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Abstract

Development of therapies for CLN3 Batten disease, a rare pediatric lysosomal storage disorder, has been
hindered by the lack of etiological insights and translatable biomarkers to clinics. Here, we used a deep
multi-omics approach to discover new biomarkers using longitudinal serum samples from a porcine model
of CLN3 disease. Comprehensive metabolomics was combined with a nanoparticle-based LC-MS-based
proteomic profiling coupled with TMTpro 18-plex to generate quantitative data on 769 metabolites and
2,634 proteins, collectively the most exhaustive multi-omics profile conducted on serum from a porcine
model, which was previously impossible due a to lack of efficient deep serum proteome profiling
technologies compatible with model organisms. The presymptomatic disease state was characterized by
elevations in glycerophosphodiester species and lysosomal proteases, while later timepoints were
enriched with species involved in immune cell activation and sphingolipid metabolism. Cathepsin S,
Cathepsin B, glycerophosphoinositol, and glycerophosphoethanolamine captured a large portion of the
genotype-correlated variation between healthy and diseased animals, suggesting that an index score
based on these analytes could have great utility in the clinic.
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Introduction:

Batten Disease (also known as neuronal ceroid lipofuscinoses (NCLs)), are a group of neurodegenerative
lysosomal storage disorders that result from pathogenic variants in one of 13 ceroid lipofuscinosis
neuronal (CLN) genes. Collectively, Batten disease affects approximately 1 in 100,000 individuals
worldwide, making it the most common pediatric neurodegenerative disorder!. The most common form
of Batten Disease, CLN3 disease, is a rare and fatal autosomal recessive disorder caused by mutations in
CLN3. Individuals with CLN3 disease typically experience vision loss in early childhood, followed by
seizures, motor and cognitive decline, and premature death by the third decade of life? 3, Pathologically,
CLN3 dysfunction cascades from to the accumulation of lysosomal storage material, microglia and
astrocyte activation, to neuronal dysfunction and death?.

Despite many years of research, the molecular function of CLN3 and many of the other NCL proteins has
yet to be fully elucidated. Recent advancements have begun to outline the biological processes affected
by CLN3 dysfunction, but the field still lacks robust biomarker signatures that comprehensively reflect the
disease state> ©. With the growing list of CLN3-specific therapies entering clinical trials, there is a
substantial need for non-invasive biomarkers that can track disease progression and therapeutic efficacy®
7. We recently identified a group of glycerophosphodiesters as promising blood-based biomarker
candidates for CLN38 Shortly thereafter, a comprehensive series of biochemical experiments
demonstrated that CLN3 is required for the clearance of glycerophosphodiesters from lysosomes®. Recent
work also demonstrated that closely related phosphoinosides mediate lysosomal repair suggesting that
disrupted glycerophosphodiester metabolism or transport could underlie the severe lysosomal
dysfunction that characterizes cellular disease pathology®. Although elevation of these
glycerophosphodiester species closely corresponds with the absence of functional CLN3, this phenotype
does not correlate with other progressive aspects of disease progression such as neuroinflammation and
neurodegeneration. In contrast, markers of neurodegeneration such as neurofilament light (NFL) show
highly variable elevations in CLN3 disease and thus have questionable utility as diagnostic and prognostic
biomarkers!® Overall, it is unlikely that any single biomarker will be adequate to evaluate the complex
environment of disease status and progression in any individual patient. A combined biomarker “score”
that integrates diverse sets of markers reflecting different facets of disease etiology and pathology could
provide greater precision in tracking disease progression, accelerating therapeutic development.

We sought to uncover a more diverse set of CLN3-related biomarkers and to gain insights into the
molecular function of CLN3 using an untargeted metabolomics and a novel deep multi-nanoparticle-based
proteomics in a Yucatan Minipig model of CLN3 Batten disease harboring the most common patient
mutation: a ~1kb deletion in exons seven and eight!" *2(Fig. 1). We analyzed blood serum samples from
the model animals at three stages of disease progression to capture temporal changes and disease-
specific patterns in the proteome and metabolome at both the pathway and individual molecule levels.
In contrast to tissue biopsies, sampling blood can serve as a minimally invasive procedure for monitoring
disease progression, enabling comprehensive proteomic research and in-life monitoring of biomarker
status. However, historically the extreme dynamic range of blood protein concentrations has required a
trade-off between depth of unbiased proteome coverage and number of samples analyzed, in particular
for model organisms that lack abundant protein depletion solutions and that are not compatible with
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targeted strategies based on aptamers and antibodies designed for human proteomes?3. Here, we utilized
a nanoparticle-based protein sampling technology, the Proteograph™ Product Suite (Seer, Inc.), enabling
deep and scalable proteomic profiling, independent of disease model species'® ** 15, Qur in-depth profiling
of thousands of proteins with more than 10,000 peptides, integrated with in-depth metabolome data,
uncovered novel signatures and biomarker candidates for CLN3 disease and provided insights into
perturbed pathways in the CLN3 disease state.

Methods:
Animal Ethics Statement

Wild type (WT) and transgenic CLN32*-8 Yucatan miniature pigs were housed and maintained at Precigen
Exemplar under an approved Institutional Animal Care and Use Committee (IACUC) protocol.

