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Abstract 

Development of therapies for CLN3 Batten disease, a rare pediatric lysosomal storage disorder, has been 

hindered by the lack of etiological insights and translatable biomarkers to clinics. Here, we used a deep 

multi-omics approach to discover new biomarkers using longitudinal serum samples from a porcine model 

of CLN3 disease. Comprehensive metabolomics was combined with a nanoparticle-based LC-MS-based 

proteomic profiling coupled with TMTpro 18-plex to generate quantitative data on 769 metabolites and 

2,634 proteins, collectively the most exhaustive multi-omics profile conducted on serum from a porcine 

model, which was previously impossible due a to lack of efficient deep serum proteome profiling 

technologies compatible with model organisms. The presymptomatic disease state was characterized by 

elevations in glycerophosphodiester species and lysosomal proteases, while later timepoints were 

enriched with species involved in immune cell activation and sphingolipid metabolism. Cathepsin S, 

Cathepsin B, glycerophosphoinositol, and glycerophosphoethanolamine captured a large portion of the 

genotype-correlated variation between healthy and diseased animals, suggesting that an index score 

based on these analytes could have great utility in the clinic. 
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Introduction: 

Batten Disease (also known as neuronal ceroid lipofuscinoses (NCLs)), are a group of neurodegenerative 

lysosomal storage disorders that result from pathogenic variants in one of 13 ceroid lipofuscinosis 

neuronal (CLN) genes. Collectively, Batten disease affects approximately 1 in 100,000 individuals 

worldwide, making it the most common pediatric neurodegenerative disorder1. The most common form 

of Batten Disease, CLN3 disease, is a rare and fatal autosomal recessive disorder caused by mutations in 

CLN3. Individuals with CLN3 disease typically experience vision loss in early childhood, followed by 

seizures, motor and cognitive decline, and premature death by the third decade of life2, 3. Pathologically, 

CLN3 dysfunction cascades from to the accumulation of lysosomal storage material, microglia and 

astrocyte activation, to neuronal dysfunction and death4 . 

Despite many years of research, the molecular function of CLN3 and many of the other NCL proteins has 

yet to be fully elucidated. Recent advancements have begun to outline the biological processes affected 

by CLN3 dysfunction, but the field still lacks robust biomarker signatures that comprehensively reflect the 

disease state5, 6. With the growing list of CLN3-specific therapies entering clinical trials, there is a 

substantial need for non-invasive biomarkers that can track disease progression and therapeutic efficacy2, 

7. We recently identified a group of glycerophosphodiesters as promising blood-based biomarker 

candidates for CLN38. Shortly thereafter, a comprehensive series of biochemical experiments 

demonstrated that CLN3 is required for the clearance of glycerophosphodiesters from lysosomes6. Recent 

work also demonstrated that closely related phosphoinosides mediate lysosomal repair suggesting that 

disrupted glycerophosphodiester metabolism or transport could underlie the severe lysosomal 

dysfunction that characterizes cellular disease pathology9. Although elevation of these 

glycerophosphodiester species closely corresponds with the absence of functional CLN3, this phenotype 

does not correlate with other progressive aspects of disease progression such as neuroinflammation and 

neurodegeneration. In contrast, markers of neurodegeneration such as neurofilament light (NFL) show 

highly variable elevations in CLN3 disease and thus have questionable utility as diagnostic and prognostic 

biomarkers10  Overall, it is unlikely that any single biomarker will be adequate to evaluate the complex 

environment of disease status and progression in any individual patient. A combined biomarker <score= 
that integrates diverse sets of markers reflecting different facets of disease etiology and pathology could 

provide greater precision in tracking disease progression, accelerating therapeutic development. 

We sought to uncover a more diverse set of CLN3-related biomarkers and to gain insights into the 

molecular function of CLN3 using an untargeted metabolomics and a novel deep multi-nanoparticle-based 

proteomics in a Yucatan Minipig model of CLN3 Batten disease harboring the most common patient 

mutation:  a ~1kb deletion in exons seven and eight11, 12(Fig. 1). We analyzed blood serum samples from 

the model animals at three stages of disease progression to capture temporal changes and disease-

specific patterns in the proteome and metabolome at both the pathway and individual molecule levels. 

In contrast to tissue biopsies, sampling blood can serve as a minimally invasive procedure for monitoring 

disease progression, enabling comprehensive proteomic research and in-life monitoring of biomarker 

status. However, historically the extreme dynamic range of blood protein concentrations has required a 

trade-off between depth of unbiased proteome coverage and number of samples analyzed, in particular 

for model organisms that lack abundant protein depletion solutions and that are not compatible with 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2023. ; https://doi.org/10.1101/2023.09.20.558629doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.20.558629
http://creativecommons.org/licenses/by-nc-nd/4.0/


targeted strategies based on aptamers and antibodies designed for human proteomes13. Here, we utilized 

a nanoparticle-based protein sampling technology, the ProteographTM Product Suite (Seer, Inc.), enabling 

deep and scalable proteomic profiling, independent of disease model species11, 14, 15. Our in-depth profiling 

of thousands of proteins with more than 10,000 peptides, integrated with in-depth metabolome data, 

uncovered novel signatures and biomarker candidates for CLN3 disease and provided insights into 

perturbed pathways in the CLN3 disease state.  

 

Methods: 

Animal Ethics Statement 

Wild type (WT) and transgenic CLN3Δex7-8 Yucatan miniature pigs were housed and maintained at Precigen 

Exemplar under an approved Institutional Animal Care and Use Committee (IACUC) protocol.  

CLN3Δex7-8 Mini Pig Generation 

Transgenic CLN3Δex7-8 mini pigs were generated as previously described8. In brief, wild type fetal Yucatan 

mini pig fibroblasts were transduced with a recombinant AAV1 containing a CLN3Δex7-8-Neo targeting 

vector that covered exon six to intron nine while excluding a ~1-kilobase region spanning exon seven and 

eight, mirroring the most common CLN3 disease mutation. Following antibiotic selection, PCR-positive 

clones underwent treatment with a recombinant AAV1 containing a Cre recombinase expression cassette 

to excise the integrated selection cassette. Southern blot and sequencing were employed to screen 

recombinant clones and identify those harboring on-target integrations. Nuclear transfer and embryo 

transfer were conducted at Precigen Exemplar Genetics (Germantown, Maryland, USA). Pregnancy of 

recipient animals was verified via abdominal ultrasound at day 21 and throughout gestation. Study 

animals were bred CLN3Δex7-8 heterozygote to CLN3Δex7-8 heterozygote, and genotype confirmed by PCR. 

