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Abstract 
Motivation 
Multiplexed immunofluorescence (mIF) is an emerging assay for multichannel protein 
imaging that can decipher cell-level spatial features in tissues. However, existing automated 
cell phenotyping methods, such as clustering, face challenges in achieving consistency 
across experiments and often require subjective evaluation. As a result, mIF analyses often 
revert to marker gating based on manual thresholding of raw imaging data.  
Results 
To address the need for an evaluable semi-automated algorithm, we developed 
GammaGateR, an R package for interactive marker gating designed specifically for 
segmented cell-level data from mIF images. Based on a novel closed-form gamma mixture 
model, GammaGateR provides estimates of marker-positive cell proportions and soft 
clustering of marker-positive cells. The model incorporates user-specified constraints that 
provide a consistent but slide-specific model fit. We compared GammaGateR against the 
newest unsupervised approach for annotating mIF data, employing two colon datasets and 
one ovarian cancer dataset for the evaluation. We showed that GammaGateR produces 
highly similar results to a silver standard established through manual annotation. 
Furthermore, we demonstrated its effectiveness in identifying biological signals, achieved by 
mapping known spatial interactions between CD68 and MUC5AC cells in the colon and by 
accurately predicting survival in ovarian cancer patients using the phenotype probabilities 
as input for machine learning methods. GammaGateR is a highly efficient tool that can 
improve the replicability of marker gating results, while reducing the time of manual 
segmentation. 
Availability and Implementation 
The R package is available at https://github.com/JiangmeiRubyXiong/GammaGateR. 
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Key Points 

● GammaGateR is the first semi-automated marker gating tool for mIF image, and it will 
help to diminish the inconsistency with manual marker gating. 

● With novel cfGMM, GammaGateR can fit flexibly across slides with different distributions 
and incorporate biology priors. 

● GammaGateR is proven to reveal credible prognostic information, and it can quantify 
known findings in tumor cell populations.  
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1. Introduction 
Multiplexed immunofluorescence (mIF) imaging is a recently developed spatial proteomic assay 
that allows the investigation of a tissue microenvironment for many markers and high spatial 
resolution [1–4]. mIF images are obtained through cyclic imaging with up to 60 marker channels, 
each identifying a specific protein. mIF is advantageous over other single-cell assays that 
disaggregate the tissue because it can reveal insights about the spatial interactions between 
tissue and cell types in situ and offers a subcellular spatial resolution that is higher than other 
spatial assays. mIF has already revealed valuable spatial insights into the tumor 
microenvironment [5–8]. For example, recent findings demonstrate differences in immune cell 
infiltration of colorectal precancerous polyps such as a higher concentration of CD8+ T-cells in 
the epithelium of sessile serrated lesions (SSL) than that of conventional adenomas and higher 
CD68+ macrophages concentration at the luminal surface in SSL, but more randomly 
distributed in adenomas [5]. 
 
Before important spatial insights can be gleaned using statistical methods [9–12], mIF images 
undergo an intensive preprocessing pipeline to obtain single-cell measurements. While there 
are various steps included in the pipeline such as image registration, single-cell segmentation, 
quantification, and batch correction [13–16], cell phenotyping is typically the final step before 
downstream analyses on the cell-level data, similarly to other single-cell assays. Cell 
phenotyping identifies individual cell phenotypes from the measured marker expression values 
of the cell and directly affects the subsequent cell population analysis results. 
 
The two most common approaches for cell phenotyping in mIF are manual gating and graph-
based multivariate clustering. In manual gating, each sample is visualized separately to 
determine a threshold, and super-threshold cells are labeled as marker positive. This procedure 
is repeated for all marker channels and slides, and the phenotypes are determined by 
combining combinations of marker-positive cells [5,8,17]. Alternatively, multivariate graph-based 
clustering is adapted from other single-cell assays [18,19]. This approach first performs cell 
clustering, then assigns a phenotype to each cell group based on their average expression 
profile. Multivariate graph-based clustering is implemented with various modifications across 
many software packages [20–22]. Unfortunately, both methods are labor intensive, and their 
accuracy suffers from image noise and spatial artifacts in mIF images that cause marker 
expression histograms to appear continuous or uni-modal . As a result, both phenotyping 
methods possess shortcomings that cannot be ignored. On one hand, manual gating can be 
subjective. On the other hand, graph-based clustering results are prone to over-clustering and 
producing poor separation between clusters [23,24]. 
 