CLN32e¥7-8 Mini Pig Generation

Transgenic CLN34*7% mini pigs were generated as previously described?. In brief, wild type fetal Yucatan
mini pig fibroblasts were transduced with a recombinant AAV1 containing a CLN3%®7%-Neo targeting
vector that covered exon six to intron nine while excluding a ~1-kilobase region spanning exon seven and
eight, mirroring the most common CLN3 disease mutation. Following antibiotic selection, PCR-positive
clones underwent treatment with a recombinant AAV1 containing a Cre recombinase expression cassette
to excise the integrated selection cassette. Southern blot and sequencing were employed to screen
recombinant clones and identify those harboring on-target integrations. Nuclear transfer and embryo
transfer were conducted at Precigen Exemplar Genetics (Germantown, Maryland, USA). Pregnancy of
recipient animals was verified via abdominal ultrasound at day 21 and throughout gestation. Study
animals were bred CLN3%*7% heterozygote to CLN3%®7"® heterozygote, and genotype confirmed by PCR.

Pig Biofluid Collection

As previously described, pigs were anesthetized with xylazine (TKX) and isoflurane (1-2%)8. Briefly, a 16 G
needle attached to a 20-cc syringe was inserted into the right ventricle of the heart, and approximately
20mL of blood was drawn. A Saf-T Holder™ transfer device was used to expel collected blood into two
10mL Monojet™ blood collection tubes. Blood samples were placed at room temperature for 30 minutes
and allowed to clot, after which they were centrifuged at 3100 x g for 10 minutes at room temperature.
Serum was then collected into 2 mL polypropylene screw-top tubes and stored at -80 °C. Samples were
collected at 6-months + 7 weeks, 24-months +10 weeks, 36-months + 6 weeks, and 48-months + 12 weeks
in both CLN3%78(n = 6; 9; 9; 3; respectively) and control (n = 6; 9; 9; 3; respectively) mini pigs.

Untargeted Metabolomics Discovery

Metabolomic Sample Preparation
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Metabolomic analyses were performed by Metabolon (Morrisville, North Carolina, USA) as previously
described?®. Briefly, samples were shipped on dry ice overnight to Metabolon. Samples were inventoried
and promptly stored at -80°C until analyzed. Automated sample preparation was conducted using the
MicroLab STAR® system (Hamilton Company) utilizing several recovery QC standards preceding the
extraction process. Proteins were precipitated with methanol in a Genogrinder 2000 (Glen Mills) followed
by centrifugation. Samples were divided into five fractions (two aliquots for replicate analyses with
Reversed Phase Ultrahigh Performance Liquid Chromatography coupled to Mass Spectrometry (RP)/UPLC-
MS/MS using positive ion mode electrospray ionization (ESI), one aliquot for RP/UPLC-MS/MS, with
negative ion mode ESI, one aliquot for HILIC/UPLC-MS/MS in negative ion mode ESI, and one sample
aliquot was reserved for backup). The organic solvent was removed via TurboVap® (Zymark). Samples
were stored overnight in liquid nitrogen prior to LC-MS/MS analysis.

Quality Assurance for Metabolomic Analysis

To monitor LC-MS instrument performance and chromatographic alignment, internal controls were
included with experimental samples for each run. As previously described, these included pooled matrix
controls of well-characterized human serum, process blanks consisting of extracted water samples, and a
cocktail of QC standards that were selected not to interfere with the measurement of endogenous
compounds® ¥ 17 Median relative standard deviation (RSD) was calculated for the QC standards to
monitor instrument variability from run to run. Median RSD was calculated for all endogenous metabolites
(i.e., non-instrument standards) present in 100% of the pooled matrix samples to account for overall
process variability. QC samples were spaced evenly among the injections with experimental samples
randomized across the platform run.

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy Analysis for Discovery
Metabolomics

As previously described, ultra-performance liquid chromatography coupled to tandem mass spectrometry
(UPLC-MS/MS) analysis was conducted on a Waters™ ACQUITY™ UPLC and a Thermo Fisher Scientific™
Q Exactive™ Orbitrap™ high resolution and accurate mass spectrometer interfaced with a heated
electrospray ionization (HESI-Il) source and Orbitrap mass analyzer operated at 35,000 mass resolution?.
Samples were dried and reconstituted in method-compatible buffers for each of the LC-MS/MS
acquisitions, which contained internal standards at fixed concentrations to control for injection and
chromatographic run variations. For LC-MS/MS runs conducted in acidic positive ion conditions,
chromatographically optimized for more hydrophilic compounds, the extracts were applied to a C18
column (Waters UPLC BEH C18-2.1x100 mm, 1.7 um) followed by isocratic elution using water and
methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Additionally, a
separate aliquot was analyzed using acidic positive ion conditions; however, the extract was gradient
eluted from the same C18 column using methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA and was
operated at an overall higher organic content. For samples analyzed using basic negative ion optimized
conditions, a separate dedicated C18 column was utilized, and extracts were gradient eluted using
methanol and water, however with 6.5mM ammonium bicarbonate at pH 8. The fourth aliquot was
analyzed via negative ionization following elution from a hydrophilic interaction liquid chromatography
(HILIC) column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 um) using a gradient consisting of water and
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acetonitrile with 10mM ammonium formate, pH 10.8. The MS analysis alternated between MS and data-
dependent MS" scans using dynamic exclusion. The scan range covered 70-1000 m/z, varying slightly
across methods. Raw data files were extracted and analyzed as described in the data analysis section.

Metabolomic Data Extraction and Compound Identification and Quantification

Metabolon's hardware and software systems were used for raw data extraction, peak identification, and
quality control processing. Compounds were identified by comparing their retention time/index (RI), mass
to charge ratio (m/z), and tandem MS/MS spectral data matched to library entries of purified standards
or recurrent unknown entities. Metabolites were quantified using area-under-the-curve.

