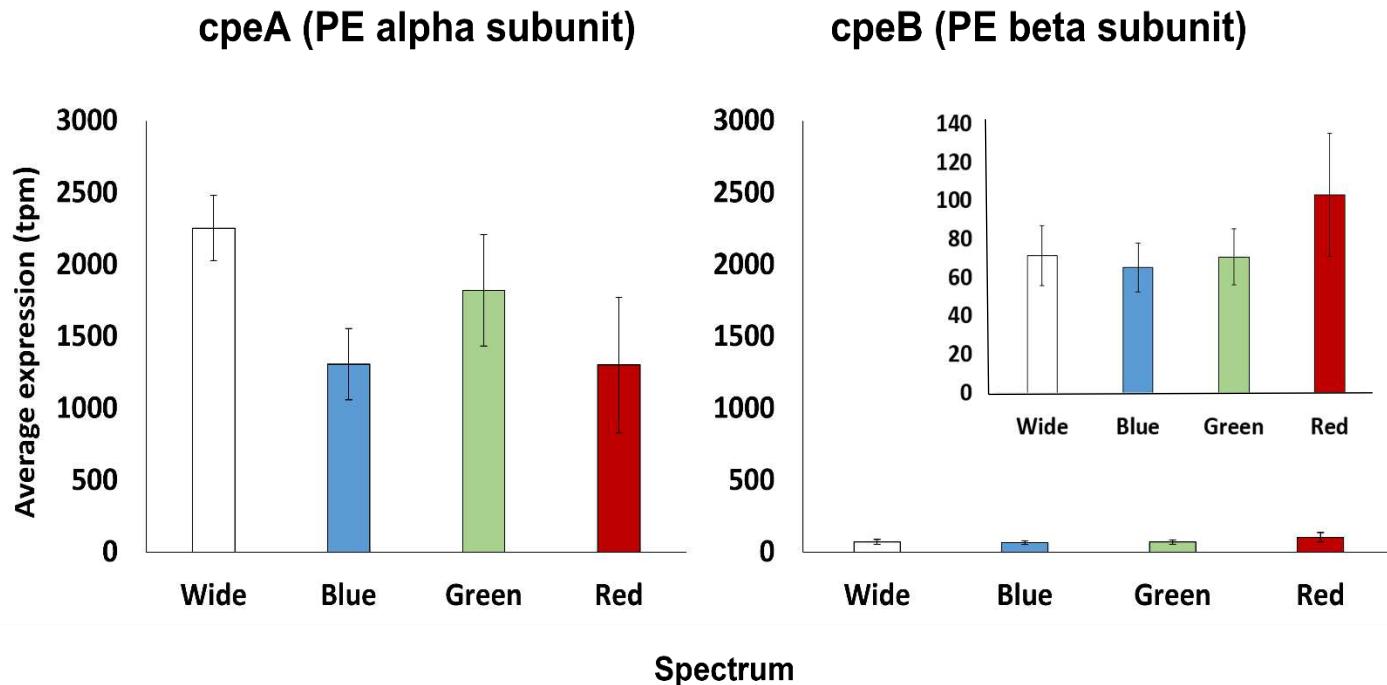
Transcript ID from Assembly	Annotation	FDR p-value	Observed fold-change	Expression Direction
Transcript_23199	ATP synthase CF1 alpha subunit	0.00276	4.38	Up in Red
Transcript_4815	Phycoerythrin lyase	0.00212	1.26	Up in Red


753

754

755

756
757 **Figure 1:** Average concentrations in pg/cell of all pigments in *R. salina* grown in wide-spectrum,
758 blue, green, and red spectral environments. Error bars are standard error. Note the differences in
759 the y-axis scale for all three graphs. **A**) Cryptophyte phycoerythrin (Cr-PE). **B**) Chlorophyll-a
760 (chl-a) and chlorophyll-c₂ (chl-c₂). **C**) Alloxanthin and α -carotene.
761


762

763 **Figure 2:** Relative pigment concentration of α -carotene, alloxanthin, chlorophyll-*c2* (chl-*c2*),
764 chlorophyll-*a* (chl-*a*), and cryptophyte phycoerthrin (Cr-PE) across all four light treatments.
765 Relative pigment concentrations were calculated on a mass/cell basis.

766

767

768

769

770 **Figure 3:** Expression of Cryptophyte phycoerythrin α and β subunits across the four different light
771 environments. Expression values are reported in transcripts per million (tpm). There were no
772 significant differences for either subunit across spectra. Note the difference in scales for the cpeB
773 expression inset. Error bars represent standard error.