The challenges described above are well recognized and there are a few methods and software 
developed that attempt to automate cell phenotyping for mIF images [22,25–28]. For example, 
CellSighter is a recently proposed supervised deep-learning algorithm for cell phenotyping that 
requires a “gold standard” training dataset [29]. Another recent solution, ASTIR  (Automated 
assignment of cell identity from single-cell multiplexed imaging and proteomic data), is a fast 
unsupervised approach that defines cell phenotypes from segmented cell-level data by using a 
neural network-based mixture model assuming a multivariate log-normal distribution [30]. 
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Instead of binary outputs like in classification methods, ASTIR returns posterior probabilities of 
different cell types for each cell. This type of output is advantageous because it offers more 
information than nominal cell types and leaves cell labeling to the clinician’s discretion. Lastly, 
Ahmadian et al. treat the analysis as a pixel classification problem and design a single-step 
framework for mIF phenotyping that is integrated with other preprocessing steps [31]. 
 
Nevertheless, inconsistencies persist in the results rendered by these learning-based methods 
when applied across markers, slides, batches, and datasets. These inconsistencies result from 
the immense variation in the cell-level distribution of phenotyping markers that are often too 
nuanced to be removed by existing batch correction methods [13–15]. For these reasons, it is 
difficult to fully automate the cell phenotyping process, despite the availability of automated 
tools, and manual gating is still used to perform cell phenotyping because it is easy to visualize 
and evaluate the quality of the phenotype [5,8]. 
 
Because automated methods cannot be run without evaluation and supervised methods require 
a gold-standard dataset, no method is truly fully automated. As a solution, we develop an 
explicitly semi-automated algorithm called GammaGateR. GammaGateR allows the user to 
easily perform cell phenotyping, visualize results, and conduct interpretable quality control while 
reducing manual labor. Based on a novel closed-form Gamma mixture model (cfGMM), 
GammaGateR is a probabilistic model that is fitted to each channel and slide separately, and 
outputs positive-component probabilities for each marker. These can then be easily thresholded 
and combined for semi-automated marker gating or input directly into downstream analysis. 
GammaGateR has important technical advantages, including 1) improved computation time and 
model convergence due to its novel closed-form property, and 2) high consistency and 
reproducibility for phenotyping results across mIF data batches due to incorporation of 
parameter boundary constraints. In applications on real-world mIF data, we find that 
GammaGateR has fast and consistent results across many slides and markers. We provide an 
open-source implementation of our method in the new GammaGateR R package 
(https://github.com/jiangmeirubyxiong/gammagater). 
  
In this paper, we describe the cfGMM model, and evaluate its computational performance and 
statistical properties. We then compare the accuracy of the GammaGateR with the current 
state-of-the-art unsupervised cell-level phenotyping tool, ASTIR, in three datasets. Finally, we 
use GammaGateR outputs to compare spatial features of immune cell populations in tissue 
compartments between adenoma and serrated colon polyps. 
 
2. Methods 
 
2.1 Datasets and Preprocessing 
We use three single-cell imaging datasets to evaluate model performance and demonstrate the 
use of the GammaGateR analysis pipeline (Table 1): the Colorectal Molecular Atlas Project 
(Colon MAP) dataset [5], the Spatial Colorectal Cancer (CRC) Atlas dataset [7] and Ovarian 
Cancer dataset [32,33]. Dataset-specific acquisition and processing are described below and in 
prior work [5,7,33]. After processing and prior to analysis, cell expression values were 
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normalized by first mean division then log10 transformation to reduce slide-to-slide variation 
[14]. Data collection for the Colon MAP and CRC atlas was approved by the Institutional Review 
Board (IRB) at Vanderbilt University Medical Center and collection of the ovarian cancer dataset 
was approved by the IRB at the University of Colorado. 