Metabolomics Data Processing

To estimate relative abundances, metabolite chromatographic peak area data was log,-transformed, then
values for each individual metabolite were scaled across samples to a mean of zero and unit variance. No
batch normalization was necessary as all metabolites were detected in one run. Metabolites missing in
more than 50% of the samples were removed from consideration, leaving 769 metabolites in the dataset.
We present an in-depth analysis of data used in our previous work, however comparisons and analyses
made here are novel?.

Targeted Protein Analysis

Neurology 4-PlexA targeted proteomic analysis was performed in singlet at a 4:1 sample dilution at the
Simoa® Accelerator Laboratory (Billerica, Massachusetts, USA). This targeted proteomics panel included
data for four proteins (GFAP, NFL, TAU, and UCHL1) and was processed in the same manner as the
metabolomics data (Supplementary Fig. 1).

Deep Proteomics Analysis
Automated Blood Serum Sample Processing with Proteograph™ Workflow

Samples were processed by SP100 automation instrument with Proteograph™ Assay Kt included in
Proteograph Product Suite (Seer, Inc.) using five distinctly functionalized nanoparticles (NPs). In the fully
automated workflow, 250uL of serum were equally aliquoted into 5 tubes where 40 plL of serum from
each tube was incubated with functionalized NPs included in the Proteograph Assay Kit. A one-hour
incubation with NP surfaces allowed for protein corona formation to reach equilibrium and was followed
by a series of gentle washes using the super-paramagnetic properties of the NPs to remove non-specific
and weakly bound proteins.

Proteins bound to the NPs were then reduced, alkylated, and digested with Trypsin/Lys-C to generate
tryptic peptides for downstream LC-MS/MS analysis. All steps were performed in a one-pot reaction
directly on the NPs. The in-solution digestion mixture was then desalted, and all detergents were removed
using a mixed media filter plate and a positive pressure (MPE) system.
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Clean peptides were then eluted in a high-organic buffer into a deep-well collection plate. Immediately
after peptide elution, peptide quantitation assay was performed using the Pierce Fluorescent Assay Kit to
determine the peptide yield for each well.

Sample Multiplexing with TMTpro 18-plex Labeling

As shown in Figure 2A, NP peptides were pooled, dried in a SpeedVac (3 hours), and then reconstituted
directly in 50% acetonitrile in 100mM HEPES (pH 8) containing one of the TMT tags from the TMTpro 18-
plex reagent (Thermo Fisher Scientific). The peptide-TMT mixture was incubated in a thermomixer for 1 h
at 259C and 600 rpm, and the reaction was stopped by addition of 2% hydroxylamine to a final
concentration of 0.2% and incubated for 15 min at 252C and 600 rpm. Labeled peptides for each 18-plex
batch were pooled and dried using a SpeedVac system, and subsequently reconstituted in 0.1% FA for
desalting using a C18 TopTip (PolyLC, Columbia, Maryland) according to the manufacturer’s
recommendation.

Two Dimensional LC-MS/MS Proteomics Analysis

Desalted TMT-labeled peptide pools were dried in a SpeedVac system and reconstituted in 20 mM
ammonium formate pH ~10 for chromatography fractionation using a Waters Acquity BEH C18 column
(2.1x 15 cm, 1.7 um pore size) mounted on an M-Class Ultra Performance Liquid Chromatography (UPLC)
system (Waters). Peptides were then separated using a 35-min gradient: 5% to 18% B in 3 min, 18% to
36% B in 20 min, 36% to 46% B in 2 min, 46% to 60% B in 5 min, and 60% to 70% B in 5 min (A=20 mM
ammonium formate, pH 10; B = 100% ACN). A total of 72 fractions were collected and pooled in a non-
contiguous manner into 36 total fractions. Pooled fractions were dried to completeness in a SpeedVac
concentrator prior to mass spectrometry analysis.

Dried peptide fractions were reconstituted with 2% ACN, 0.1% FA and analyzed by Reversed Phase (RP)
LC-MS/MS using an EASY-nLC™ 1200 system (Thermo Fisher Scientific) coupled to an Orbitrap
LumosTribrid™ mass spectrometer equipped with FAIMS Pro™ Interface (Thermo Fisher Scientific).
Peptides were separated using an analytical C18 Aurora column (75um x 250 mm, 1.6um particles;
lonOpticks) at a flow rate of 300 nL/min using a 80-min gradient: 1% to 6% B in 0.5 min, 6% to 23% B in
50 min, 23% to 34% B in 29 min, and 34% to 48% B in 0.50 min (A= FA 0.1%; B=80% ACN: 0.1% FA). The
mass spectrometer was operated in positive data-dependent acquisition mode, and the FAIMS Pro
Interface device was set to standard resolution with the temperature of FAIMS inner and outer electrodes
set to 1002C. A three MS experiment method was set up where each experiment utilized different FAIMS
compensation voltages: - 45, -65, and -80 Volts, and each of the three experiments had a 1 second cycle
time. A high resolution MS1 scan in the Orbitrap (m/z range 350 to 1,500, 60k resolution, AGC 4e5 with
maximum injection time of 50 ms, RF lens 30%) was collected in top speed mode with 1-second cycle time
for the survey and the MS/MS scans. For MS/MS (MS2) spectra, ions with charge state between +2 and
+7 were isolated with the quadrupole mass filter using a 0.7 m/z isolation window, fragmented with
higher-energy collisional dissociation (HCD) with normalized collision energy of 35% and the resulting
fragments were detected in the Orbitrap at 50k resolution, at AGC of 5e4 and maximum injection time of
86ms. The dynamic exclusion was set to 20 sec with a 10 ppm mass tolerance around the precursor.

