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Abstract. One of the fundamental challenges in modern neuroscience

is understanding the interplay between the brain’s functional activity

and its underlying structural pathways. To address this question, we

propose a novel communication pattern called subnet communicability,

which models diffusive communication between pairs of regions through

a small, intermediary subnetwork of brain regions as opposed to spread-

ing messages through the entire network. We demonstrate that subnet

communicability strengthens coupling between the structural and func-

tional connectomes better than previous models, including communica-

bility. Over two large datasets, we show that the optimal subnetwork is

consistent across the population. Subnet communicability provides new

insights into structure-function coupling in the brain and offers a balance

between redundancy in message passing and economy of brain wiring.
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1 Introduction

The human brain is a complex network of interconnected neural elements that
can be considered as an information processing network. At the macroscale, the
human connectome maps the connectivity between brain areas [6]. Using mag-
netic resonance imaging (MRI), the connectivity between brain regions can be
described in terms of structural relationships between gray matter regions that
denote anatomical connectivity through white matter pathways [23], or func-
tional relationships capturing statistical patterns of co-activation over time that
correspond to communication between these regions [3]. Functional connectiv-
ity and rich network dynamics are influenced and constrained by anatomical
connections and brain network topology [4, 12]. Understanding the dynamics of
functional interactions between brain regions with no direct anatomical connec-
tions [13] is an open challenge in modern neuroscience.

Several network communication models have been devised to explain the re-
lationship between observed functional connectivity (FC) and underlying struc-
tural connectivity (SC) in the brain. By modeling the possible neural communi-
cation pathways shaped by structural connections, these models aim to describe
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the polysynaptic interactions between anatomically unconnected brain regions
[1]. Using a particular candidate model, each individual’s structural connectivity
matrix can be augmented into a communication matrix, i.e., simulated functional
connectivity, that represents the connectivity between all pairs of regions in the
brain [21]. This simulated functional connectome is then compared with the
empirical functional connectome to quantify similarity.

One of the earliest models proposed was shortest-path, where indirect com-
munication between region pairs occurs through a minimum number of inter-
mediate hub regions [12]. When considered on a weighted connectome, a vari-
ation of shortest-path was suggested where messages travel through the path
with strongest connectivity [24]. These were considered de facto communication
models in the brain as the idea of communication through a single optimal path
is in alignment with the established wiring economy of the brain [2]. However,
the efficacy of shortest path was questioned since its calculation requires hav-
ing a complete knowledge of the network topology, which can be considered
implausible for local neural elements in the brain [22]. Additionally, since the
model assumes communication happens through a single pathway, it lacks the
redundancy that is necessary for robust communication.

To overcome these limitations, communication patterns such as path transi-
tivity and search information were proposed. These models advocate communi-
cation through parallel pathways that detour around the shortest path [11] and
demonstrate better structure-function coupling than the shortest-path model. A
decentralized communication pattern called communicability [7, 9] models com-
munication occurring diffusively through all possible pathways in parallel. Com-
municability was recently shown to increase coupling between the structural
and functional connectome better than other communication patterns including
shortest-path, search information, and path transitivity [17, 20, 28]. Despite its
success in better explaining structure-function coupling and accounting for re-
dundancy, communicability contradicts the established economy of brain wiring
as it does not restrict volume of information sent when flooding the entire net-
work for communication.

In this study, we propose a novel network communication model called subnet

communicability. Our proposed model aims to limit the redundancy of commu-
nicability and provide an efficient wiring economy while still offering a decen-
tralized communication scheme. We achieve this by restricting diffusive com-
munication to occur through a backbone subnetwork of a considerably smaller
size, which is connected to the rest of the network. We systematically evaluate
subnetworks of varying sizes and investigate the set of regions that constitute
subnetworks with the highest structure-function coupling across individuals. We
also analyze the contribution of functional systems to these subnetworks. Our
proposed model offers insight into the underlying mechanisms used to process
information in the brain and its biological neural signaling patterns.
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Fig. 1. Overview of the method: (left) Using the structural connectome of an in-

dividual, one of the communication models is applied to obtain a simulated functional

connectome, which is then correlated with the positive functional connectome to calcu-

late structure-function coupling. (right) Visual representation of explored communi-

cation models. Red nodes denote source and destination regions in the brain network.

Blue edges represent the pathway that the message travels through, and edge thickness

accounts for the strength of the structural connection.