Dataset Number 
of slides 

Number 
of 
patients 

Number of 
Cells 

Number of 
Marker 
Channels 

Manual 
Marker 
Label 
Included 

Patient 
Survival 
Information 
Included 

Tumor 
Mask 

Colon 
Map 

42 42 2,244,117 33 Yes No Yes 

CRC 
Atlas 

16 16 9,309,130 33 Yes No No 

Ovarian 
Cancer 

2 128 1,610,431 9 No Yes Yes 

Table 1: Sample characteristics for each dataset. 
 
Colon MAP DataCe 
 
The Colon MAP data consists of precancerous samples including conventional adenomas and 
SSL. SSLs are more often found in the proximal colon, represent only 10-20% of all polyps, and 
exhibit higher cytotoxic immune cell infiltration [5]. The goal of this study was to characterize 
differences in the microenvironment of these two types of polyps. Data collection and 
processing are as described in [5]. Briefly, imaging was performed on a GE IN Cell Analyzer 
2500 using the Cell DIVE platform and acquired at x200 magnification, with exposure times 
determined manually for each antibody. Details on antibodies, staining sequence, and exposure 
times are given in their previous report [5]. Single-cell segmentation for the colon datasets was 
performed using MIRIAM, a multichannel machine learning single-cell segmentation algorithm 
designed and evaluated for human colon and human breast carcinoma [16]. Single-cell channel 
quantification was performed by taking the median value within each cell region and these 
values were normalized and used for subsequent analyses [14]. Epithelial and stromal tissue 
compartments were estimated using Leiden clustering and the tumor region of each sample was 
manually identified. 
 
CRC Atlas Data 
The CRC atlas dataset includes 16 samples that represent various stages of human colon 
cancer [7]. The goal of this study was to investigate the co-evolution of tumor and immune 
microenvironments in microsatellite-stable and chromosomally-unstable tumors. A molecular 
profiling assay was performed using mIF with 33 marker channels. Single-cell segmentation, 
channel quantification, and normalization are performed as in the Colon MAP dataset. 
 
Ovarian Cancer Data 
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The Ovarian Cancer data includes multiplexed immunohistochemistry (IHC) images from a 
tissue microarray of 128 patients with high-grade serous carcinoma [33,34]. The data were 
collected using Vectra Automated Quantitative Pathology Systems (Akoya Biosciences) at 20x 
resolution and stained with antibodies specific for CD8, CD68,cytokeratin, CD3, and CD19. 
Preprocessing including single-cell segmentation was performed using inForm software version 
2.3 (Akoya Biosciences). The data are freely available through the VectraPolaris Bioconductor 
Package [32] . 
 
 
2.2 GammaGateR 
 
Overview 
The GammaGateR algorithm is unique to existing methods for its focus on parsimoniously 
modeling cell-level marker expression densities. This approach yields tailored-to-slide model 
estimation in cell-level mIF data where marker expression distributions can vary substantially 
across slides. The algorithm uses a zero-inflated two-component GMM to model marker 
expression for each slide. The Gamma mixture model naturally identifies marker-positive and 
marker-negative cell distributions and returns the probability of belonging to the marker-positive 
cell distribution for each cell. The returned probabilities can either be used directly in 
subsequent analysis or combined and dichotomized to define cell phenotypes. GammaGateR 
incorporates user-specified constraints to provide consistent model fit across a large number of 
slides. The model evaluation methods included in GammaGateR allow the user to evaluate the 
constraints and quality check results. The power source of GammaGateR is the closed-form 
Gamma mixture model, which is a novel approach to phenotyping for mIF data that makes it 
more computationally efficient than traditional GMMs. 
  
Closed-form Gamma mixture model estimation 
For mIF data, we use the GMM to fit cell marker expression values as a weighted sum of 
different probability distributions that represent unique cell populations [35]. The Gamma 
distribution is an excellent model for marker values because the domain of the Gamma 
distribution is strictly positive and it has the flexibility to model the varying skewed densities 
seen in mIF marker values (Figure 1.5.a). However, GMMs are not scalable for mIF image data, 
because they rely on computationally inefficient numerical methods to obtain the maximum 
likelihood estimator (MLE). The slow convergence of the MLE for the GMM makes it prohibitive 
to apply across a large number of channels, slides, and cells. As a solution, we develop a 
closed-form GMM (cfGMM; https://github.com/jiangmeirubyxiong/cfgmm) estimation procedure 
based on a recently developed estimator for the Gamma distribution [36]. In addition, to improve 
computational efficiency, the cfGMM has the benefit of allowing prior constraints on model 
parameters. With the cfGMM in GammaGateR, we enable the flexibility to include a biologically 
meaningful range for the mode of each component in the Gamma mixture model. This way, 
users of GammaGateR can restrict estimation to biologically meaningful values. 
 