774

775

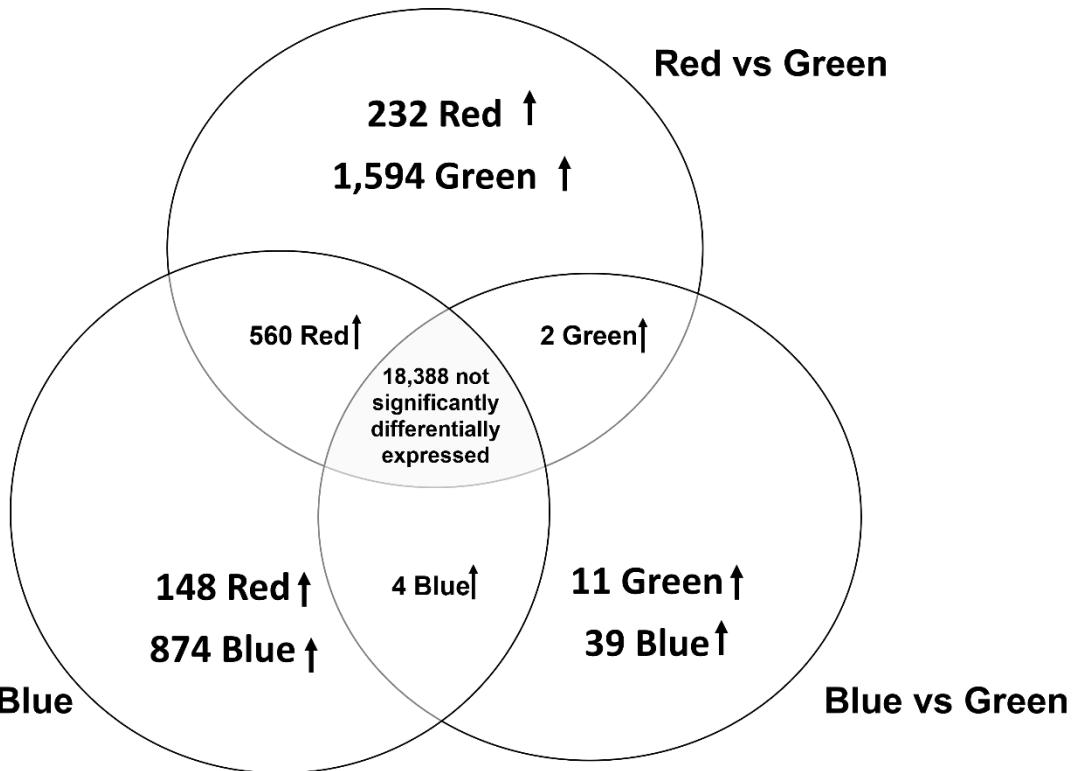
776

777

778

779

780

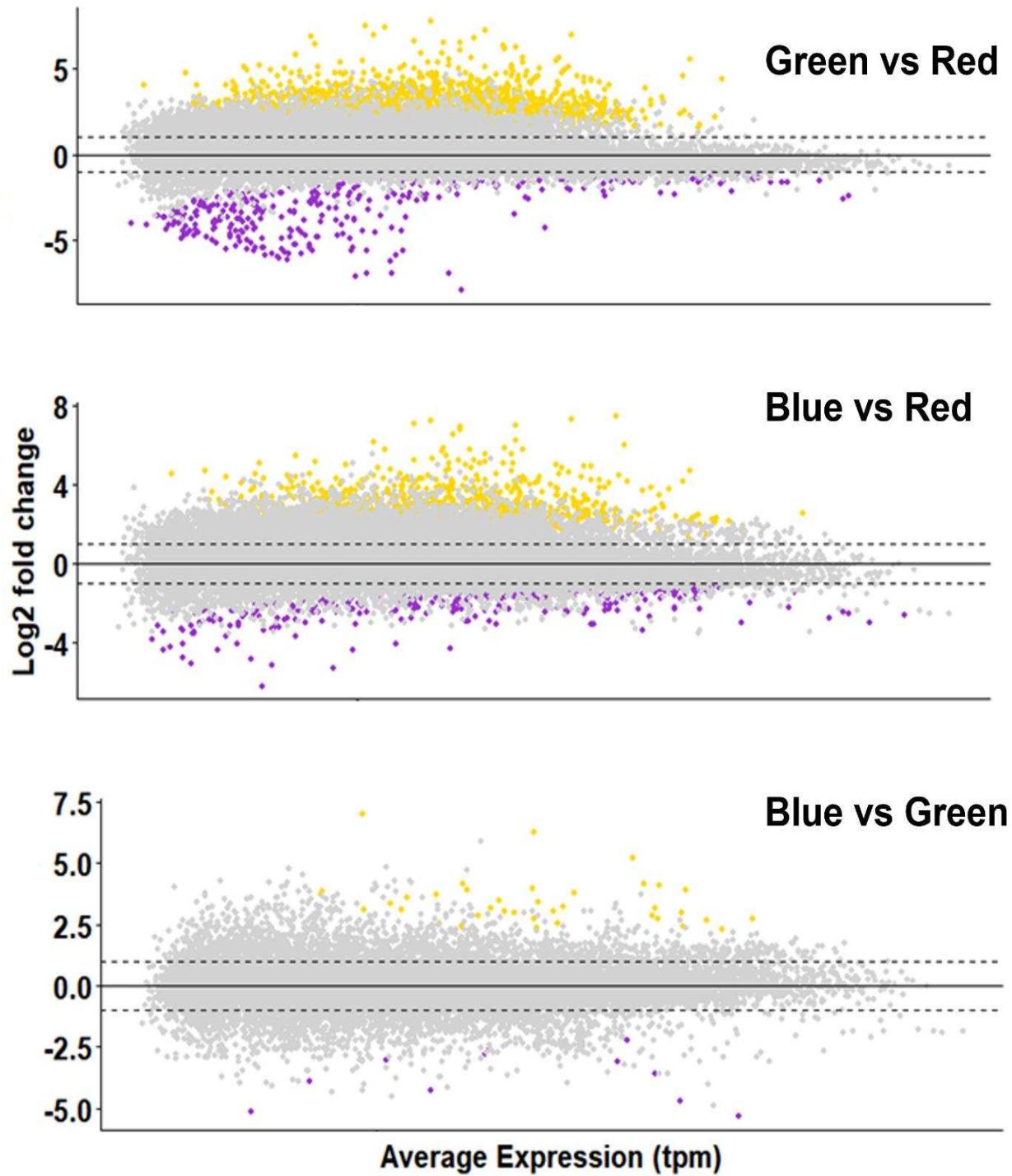

781

782

783

784

785



786

787 **Figure 4:** Venn diagrams for all comparisons. Numbers shown in each comparison circle
788 represent genes upregulated in each spectral environment compared to the other. Numbers
789 displayed between comparisons represent genes upregulated in the given spectral environment
790 regardless of which light environment was the opposing comparison. The value in the center
791 represents the number of genes that were not significantly differentially expressed in any
792 comparison.