Proteomics Data Analysis

All mass spectra files were analyzed with SpectroMine software (Biognosys, version 2.7.210226.47784)
using the TMTpro 18-plex default settings. The search criteria were set as follows: full tryptic specificity
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was required (cleavage after lysine or arginine residues unless followed by proline), 2 missed cleavages
were allowed, carbamidomethylation (C), TMTpro (K and peptide n-terminus) were set as fixed
modification and oxidation (M) as a variable modification. The false identification rate was set to 1% at
peptide (or PSM) and protein levels. PSM report was exported from SpectroMine to R package tools for
further analysis (data available in PX).

The R package {MSstatsTMT} version 2.2.7 was used to log,-transform the peptide intensities, impute
within-TMT mixture missing values using an accelerated failure model, perform global median
normalization on the peptide data (equalizing the medians across all channels and MS runs), conduct
fraction aggregation, and perform protein quantification®. MSstatsTMT leverages a reference channel to
perform local normalization, which effectively mitigates the systematic bias among different TMT
mixtures. We conducted a comparison between utilizing the mean across all samples within each mixture
as an artificial reference channel and using only the pooling of 48-month-old subjects as the reference
channel. The results revealed that normalization based on all samples successfully minimizes between-
mixture variance and eliminates the unwanted batch effect (Supplementary Fig. 2). Consequently, we
adopted the normalization approach based on all samples®®. Subsequently, we excluded the samples from
48-month-old subjects from downstream statistical analysis due to their limited biological variance.
Finally, abundance values for each individual protein were scaled to have a mean of zero and unit variance.
Proteins missing in 50% or more of the samples were excluded from the analysis, leaving 2,630 quantified
proteins.

Statistical and Enrichment Analysis

Analytes (proteins and metabolites) that differed in abundance between the wild type and CLN3%%78
samples at each time point (6-, 24-, or 36-months) were identified via two-tailed Student’s t-test. Analytes
with an uncorrected p-value < 0.05 were associated with genotype. The sets of proteins associated with
genotype at each time point were assessed for enrichment in GO terms using Database for Annotation,
Visualization, and Integrated Discovery (DAVID). The sets of metabolites associated with genotype at each
time point were assessed for enrichment in chemical structure types using MetaboAnalyst?°. In both
cases, Fisher’s exact test was performed with Benjamini-Hochberg false discovery rate correction, and all
detected proteins or metabolites were used as the background in the enrichment analyses, as applicable.

Datasets for the proteins and metabolites that were normalized and scaled were combined for a final
dataset. The final dataset was reduced to a 2-dimensional uniform manifold approximation and projection
(UMAP) using the uwot package in R?1. The UMAP was then clustered using hclust (stats package in R) and
the distance provided by the UMAP into 9 clusters, where the number of clusters was decided by the
elbow method. The proteins from each cluster were then tested for enrichment of Uniprot Keywords
using the AnnoCrawler pipeline (https://github.com/DansenCode/AnnoCrawler). Significant enrichment
was determined by an enrichment of a keyword in comparison to the background (the rest of the UMAP)
with an FDR cutoff of 0.1.

Multiblock Sparse Partial Least Squares Discriminant Analysis

Multiblock sparse partial least squares discriminant analysis (sPLS-DA), also known as DIABLO (Data
Integration Analysis for Biomarker discovery using Latent component method, was performed on the
processed proteomics and metabolomics datasets using the {mixOmics} package in R?* 23, This technique
finds a linear combination of input variables from two or more omics datasets that reduces the
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dimensionality of the datasets while maximizing the covariance of the reduced datasets with each other
and with an outcome variable. Specifically, in the case of a centered and scaled metabolomics dataset
X(M)(N x P,) and centered and scaled proteomics dataset X(P)(N x P;2) with genotype labels Y (N x G),
where N is the number of samples, P is the number of metabolites, P, is the number of proteins, and G is
the number of groups, for each dimension h = 1, ..., H multiblock sPLS-DA finds the loading vectors

aglM) and aﬁlp)that maximize the value of:

(eq.1) Cyp - cov (X,(lM)aglM), X,(lp)aﬁlp)) + Cyy - cov (X,EM)aflM), Y) + Cpy - cov (X,(lp)aflp), Y)

. M P M P

subjectto 1 a™ 1, = 1aP 1, = L,1a™ 1y < A and a1, < 2,

The values of the constants Cy p Cyy, and Cpy are chosen to reflect the expected degree of association
between the different -omics datasets and between the -omics datasets and genotype. In this case, all
constants were set to one (i.e., a fully connected design matrix was used). The value of 4;, is chosen to

(1) (P)
h h o

constrain the number of non-zero elements in the loading vectors a; ~ and a

In this way, multiblock sPLS-DA selects a subset of variables (those with non-zero coefficients in a,(lM) and

aﬁlp)) that are correlated both within and between the proteomics and metabolomics datasets and that
define, for each omics dataset X and each dimension h, the component score:

(eq.2) {9 = x @@

The process is iterative, such that the loading vector for the first dimension, ago)' is found by maximizing

equation 1 with Xl(o) = X, while the loading vector for the second dimension, ago), is found by

maximizing equation 1 with XZ(O) = Xl(o) - tfo)ago), and so on for however many dimensions are

desired. This ensures that the first components th) and tip) encompass the greatest variation in the

dataset, followed by the second components téM) and tgp), etc.