2 Methods

2.1 Dataset and Preprocessing

We evaluated our methods on 200 unrelated, healthy young adults (96 males) in
the age range [22,35] from the S1200 Young Adult Open Access dataset of the
Human Connectome Project (HCP) [25]. To test the generalizability of our ap-
proach, we repeated our experiments on 261 healthy individuals (140 males) in
the age range [22,86] from the 1000Brains dataset [5]. Structural and functional
connectomes used in our analysis were provided open source in [8, 15], which
were derived from diffusion-weighted MRI (dMRI) and resting-state functional
MRI (fMRI) data. Connectomes were generated using the Schaefer atlas with
100 regions [18], where structural connectivity was obtained through probabilis-
tic tracking with 10M streamlines and functional connectivity was obtained by
calculating Pearson’s correlation over the BOLD signal. The reader is referred
to [8] and [15] for more details of the data processing pipeline.

2.2 Overview of Structure-Function Coupling

Taking the structural connectivity of a subject as the basis, we calculated sim-
ulated functional connectivity by using a communication model. We then cal-
culated Pearson’s correlation between the resulting simulated connectome and
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positive empirical functional connectome to quantify structure-function coupling
(SFC). Higher correlation indicates better coupling (Fig.1, left).

2.3 Communication Models

In our structure-function coupling analysis, we propose subnet communicabil-
ity and compare it to three other communication models (Fig.1, right). Each
communication model is applied on a subject’s SC matrix W , where Wij is the
strength of structural connections between region pairs.

Communicability Communicability, which is the basis of our proposed model,
utilizes a broadcasting approach where signals are simultaneously propagated
through all possible regions in the network [9]. Unweighted communicability be-
tween nodes i, j is computed by calculating the number of walks between them
scaled relative to path length k as Commij =

∑
∞

k=0

1

k!
[W k]ij . To account for the

influence of connection strength in weighted SC matrices, weighted communica-
bility is computed over the normalized W ′, where W ′

ij = Wij/(
√
si
√
sj), and si

is the strength of node i.

Subnet Communicability Extending the definition of weighted communi-
cability, which propagates a signal across all possible fronts, we propose subnet
communicability which propagates a signal only through a subset of regions that
constitute a backbone network. Given a graph G = (V,E) and a subset of nodes
H ⊆ V to constitute a subnetwork, we compute subnet communicability be-
tween two regions i, j ∈ V by first forming the subgraph composed of the nodes
H ∪ {i, j} and their associated edges in E with corresponding SC matrix WH .
We then calculate connectivity by SubnetCommij =

∑
∞

k=0

1

k!
[W k

H ]ij . Repeating
this process for all node pairs yields the subnet communicability matrix.

Shortest Path The shortest path model routes information deterministically
using a centralized strategy [21]. Given a weighted W , connectivity between i
and j is given by Pij = eiu + ...+ evj , the sum of edge weights in the strongest
path between i and j, it is computed using an all pairs shortest path algorithm
given W ′ as input, where W ′

ij = 1/Wij

Direct Communication Used as a baseline for comparing the efficacy of the
other communication models, this model accounts for communication happening
only between regions that are anatomically connected to each other.

3 Results

SFC analysis on subnetwork size: We first explored the SFC for subnet
communicability using varying network sizes ranging from 1 to 75 regions across
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Fig. 2. SFC using subnet communicability for varying subnetwork sizes:
(left) Highest SFC achieved for each of 40 subjects across varying subnetwork sizes
are plotted in gray with their average plotted in purple, demonstrating a peak at sub-
networks of size 3 and a decaying SFC with increasing subnetwork sizes. Subnetwork of
size 100 corresponds to the putative weighted communicability model (right) Distri-
bution of SFC over randomly sampled subnetworks of varying sizes for a single subject
demonstrates higher SFC for certain subnetworks relative to standard communicability
utilizing the entire network (100 regions).

a subset of the HCP dataset consisting of 40 individuals. We randomly sampled
nodes to constitute subnetworks 1000 times at each size (except for size 1 where
the number of possible subnetworks is 100), while ensuring that each node in the
graph has a connection to at least one of the nodes in the resulting subnetwork.
Evaluating the highest SFC scores for subjects across random samplings at each
size, we observed that SFC achieves a peak for subnetworks of size 3 with a
mean score of r = 0.35 across the subjects and steadily decays with increasing
subnetwork sizes, converging to r = 0.27 for standard communicability (Fig.
2, left). For a single subject, SFC scores of all randomly sampled subnetworks
of varying sizes are also shown (Fig.2, right). Initial results demonstrate that
higher SFC can be achieved using subnet communicability relative to standard
weighted communicability that uses the entire network.