Pig Biofluid Collection 

As previously described, pigs were anesthetized with xylazine (TKX) and isoflurane (1-2%)8. Briefly, a 16 G 

needle attached to a 20-cc syringe was inserted into the right ventricle of the heart, and approximately 

20mL of blood was drawn. A Saf-T Holder™ transfer device was used to expel collected blood into two 

10mL Monojet™ blood collection tubes. Blood samples were placed at room temperature for 30 minutes 

and allowed to clot, after which they were centrifuged at 3100 x g for 10 minutes at room temperature. 

Serum was then collected into 2 mL polypropylene screw-top tubes and stored at -80 oC. Samples were 

collected at 6-months ± 7 weeks, 24-months ±10 weeks, 36-months ± 6 weeks, and 48-months ± 12 weeks 

in both CLN3Δex7-8 (n = 6; 9; 9; 3; respectively) and control (n = 6; 9; 9; 3; respectively) mini pigs. 

 

 

Untargeted Metabolomics Discovery 

Metabolomic Sample Preparation   
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Metabolomic analyses were performed by Metabolon (Morrisville, North Carolina, USA) as previously 

described8. Briefly, samples were shipped on dry ice overnight to Metabolon. Samples were inventoried 

and promptly stored at -80oC until analyzed. Automated sample preparation was conducted using the 

MicroLab STAR® system (Hamilton Company) utilizing several recovery QC standards preceding the 

extraction process. Proteins were precipitated with methanol in a Genogrinder 2000 (Glen Mills) followed 

by centrifugation. Samples were divided into five fractions (two aliquots for replicate analyses with 

Reversed Phase Ultrahigh Performance Liquid Chromatography coupled to Mass Spectrometry (RP)/UPLC-

MS/MS using positive ion mode electrospray ionization (ESI), one aliquot for RP/UPLC-MS/MS, with 

negative ion mode ESI, one aliquot for HILIC/UPLC-MS/MS in negative ion mode ESI, and one sample 

aliquot was reserved for backup). The organic solvent was removed via TurboVap® (Zymark). Samples 

were stored overnight in liquid nitrogen prior to LC-MS/MS analysis. 

Quality Assurance for Metabolomic Analysis 

To monitor LC-MS instrument performance and chromatographic alignment, internal controls were 

included with experimental samples for each run. As previously described, these included pooled matrix 

controls of well-characterized human serum, process blanks consisting of extracted water samples, and a 

cocktail of QC standards that were selected not to interfere with the measurement of endogenous 

compounds8, 16, 17. Median relative standard deviation (RSD) was calculated for the QC standards to 

monitor instrument variability from run to run. Median RSD was calculated for all endogenous metabolites 

(i.e., non-instrument standards) present in 100% of the pooled matrix samples to account for overall 

process variability. QC samples were spaced evenly among the injections with experimental samples 

randomized across the platform run.  

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy Analysis for Discovery 

Metabolomics  

As previously described, ultra-performance liquid chromatography coupled to tandem mass spectrometry 

(UPLC-MS/MS) analysis was conducted on a WatersTM ACQUITYTM UPLC and a Thermo Fisher ScientificTM 

Q ExactiveTM OrbitrapTM high resolution and accurate mass spectrometer interfaced with a heated 

electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution8. 

Samples were dried and reconstituted in method-compatible buffers for each of the LC-MS/MS 

acquisitions, which contained internal standards at fixed concentrations to control for injection and 

chromatographic run variations. For LC-MS/MS runs conducted in acidic positive ion conditions, 

chromatographically optimized for more hydrophilic compounds, the extracts were applied to a C18 

column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) followed by isocratic elution using water and 

methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Additionally, a 

separate aliquot was analyzed using acidic positive ion conditions; however, the extract was gradient 

eluted from the same C18 column using methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA and was 

operated at an overall higher organic content. For samples analyzed using basic negative ion optimized 

conditions, a separate dedicated C18 column was utilized, and extracts were gradient eluted using 

methanol and water, however with 6.5mM ammonium bicarbonate at pH 8. The fourth aliquot was 

analyzed via negative ionization following elution from a hydrophilic interaction liquid chromatography 

(HILIC) column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a gradient consisting of water and 
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acetonitrile with 10mM ammonium formate, pH 10.8. The MS analysis alternated between MS and data-

dependent MSn scans using dynamic exclusion. The scan range covered 70-1000 m/z, varying slightly 

across methods. Raw data files were extracted and analyzed as described in the data analysis section. 

Metabolomic Data Extraction and Compound Identification and Quantification 

Metabolon's hardware and software systems were used for raw data extraction, peak identification, and 

quality control processing. Compounds were identified by comparing their retention time/index (RI), mass 

to charge ratio (m/z), and tandem MS/MS spectral data matched to library entries of purified standards 

or recurrent unknown entities. Metabolites were quantified using area-under-the-curve. 

Metabolomics Data Processing 

To estimate relative abundances, metabolite chromatographic peak area data was log2-transformed, then 

values for each individual metabolite were scaled across samples to a mean of zero and unit variance. No 

batch normalization was necessary as all metabolites were detected in one run. Metabolites missing in 

more than 50% of the samples were removed from consideration, leaving 769 metabolites in the dataset. 

We present an in-depth analysis of data used in our previous work, however comparisons and analyses 

made here are novel8. 

 

Targeted Protein Analysis 

Neurology 4-PlexA targeted proteomic analysis was performed in singlet at a 4:1 sample dilution at the 

Simoa® Accelerator Laboratory (Billerica, Massachusetts, USA). This targeted proteomics panel included 

data for four proteins (GFAP, NFL, TAU, and UCHL1) and was processed in the same manner as the 

metabolomics data (Supplementary Fig. 1). 

 

Deep Proteomics Analysis  

Automated Blood Serum Sample Processing with ProteographTM Workflow 

Samples were processed by SP100 automation instrument with ProteographTM Assay Kt included in 

Proteograph Product Suite (Seer, Inc.) using five distinctly functionalized nanoparticles (NPs). In the fully 

automated workflow, 250µL of serum were equally aliquoted into 5 tubes where 40 µL of serum from 

each tube was incubated with functionalized NPs included in the Proteograph Assay Kit. A one-hour 

incubation with NP surfaces allowed for protein corona formation to reach equilibrium and was followed 

by a series of gentle washes using the super-paramagnetic properties of the NPs to remove non-specific 

and weakly bound proteins.  

Proteins bound to the NPs were then reduced, alkylated, and digested with Trypsin/Lys-C to generate 

tryptic peptides for downstream LC-MS/MS analysis. All steps were performed in a one-pot reaction 

directly on the NPs. The in-solution digestion mixture was then desalted, and all detergents were removed 

using a mixed media filter plate and a positive pressure (MPE) system.  
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Clean peptides were then eluted in a high-organic buffer into a deep-well collection plate. Immediately 

after peptide elution, peptide quantitation assay was performed using the Pierce Fluorescent Assay Kit to 

determine the peptide yield for each well.  