793

794

795

796 **Figure 5.** MA plots for all comparisons. For Green vs Red, differentially expressed genes relative
797 to expression in red light. For Blue vs Red, differentially expressed genes are relative to expression
798 in red light. For Blue vs Green, differentially expressed genes are relative to green light. Yellow
799 dots represent significantly upregulated genes; purple dots represent significantly downregulated
800 genes. Grey dots represent expressed genes which were not significant. The FDR p -value cutoff
801 was 0.05 with a \log_2 fold-change $> \pm 2$ (represented by the dashed horizontal lines).
802

803 **References**

804 Aguilera, J, Gordillo F.J.L, Karsten, U., Figueroa, F.L., & Niell, F.X. (2000). Light quality effect
805 on photosynthesis and efficiency of carbon assimilation in the red alga *Porphyra leucosticta*.
806 *Journal of Plant Physiology*. 157:96-92.

807 Algarra, P., de la Vina, G., & Niell, J. (1991). Effects of light quality and irradiance level
808 interactions on short-term pigment response of the red alga *Corallina elongata*. *Marine*
809 *Ecology Progress Series*. 74:27-32.

810 Allen, J.F., de Paula, W.B.M, Puthiyaveetil, S. & Nield, J. (2011). A structural phylogenetic map
811 for chloroplast photosynthesis. *Trends Plant Sci*. 16:645-655.

812 Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Babraham
813 Institute.

814 Apt, K.E., Collier, J.L., & Grossman, A.R. (1995). Evolution of the phycobiliproteins. *J. of*
815 *Molecular Biology*. 248(1):79-96.

816 Armbruster, U., Ruhle, T., Kreller, R., Strotbek, C., Zuhlke, J., Tadini, L., ... Leister, D. (2013).
817 The photosynthesis affected mutant68-like protein evolved from a PSII assembly factor
818 to
819 mediate assembly of the chloroplast NAD(P)H dehydrogenase complex in *Arabidopsis*.
820 *The Plant Cell*. 25(10):3926-3943.

821 Balvanera, P., A. B. Pfisterer, N. Buchmann, J. S. He, T. Nakashizuka, D. Raffaelli, & B.
822 Schmid. (2006). Quantifying the evidence for biodiversity effects on ecosystem
823 functioning and services. *Ecology Letters* 9: 1146– 1156.

824 Beck, C. F., & Haring, M. A. (1996). Gametic Differentiation of Chlamydomonas. *International*
825 *Review of Cytology*. 168: 259-302

826 BioBam Bioinformatics. (2019). OmicsBox – Bioinformatics made easy.

827 Blankenship, R.E. (2002). Molecular Mechanisms of Photosynthesis. Blackwell Science Ltd.,

828 UK.

829 Blinks, L.R. (1954). The photosynthetic function of pigments other than chlorophyll. *Annual*
830 *Review of Plant Physiology*. 5(1):93-114.

831 Bolger, A.M., Lohse, M., & Usadel, B.. (2014). Trimmomatic: A flexible trimmer for Illumina
832 Sequence Data. *Bioinformatics* 30(15):2114-20.

833 Bray, N.L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic RNA-seq
834 quantification. *Nature Biotechnology*. 34:525-527.

835 Cardinale, B.J. (2011). Biodiversity improves water quality through niche partitioning. *Nature*.
836 472:86-89.

837 Cardinale, B. J., D. S. Srivastava, J. E. Duffy, J. P. Wright, A. L. Downing, M. Sankaran, & C.
838 Jouseau. (2006). Effects of biodiversity on the functioning of trophic groups and
839 ecosystems. *Nature* 443: 989– 992.

840 Caron, D.A., Sanders, R.W., Lim, E.L., Marrase, C., Amaral, L.A., Whitney, S., Aoki, R.B., &
841 Porter, K.G. (1993). Light-dependent phagotrophy in the freshwater mixotrophic
842 chrysophyte
843 dinobryon cylindricum. *Microbial Ecology*. 25(1):93-111.

844 Celedon, J.M. & Cline, K. (2013). Intra-plastid protein trafficking: How plant cells adapted
845 prokaryotic mechanisms to the eukaryotic condition. *Biochim. Biophys. Acta*. 4833:341-
846 351.

847 Chardin, C., Girin, T., Roudier, F., Meyer, C., & Krapp, A. (2014). The plant RWP-RK
848 transcription factors: key regulators of nitrogen responses and of gametophyte
849 development. *Journal of experimental botany*, 65(19), 5577–5587.

850 Curtis, B.A., Tanifushi, G., Burki, F., Gruber, A., Irimia, M., Maruyama, S., ... Archibald, J.

851 (2012). Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs.

852 *Nature*. 492:59-

853 65.

854 Dammeyer, T. & Frenkenberg-Dinkel, N. (2008). Function and distribution of bilinbiosynthesis

855 enzymes in photosynthetic organisms. *Photochemical and Photobiological Sciences*,

856 7:1121-1130.

857 Das, P., Lei, W., Aziz, S.S., & Obbard, J.P. (2011). Enhanced algae growth in both phototrophic

858 and mixotrophic culture under blue light. *Bioresource Technology*. 102(4):3883-3887.

859 Deng, X.W., Tonkyn, J.C., Peter, G.F., Thornber, J.P., & Gruisse, W. (1989). Post-

860 transcriptional control of plastid mRNA accumulation during adaptation of chloroplasts

861 to different light

862 quality environments. *The Plant Cell*. 1:645-654.

863 Deng, Y., Yao, J., Wang, X., Guo, H., & Duan, D.. (2012). Transcriptome sequencing and

864 comparative analysis *Saccharina japonica* (Laminariales, Phaeophyceae) under blue light

865 induction.

866 *PLoS One*.

867 Dittami, S.M., Michel, G., Collen, J., Boyen, C., Tonon, T. (2010). Chlorophyll-binding proteins

868 revisited – a multigenic family of light-harvesting and stress proteins from a brown algal

869 perspective. *BMC Evolutionary Biology*, 10.

870 Douglas, S.E. & Penny, S.L. (1999). The plastid genome of the cryptophyte alga, *Guillardia*

871 *theta*: complete sequence and conserved synteny groups confirm its common ancestry

872 with red

873 algae. *J. Mol Evol*. 48:236-244.