For the GammaGateR model, we assume nonzero marker values belong to two components 
representing marker positive and negative cells separately. Because mIF data can include zero 
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values due to autofluorescence adjustment, we use a zero-inflated two-component Gamma 
mixture model: 
��� � �� � ��� � 0�	� 
 ��� � 0� ∑�

��� 	�
��; ��,���,     (1) 
where 	� represents the proportion of zeros, 	� is the proportion of marker-negative cells, and 
	� is the proportion of marker-positive cells. ���� denotes the indicator function and 
��; ��,��� is 
the Gamma density function corresponding to the kth component, with �� and �� as its shape 
and scale parameters for the kth component and �� � ��� � 1��� as its mode.  We assume that 
�� � ��, that is, the component with higher mode corresponds to the marker-positive cells. 
Given values of 	� , �� and ��, the posterior probability of a given cell being marker positive is 

��� � 2 | � � �� �
��	;��,��


∑�
��� ��	;��,��


��� � 0�,       (2) 

where � is a random variable indicating the component membership of the given cell (0,1,2). In 
the extreme tails, the marker-positive probability might not always be higher than that of marker-
negative, due to different variances of the two components’ Gamma distributions. Therefore, we 
apply a correction to the posterior probabilities to force them to be monotonic with respect to the 
marker values. Specifically, after the first crossing of the density curves of the two components, 
the density curve of the first component will be forced to be non-increasing, and the density 
curve of the second component will be forced to be non-decreasing. In addition to the posterior 
probability, GammaGateR also outputs the marginal probability of the observed marker value for 
the marker-positive component 
���  �  � | � � 2� �  ���; ��,���. 
The marginal probability is monotonically increasing in the marker intensities and represents the 
probability that a marker positive cell is less than the given value, �.  
 
We improve computation time of the classical GMM using a recently developed closed-form 
estimator for the Gamma distribution [36]. We replace the Gamma distribution, 
, in equation (1) 
with the generalized gamma and derive the closed-form estimators for the GMM using the 
approach used for the Gamma distribution by Ye and Chen (2017),  


��| �� , �� , ��� � ���� , �� , ��� �
	������	����	/��
��

��
�������


 . 

When �� = 1, Equation 1 is equal to the gamma distribution with shape �� and scale ��. Closed-
form estimators of �� and �� are obtained by differentiating Equation 1 with respect to �� and 
��, setting the derivative to 0, solving for �� and ��, and setting �� = 1 in the final expression. 
Derivation of the cfGMM parameter estimator can be found in the Supplementary Material 
Section 1. Note that the closed-form estimators are not identical to the MLE of the Gamma 
distribution, but they approach the MLE in large samples seen in mIF datasets (see 
Supplementary Material Section 3). 
 
Sometimes, the local maxima of unsupervised clustering algorithms are not biologically 
reasonable because the marker positive and marker negative populations overlap. To address 
this issue, we add constraints on the mode of the components of the cfGMM in order to restrict 
the marker-positive cells to the right of the marker distribution. The constraints can be selected 
based on a percentile of the marker distribution or by visualizing the “elbow” of the expression 
distribution of the marker (see GammaGateR pipeline). To incorporate this biological 
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information, we constrain the mode, ��, for component k, which is a function of parameters �� 
and ��, so that it lies within the interval ��� , ���: 
�� � ��� � 1���   ��� , ���, ! � 1,2, �� � ��. 
Because the the log-likelihood is strictly concave with respect to �� and ��, the constrained 
maximum must lie on the boundary if the global maximum is outside the bounds, so finding the 
maximum reduces to finding the solution incorporating the boundary constraint. In this case, the 
expected log-likelihood of the component k is maximized on the line corresponding to the lower 
or upper constraint, e.g. ��� � 1��� � ��. The parameters are estimated following the 
Expectation-Maximization algorithm [37] (See Supplementary Material Section 2). 
 