Sample Multiplexing with TMTpro 18-plex Labeling 

As shown in Figure 2A, NP peptides were pooled, dried in a SpeedVac (3 hours), and then reconstituted 

directly in 50% acetonitrile in 100mM HEPES (pH 8) containing one of the TMT tags from the TMTpro 18-

plex reagent (Thermo Fisher Scientific). The peptide-TMT mixture was incubated in a thermomixer for 1 h 

at 25ºC and 600 rpm, and the reaction was stopped by addition of 2% hydroxylamine to a final 

concentration of 0.2% and incubated for 15 min at 25ºC and 600 rpm. Labeled peptides for each 18-plex 

batch were pooled and dried using a SpeedVac system, and subsequently reconstituted in 0.1% FA for 

desalting using a C18 TopTip (PolyLC, Columbia, Maryland) according to the manufacturer9s 
recommendation.  

Two Dimensional LC-MS/MS Proteomics Analysis 

Desalted TMT-labeled peptide pools were dried in a SpeedVac system and reconstituted in 20 mM 

ammonium formate pH ~10 for chromatography fractionation using a Waters Acquity BEH C18 column 

(2.1x 15 cm, 1.7 µm pore size) mounted on an M-Class Ultra Performance Liquid Chromatography (UPLC) 

system (Waters). Peptides were then separated using a 35-min gradient: 5% to 18% B in 3 min, 18% to 

36% B in 20 min, 36% to 46% B in 2 min, 46% to 60% B in 5 min, and 60% to 70% B in 5 min (A=20 mM 

ammonium formate, pH 10; B = 100% ACN). A total of 72 fractions were collected and pooled in a non-

contiguous manner into 36 total fractions. Pooled fractions were dried to completeness in a SpeedVac 

concentrator prior to mass spectrometry analysis. 

Dried peptide fractions were reconstituted with 2% ACN, 0.1% FA and analyzed by Reversed Phase (RP) 

LC-MS/MS using an EASY-nLCTM 1200 system (Thermo Fisher Scientific) coupled to an Orbitrap 

LumosTribridTM mass spectrometer equipped with FAIMS ProTM Interface (Thermo Fisher Scientific). 

Peptides were separated using an analytical C18 Aurora column (75µm x 250 mm, 1.6µm particles; 

IonOpticks) at a flow rate of 300 nL/min using a 80-min gradient: 1% to 6% B in 0.5 min, 6% to 23% B in 

50 min, 23% to 34% B in 29 min, and 34% to 48% B in 0.50 min (A= FA 0.1%; B=80% ACN: 0.1% FA). The 

mass spectrometer was operated in positive data-dependent acquisition mode, and the FAIMS Pro 

Interface device was set to standard resolution with the temperature of FAIMS inner and outer electrodes 

set to 100ºC. A three MS experiment method was set up where each experiment utilized different FAIMS 

compensation voltages: - 45, -65, and -80 Volts, and each of the three experiments had a 1 second cycle 

time. A high resolution MS1 scan in the Orbitrap (m/z range 350 to 1,500, 60k resolution, AGC 4e5 with 

maximum injection time of 50 ms, RF lens 30%) was collected in top speed mode with 1-second cycle time 

for the survey and the MS/MS scans. For MS/MS (MS2) spectra, ions with charge state between +2 and 

+7 were isolated with the quadrupole mass filter using a 0.7 m/z isolation window, fragmented with 

higher-energy collisional dissociation (HCD) with normalized collision energy of 35% and the resulting 

fragments were detected in the Orbitrap at 50k resolution, at AGC of 5e4 and maximum injection time of 

86ms. The dynamic exclusion was set to 20 sec with a 10 ppm mass tolerance around the precursor.  

Proteomics Data Analysis 

All mass spectra files were analyzed with SpectroMine software (Biognosys, version 2.7.210226.47784) 

using the TMTpro 18-plex default settings. The search criteria were set as follows: full tryptic specificity 
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was required (cleavage after lysine or arginine residues unless followed by proline), 2 missed cleavages 

were allowed, carbamidomethylation (C), TMTpro (K and peptide n-terminus) were set as fixed 

modification and oxidation (M) as a variable modification. The false identification rate was set to 1% at 

peptide (or PSM) and protein levels. PSM report was exported from SpectroMine to R package tools for 

further analysis (data available in PX).  

The R package {MSstatsTMT} version 2.2.7 was used to log2-transform the peptide intensities, impute 

within-TMT mixture missing values using an accelerated failure model, perform global median 

normalization on the peptide data (equalizing the medians across all channels and MS runs), conduct 

fraction aggregation, and perform protein quantification18. MSstatsTMT leverages a reference channel to 

perform local normalization, which effectively mitigates the systematic bias among different TMT 

mixtures. We conducted a comparison between utilizing the mean across all samples within each mixture 

as an artificial reference channel and using only the pooling of 48-month-old subjects as the reference 

channel. The results revealed that normalization based on all samples successfully minimizes between-

mixture variance and eliminates the unwanted batch effect (Supplementary Fig. 2). Consequently, we 

adopted the normalization approach based on all samples19. Subsequently, we excluded the samples from 

48-month-old subjects from downstream statistical analysis due to their limited biological variance. 

Finally, abundance values for each individual protein were scaled to have a mean of zero and unit variance. 

Proteins missing in 50% or more of the samples were excluded from the analysis, leaving 2,630 quantified 

proteins.  

Statistical and Enrichment Analysis 

Analytes (proteins and metabolites) that differed in abundance between the wild type and CLN3Δex7-8 

samples at each time point (6-, 24-, or 36-months) were identified via two-tailed Student9s t-test. Analytes 

with an uncorrected p-value < 0.05 were associated with genotype. The sets of proteins associated with 

genotype at each time point were assessed for enrichment in GO terms using Database for Annotation, 

Visualization, and Integrated Discovery (DAVID). The sets of metabolites associated with genotype at each 

time point were assessed for enrichment in chemical structure types using MetaboAnalyst20. In both 

cases, Fisher9s exact test was performed with Benjamini-Hochberg false discovery rate correction, and all 

detected proteins or metabolites were used as the background in the enrichment analyses, as applicable. 

Datasets for the proteins and metabolites that were normalized and scaled were combined for a final 

dataset. The final dataset was reduced to a 2-dimensional uniform manifold approximation and projection 

(UMAP) using the uwot package in R21. The UMAP was then clustered using hclust (stats package in R) and 

the distance provided by the UMAP into 9 clusters, where the number of clusters was decided by the 

elbow method. The proteins from each cluster were then tested for enrichment of Uniprot Keywords 

using the AnnoCrawler pipeline (https://github.com/DansenCode/AnnoCrawler). Significant enrichment 

was determined by an enrichment of a keyword in comparison to the background (the rest of the UMAP) 

with an FDR cutoff of 0.1.  