874 Donaher, N., Tanifuji, G., Onodera, N., Malfatti, S., Chain, P., Hara, Y., & Archibald, J.M.

875 (2009). The complete plastid genome sequence of the secondarily nonphotosynthetic alga

876 *Cryptomonas paramecium*: Reduction, compaction, and accelerated evolutionary rate.

877 *Genome Biology and Evolution*. 1:439-448.

878 Dring, M.J. (1987). Marine plants and blue light. In *Blue Light Responses: Phenomena and*

879 Occurrence in Plants and Microorganisms (Edited by H. Senger), pp. 121-140. CRC
880 Press, Boca Raton, FL.

881 Dutkiewicz, S., Hickman, A. E., Jahn, O., Henson, S., Beaulieu, C.
882 , & Monier, E.. (2019). Ocean colour signature of climate change. *Nature Communications* 10:
883 578.

884 Eberhard, S., Finazzi, G., & Wollman, F.A. (2008). The dynamics of photosynthesis. *Ann. Rev.*
885 *Genetics*. 42:463-515.

886 Engelmann, T.W. (1883). Farbe und Assimilation. Assimilation findet nur in den
887 farbstoffhaltigen Plasmathielchen statt. II. Näherer Zusammennhang awischen
888 Lichtabsorption und Assimilation. *Bot Z* 41:1-13.

889 Eskins K., Kiang, C.Z., & Shibles, R. (1991). Light-quality and irradiance effects on pigments,
890 light-harvesting proteins and Rubisco activity in a chlorophyll- and light-harvesting-
891 deficient soybean mutant. *Physiologia Plantarum*. 83:27-53.

892 Ferris, P. J., & Goodenough, U. W. (1997). Mating type in Chlamydomonas is specified by mid,
893 the minus-dominance gene. *Genetics*. 146(3): 859–869.

894 Gaidukov, N. (1903). Die Farbveränderung bei den Prozessen der Komplementären
895 chromatischen Adaptation. *Ber. Deutsch Bot. Ges.* 21:3517-522.

896 Gantt, E. (1980). Structure and function of phycobilisomes: Light harvesting pigment complexes
897 in red and blue-green algae. *International Review of Cytology*. 66:45-80.

898 Gantt, E. (1996). Pigment protein complexes and the concept of the photosynthetic unit:
899 Chlorophyll complexes and phycobilisomes. *Photosynthesis Research*, 28:47-53.

900 Gervais, F. (1997). Cryptomonas undulata spec., nov., a new freshwater cryptophyte living near
901 the chemocline. *Nova Hedwigia*. 65(1-4):353-364.

902 Gilbert, D. (2013). EvidentialGene:tr2aacds, mRNA transcript assembly software.

903 Glazer, A.N. (1977). Structure and molecular organization of the photosynthetic accessory
904 pigments of cyanobacteria and red algae. *Mol Cell Biochem* 18, 125–140.

905 Glazer, A.N. (1983). Comparative biochemistry of photosynthetic light harvesting systems. *Ann.*
906 *Rev. Biochem.* 52: 125-127.

907 Gould, S., Fan, E., Hempel, F., Maier, U., & Klosgen, R.B. (2007). Translocation of a
908 phycoerythrin a subunit across five biological membranes. *J. of Biol. Chem.*
909 282(41):P30295-30302.

910 Grabherr, M.G, Haas, B.J, Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., ... Regev, A.
911 (2011). Full-length transcriptome assembly from RNA-seq data without a reference
912 genome. *Nat Biotechnol*, 29(7):644-652.

913 Greenwold, M.J., Cunningham, B.R., Lachenmeyer, E.M., Pullman, J.M., Richardson, T.L., &
914 Dudycha, J. L. (2019). Diversification of light capture ability was accompanied by the
915 evolution of
916 phycobiliproteins in cryptophyte algae. *Proc. R. Soc. B.* 286.

917 Grossman, A.R. (2003). A molecular understanding of complementary chromatic adaptation.
918 *Photosyn. Res.* 76:207-215.

919 Gruissem, W. & Schuster, G.: Control of mRNA degradation in organelles. (1993). In:
920 Brawerman G, Belasco J (eds) Control of Messenger RNA Stability, pp. 329-365.
921 Academic Press,
922 Orlando, FL.

923 Guillard, R.R.L. & Ryther, J.H. (1962). Studies on Marine Planktonic Diatoms I. Cyclotella nana
924 Hustedt and Detonula confervacea (Cleve) Gran. *Canadian Journal of Microbiology*. 8,
925 229-239.

926 Gurevich, A., Savelieve, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool
927 for genome assemblies. *Bioinformatics*. 29(8):1072-1075.

928 Harrop, S.T., Wilk, K.E., Dinshaw, R., Collini, E., Mirkovic, T., Ying Teng, C., ... & Curmi, P.
929 (2014). Single-residue and exciton states of cryptophyte light-harvesting proteins. *PNAS*.
930 111(26):E2666-E2675.

931 Heidenreich, K.M. & Richardson, T.L. (2019). Photopigment, absorption, and growth responses
932 of marine cryptophytes to varying spectral irradiance. *Journal of Phycology*. 56(2): 507-
933 520.