The implementation of multiblock sPLS-DA in the {mixOmics} package creates a classifier that calculates

the components t,(lo) for a new sample, makes one classification for that sample per omics dataset in the
model (based on the distance between the component scores for the new sample and the stored
component scores for the training dataset points), then makes a final classification based on either
majority vote, weighted vote, or averaged vote of the individual omics classifiers.

Because we desired a continuous disease score that incorporated both the proteomics and metabolomics
datasets in our study, rather than the binary classifier created by default in mixOmics, we created an “sPLS
score” by summing together the first component scores for the metabolite and protein datasets.

(eq. 3) sPLS score = tiM) + tip)
We used this sPLS score to assess the combined ability of the proteins and metabolites selected in the
loading vectors to distinguish CLN32=7¢ from wild type samples in a held-out test set.

Prior to performing multiblock sPLS-DA, the data was randomly split into a training set (70%, n=34) and
test set (30%, n=14). No individual subject was represented in both the training and test sets (i.e., if a
subject was sampled at multiple time points, the data for both time points were included together in
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either the training or test set). Multiblock sPLS-DA was performed on the training set using two
dimensions (h=1,2). The number of non-zero coefficients to use in the loading vectors was determined by
assessing the balanced error rate of the mixOmics-generated classifier on the training dataset with five-
fold cross-validation repeated 20 times. The lowest average balanced error rate (0.004 + 0.010) was
achieved by using one protein in the protein first component and three metabolites in the metabolite first
component. However, we chose to include two proteins in the protein first component (two non-zero

coefficients in aip)) and two metabolites in the metabolite first component (two non-zero coefficients in

agM)) because this also yielded a very low average balanced error rate (0.026 + 0.023) and presented the
benefit of drawing two analytes from each of our omics datasets. A single analyte was used for each
second component (one non-zero coefficient each in agp) and agM)) because the number of analytes
selected for the second components had little impact on classification accuracy, and because the second

components tended to correlate with age rather than genotype.

For the proteins, the first component was initially a linear combination of the normalized abundance
values for CTSS and ADAMTSL4. However, due to lack of availability of commercial kits for testing
ADAMTSLS levels in patient samples, we removed ADAMTSL4 from consideration and repeated the
multiblock sPLS-DA workflow.

Results

To investigate longitudinal blood-based CLN3 disease signatures, we performed deep multi-omics
profiling to quantify relative blood serum concentrations of 769 metabolites and 2,634 proteins in samples
from male and female wild type and homozygous CLN3%¢”8 Yucatan Minipigs. 6-, 24-, and 36-month time
points were selected representing early-stage disease prior to any appreciable visual or motor defects,
mid-stage/symptomatic, and late-stage disease, respectively (Fig. 1 and Supplementary Fig. 3). Of the
3,403 analytes quantified in the dataset, 230 proteins (171 upregulated; 59 downregulated) and 111 (64
upregulated; 47 downregulated) metabolites were associated with genotype at the 6-month time point,
suggesting early systemic changes. At 24-months, 249 proteins (132 upregulated; 117 downregulated)
and 85 metabolites (25 upregulated; 60 downregulated) were associated with genotype, while at the 36-
month timepoint 153 proteins (64 upregulated; 89 downregulated) and 63 metabolites (38 upregulated;
25 downregulated) were associated with genotype (Fig. 2A). To discern large-scale relationships among
the combined metabolomics and proteomics datasets, we employed the Uniform Manifold
Approximation and Projection (UMAP) algorithm to reduce the data into a 2-dimentional space (Fig. 2B).
The UMAP algorithm was used because it is effective in visualizing clustering patterns in high-dimensional
data, therefore the distance between the features is relative to the way the analytes co-vary in the dataset
and associate in the 2-dimentional space. The features are colored by cluster and have bold outlines if
they were found to be significant at one or more time points. The features in the UMAP were separated
into 9 distinct clusters, each enriched for certain Uniprot Keywords (Fig. 2C). Shown are enrichments
greater than 3 with an FDR corrected p-value less than 0.05, with the full list in Supplementary Table 1.
Specific Uniprot keywords (Muscle protein, Thiol protease, Cytokine/Chemotaxis) were selected to show
the enrichment throughout the UMAP of selected relevant biological features (Fig. 2D-F). Consistent with
previous studies, we found a group of structurally similar glycerophosphodiesters (GPI, GPE, GPS; Fig. 2B)
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among the most significantly and consistently upregulated species across all time points, while a group of
phospholipids sharing a docosahexaenoyl group at the sn2 position were among the most significantly
and consistently downregulated analytes®.

In addition to these previously identified analytes, deep nanoparticle-based proteomics workflow (Fig.
3A) combined with isobaric labeling and 18xmultiplexing (TMT) quantified over 2600 proteins, several of
which were strongly associated with Batten disease genotype (Fig. 3B-G). The top two differentially
expressed proteins across all time points were Cathepsin S (CTSS) and Cathepsin B (CTSB), lysosomal
cysteine proteases that both demonstrated remarkably stable longitudinal patterns of elevation (Fig. 3B,
C). Although not significant at all time points, gamma-interferon inducible lysosomal thiol reductase IFI30
(IF130), Myosin regulatory light chain 2 (MYL2), and Myosin-7 were also elevated in CLN3 mutant samples
(Fig. 3D-F). As previous studies have shown, neurofilament light (NFL) was able to significantly
differentiate controls and CLN3 disease but only at 36 months (Fig. 3G). Using the novel streamlined
nanoparticle-based proteomics workflow provided several advantages. In contrast to targeted affinity-
based approaches that require species specific affinity probes, the nanoparticle workflow is directly
amenable to non-human model organisms. Moreover, direct compatibility with multiplexing at the
peptide level enhanced throughput and data robustness. Together, this enabled the deepest Batten
disease as well as porcine serum proteome profile to date, quantifying novel putative disease biomarkers
commonly not detectable with standard serum proteomics workflows (Fig. 3H and Supplementary Table
2).