Multiblock Sparse Partial Least Squares Discriminant Analysis 

Multiblock sparse partial least squares discriminant analysis (sPLS-DA), also known as DIABLO (Data 

Integration Analysis for Biomarker discovery using Latent component method, was performed on the 

processed proteomics and metabolomics datasets using the {mixOmics} package in R22, 23. This technique 

finds a linear combination of input variables from two or more omics datasets that reduces the 
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dimensionality of the datasets while maximizing the covariance of the reduced datasets with each other 

and with an outcome variable. Specifically, in the case of a centered and scaled metabolomics dataset ÿ(�)(N x P1) and centered and scaled proteomics dataset ÿ(Ā)(N x P2) with genotype labels Ā  (N x G), 

where N is the number of samples, P1 is the number of metabolites, P2 is the number of proteins, and G is 

the number of groups, for each dimension ℎ  =  1,   … ,  � multiblock sPLS-DA finds the loading vectors �ℎ(�)  and �ℎ(Ā)that maximize the value of:   

(eq.1)  ��,Ā ⋅ ��� (ÿℎ(�)�ℎ(�),  ÿℎ(Ā)�ℎ(Ā))   +  ��,� ⋅ ��� (ÿℎ(�)�ℎ(�),  Ā)   +  �Ā,� ⋅ ��� (ÿℎ(Ā)�ℎ(Ā),  Ā) 

subject to ∥ �ℎ(�) ∥2   =   ∥ �ℎ(Ā) ∥2   =  1, ∥ �ℎ(�) ∥1   ≤  �ℎ, and ∥ �ℎ(Ā) ∥1   ≤  �ℎ 

The values of the constants ��,Ā ��,�, and �Ā,� are chosen to reflect the expected degree of association 

between the different -omics datasets and between the -omics datasets and genotype. In this case, all 

constants were set to one (i.e., a fully connected design matrix was used). The value of �ℎ is chosen to 

constrain the number of non-zero elements in the loading vectors �ℎ(�) and �ℎ(Ā). 
In this way, multiblock sPLS-DA selects a subset of variables (those with non-zero coefficients in �ℎ(�) and �ℎ(Ā)) that are correlated both within and between the proteomics and metabolomics datasets and that 

define, for each omics dataset ÿ(ÿ) and each dimension ℎ, the component score: 

(eq. 2)  �ℎ(ÿ)  =  ÿℎ(ÿ)�ℎ(ÿ) 
The process is iterative, such that the loading vector for the first dimension, �1(ÿ), is found by maximizing 

equation 1 with ÿ1(ÿ)  =  ÿ(ÿ), while the loading vector for the second dimension, �2(ÿ), is found by 

maximizing equation 1 with ÿ2(ÿ)  = ÿ1(ÿ)  2  �1(ÿ)�1(ÿ), and so on for however many dimensions are 

desired. This ensures that the first components �1(�) and �1(Ā) encompass the greatest variation in the 

dataset, followed by the second components �2(�) and �2(Ā), etc.  

The implementation of multiblock sPLS-DA in the {mixOmics} package creates a classifier that calculates 

the components �ℎ(ÿ) for a new sample, makes one classification for that sample per omics dataset in the 

model (based on the distance between the component scores for the new sample and the stored 

component scores for the training dataset points), then makes a final classification based on either 

majority vote, weighted vote, or averaged vote of the individual omics classifiers.  

Because we desired a continuous disease score that incorporated both the proteomics and metabolomics 

datasets in our study, rather than the binary classifier created by default in mixOmics, we created an <sPLS 

score= by summing together the first component scores for the metabolite and protein datasets.  

(eq. 3) sPLS score = �1(�) + �1(Ā) 
We used this sPLS score to assess the combined ability of the proteins and metabolites selected in the 

loading vectors to distinguish CLN3Δex7-8 from wild type samples in a held-out test set. 

Prior to performing multiblock sPLS-DA, the data was randomly split into a training set (70%, n=34) and 

test set (30%, n=14). No individual subject was represented in both the training and test sets (i.e., if a 

subject was sampled at multiple time points, the data for both time points were included together in 
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either the training or test set). Multiblock sPLS-DA was performed on the training set using two 

dimensions (h=1,2). The number of non-zero coefficients to use in the loading vectors was determined by 

assessing the balanced error rate of the mixOmics-generated classifier on the training dataset with five-

fold cross-validation repeated 20 times. The lowest average balanced error rate (0.004 ± 0.010) was 

achieved by using one protein in the protein first component and three metabolites in the metabolite first 

component. However, we chose to include two proteins in the protein first component (two non-zero 

coefficients in �1(Ā)) and two metabolites in the metabolite first component (two non-zero coefficients in �1(�)) because this also yielded a very low average balanced error rate (0.026 ± 0.023) and presented the 

benefit of drawing two analytes from each of our omics datasets. A single analyte was used for each 

second component (one non-zero coefficient each in �2(Ā) and �2(�)) because the number of analytes 

selected for the second components had little impact on classification accuracy, and because the second 

components tended to correlate with age rather than genotype.  

For the proteins, the first component was initially a linear combination of the normalized abundance 

values for CTSS and ADAMTSL4. However, due to lack of availability of commercial kits for testing 

ADAMTSL4 levels in patient samples, we removed ADAMTSL4 from consideration and repeated the 

multiblock sPLS-DA workflow. 

 

Results 

To investigate longitudinal blood-based CLN3 disease signatures, we performed deep multi-omics 

profiling to quantify relative blood serum concentrations of 769 metabolites and 2,634 proteins in samples 

from male and female wild type and homozygous CLN3Δex7-8 Yucatan Minipigs. 6-, 24-, and 36-month time 

points were selected representing early-stage disease prior to any appreciable visual or motor defects, 

mid-stage/symptomatic, and late-stage disease, respectively (Fig. 1 and Supplementary Fig. 3). Of the 

3,403 analytes quantified in the dataset, 230 proteins (171 upregulated; 59 downregulated) and 111 (64 

upregulated; 47 downregulated) metabolites were associated with genotype at the 6-month time point, 

suggesting early systemic changes. At 24-months, 249 proteins (132 upregulated; 117 downregulated) 

and 85 metabolites (25 upregulated; 60 downregulated) were associated with genotype, while at the 36-

month timepoint 153 proteins (64 upregulated; 89 downregulated) and 63 metabolites (38 upregulated; 

25 downregulated) were associated with genotype (Fig. 2A). To discern large-scale relationships among 

the combined metabolomics and proteomics datasets, we employed the Uniform Manifold 

Approximation and Projection (UMAP) algorithm to reduce the data into a 2-dimentional space (Fig. 2B). 

The UMAP algorithm was used because it is effective in visualizing clustering patterns in high-dimensional 

data, therefore the distance between the features is relative to the way the analytes co-vary in the dataset 

and associate in the 2-dimentional space. The features are colored by cluster and have bold outlines if 

they were found to be significant at one or more time points. The features in the UMAP were separated 

into 9 distinct clusters, each enriched for certain Uniprot Keywords (Fig. 2C). Shown are enrichments 

greater than 3 with an FDR corrected p-value less than 0.05, with the full list in Supplementary Table 1. 