934 Hermsmeier, D., Mala, E., Schulz, R., Thielmann, J., Galland, P., & Senger, H. (1991).

935 Antagonistic blue- and red-light regulation of *cab*-gene expression during photosynthetic
936 adaptation in
937 *Scenedesmus obliquus*. *J. of Photochemistry and Photobiology B: Biology*. 11(2):189-
938 202.
939 Hey, D. & Grimm, B. (2020). One-helix protein1 and 2 form heterodimers to bind chlorophyll in
940 photosystem II biogenesis. *Plant Physiology*, 183(1):179-193.
941 Hill, D.R.A & Rowan, K.S. (1989). The biliproteins of the Cryptophyceae. *Phycologia* 28:455-
942 463.
943 Hill, D.R.A & Wetherbee, R. (1986). *Proteomonas sulcata* gen. et sp. nov. (Cryptophyceae), a
944 cryptomonad with two morphologically distinct and alternating forms. *Phycologia*,
945 25:521-543.
946 Hillaert, J., Hovestadt, T., Vandegehuchte, M.L., & Bonte, D. (2018). Size-dependent movement
947 explains why bigger is better in fragmented landscapes. *Ecol Evol*. 8(22):10754-10767.
948 Ho, C.L., Teoh, S., Teo, S.S., Rahim, R.A., & Phang, S.M. (2009). Profiling the transcriptome of
949 *Gracilaria changii* (Rhodophyta) in Response to Light Deprivation. *Mar Biotechnol*.
950 11:513-519.
951 Hoef-Emden, K. & Archibald, J.M. (2016). Handbook of the Protists: Cryptophyte
952 (Cryptomonads).
953 Hoef-Emden, K., & Melkonian, M. (2003). Revision of the genus *Cryptomonas*
954 (Cryptophyceae): A combination of molecular phylogeny and morphology provides
955 insights into a long-hidden dimorphism. *Protist*, 154(3–4), 371–409. Corrigendum: Hoef-
956 Emden, K., & Melkonian, M. (2008). *Protist*, 159(3), 507.
957 Hoham, R.D., Kang, K.Y., Hasselwander, A.J., Behrstock, A.F., Blackburn, I.R., Johnson, R.C.,
958 & Shlag, E. M. (1997). The effects of light intensitiy and blu, green and red wavelengths on
959 mating
960 strategies in the snow alga, *Chloromonas* sp. -d, from the Tughill Plateau, New York
961 State. *Western Snow Conference*.

962 Hoham, R.W., Marcarelli, A.M., Rogers, H.S., Ragan, M.D., Petre, B.M., Ungerer, M.D.,
963 Barnes, J.M. & Francis, D.O. (2000). The importance of light and photoperiod in sexual
964 reproduction and geographical distribution in the green snow alga, *Chloromonas* sp.-D
965 (*Chlorophyceae, Volvocales*). *Hydrol. Process.*, 14: 3309-3321.

966 Hosler, J.P., Wurtz, E.A., Harris, E.H., Gillham, N.W., Boynton, J.E. (1989). Relationship
967 between gene dosage and gene-expression in the chloroplast of *Chlamydomonas*
968 *reinhardtii*. *Plant Physiol.* 91:648-655.

970 Huang, X., Barrios, L.A.M., Vonkhorporn, P., Honda, S., Albertson, D.G., & Hecht, R.M.
971 (1989). Genomic organization of the glyceraldehyde-3-phosphate dehydrogenase gene
972 family of *Caenorhabditis elegans*. *Journal of Molecular Biology*. 206(3): 411-424.

973 Jarvis, P. & Soll, J. (2001). Toc, Tic, and chloroplast protein import. *Biochim. Biophys. Acta*.
974 1541:64-79.

975 Kamiya, A. & Miyachi, S. (1984a). Effects of light quality on formation of 5-aminolevulinic
976 acid, phycoerythrin and chlorophyll in *Cryptomonas* sp. cells collected from the
977 subsurface chlorophyll layer. *Plant Cell Physiol.* 25:831-9.

978 Kamiya, A. & Miyachi, S. (1984b). Blue-green and green light adaptations on photosynthetic
979 activity in some algae collected from subsurface chlorophyll layer in the western Pacific
980 Ocean. In Senger, H. [Ed.] *Blue Light Effects in Biological Systems*. Springer, Berlin,
981 Heidelberg, pp. 517-28.

982 Kana, R., Kotabova, E., Sobotka, R., & Prasil, O. (2012). Non-photochemical quenching in
983 cryptophyte alga *Rhodomonas salina* is located in chlorophyll a/c antennae. *PLoS ONE*.
984 7(1).

985 Keeling, P.J. (2013). The number, speed, and impact of plastid endosymbiosis in eukaryotic
986 evolution. *Annu Rev Plant Biol.* 64:583-603.

987 Khan, H., Parks, N., Kozera, C., Curtis, B.A., Parsons, B.J., Bowman, S., Archibald, J.M. (2007).
988 Plastid Genome Sequence of the Cryptophyte Alga *Rhodomonas salina* CCMP1319:
989 Lateral

990 Transfer of Putative DNA Replication Machinery and a Test of Chromist Plastid

991 Phylogeny. *Molecular Biology and Evolution*. 24(8):1832–1842.

992 Kieselbach, T., Cheregi, O., Green, B.R., & Funk, C. (2018). Proteomic analysis of
993 phycobiliprotein antenna of the cryptophyte alga *Guillardia theta* cultured under different
994 light intensities. *Photosynth. Res.* 135(149-163).

995 Kim, D.G., Lee, C., Park, S.M., & Choi, Y.E. (2014). Manipulation of light wavelength at
996 appropriate growth stage to enhance biomass productivity and fatty acid methyl ester
997 yield using
998 *Chlorella vulgaris*. *Bioresource Technology*. 159:240-248.

999 Kim, J.I., Yoon, H.S., Yi, G., Kim, H.S., Yih, W., & Shin, W. (2015). The plastid genome of the
1000 cryptomonad *Teleaulax amphioxeia*. *PlosOne*.

1001 Kim, J.I., Moore, C.E., Archibald, J.M., Bhattacharya, D., Yi, G., Yoon, H.S., & Shin, W.
1002 (2017). Evolutionary dynamics of cryptophyte plastid genomes. *Genome Biology and
1003 Evolution*.
1004 9(7):1859-1872.

1005 Kim, J.H., Choi, S.J., & Lee, S. (2019). Effects of temperature and light on photosynthesis and
1006 growth of red alga *Pyropia dentata* (Bangiales, Rhodophyta) in a conchocelis phase.
1007 *Aquaculture*. 505(30):167-172.