GammaGateR pipeline 
The analysis pipeline is illustrated for the CD4 marker channel (Figure 1). GammaGateR takes 
a single-cell image dataset, with each row corresponding to an individual cell, and each column 
as the normalized intensity of a marker channel for each cell (Figure 1.1). The first step is 
selecting biological constraints for model fitting by visualizing overlay histograms for each 
marker channel (Figure 1.2). The constraints are not manual thresholds, but represent 
boundaries for the mode of each component of the fitted distribution across all slides in the 
dataset. Because marker-positive cells often are a small proportion of all cells and have higher 
expression values, we limit the mode of the higher component to be no lower than the “elbow” of 
the overlay histograms (Figure 1.2, e.g. 0.45). While GammaGateR can be fit without 
constraints, the constraints provide more consistent model estimation across many slides. 
Examples of initial constraints for the three datasets presented here are given in Tables S3 & 
S4. Given the data and constraints, GammaGateR generates the parameter estimates of the 
Gamma mixture model including modes and proportion of each component, and the posterior 
and marginal probabilities of each cell being marker-positive. 
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Figure 1: Overview of GammaGateR analysis pipeline for the CD4 marker channel. (1) 
GammaGateR takes segmented cell-level data as input. (2) Density polygons are used to 
visualize all slide level histograms and select constraints for model fit (3). (4) After model 
estimation, (5.a) diagnostic plots are used to evaluate the model fit. (5.b) New constraints can 
be selected and the refitted model can be compared to a previous model. (6) Expression 
probabilities can be extracted for downstream analysis from the model objects. 
 
To ensure accurate model fitting, GammaGateR includes functionality for users to evaluate 
model fit and modify the fit when needed. Diagnostic plots for the fitted GammaGateR model 
object consist of a scatter plot of all the slides fitted model modes and lambda (marker-positive 
probability), and the fitted density curve over the cell expression histogram for each slide in the 
data set (Figure 1.5.a). The x-axis of the scatter plot is the mode for the marker-positive 
component, and the y-axis is the proportion of the corresponding component. The scatter plot is 
useful for identifying slides that are outliers with respect to where the mode of marker-positive 
cells lies or the estimated proportion of marker-positive cells. The histograms can be used for 
visually evaluating model fit for one slide. A good model fit shows an approximate fit of the 
smooth density line to the histogram with a marker-positive cell distribution sitting to the right 
(Figure 1.5.a). If there is poor model fit, users can compare fitted models between two different 
constraints to check how different boundaries affect fitted values (Figure 1.5.b). Figure 1.5.b 
compares the model fit for CD4 with no constraints (green) to the model fit with an initial 
constraint with a lower bound of 0.45 for the marker-positive component (red). The model 
without constraints places the marker-positive distribution directly over the marker-negative 
distribution. Users can adjust the parameter boundaries and fit again until satisfactory fittings 
are rendered. Finally, the output of the fitted models is easily accessible in the GammaGateR 
model object (Figure 1.6). The vignette in the GammaGateR R package provides a guide to 
fitting the GammaGateR model in the lung cancer dataset from the VectraPolaris dataset 
available on Bioconductor. 
 
2.3 Model estimation 
GammaGateR is fitted to all datasets following the procedure described in Figure 1. Among 
them, both the colon map data and the CRC atlas data go through an additional modification of 
the thresholds by increasing the thresholds after visually evaluating the model fit (Table S4). 
The ovarian cancer data shows good results in the first round of fitting. There are five slides that 
have one channel that did not converge in the colon map data and the CRC atlas data. These 
slides are discarded in the subsequent analyses. The markers, thresholds, adjusted thresholds, 
and number of slides that do not converge are all listed in Table S4. 
 