Specific Uniprot keywords (Muscle protein, Thiol protease, Cytokine/Chemotaxis) were selected to show 

the enrichment throughout the UMAP of selected relevant biological features (Fig. 2D-F). Consistent with 

previous studies, we found a group of structurally similar glycerophosphodiesters (GPI, GPE, GPS; Fig. 2B) 
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among the most significantly and consistently upregulated species across all time points, while a group of 

phospholipids sharing a docosahexaenoyl group at the sn2 position were among the most significantly 

and consistently downregulated analytes8. 

In addition to these previously identified analytes, deep nanoparticle-based proteomics workflow (Fig. 

3A) combined with isobaric labeling and 18xmultiplexing (TMT) quantified over 2600 proteins, several of 

which were strongly associated with Batten disease genotype (Fig. 3B-G). The top two differentially 

expressed proteins across all time points were Cathepsin S (CTSS) and Cathepsin B (CTSB), lysosomal 

cysteine proteases that both demonstrated remarkably stable longitudinal patterns of elevation (Fig. 3B, 

C). Although not significant at all time points, gamma-interferon inducible lysosomal thiol reductase IFI30 

(IFI30), Myosin regulatory light chain 2 (MYL2), and Myosin-7 were also elevated in CLN3 mutant samples 

(Fig. 3D-F). As previous studies have shown, neurofilament light (NFL) was able to significantly 

differentiate controls and CLN3 disease but only at 36 months (Fig. 3G). Using the novel streamlined 

nanoparticle-based proteomics workflow provided several advantages. In contrast to targeted affinity-

based approaches that require species specific affinity probes, the nanoparticle workflow is directly 

amenable to non-human model organisms. Moreover, direct compatibility with multiplexing at the 

peptide level enhanced throughput and data robustness. Together, this enabled the deepest Batten 

disease as well as porcine serum proteome profile to date, quantifying novel putative disease biomarkers 

commonly not detectable with standard serum proteomics workflows (Fig. 3H and Supplementary Table 

2).  

To elucidate the functional relevance of the differentially expressed proteins, we probed for enriched 

functional sets of proteins and pathways within the subsets of proteins associated with genotype at each 

time point. Three 8cellular component9 signatures were flagged at all time points: cytoplasm, proteasome, 

and secreted (Supplementary Table 3). Interestingly, the signature <lysosome= was shared only between 
the 24- and 36-month groups suggesting that blood signatures of lysosomal dysfunction increase over 

time, perhaps reflecting progressive dysfunction in this organelle. When categorized by <biological 
process,= the related term <chemotaxis= was shared among all groups, suggesting alterations in immune 

homeostasis. (Supplementary Table 4). Unique to the 36-month time point, we found a large network of 

proteins and metabolites involved in sphingolipid metabolism. Characterized by a common eighteen 

carbon amino-alcohol backbone, sphingolipids are crucial to a vast number of biological processes 

including cell signaling and membrane structure and have previously been linked to CLN3 Batten disease, 

establishing another putative functional link between biomarker signatures and pathogenicity24-26.  

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis confirmed the enrichment for 

species involved in sphingolipid metabolism at 36 months. We detected the presence of 21 analytes with 

known function in sphingolipid metabolism and related pathways, 11 of which were differentially 

abundant in CLN3 serum (Fig. 4 and Supplementary Fig. 4). Notably, all the differentially abundant 

metabolites were elevated in CLN3 serum, suggesting alterations in sphingolipid synthesis, degradation, 

or defective transport of intermediates (Fig. 4 and Supplementary Fig. 4A-F). Many proteins contributing 

to sphingolipid metabolism were similarly elevated, suggestive of a compensatory mechanism triggered 

by the accumulation of sphingolipids and resulting increased lysosomal burden (Fig. 3H-M and 
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Supplementary Fig. 4G-L). Given the complex nature of this pathway, further investigation is needed to 

clarify the impact of CLN3 Batten disease on sphingolipid metabolism, or vice versa. 

We investigated biomarkers manifesting early in disease progression, prior to the onset of symptoms 

which could have utility for pre-symptomatic clinical diagnosis, early evaluation of interventions, and 

providing insights into upstream disease processes (Supplementary Fig. 5). Of the 230 genotype-

associated protein targets at 6 months, Integrin Beta-2 (ITGB2) was among the most significantly 

downregulated protein, although ITGB2 serum levels rebounded at later time points, remaining 

unchanged at 24 and 36 months (Supplementary Fig. 5A). Conversely, Calpastatin (CAST) and Myosin Light 

Chain 3 (MYL3) – cardiac-enriched proteins - were significantly elevated in the CLN3 cohort at 6 months 

when compared to wild type, with smaller elevations at later time points (Supplementary Fig. 5B, C). 

Glucuronide of C12H2OO3 and 3-aminoisobutyrate were downregulated at 6 months with a rebound at 

later time points (Supplementary Fig. 5D, E). Interestingly, maleate – showing the largest fold change of 

any upregulated metabolite species at 6 months – stabilizes to near identical levels in CLN3Δex7-8 and wild 

type minipig serum at 24- and 36-months (Supplementary Fig. 5F). Together these data demonstrate 

complex pre-symptomatic molecular changes at the protein, lipid and metabolite levels throughout 

disease progression that could serve to assess therapeutic efficacy. 

Given the immense scale and complexity of the multi-omics dataset, we sought to condense these data 

into a disease score model that could reflect overall disease signatures derived from a minimal set of input 

variables. Similar to tools such as multi-domain responder indices that have found favor in clinical trials, 

multiblock sPLS-DA was used to reduce the proteomics and metabolomics training datasets into two 

components each. For the protein detectable with the nanoparticle-based workflow, the first component 

comprised CTSS and CTSB (Fig. 5A). For the metabolites, the first component was a linear combination of 

the normalized abundance values for glycerophosphoinositol (GPI) and glycerophosphoethanolamine 

(GPE) (Fig. 5B). For both datasets, the first component separated the samples by genotype, while the 

second component separated the samples by age (Fig. 5A, B).  

The predictive accuracy of the model was assessed with a held-out set of test samples, where sPLS scores 

were significantly different between CLN3Δex7-8 and wild type samples (two-tailed t-test, p < 0.0001) from 

all three time points (Fig. 5 C, D). The sPLS score served as a perfect classifier for the test set (ROC AUC=1.0, 

Supplementary Information) and separated the wild type and CLN3Δex7-8 samples in the test set better than 

any individual analyte used to construct the sPLS score (Fig. 5D). The weight for each of the selected 

analytes in the model can be seen in the loadings plot (Fig. 5E). The ROC curves (Fig. 5F) validate these 

findings by showing perfect separation for CTSS and GPI (ROC AUC =1.0), whereas CTSB (AUC = 0.93) and 

GPE (AUC = 0.86) are better at determining Batten Disease as compared to NFL (AUC = 0.6).  