Composition of subnetworks: Having empirically determined the subnet-
work size with peak SFC, we then analyzed the composition of subnetworks at
both the region and system levels. We first investigated brain regions that con-
stitute networks achieving highest SFC. For each of the 200 individuals in the
HCP dataset, we randomly sampled 10, 000 subnetworks of size 3 while ensuring
connectivity of all regions. We calculated SFC of subnet communicability uti-
lizing each sampled subnetwork as a backbone and evaluated the consistency of
subnetwork regions based on how many times a region is included in the subnet-
work achieving the highest SFC. As illustrated in Fig.3, medial prefrontal cortex
(MPC) and orbital frontal cortex (OFC) regions were bilaterally over-represented
relative to the rest of the regions by several orders of magnitude (Left MPC =
89, right MPC = 98, left OFC = 68, right OFC = 72 occurrences). If region
occurrences in a subnetwork were based on random chance, only 6 occurrences
would be expected per region across all individuals, thus denoting the signifi-
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Fig. 3. Composition of subnetworks: (top left) Frequency of regions in the highest
SFC subnetwork of size 3 across 200 subjects, where x-axis denote region IDs. Medial
prefrontal cortex and orbital frontal cortex regions bilaterally occurred significantly
more than the rest of the regions. (bottom left) Frequency of functional systems
represented in the highest SFC subnetwork, normalized by system sizes. Default mode
and ventral systems are disproportionately overrepresented relative to other systems.
(Dashed red lines at the top and bottom indicate the number of times a region is ex-
pected to appear in networks across people if the occurrences were by random chance.)
(right) Occurrences of regions expressed in proportion with the node radius over a
brain image.

cance of the MPC and OFC brain regions. We also noted that only 19 regions
were above that threshold.

We then evaluated the representation of the seven functional systems [27]
in the highest SFC achieving subnetworks by grouping occurrences of regions
into systems followed by a normalization using system size. We observed that
the ventral system and default mode network were over-represented while the
remaining systems were under-represented (Fig.3, bottom left). To demonstrate
generalizability of results for varying network sizes, we repeated the experiments
for subnetworks of size 5 and observed the same pattern at both region and
systems levels (Fig.S1 in supplementary material).

Comparison of communication models: Having established the consistency
of certain brain regions in the highest SFC achieving subnetworks, we then ex-
plored how subnet communicability performs relative to other communication
models. For this subnet communicability analysis, we used the same subnet-
work across individuals consisting of bilateral MPC and right OFC regions. We
also calculated simulated functional connectomes using the other three com-
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d=0.9

d=1.5

d=2.3

Fig. 4. Structure-function coupling of subjects using various communication
patterns: Paired group differences were calculated between each communication pat-
tern relative to the putative communicability model. Subnet communicability over a
backbone network of 3 nodes achieves significantly higher SFC compared to communi-
cability that uses the entire network for parallel communication. On the other hand,
structural connectome without any model applied as well as shortest path achieved a
lower SFC relative to communicability. All group differences were significant (p < 10

−6)
after Bonferroni multiple comparison correction with large effect sizes (Cohen’s d).

munication models. With the putative communicability model as a reference,
statistical group comparison (paired t-test) revealed that subnet communicabil-
ity (µ = 0.36) achieved significantly higher SFC (µ = 0.27) with a very large
effect size (Cohen’s d = 2.3, p < 10−6) (Fig. 4). We further observed that direct
communication (µ = 0.24; d = 0.9, p < 10−6) and shortest path (µ = 0.22; d =
1.5, p < 10−6) both achieve significantly lower SFC, confirming previous litera-
ture [17, 20, 28]. Once again, we observed the same pattern of group differences
with subnetworks of size 5 (Fig.S2 in supplementary material).