1008 Kim, M.Y., Christopher, D.A., & Mullet, J.E. (1993). Direct evidence for selective modulation
1009 of *psbA*, *rpoA*, *rbcL* and 16s-RNA stability during barley chloroplast development. *Plant
1010 Molec. Biol.* 22:447-463.

1011 Kirk, J. (1994). Light and Photosynthesis in Aquatic Ecosystems (2nd ed.). Cambridge:
1012 Cambridge University Press.

1013 Konishi, M. & Yanagisawa, S. (2013). Arabidopsis NIN-like transcription factors have a central
1014 role in nitrate signalling. *Nature Communications*. 4:1-9.

1015 Korbee, N., Figueroa, F.L., & Aguilera, J. (2005). Effect of light quality on the accumulation of
1016 photosynthetic pigments, proteins, and mycosporine-like amino acids in the red alga
1017 *Porphyra leucosticta* (Bangiales, Rhodophyta). *Journal of Photochemistry and
1018 Photobiology B: Biology*. 80(2):71-78.

1019 Koziol, A.G., Borza, T., Ishida, K.I., Keeling, P., Lee, R.W., & Durnford, D. (2007). *Plant*

1020 *Physiology*. 143:18.2-1816.

1021 Kritzberg, E.S. (2017). Centennial-long trends of lake browning show major effect of
1022 afforestation. *Limnology and Oceanography Letters* 2:105–112.

1023 Kugrens, P. & Lee, R.E. (1988). Ultrastructure of fertilization in a cryptomonad. *J. of Phycol.*
1024 24(3):385-393.

1025 Kugrens, P. & Lee, R.E. (1990). Ultrastructural Evidence for Bacterial Incorporation and
1026 Myxotrophy in the Photosynthetic Cryptomonad Chroomonas Pochmanni Huber-P
1027 estalozzi (Chytromonadida). *The Journal of Protozoology*. 37: 263-267.

1028 Lawrenz, E. & Richardson, T.L. (2017). Differential effects of changes in spectral irradiance on
1029 photoacclimation, primary productivity and growth in *Rhodomonas salina*
1030 (Cryptophyceae) and *Skeletonema costatum* (Bacillariophyceae) in simulated blackwater
1031 environments. *Journal of Phycology*. 53(6): 1241-1254.

1032 Lawrenz, E., Fedewa, E.J., & Richardson, T.L. (2011). Extraction protocols for the
1033 quantification of phycobilins in aqueous phytoplankton extracts. *Journal of Applied*
1034 *Phycology*. 23: 865-
1035 871.

1036 Lee, C., Ahn, J.W., Kim, J.B., Kim, J.Y., & Choi, Y.E. (2018). Comparative transcriptome
1037 analysis of *Haematococcus pluvialis* on astaxanthin biosynthesis in response to irradiation with
1038 red
1039 or blue LED wavelength. *World Journal of Microbiology and Biotechnology*. 34(96).

1040 Lewitus, A.J., Caron, D.A. & Miller, K.R. (1991). Effects of light and glycerol on the
1041 organization of the photosynthetic apparatus in the facultative heterotroph *Pyrenomonas salina*
1042 (Cryptophyceae). *Journal of Phycology*. 27: 578-587.

1043 Li, Y., Gu, W., Huang, A., Xie, X., Wu, S. & Wang, G. (2019). Transcriptome analysis reveals
1044 regulation of gene expression during photoacclimation to high irradiance levels in
1045 *Dunaliella salina* (Chlorophyceae). *Phycological Res.*, 67: 291-302.

1046 Li, Y., Cai, X., Gu, W., & Wang, G. (2020). Transcriptome analysis of carotenoid biosynthesis
1047 in *Dunaliella salina* under red and blue light. *J. of Oceanology and Limnology*. 38:177-
1048 185.

1049 Lin, H., & Goodenough, U. W. (2007). Gametogenesis in the *Chlamydomonas reinhardtii* minus

1050 mating type is controlled by two genes, MID and MTD1. *Genetics*, 176(2), 913–925.

1051 Lopez-Figueroa, F. (1991). Red, green and blue light photoreceptors controlling chlorophyll *a*,

1052 biliprotein and total protein synthesis in the red alga *Chondrus crispus*. *British*

1053 *Phycological Journal*. 26:383-393.

1054 Losi, A. and Gartner, W. (2008). Shedding (blue) light on algal gene expression. *PNAS*.

1055 105(1):7-8.

1056 Lu, S., Wang, J., Chitsaz, F., Derbyshire, M.K., Geer, R.C., Gonzales, N.R., ... Marchler-

1057 Bauer, A. (2020). CDD/SPARCLE: the conserved domain database in 2020. *Nucleic*

1058 *Acids Res.* 48(D1):D265-D268.

1059 Luimstra, V. M., Verspagen, J. M. H., Xu, T., Schuurmans, J. M., & Huisman, J. (2020).

1060 Changes in water color shift competition between phytoplankton species with contrasting

1061 light-harvesting strategies. *Ecology* 101(3):e02951. 10.1002/ecy.2951

1062 Mackinney, G. (1941). Absorption of light by chlorophyll solutions. *The Journal of Biological*

1063 *Chemistry*.

1064 Martin. M. Cutadapt removes adapter sequences from high-throughput sequencing reads.

1065 *Technical Notes*.

1066 McKie-Krisberg, Z.M., Gast, R.J. & Sanders, R.W. (2015). Physiological Responses of Three

1067 Species of Antarctic Mixotrophic Phytoflagellates to Changes in Light and Dissolved

1068 Nutrients. *Microb Ecol.* 70: 21–29.

1069 Montgomery, B.L. (2017). Seeing new light: Recent insights into the occurrence and regulation

1070 of chromatic acclimation in cyanobacteria. *Current Opinion in Plant Biology*. 37:18-23.