 

Discussion 

The absence of functional CLN3 gives rise to an intricate disease state commonly referred to as Batten 

disease. Cells lacking functional CLN3 protein exhibit a wide range of abnormalities including trafficking 

deficits within the secretory pathway, changes in lipid composition, impaired autophagy, and altered 
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lysosomal composition and function26-29. At the tissue level, the central nervous system is progressively 

impaired by extensive neuroinflammation30, while there is some evidence of progressive dysfunction in 

the heart, skeletal muscles, and immune cell populations in the periphery31. Despite comprehensive 

characterization of disease signs and symptoms, there is little consensus around the primary, secondary, 

or tertiary etiologies emerging from CLN3 dysfunction. Furthermore, there is a notable dearth of 

information on clinically measurable biomarkers that could be used to monitor disease progression or 

therapeutic efficacy. 

Our study addresses these knowledge gaps with longitudinal deep multi-omics profiling using blood serum 

from a large animal model of CLN3 disease, the CLN3Δex7/8 minipig. The CLN3Δex7/8 minipig exhibits 

progressive disease pathology and behavioral abnormalities, more closely resembling human disease as 

compared to currently available small animal models such as the Cln3Δex7/8 mouse. Additionally, the use of 

CLN3Δex7/8 minipig in biomarker studies offers a controlled, isogenic, and well-powered approach 

compared to the challenges of studying rare samples from individuals with CLN3 disease with wide genetic 

variation. A particular challenge with animal models is the extraordinarily large dynamic range of protein 

concentrations in blood and lack of appropriate affinity probes to either deplete or enrich proteins to 

facilitate comprehensive proteome capture at scale. Our study demonstrates the utility of a novel 

nanoparticle-based proteomics workflow that mitigates the dynamic range challenges in a species-

agnostic way to facilitate unbiased and deep serum proteomics. In combination with global metabolomic 

and lipidomic profiling, we quantified over 3400 analytes longitudinally (2,634 proteins; 769 metabolites 

and lipids), significantly surpassing previous porcine multi-omic studies, which were hindered by the 

limitations of human- or mouse-specific depletion kits32, 33. The combination of the Proteograph workflow 

with TMTpro 18-plex reagents has enabled the simultaneous analysis of 18 samples, increasing the 

throughput and accuracy of protein quantification with enhanced data completeness34 . Further, our 

workflow for multiplexed proteomics data acquisition using MS2 methods on an Orbitrap Tribrid MS 

instrument utilizing the FAIMS Pro interface has shown to enhance quantification accuracy35.  

With this unique approach, we were able to identify biomarker signatures that offer new insights into the 

cellular dysfunction and tissue pathology associated with the loss of functional CLN3, as well as a more 

detailed understanding of the disease timeline. The early emergence and steady maintenance of elevated 

glycerophosphodiesters suggests a close association with CLN3 function, while later in the disease course 

a second signature comprised of sphingolipid metabolism proteins and metabolites emerges. A persistent 

lysosomal signature is also present throughout disease progression, likely due to increased lysosomal 

mass (from storage material accumulation and upregulation of lysosomal biogenesis) either exocytosed 

or released into circulation by progressive inflammation and tissue damage.  

Although the role of glycerphophodiesters is not completely understood in Batten disease, elevated levels 

have been observed early in the course of the disease and are maintained at steady levels, suggesting a 

close association with CLN3 function. One likely possibility is that glycerophosphodiesters are an early 

lysosomal storage substrate, leading to subsequent secondary storage of additional proteins, lipids, and 

metabolites. If this is the case, targeting the upstream metabolic pathways related to 

glycerophosphodiester metabolism may have therapeutic potential. Later in disease progression, 

effective treatments may need to target additional facets of disease such as immune activation, aberrant 
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sphingolipid metabolism, and downstream lysosomal pathology. Importantly, our data suggests that some 

of the molecular patterns are temporally restricted, suggesting that an ideal therapeutic strategy could 

potentially be tailored to an individual9s specific biomarker signature of disease progression.  

We discovered several proteins, many of which would be hard or impossible to detect with conventional 

unbiased proteomics workflows at scale (Supplementary Table 2), exhibiting differential expression 

between CLN3 Batten disease and control samples. Among them, lysosome associated CTSS and CTSB 

were consistently upregulated at all time points which is consistent with the central role of lysosomal 

dysfunction in the disease pathology. Another lysosomal protein, IFI30, exhibited similar elevations, 

although differences did not reach significance at the six-month time point. Why these lysosomal 

proteases are enriched in a peripheral biofluid remains unclear. One likely possibility is that CTSS, CTSB, 

and IFI30 are enriched in disease-affected cells, possibly as a consequence of increased lysosomal mass 

or as a compensatory mechanism for clearing storage material. The proteins could then be released into 

circulation upon lysosomal exocytosis or cell death. The cardiac-enriched proteins MYL2 and MYH7 

showed similar patterns of elevation, reaching significance at most time points. It is tempting to speculate 

that these markers could reflect a cardiac defect in this model – a hypothesis that warrants further 

investigation. Cardiac phenotypes (left ventricular hypertrophy, bradycardia, storage material) have been 

described in CLN3 affected individuals, but a lack of strong phenotypes in mouse models has thus far 

precluded exhaustive preclinical study of this facet of disease36.  

These new protein-based biomarkers could be valuable additions to the repertoire of existing markers for 

CLN3 disease. One existing marker, NFL, offers the benefit of being closely linked to the central neuronal 

pathology of the disease, but exhibits only mild elevations in affected individuals and animal models, as 

reflected in our data here. The glycerophosphodiesters are appealing biomarker candidates due to their 

early and steady elevation, but little is known about their relationship with disease etiology. In 

combination, however, CTSS, CTSB, GPI, and GPE offer a powerful summary of disease state from a limited 

set of variables, as evidenced by our sPLS score model. Further development of a CLN3 disease biomarker 

panel could also incorporate markers of neuronal damage, such as NFL, to build an even more 

comprehensive picture of an individual9s disease status. 

Our data also provides new insights into the pathogenic timeline of Batten disease. While CTSS, CTSB, GPI, 

and GPE were elevated at all time points, other signatures developed only at later stages of disease 

progression. For example, MYL2 and NFL were significantly upregulated only in the later time points, 

suggesting that cardiac and neuronal damage may take substantial time to initiate. Additionally, 

sphingolipid metabolism was only enriched at the 36-month time point, suggesting that sphingolipid 

accumulation takes longer to develop and may contribute to disease pathology in a more tissue specific 

manner before it is a useful biomarker in blood. Previous studies have similarly found sphingolipid 

metabolism to be dysregulated in various models of CLN3 disease, although exactly how this process 

contributes to disease remains unclear37, 38. Regardless of the mechanism, treating these secondary or 

tertiary disease manifestations with targeted therapies may be beneficial alongside disease-modifying 

therapies that compensate for the loss of CLN3.  