To elucidate the functional relevance of the differentially expressed proteins, we probed for enriched
functional sets of proteins and pathways within the subsets of proteins associated with genotype at each
time point. Three ‘cellular component’ signatures were flagged at all time points: cytoplasm, proteasome,
and secreted (Supplementary Table 3). Interestingly, the signature “lysosome” was shared only between
the 24- and 36-month groups suggesting that blood signatures of lysosomal dysfunction increase over
time, perhaps reflecting progressive dysfunction in this organelle. When categorized by “biological
process,” the related term “chemotaxis” was shared among all groups, suggesting alterations in immune
homeostasis. (Supplementary Table 4). Unique to the 36-month time point, we found a large network of
proteins and metabolites involved in sphingolipid metabolism. Characterized by a common eighteen
carbon amino-alcohol backbone, sphingolipids are crucial to a vast number of biological processes
including cell signaling and membrane structure and have previously been linked to CLN3 Batten disease,

establishing another putative functional link between biomarker signatures and pathogenicity?*%.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis confirmed the enrichment for
species involved in sphingolipid metabolism at 36 months. We detected the presence of 21 analytes with
known function in sphingolipid metabolism and related pathways, 11 of which were differentially
abundant in CLN3 serum (Fig. 4 and Supplementary Fig. 4). Notably, all the differentially abundant
metabolites were elevated in CLN3 serum, suggesting alterations in sphingolipid synthesis, degradation,
or defective transport of intermediates (Fig. 4 and Supplementary Fig. 4A-F). Many proteins contributing
to sphingolipid metabolism were similarly elevated, suggestive of a compensatory mechanism triggered
by the accumulation of sphingolipids and resulting increased lysosomal burden (Fig. 3H-M and
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Supplementary Fig. 4G-L). Given the complex nature of this pathway, further investigation is needed to
clarify the impact of CLN3 Batten disease on sphingolipid metabolism, or vice versa.

We investigated biomarkers manifesting early in disease progression, prior to the onset of symptoms
which could have utility for pre-symptomatic clinical diagnosis, early evaluation of interventions, and
providing insights into upstream disease processes (Supplementary Fig. 5). Of the 230 genotype-
associated protein targets at 6 months, Integrin Beta-2 (ITGB2) was among the most significantly
downregulated protein, although ITGB2 serum levels rebounded at later time points, remaining
unchanged at 24 and 36 months (Supplementary Fig. 5A). Conversely, Calpastatin (CAST) and Myosin Light
Chain 3 (MYL3) — cardiac-enriched proteins - were significantly elevated in the CLN3 cohort at 6 months
when compared to wild type, with smaller elevations at later time points (Supplementary Fig. 5B, C).
Glucuronide of C;,H,003; and 3-aminoisobutyrate were downregulated at 6 months with a rebound at
later time points (Supplementary Fig. 5D, E). Interestingly, maleate — showing the largest fold change of
any upregulated metabolite species at 6 months — stabilizes to near identical levels in CLN3%*7% and wild
type minipig serum at 24- and 36-months (Supplementary Fig. 5F). Together these data demonstrate
complex pre-symptomatic molecular changes at the protein, lipid and metabolite levels throughout
disease progression that could serve to assess therapeutic efficacy.

Given the immense scale and complexity of the multi-omics dataset, we sought to condense these data
into a disease score model that could reflect overall disease signatures derived from a minimal set of input
variables. Similar to tools such as multi-domain responder indices that have found favor in clinical trials,
multiblock sPLS-DA was used to reduce the proteomics and metabolomics training datasets into two
components each. For the protein detectable with the nanoparticle-based workflow, the first component
comprised CTSS and CTSB (Fig. 5A). For the metabolites, the first component was a linear combination of
the normalized abundance values for glycerophosphoinositol (GPI) and glycerophosphoethanolamine
(GPE) (Fig. 5B). For both datasets, the first component separated the samples by genotype, while the
second component separated the samples by age (Fig. 5A, B).

The predictive accuracy of the model was assessed with a held-out set of test samples, where sPLS scores
were significantly different between CLN32>7¢ and wild type samples (two-tailed t-test, p < 0.0001) from
all three time points (Fig. 5 C, D). The sPLS score served as a perfect classifier for the test set (ROC AUC=1.0,
Supplementary Information) and separated the wild type and CLN32e7¢ samples in the test set better than
any individual analyte used to construct the sPLS score (Fig. 5D). The weight for each of the selected
analytes in the model can be seen in the loadings plot (Fig. 5E). The ROC curves (Fig. 5F) validate these
findings by showing perfect separation for CTSS and GPI (ROC AUC =1.0), whereas CTSB (AUC = 0.93) and
GPE (AUC = 0.86) are better at determining Batten Disease as compared to NFL (AUC = 0.6).