1071 Mouget, J.L., Rosa, P., & Tremblin, G. (2004). Acclimation of *Haslea ostrearia* to light of

1072 different spectral qualities – confirmation of ‘chromatic adaptation’ in diatoms. *Journal*

1073 *of*

1074 *Photochemistry and Photobiology B: Biology*. 75(1-2):1-11.

1075 Nan, F., Feng, J., Lv, J., Liu, Q., & Xie, S. (2018). Transcriptome analysis of the typical

1076 freshwater rhodophytes *Sheathia arcuate* grown under different light intensities. *PLoS*

1077 *One*.

1078 Neilson, J.A.D., Rangrikkitphot, P., Durnford, D.G. (2017). Evolution and regulation of

1079 *Bigelowiella natans* light-harvesting antenna system. *J. of Plant Physiology.* 217:68-76.

1080 Ojala, A. (1993). The influence of light quality on growth and phycobiliprotein/chlorophyll a
1081 fluorescence quotients of some species of freshwater algae in culture. *Phycologia* 32:22-
1082 28.

1083 Ota, S., Oshima, K., Yamazaki, T., Takeshita, T., Bisova, K., Zachleder, V., Hattori, M., &
1084 Kawano, S. (2019). The *Parachlorella* genome and transcriptome endorse active RWP-
1085 RK, meiosis
1086 and flagellar genes in Trebouxiophycean algae. *Cytologia.* 84(4):323-330.

1087 Overkamp, K.E., Gasper, R., Kock, K., Herrman, C., Hofmann, E., & Frankenberg-Dinkel, N.
1088 (2014). Insights into the biosynthesis and assembly of cryptophycean phycobiliproteins.
1089 *J. of Biological Chemistry.* 289(39):26691-26707.

1090 Park, S., Jung, G., Hwang, Y. & Jin E. (2010). Dynamic response of the transcriptome of a
1091 psychrophilic diatom, *Chaetoceros neogracile*, to high irradiance. *Planta* 231:249.

1092 Parkhill, J.P., Maillet, G., Cullen, J.J. (2001). Fluorescence-Based maximal quantum yield for
1093 PSII as a diagnostic of nutrient stress. *J. of Phycol.*, 37:517-529.

1094 Patel, M. & Berry, J.O. (2008). Rubisco gene expression in C4 plants. *J. of Experimental Botany.*
1095 59(7): 1625-1634.

1096 Pichard, S.L., Frischer, M.E., & Paul, J.H. Ribulose bisphosphate carboxylase gene expression in
1097 subtropical marine phytoplankton populations. *Marine Ecology Progress Series.* 101:55-
1098 65.

1099 Pichard, S.L., Campbell, L., Kang, J.B., Tabita, F.R., & Paul, J.H. (1996). Regulation of ribulose
1100 bisphosphate carboxylase gene expression in natural phytoplankton communities. I. Diel
1101 rhythms. *Marine Ecology Progress Series.* 139:257-265.

1102 Pinckney, J.L., Millie, D.F., Howe, K.E., Paerl, H.W., & Hurley, J.P. (1996). Flow scintillation
1103 counting of ¹⁴C-labeled microalgal photosynthetic pigments. *Journal of Planktonic*
1104 *Research.*
1105 18:1867-1880.

1106 Powell, D.R. Degust: interactive RNA-seq analysis.

1108 Qiu, X.C. Mukai K, Shimasaki Y, Wu M, Chen C, Lu Y... Oshima Y. (2020). Diurnal variations
1109 in expression of photosynthesis-related proteins in the harmful Raphidophyceae
1110 Chattonella marina var. Antiqua. *Journal of Experimental Marine Biology and Ecology*.
1111 527

1112 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glockner,
1113 F.O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and
1114 web-
1115 based tools. *Nucl Acids Res* 41(D1):D591-596.

1116

1117 Richardson, T.L. (2022). The colorful world of cryptophyte phycobiliproteins. *J. of Plankton
1118 Research*. 44(6):806-818.

1119 Rivkin, R.B. (1989). Influence of irradiance and spectral quality on the carbon metabolism of
1120 phytoplankton. I. Photosynthesis, chemical composition and growth. *Marine Ecology
1121 Progress Series*. 55:291-304.

1122 Roberts, E.C. & Laybourn-Parry, J. (1999), Mixotrophic cryptophytes and their predators in the
1123 Dry Valley lakes of Antarctica. *Freshwater Biology*, 41: 737-746.

1124 Rochaix, J.D. (1992). Post-transcriptional steps in the expression of chloroplast genes. *Annu.
1125 Rev. Cell Biol.* 8:1-28.

1126 Rochaix, J.D. (1996). Post-transcriptional regulation of chloroplast gene expression in
1127 *Chlamydomonas reinhardtii*. *Plant Molec. Biol.* 32:327-341.

1128 Rottberger, J., Gruber, A., Boenigk, J., & Kroth, P.G. (2013). Influence of nutrients and light on
1129 autotrophic, mixotrophic and heterotrophic freshwater chrysophytes. *Aquat Microb Ecol
1130* 71:179-191.

1131 Roulet, N., & T. R. Moore. (2006). Browning the waters. *Nature* 444:283–284.

1132 Sanfilippo, J.E., Garczarek, L., Partensky, F., & Kehoe, D.M. (2019). Chromatic acclimation in
1133 cyanobacteria: A diverse and widespread process for optimizing photosynthesis. *Annual
1134 Review of Microbiology*. 73: 407-433.

1135 Schulz, M.H., Zerbino, D.R., Vingron, M., & Birney, E. (2012). Oases: Robust de novo RNA-seq
1136 assembly across the dynamic range of expression levels. *Bioinformatics* 28(8):1086-92.

1137 Sebelik, V., West, R., Trskova, E.K., Kana, R., & Polivka, T. (2020). Energy transfer pathways
1138 in the CAC light-harvesting complex of *Rhodomonas salina*. *BBA – Bioenergetics*.
1139 1861(11).