Collectively, this work demonstrates how deep multi-omics profiling can be employed to detect disease-

specific biomarkers related to cellular dysfunction and tissue pathology associated with a complex 
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degenerative disease. Innovative techniques to mitigate interference of highly abundant proteins in pig 

serum were crucial in enabling comprehensive proteomics. The power of this technique is evidenced not 

only by the identification of proteins and metabolites as biomarker candidates, but also by the insights 

into the timeline and order of disease progression. This study's findings demonstrate the potential of deep 

multi-omics profiling for uncovering disease-specific biomarkers, which can provide valuable insights for 

understanding disease mechanisms and identifying potential drug targets. 
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Figures 

 

Figure 1: Study Design and Multiomics Analysis Workflow. Serum samples were taken from control and CLN3Δex7-8 

Yucatan miniature pigs at 6-, 24-, and 36-months. One aliquot of serum was analyzed with the Global Discovery Panel: 

a comprehensive mass spectrometry analysis including both metabolites and lipids. Another aliquot of serum was 

used to perform deep proteomics using Seer’s nanoparticle technology and labeling with Tandem Mass Tag, high 
throughput mass spectrometry method. After mass spectrometry analysis of each omic data, the data was processed 

and integrated for statistical, multivariate analyses.  
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Figure 2: The Molecular Landscape of Longitudinal Metabolomics and Proteomics of the CLN3 and Controls over Time.  

(A) Representation of the metabolites and proteins that significantly differentiate controls and CLN3 at 6-, 24-, and 

36-months. (B) UMAP of all metabolites (circles) and proteins (triangles) from all time points that has been divided 

into 9 clusters using hierarchical clustering from the Euclidean distance within the UMAP. Each cluster is represented 

by a different color (1 = grey, 2 = light green, 3 = pink, 4= light blue, 5 = green, 6 = light purple, 7 = orange, 8 = yellow 

and 9= light teal). The features that significantly differentiate controls from CLN3 are outlined based on if they are 

significant at multiple time points (black), significant at the 6-month time point only (purple), 24-month time point 

only (teal), or significant at the 36-time point only (orange). Metabolites and proteins of interest are labeled with 

abbreviated names. (C) All proteins were mapped to their associated Uniprot Keywords. The clusters were tested for 

enrichment of keywords. The heatmap shows an overview of the enriched keywords in the clusters with enrichments 

greater than 3 and FDR corrected p-values less than 0.1, where the size of the circle is based on the enrichment and 

color is associated with the FDR corrected p-value. Enrichments of keywords are represented in (D) muscle protein 

(dark blue), (E) thiol protease (dark purple) and (F) cytokine/chemotaxis (dark green). Note that the <GPI= analyte in 
plot 2F refers to the protein glucose 6-phosphate isomerase (GPI) rather than the glycerophosphoinositol (GPI) 

metabolite discussed elsewhere.  
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Figure 3: Proteograph Workflow with TMT 18-plex Mass Spectrometry Method and Resulting Protein Biomarker 

Regulations. 

(A) Serum samples were first processed by SP100 Automation instrument with ProteographTM Assay kit included in 

Proteograph Product Suite (Seer, Inc.) using five distinctly functionalized nanoparticles (NPs). Tryptic peptides from 5 

NPs were then pooled into one single sample for TMT labeling. A total of 54 pooled samples were allocated into three 

18-plex TMT mixtures, each of which contained two 6-month samples, three 24-month samples, three 36-month 

samples and one interassay control sample from WT and CLN3Δex7-8 respectively. Each TMT mixture was followed by 

high pH reverse phase fractionation and LC-MS/MS analysis, comprised of a Proxeon EASY nanoLC system coupled to 

an Orbitrap Fusion Lumos MS equipped with FAIMS Pro Interface (Thermo Fisher Scientific). The raw spectra data 

were finally processed by SpectroMine (Biognosys) and R/Bioconductor package MSstatsTMT to generate statistical 

analysis results. (B-F) Lysosomal proteins Cathepsin S (CTSS), Cathepsin (CTSB), and IFI30 and muscular proteins MYL2 

and MHY7 are significantly elevated at multiple time points in CLN3Δex7-8 minipig serum when compared to age-

matched healthy control animals, (G) while NFL blood-serum levels are significantly elevated at 36 months only. Two-

way ANOVA with Šidák correction for multiple comparisons, 95% confidence interval, *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001, n = 6; 9; 9 animals respectively, mean +/- SEM. (H) The 2,634 identified proteins were mapped to the 

HPPP protein database, revealing their detection throughout the entire concentration range of the database. Notably, 

the proteins NFL, MYL2, and IFI30 were found to be within the low abundance range. 
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Figure 4: Sphingolipid Alterations at 36 Months in CLN3 Disease.  

Network of proteins and metabolites involved in sphingolipid metabolism and related pathways that were 

differentially abundant in serum of 36-month-old subjects. Network connections were derived from the KEGG 

pathways for sphingolipid metabolism (top left), glycerophospholipid metabolism (top right), and glycosphingolipid 

biosynthesis (bottom). Serum levels of B4GALT4 and GBA were significantly lower in CLN3Δex7-8 pigs than in WT pigs, 

while serum levels were significantly higher for B4GALNT1, HEXA, HEXB, lactosylceramide, sphinganine, sphingosine, 

glycerophosphoethanolamine, sphingomyelin, and 1-acyl-GPE (uncorrected Student’s t-test, p < 0.05). Analytes not 

significantly different between genotypes are outlined according to the magnitude and direction of their log fold 

change, while analytes involved in the pathway that were not detected in the dataset are presented in gray. Many of 

the metabolites in the KEGG pathways are general metabolite categories rather than specific chemical species (e.g., 

ceramide, 1-acyl-GPE). Multiple analytes were detected in the dataset that fall under the categories of 1-acyl-GPE 

(n=5), ceramide (n=6), phosphatidylethanolamine (n=10), and sphingomyelin (n=28). Not all detected analytes within 

these categories behaved the same way (supplementary information); the color of the category in the figure is based 

on the overall trend. Other categories had only one representative detected in the dataset, including 2-acyl-GPE (2-

stearoyl-GPE (18:0)), dihydroceramide (N-palmitoyl-sphinganine (d18:0/16:0)), and lactosylceramide (lactosyl-N-

palmitoyl-sphingosine (d18:1/16:0)). 
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Figure 5: Multiblock sPLS-DA Loadings Highlighting Protein Biomarkers for CLN3.  