We compare GammaGateR results to ASTIR, another unsupervised cell-level phenotyping 
software developed for mIF data [30]. ASTIR uses a combination of neural networks within a 
multivariate normal mixture model to obtain cell phenotypes from marker channel expression 
data and returns a vector of phenotype probabilities that sums to one for each cell. ASTIR takes 
the marker expression of each cell and an XML file as input to specify phenotypes based on 
prespecified marker combinations. The phenotypes input for ASTIR for the three datasets are 
given in Tables S1 and S2. 
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2.4 Methods and phenotyping evaluation 
To compare the methods in determining cell phenotypes we assess the accuracy of each 
method relative to a “silver standard” manual phenotyping in the Colon MAP and CRC atlas 
datasets and evaluate the efficacy in predicting survival in the ovarian cancer data. We compare 
phenotyping results obtained using GammaGateR and ASTIR to “silver standard” manual 
phenotyping using the Adjusted Rand Index [38]. Adjusted rand index typically takes values 
between 0 and 1, where a larger value indicates a better alignment between two categorical 
variables. The silver standard is obtained by gating the raw images based on visual inspection 
and defining marker-positive cells as those that contain more than 50% marker-positive pixels 
within each cell. Semi-automated marker gating results are obtained using GammaGateR as 
described in Section 2.3, with monotonically adjusted posterior probability and marginal 
probability thresholded at 0.5 to define marker positive cells. The same phenotype definitions 
used for ASTIR are used to define phenotypes from marker positive labels using GammaGateR 
and manual marker gating as well [5,7]. Each cell belongs to a given phenotype if it is marker 
positive for combinations of markers for that phenotype (Tables S1, S2). ASTIR phenotypes are 
determined by selecting the cell type with the maximum probability for each cell. All methods 
use the same combinations of markers to define phenotypes (Table S1, S2). 
 
Because the Ovarian Cancer dataset does not include manual cell phenotypes, we instead 
compare the prediction accuracy of survival time data for each method across all patients in the 
study to determine if one method has greater biological sensitivity than the other. The original 
study shows that survival of ovarian cancer patients is significantly correlated with B-cell and 
CD4 T-cell, as well as spatial interaction between CD4 T-cell and macrophage. Therefore, we 
evaluate the methods using this dataset by fitting a survival model with age, cancer stage, B-cell 
proportions, CD4 T-cell proportions, and the spatial interaction between Macrophage and CD4 
T-cells estimated by Ripley’s H with r=50 [39]. Ripley’s H is a geospatial index that describes 
spatial attraction/repulsion. We fit a model for each method, where the cell phenotypes are 
determined using the given method, and compare all models, as well as a base model that 
includes only age and cancer stage. We use a random forest survival model to be sensitive to 
complex nonlinear relationships [40,41]. To estimate variability in the out-of-bag performance 
error, we compare the methods across 100 bootstrap samples. Performance error quantification 
is based on C-index [42], where a low performance error means that the model is a good fit, and 
a performance error of 0.5 is a random chance. 
 
2.6 Spatial analysis in Colon MAP 
We use GammaGateR to perform analyses of spatial features of the tumor microenvironment in 
precancerous colon polyps using the Colon MAP dataset [5]. Specifically, we summarize 
immune cell population proportions (CD3+) and MUC5AC expression in the manually annotated 
tumor region of each sample, as well as quantify the spatial interaction between MUC5AC+ 
cells and CD68+ cells. To estimate cell population proportions, instead of dichotomizing cell 
populations, we average the posterior marker positive probabilities across all cells in the tumor 
region. For example, the proportion of CD3+ cells in the tumor epithelium is quantified as 
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where ��  is the CD3 marker value for cell ", in the tumor epithelial region, #� is the total number 
of cells segmented in the tumor epithelial slide $, and ��� � 2 | � � �� � is as described in 
Equation (2). To study differences in cell proportions between tumor types we fit a linear 
regression model on the logit transformed probabilities with regions clustered within samples 
and weights proportional to the number of cells in each region. We report hypothesis tests using 
robust standard errors and a robust effect size index (RESI) with 95% confidence intervals to 
quantify the effect of tumor types on marker channels [43,44]. 
 