1140 Simao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., & Zdobnov, E.M. (2015).
1141 BUSCO: Assessing genome assembly and annotation completeness with single-copy
1142 orthologs. *Bioinformatics* 31(19):3210-2.

1143 Sirover, M.A. (1998). Role of the glycolytic protein, glyceraldehyde-3-phosphate
1144 dehydrogenase, in normal cell function and in cell pathology. *Journal of Cellular
1145 Biochemistry*. 66(2): 133-140.

1146 Spangler, L.C., Yu, M., Jeffrey, P.D., & Scholes, G.D. (2022). Controllable phycobilin
1147 modifications: an alternative to photoacclimation response in cryptophyte algae. *ACS
1148 Cent. Sci.* 8:340-350.

1149 Stomp, M., Huisman, J., Johng, F.D., Veraart, A.J., Gerla, D., Rijkeboer, M., ... Stal, L.J.
1150 (2004). Adaptive divergence in pigment composition promotes phytoplankton
1151 biodiversity. *Nature*. 432: 104-107.

1152 Stomp, M., Huisman, J., Voros, L., Pick, F.R., Laamanen, M., Haverkamp, T., & Stal, L.J.
1153 (2007). Colourful coexistence of red and green picocyanobacterial in lakes and seas.
1154 *Ecology Letters*. 10: 290-298.

1155 Sturm, S., Engelken, J., Gruber, A., Vugrinec, S., Kroth, P.G., Adamska, I., & Lavaud, J. (2013)
1156 A novel type of light-harvesting antenna protein of red algal origin in algae with
1157 secondary plastids. *BMC Evolutionary Biology*. 13(159).

1159 Takahashi, F., Yamagata, D., Ishikawa, M., Fukamatsu, Y., Ogura, Y., Kasahara, M., ...

1160 Kataoka, H. (2007). AUREOCHROME, a photoreceptor required for

1161 photomorphogenesis in

1162 stramenopiles. *PNAS*. 104(49):19625-19630.

1163 Takaichi, S. (2011). Carotenoids in algae: Distributions, biosynthesis and functions. *Mar. Drugs*.

1164 9:1101-1118.

1165 Tardu, M., Dikbas, U.M., Baris, I., & Kavakli, I.H. (2016). RNA-seq analysis of the

1166 transcriptional response to blue and red light in the extremophilic red alga,

1167 *Cyanidioschyzon merolae*.

1168 *Functional & Integrative Genomics*. 16:657-669.

1169 Tedeschi, F., Rizzo, P., Rutten, T., Altschmied, L., & Baumlein, H. (2016). RWP-RK domain-

1170 containing transcription factors control cell differentiation during female gametophyte d

1171 evelopment in *Arabidopsis*. *New Phytologist*. 213(4):1909-1924.

1172 Toth, V.R. & Palmer, S.C.J. (2016). Acclimation of *Potamogeton perfoliatus* L. to periphyton

1173 accumulation-induced spectral changes in irradiance. *Hydrobiologia*. 766: 293-304.

1174 Ullrich, W.R., Lazarová, J., Ullrich, C.I., Witt, F.G., & Aparicio, P.J.

1175 . (1998). Nitrate uptake and extracellular alkalinization by the green alga *Hydrodictyon*

1176 *reticulatum* in blue and red

1177 light, *Journal of Experimental Botany*. 49(324):1157–1162

1178 Vadiveloo, A., Moheimani, N.R., Cosgrove, J.J., Bahri, P.A., & Parlevliet, D. (2015). Effect of

1179 different light spectra on the growth and productivity of acclimated *Nannochloropsis* sp.

1180 (Eustigmatophyceae). *Algal Research*. 8:121-127.

1181 Vadiveloo, A., Moheimani, N.R., Cosgrove, J.J., Parlevliet, C., & Bahri, P.A. (2017). Effects of

1182 different light spectra on the growth, productivity and photosynthesis of two acclimated

1183 strains of *Nannochloropsis* sp. *Journal of Applied Phycology*. 29:1765-1774.

1184 Vesk, M., Dwarte, D., Fowler, S., & Hiller, R. G. (1992). Freeze-fracture immunocytochemistry

1185 of light harvesting pigment complexes in a cryptophyte. *Protoplasma* 170, 166-176.

1186 Wallen, D.G. & Geen, G.H. (1971). Light quality in relation to growth, photosynthetic rates and

1187 carbon metabolism in two species of marine plankton algae. *Marine Biology*. 10:34-43.

1188 Ward, B. & Follows, M.J. (2016). Marine mixotrophy increases trophic transfer efficiency, mean
1189 organism size, and vertical carbon flux. *PNAS*. 113(11):2958-2963.

1190 Wang, W.J., Wang, F.J., Sun, X.T., Liu, F.L., & Liang, Z.R. (2013). Comparative transcriptome
1191 under red and blue light culture of *Saccharina japonica* (Phaeophyceae). *Planta*.
1192 237:1123-
1193 1133.

1194 Xiang, T., Nelson, W., Rodriguez, J., Tolleter, D. & Grossman, A.R. (2015). *Symbiodinium*
1195 transcriptome and global responses of cells to immediate changes in light intensity when
1196 grown under autotrophic or mixotrophic conditions. *Plant J*, 82: 67-80.

1197 Yocom, C.S. & Blinks, L.R. (1957). Light-induced efficiency and pigment alterations in red
1198 algae. *J. Gen. Physiol*. 41(6):1113-1117.

1199 Yoo, Y.D., Seong, K.A., Jeong, H.J., Yih, W., Rho, J.R., Nam, S.W., & Kim, H.W. (2017).
1200 Mixotrophy in the marine red-tide cryptophyte *Teleaulax amphioxoidea* and ingestion and
1201 grazing impact
1202 of cryptophytes on natural populations of bacteria in Korean coastal waters. *Harmful*
1203 *Algae*. 68:105-117.

1204