Discussion

The absence of functional CLN3 gives rise to an intricate disease state commonly referred to as Batten
disease. Cells lacking functional CLN3 protein exhibit a wide range of abnormalities including trafficking
deficits within the secretory pathway, changes in lipid composition, impaired autophagy, and altered
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lysosomal composition and function?62°, At the tissue level, the central nervous system is progressively
impaired by extensive neuroinflammation®’, while there is some evidence of progressive dysfunction in
the heart, skeletal muscles, and immune cell populations in the periphery3!. Despite comprehensive
characterization of disease signs and symptoms, there is little consensus around the primary, secondary,
or tertiary etiologies emerging from CLN3 dysfunction. Furthermore, there is a notable dearth of
information on clinically measurable biomarkers that could be used to monitor disease progression or
therapeutic efficacy.

Our study addresses these knowledge gaps with longitudinal deep multi-omics profiling using blood serum
from a large animal model of CLN3 disease, the CLN3%*”% minipig. The CLN32”¢ minipig exhibits
progressive disease pathology and behavioral abnormalities, more closely resembling human disease as
compared to currently available small animal models such as the C/In3%¢”¥ mouse. Additionally, the use of
CLN3%”/% minipig in biomarker studies offers a controlled, isogenic, and well-powered approach
compared to the challenges of studying rare samples from individuals with CLN3 disease with wide genetic
variation. A particular challenge with animal models is the extraordinarily large dynamic range of protein
concentrations in blood and lack of appropriate affinity probes to either deplete or enrich proteins to
facilitate comprehensive proteome capture at scale. Our study demonstrates the utility of a novel
nanoparticle-based proteomics workflow that mitigates the dynamic range challenges in a species-
agnostic way to facilitate unbiased and deep serum proteomics. In combination with global metabolomic
and lipidomic profiling, we quantified over 3400 analytes longitudinally (2,634 proteins; 769 metabolites
and lipids), significantly surpassing previous porcine multi-omic studies, which were hindered by the
limitations of human- or mouse-specific depletion kits3? 33, The combination of the Proteograph workflow
with TMTpro 18-plex reagents has enabled the simultaneous analysis of 18 samples, increasing the
throughput and accuracy of protein quantification with enhanced data completeness®* . Further, our
workflow for multiplexed proteomics data acquisition using MS2 methods on an Orbitrap Tribrid MS
instrument utilizing the FAIMS Pro interface has shown to enhance quantification accuracy®.

With this unique approach, we were able to identify biomarker signatures that offer new insights into the
cellular dysfunction and tissue pathology associated with the loss of functional CLN3, as well as a more
detailed understanding of the disease timeline. The early emergence and steady maintenance of elevated
glycerophosphodiesters suggests a close association with CLN3 function, while later in the disease course
a second signature comprised of sphingolipid metabolism proteins and metabolites emerges. A persistent
lysosomal signature is also present throughout disease progression, likely due to increased lysosomal
mass (from storage material accumulation and upregulation of lysosomal biogenesis) either exocytosed
or released into circulation by progressive inflammation and tissue damage.

Although the role of glycerphophodiesters is not completely understood in Batten disease, elevated levels
have been observed early in the course of the disease and are maintained at steady levels, suggesting a
close association with CLN3 function. One likely possibility is that glycerophosphodiesters are an early
lysosomal storage substrate, leading to subsequent secondary storage of additional proteins, lipids, and
metabolites. If this is the case, targeting the upstream metabolic pathways related to
glycerophosphodiester metabolism may have therapeutic potential. Later in disease progression,
effective treatments may need to target additional facets of disease such as immune activation, aberrant


https://doi.org/10.1101/2023.09.20.558629
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.20.558629; this version posted September 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

sphingolipid metabolism, and downstream lysosomal pathology. Importantly, our data suggests that some
of the molecular patterns are temporally restricted, suggesting that an ideal therapeutic strategy could
potentially be tailored to an individual’s specific biomarker signature of disease progression.

We discovered several proteins, many of which would be hard or impossible to detect with conventional
unbiased proteomics workflows at scale (Supplementary Table 2), exhibiting differential expression
between CLN3 Batten disease and control samples. Among them, lysosome associated CTSS and CTSB
were consistently upregulated at all time points which is consistent with the central role of lysosomal
dysfunction in the disease pathology. Another lysosomal protein, IFI30, exhibited similar elevations,
although differences did not reach significance at the six-month time point. Why these lysosomal
proteases are enriched in a peripheral biofluid remains unclear. One likely possibility is that CTSS, CTSB,
and IFI30 are enriched in disease-affected cells, possibly as a consequence of increased lysosomal mass
or as a compensatory mechanism for clearing storage material. The proteins could then be released into
circulation upon lysosomal exocytosis or cell death. The cardiac-enriched proteins MYL2 and MYH7
showed similar patterns of elevation, reaching significance at most time points. It is tempting to speculate
that these markers could reflect a cardiac defect in this model — a hypothesis that warrants further
investigation. Cardiac phenotypes (left ventricular hypertrophy, bradycardia, storage material) have been
described in CLN3 affected individuals, but a lack of strong phenotypes in mouse models has thus far
precluded exhaustive preclinical study of this facet of disease®®.

These new protein-based biomarkers could be valuable additions to the repertoire of existing markers for
CLN3 disease. One existing marker, NFL, offers the benefit of being closely linked to the central neuronal
pathology of the disease, but exhibits only mild elevations in affected individuals and animal models, as
reflected in our data here. The glycerophosphodiesters are appealing biomarker candidates due to their
early and steady elevation, but little is known about their relationship with disease etiology. In
combination, however, CTSS, CTSB, GPI, and GPE offer a powerful summary of disease state from a limited
set of variables, as evidenced by our sPLS score model. Further development of a CLN3 disease biomarker
panel could also incorporate markers of neuronal damage, such as NFL, to build an even more
comprehensive picture of an individual’s disease status.