To quantify spatial clustering, we threshold the posterior probabilities and use Ripley’s H with r 
 �0,1000� to quantify spatial attraction or repulsion of MUC5AC+ and CD68+ cells within each 
region of each tissue sample [39].  After estimating Ripley’s H, we average the index across all 
radii and test the difference between groups using a Welch t-test.  
 
3. Results 
3.1 Performance Evaluation 
We compare the ARI of each method relative to a silver standard manual phenotype in the 
Colon Map and CRC atlas datasets. For both datasets and all cell types in these datasets, the 
posterior probability by GammaGateR yields higher Median ARI (Figure 2a & b). This means 
that the posterior probability has consistently greater similarity to the silver standard than 
marginal probability and ASTIR (Figure 2a & b). However, for some cell types (e.g. 
Macrophage, B-cells, Myeloid), all methods have low performance. This is an indication of 
systematic difference in how the algorithms identify positive cells relative to the manual labels. 
  
To evaluate the methods in the Ovarian cancer data in the absence of manual phenotypes, we 
use proportions and spatial characteristics of the phenotypes from each method as predictors in 
a random forest survival model. For all methods, incorporating the cell-level information reduces 
out-of-bag error performance by approximately 0.075, over the base model that includes only 
age and cancer stage. This indicates that spatial cell phenotype covariates are useful in 
predicting survival outcomes, consistent with the original findings [33]. The posterior probability 
slightly outperforms other methods, having the lowest prediction error in 46% of the bootstrap 
samples, compared to 36% with ASTIR and 18% with the marginal probability (Figure 2c). 
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Figure 2: Performance evaluation for GammaGateR on the three datasets. “Posterior” and 
“marginal” refer to the posterior and marginal probabilities from GammaGateR, respectively. 
Cell phenotyping performance comparing GammaGateR to ASTIR in the (a) Colon MAP and (b) 
CRC Spatial atlas. (c) Survival prediction performance error in the ovarian cancer dataset, 
measured by 1-C-index. “Base” indicates the survival model including only age and cancer 
stage variables. 
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3.2 Cell Spatial Interaction in Colon MAP 
We use marker gating results from GammaGateR to compare spatial features across adenoma 
and SSL samples. We hypothesize that SSLs, which are precursors to CRCs with high 
microsatellite-instability that have better prognosis, have greater immune cell infiltration in the 
epithelial tissue (greater proportion of CD3+ cells), greater expression of MUC5AC in the tumor 
region, and that cells expressing MUC5AC spatially attract Macrophages (CD68+ cells) in SSLs, 
but not in adenoma samples [5]. 
  
From the results, we observe that SSLs are associated with enriched immune cell populations 
(CD3+ cell proportions) in the epithelial region of the tumor tissue (Figure 3a; T=2.22, df=35, 
p=0.0332, RESI=0.15, 95% CI for RESI=(0, 0.52)) and have higher, but a nonsignificant 
proportion of MUC5AC+ cells in the tumor region (Figure 3b; T=1.83, df=13, p=0.0902, 
RESI=0.20, 95% CI for RESI=(0, 0.97)).  Ripley’s H shows a strong difference between AD and 
SSL slides (Figure 3c; T= -4.67, df = 8.56, p = 0.001,  RESI=1.01 95% CI for RESI=(0.60, 
1.87)). The values of Ripley’s H indicate spatial attraction between MUC5AC+ and CD68+ cells 
in SSLs, but spatial repulsion between these two in adenomas. These results are reflected 
visually in representative samples of the GammaGateR phenotypes with the raw imaging data 
(Figure 3c). The concordance between quantified measurements generated by GammaGateR 
and qualitative observation conclusions shows that GammaGateR can help solidify observed 
spatial pattern. 
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Figure 3: Spatial analysis results using GammaGateR in the Colon MAP data. “AD” and “SSL” 
represent adenoma and sessile serrated lesions, respectively. a) Comparison of CD3+ and 
MUC5AC+ cell proportions between tumor types in epithelial regions of the tumor mask. Each 
point is the mean marker positive probabilities for one slide. The horizontal lines are means and 
vertical lines are robust 95% confidence intervals. b) Ripley’s H curves for spatial interaction 
between MUC5AC+ and CD68+ cells for each slide. c) Examples of MUC5AC+ and CD68+ 
cells identified with GammaGateR in the two tumor types, with corresponding raw image 
intensities in the multiplex images (MUC5AC, CD68, and NAKATPASE). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2023. ; https://doi.org/10.1101/2023.09.20.558645doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.20.558645
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