A,B. Training data projected onto the two proteomics components and two metabolomics components identified 

using multiblock sPLS-DA. For both omics datasets, the first component separated the datapoints by genotype, and 

the second component separated the datapoints by age. C. sPLS scores calculated for the entire dataset, with test set 

points shown in dark green/magenta. At each time point, sPLS scores were significantly different between WT and 

CLN3Δex7-8 subjects in the dataset as a whole. Scores were also significantly different between WT and CLN3Δex7-8 

subjects in the test set at all time points combined (p < 0.0001, Student’s two-tailed t-test), demonstrating the 

robustness of the sPLS score as a tool for differentiating CLN3Δex7-8 from WT samples. D. Comparison of sPLS score and 

log2 normalized intensity values of the analytes that make up the sPLS score for separating data in the test set. The 

sPLS score better separates the test set WT from CLN3Δex7-8 samples compared to any individual analyte (bars 

represent standard deviation; asterisks represent p-values from two-way ANOVA with Tukey’s post-hoc test). E. 

Loadings of the analytes in the sPLS score created by combining the formulas for the protein first component and 

metabolite first component. The formula for the protein first component relied on cathepsin S (CTSS) and cathepsin 

B (CTSB), while the formula for the metabolite first component relied on glycerophosphoinositol (GPI) and 

glycerophosphoethanolamine (GPE). The sPLS score formula places the greatest emphasis on CTSS, followed by GPI, 

then GPE, and finally CTSB. F. Receiver operating characteristic curves for each of the analytes included in the sPLS 

score, as well as neurofilament light (NFL), as classifiers for identifying CLN3Δex7-8 samples in the test set. The area 

under the ROC curve is presented for each analyte along with its 95% confidence interval (computed with 

Wilson/Brown method). CTSS and GPI both serve as perfect classifiers for the test set, and all four analytes included 

in the sPLS score outperform NFL as individual classifiers. 
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Supplementary Figures 

 

Supplementary Figure 1: Neurology 4-PlexA Targeted Proteomic Analysis. The total measurement of (A) TAU, (B) glial 

fibrillary acidic protein (GFAP), (C) and ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) in wildtype CLN3Δex7/8 minipig 

serum at 6-, 24- and 36-months. No significant differences were observed. Two-way ANOVA with Šidák correction for 
multiple comparisons, 95% confidence interval, n = 6; 9; 9 animals respectively, mean +/- SEM. 
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Supplementary Figure 2: Variance Components Analysis on the Protein Intensities Generated by Different 

Normalization Methods. In the context of normalization methods, "None" indicates no normalization was performed. 

"48M" refers to the usage of pooling samples from 48-month-old subjects as the reference channel, while 

"6M+24M+36M+48M" signifies the utilization of the mean across all samples from all ages as the artificial reference 

channel. The x-axis represents the sources of different variance components, with "Conditions" representing the 

combination of age and genotype, and "BioReplicate" representing distinct pigs. The percentage of each variance 

component in the overall variation was calculated for each protein. The y-axis displays the average percentage of each 

variance component across all proteins. Utilizing normalization based on all the samples effectively mitigates the 

between-mixture variance, eliminating the undesirable batch effect. 
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Supplementary Figure 3: Profiling Differentiated Metabolites. (A) Volcano plots of detected metabolites with 

differentially expression levels identified at 6-, 24-, and 36-months (-log10 p-value > 1.3) highlighted in red. Top 

metabolite biomarker candidates across all time points denoted with purple, early biomarker candidates denoted by 

teal, and metabolites involved in sphingolipid metabolism are highlighted green. (B) Volcano plots of detected proteins 

with differentially expressed proteins at 6-, 24-, and 36-months (-log10 p-value > 1.3) highlighted red. Top protein 

biomarker candidates across all time points denoted by purple, early biomarker candidates denoted by teal, and 

proteins involved in sphingolipid metabolism are highlighted green. Student’s t-test, n = 6; 9; 9 animals respectively. 
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Supplementary Table 1: Can be found in the Excel sheet here.  
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Supplementary Table 2: The six potential Batten disease protein biomarkers identified by our pig plasma model were 

cross-referenced with previously reported plasma proteome data obtained through standard plasma proteomics 

workflows15These workflows encompassed various approaches: "Neat" denotes a neat plasma digestion workflow, 

<Depleted" signifies the use of a plasma depletion strategy, <Deep Fractionation" involves a high-pH fractionation of 

depleted plasma, achieved by concatenating 19 fractions into 9, <Proteograph" represents a comprehensive five-NP 

workflow. In all these workflows, Data-Independent Acquisition (DIA) was utilized to analyze a pooled plasma sample. 

Notably, our pig plasma model demonstrated its capability to quantify novel putative disease biomarkers that are 

often undetectable using standard plasma proteomics workflows. 
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Supplementary Table 3: Cellular components associated with genotype at 6-, 24-, and 36-months using the DAVID 

functional annotation tool. 
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Supplementary Table 4: Biological processes associated with genotype at 6-, 24-, and 36-month using the DAVID 

functional annotation tool. 
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Supplementary Figure 4: Metabolites and Proteins Involved in Sphingolipid Metabolism. Metabolites and proteins 

involved in sphingolipid metabolism were compared in wildtype and CLN3Δex7/8 minipig serum samples at 36-months. 

(A-F) Differentially expressed metabolites at 36-months included sphingomyelin (d18:1/14:0, d16:1/16:0)*, lactosyl-

N-palmitoyl-sphingosine (d18:1/16:0), sphinganine, sphingosine, sphingomyelin (d18:0/18:0, d19:0/17:0)*, and 

sphingomyelin (d18:2/18:1)*, all of which were upregulated in CLN3Δex7/8 serum samples. (G-L) Sphingolipid proteins 

SAMD8, B4GALNT1, HEXA, and HEXB were significantly upregulated in CLN3Δex7/8 minipigs, while B4GALT4 and GBA 

were significantly downregulated. 
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Supplementary Figure 5: Identification of Biomarkers Appearing Early in Disease Progression, Prior to the Onset of 

Symptoms. (A-C)) Of the 230 protein targets associated with genotype at 6-months, ITGB2, CAST, and MYL3 

demonstrate significant dysregulation, all stabilizing to wild type levels at later time points. (D-F) Similarly, Glucuronide 

of C12H2OO3, 3-aminoisobutyrate, and maleate demonstrate utility as <early= metabolite biomarkers and are only 
dysregulated at 6-months. 
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Supplementary Info: 

 

Formula for calculating sPLS score from normalized data: 

First protein component: �1(Ā) = 0.983*CTSS + 0.236*CTSB - 0.096 

First metabolite component: �1(�) = 0.355*GPE + 0.864*GPI – 0.121 

sPLS score =  �1(�)  +  �1(Ā) = 0.355*GPE + 0.864*GPI + 0.983*CTSS + 0.236*CTSB – 0.217 
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