Centrality analysis of subnetworks: Finally, we investigated the network
topology features of the highest achieving subnetworks by exploring node cen-
trality measures. We calculated the betweenness (BC), subgraph (SC), eigen-
vector centralities (EC), and clustering coefficient (CC) of each region over the
average SC across subjects. As 19 regions were observed to have representation
higher than chance in the composition of subnetworks, we generated 4 sets of 19
regions having the highest network measure scores. We then compared the set of
regions that appeared most frequently in subnetworks with these sets to quan-
tify their overlap using the Dice coefficient. We observed low Dice coefficients for
all measures (BC=0.32, SC=0.11, EC=0.05, CC=0.11), indicating that region
representation in top subnetworks may not be related to the centrality metrics
tested alone.
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Replication of results over a second dataset: We repeated the experi-
ments over structural and functional data of 261 individuals from the 1000Brains
dataset. The relationship between the size of the subnetwork and SFC demon-
strated a trajectory similar to HCP data, where the highest SFC was achieved
for networks of size 3-7, and it decreased by larger network sizes (Fig.S3 in
supplementary material). When comparing the nodes represented in the subnet-
work of size 3 between HCP and 1000Brains datasets, although the individual
regions that occurred most frequently were not the same, the nodes from vi-
sual, somatomotor, and dorsal systems were under-represented, and ventral and
default mode networks were over-represented, which aligns with HCP results.
However, we also observed that nodes from limbic and frontoparietal networks
were over-represented in this second experiment (Fig.S4 in supplementary ma-
terial). Finally, repeating the experiment by using the top three most frequently
occurring nodes on 1000Brains data, we observed the same pattern of subnet
communicability achieving higher SFC than the other communication patterns
with large effect sizes (Fig.S5 in supplementary material). Overall, results were
replicated to a large extent with some differences in the frequency of occurrences
of individual regions.

4 Discussion

In this study, we proposed a novel communication model called subnet commu-
nicability that uses a considerably smaller subset of brain regions for diffusive
message passing. We demonstrated that subnet communicability achieves better
structure-function coupling relative to standard communicability over the entire
network, which was previously shown to achieve the highest structure-function
coupling through a diffusive message passing strategy [17, 28].

The human brain’s wiring is considered to minimize energy consumption [2]
supporting communication models such as shortest path. These models de-
terministically route information using unique optimal paths, requiring global
knowledge of network topology, which is deemed unlikely for local brain regions.
Diffusive models like communicability, on the other hand, demonstrated higher
structure-function coupling while also retaining redundancy in message passing.
This approach, thus, ensures robustness in communication while requiring mini-
mal information about network topology. However, communicability contradicts
the well-established economy of communication in the brain due to its unre-
stricted message-passing scheme. Subnet communicability as we proposed, on
the other hand, has demonstrated a balance between brain wiring economy and
redundancy in message passing while requiring limited knowledge of network
topology across neural elements by achieving highest SFC through a fairly small
subnetwork of regions.

The over-representation of the default mode network (DMN) and ventral
attention system in the subnetworks across subjects demonstrates a consistent
pattern. DMN is known to be active during resting state [10] which might explain
its central role in subnetworks indicated by the higher SFC relative to resting
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state function. The ventral attention system is known to orient attention towards
internal state [26], which might further support its over-representation for SFC
relative to resting state function where external stimuli are limited.

Finally, subnet communicability with the same subnetwork achieving higher
SFC consistently across the entire cohort relative to other communication mod-
els highlights a biological basis for the choice of nodes that constitute this high-
achieving subnetwork. The lack of a strong overlap between the frequency of
nodes appearing in highest SFC achieving subnetworks and centrality scores
of nodes, however, indicates that tested centrality measures are insufficient in
explaining the underlying network topological mechanisms, requiring further in-
vestigation.

Although this study investigates the efficacy of subnet communicability over
two high-quality datasets, certain limitations should be acknowledged. First, it
is known that diffusion MRI has various inaccuracies in determining structural
brain connectivity, especially at regions involving crossing or kissing fibers [14].
Second, experiments were carried out on a single atlas at a single parcellation
resolution. Third, although the total number of samples investigated in the study
is over 500, the datasets explored in the study only consisted of healthy samples,
thus limiting the generalizability of results to the healthy. Also, the age range of
samples did not include children and young adults, which limits the applicability
of results to adults. Finally, prediction of functional interactions of brain regions
from their structural connectivity is an inherently restricted problem due to
differences of consistency of the data modalities [16].

5 Conclusions

Diffusive communication models were previously shown to explain SFC better in
the brain and provide necessary redundancy in message passing despite contra-
dicting the established economy of wiring in brain [17, 19, 28]. We have demon-
strated that parallel communication when routed through a small subnetwork
using subnet communicability explains SFC better than prior diffusive models
while establishing a balance between redundancy and economy of brain. Subnet
communicability presents an interesting communication pattern that warrants
further exploration.
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