15 

 
4. Summary and Discussion 
We introduced GammaGateR, a semi-automated maker gating tool. Driven by a novel cfGMM 
estimation framework, GammaGateR generates reproducible and evaluable marker gating for 
mIF data. In addition, cfGMM enables computationally feasible model estimation for large-scale 
datasets like mIF. The marker gating output of GammaGateR can be used to define phenotypes 
and as input to downstream analysis. GammaGateR implements interactive visualization to 
quality check the clustering results (see vignette in Supplementary Material) and allows users to 
modify the constraints to improve model results when needed. Consequently, GammaGateR 
provides more consistent results with silver standard labels than ASTIR, the existing state-of-
the-art method for automated phenotyping of cell-level mIF data. In the examples shown in this 
paper, GammaGateR phenotypes had slightly improved ovarian cancer survival prediction 
accuracy compared to ASTIR. This paper also compares the posterior and the marginal 
probabilities returned by GammaGateR. The marginal probabilities only use the marker positive 
cell distribution to determine cell phenotypes, whereas the posterior probabilities take into 
account the distribution of the marker negative cells. Using posterior probabilities was almost 
always better indicating the importance of accounting for the full distribution of the marker 
intensities when identifying marker-positive cells. 
  
Despite being an effective tool with a high level of implementation, GammaGateR could still use 
a few improvements to broaden its usage. First, the accuracy of GammaGateR might further 
improve with pixel-level information. GammaGateR is applied to segmented cell-level data and 
does not rely on patterns of pixel intensities within and around each cell. While this makes 
GammaGateR easy to apply in many datasets, it obviously does not leverage the information 
available at the pixel level around each cell, which may be useful for identifying doublets and 
improving cell phenotype identification as in recent work [45,46]. Second, GammaGateR 
focuses on obtaining a highly accurate fit to the marginal distribution of each marker channel for 
each slide and is applied separately to each slide and channel making it highly parallelizable. 
One disadvantage of this approach is that it does not explicitly account for the joint distributions 
of markers, which could be used for obtaining more accurate phenotypes. Instead, multiple 
markers can be incorporated by combining the posterior probabilities to define phenotypes as 
was performed above in the Colon MAP and CRC atlas datasets. Future work could model the 
multivariate distributions. However, it should be noted that this approach risks phenotypes being 
driven, in part, by channels that might not be relevant for a given cell type. Third, more thorough 
evaluation of batch effect could render more reasonable marker-gating output. We applied 
normalization prior to running GammaGateR to reduce the influence of batch effects. Although 
GammaGateR does not explicitly model and remove batch effects, because the model is fit 
separately for each slide, it may help to mitigate batch effects. When using the posterior 
probabilities in downstream analysis an implicit assumption is that differences in the shape and 
location of the marker positive component do not represent biological differences. Finally, in our 
applications, five models had too few cells to estimate or did not converge and were excluded 
from the analysis. GammaGateR parameter estimates for the failed models could be imputed by 
combining estimates across slides, which might also help with the estimation and removal of 
batch effects. 
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GammaGateR is the first semi-automated marker gating method developed specifically for mIF 
data and is useful to define quality-controlled marker-positive cells by flexibly modeling marker 
distributions across cells and channels. GammaGateR has demonstrated consistency with 
manual labels and sensitivity to biological information which makes it another useful method for 
the multiplexed imaging scientist. 
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Table Captions 
 
Table 1: Sample characteristics for each dataset 
 
Table S1. Marker-to-phenotype correspondence in colon precancer and CRC atlas datasets. 
 
Table S2. Marker-to-phenotype correspondence in ovarian cancer dataset. 
 
Table S3. Examples of initial constraints for the ovarian cancer data. 
 
Table S4. Constraints, adjusted constraints, and convergence for the colon map data and CRC 
atlas data. GammaGateR was only fit on the subset of markers used in the paper for the CRC 
atlas. 
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