Our data also provides new insights into the pathogenic timeline of Batten disease. While CTSS, CTSB, GPI,
and GPE were elevated at all time points, other signatures developed only at later stages of disease
progression. For example, MYL2 and NFL were significantly upregulated only in the later time points,
suggesting that cardiac and neuronal damage may take substantial time to initiate. Additionally,
sphingolipid metabolism was only enriched at the 36-month time point, suggesting that sphingolipid
accumulation takes longer to develop and may contribute to disease pathology in a more tissue specific
manner before it is a useful biomarker in blood. Previous studies have similarly found sphingolipid
metabolism to be dysregulated in various models of CLN3 disease, although exactly how this process
contributes to disease remains unclear?” 38, Regardless of the mechanism, treating these secondary or
tertiary disease manifestations with targeted therapies may be beneficial alongside disease-modifying
therapies that compensate for the loss of CLN3.

Collectively, this work demonstrates how deep multi-omics profiling can be employed to detect disease-
specific biomarkers related to cellular dysfunction and tissue pathology associated with a complex
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degenerative disease. Innovative techniques to mitigate interference of highly abundant proteins in pig
serum were crucial in enabling comprehensive proteomics. The power of this technique is evidenced not
only by the identification of proteins and metabolites as biomarker candidates, but also by the insights
into the timeline and order of disease progression. This study's findings demonstrate the potential of deep
multi-omics profiling for uncovering disease-specific biomarkers, which can provide valuable insights for
understanding disease mechanisms and identifying potential drug targets.
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Figure 1: Study Design and Multiomics Analysis Workflow. Serum samples were taken from control and CLN3%¢78
Yucatan miniature pigs at 6-, 24-, and 36-months. One aliquot of serum was analyzed with the Global Discovery Panel:
a comprehensive mass spectrometry analysis including both metabolites and lipids. Another aliquot of serum was
used to perform deep proteomics using Seer’s nanoparticle technology and labeling with Tandem Mass Tag, high
throughput mass spectrometry method. After mass spectrometry analysis of each omic data, the data was processed
and integrated for statistical, multivariate analyses.


https://doi.org/10.1101/2023.09.20.558629
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.20.558629; this version posted September 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

RiBonSEOp N . -
A [ s wrim g i C Bl s D7 g Wuscle protein
z H .
3 i une
o~ — 1 i
= ummmu?éj%}i’ikfﬁ - g o
= W R S e B
_ e AL Lo Ty
24 mon Pymidons 2 S |
Matsbolites = =3
Proteing tmmzﬁ?ﬂ;ﬁ% ; & e
36 man E H
Hydroger
.
150 100 180 E 3 P
B. Significant at: g & 1} ¥
© Multiple tmepaints & UMART
© & month only E 5 Thiol protease
24 month only A Zamut
S hinganine © @ R
& "~ psph.gngusme © %®monthonly | P [
& ] R onz
g g
g
x s
2 = 3
: ‘
e
E
= S Epricmas © i
. "
i ol
. GrECAM STER
¢ .
o
E FDR % i)
% UMAPT
T
=1 S B
. W
‘ .
T Clusters
. | "
2% R TN
iy Trosing. Seg s D?g‘nilgg . = S8
4 3R % ] 3
. O Mietaholite
k4 A Protein E + i
o 2
- -3 ] 3 3 3 5 b
UMAP1 w00 b URIAP 1

Figure 2: The Molecular Landscape of Longitudinal Metabolomics and Proteomics of the CLN3 and Controls over Time.

(A) Representation of the metabolites and proteins that significantly differentiate controls and CLN3 at 6-, 24-, and
36-months. (B) UMAP of all metabolites (circles) and proteins (triangles) from all time points that has been divided
into 9 clusters using hierarchical clustering from the Euclidean distance within the UMAP. Each cluster is represented
by a different color (1 = grey, 2 = light green, 3 = pink, 4= light blue, 5 = green, 6 = light purple, 7 = orange, 8 = yellow
and 9= light teal). The features that significantly differentiate controls from CLN3 are outlined based on if they are
significant at multiple time points (black), significant at the 6-month time point only (purple), 24-month time point
only (teal), or significant at the 36-time point only (orange). Metabolites and proteins of interest are labeled with
abbreviated names. (C) All proteins were mapped to their associated Uniprot Keywords. The clusters were tested for
enrichment of keywords. The heatmap shows an overview of the enriched keywords in the clusters with enrichments
greater than 3 and FDR corrected p-values less than 0.1, where the size of the circle is based on the enrichment and
color is associated with the FDR corrected p-value. Enrichments of keywords are represented in (D) muscle protein
(dark blue), (E) thiol protease (dark purple) and (F) cytokine/chemotaxis (dark green). Note that the “GPI” analyte in
plot 2F refers to the protein glucose 6-phosphate isomerase (GPI) rather than the glycerophosphoinositol (GPI)
metabolite discussed elsewhere.
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Figure 3: Proteograph Workflow with TMT 18-plex Mass Spectrometry Method and Resulting Protein Biomarker
Regulations.

(A) Serum samples were first processed by SP100 Automation instrument with ProteographTM Assay kit included in
Proteograph Product Suite (Seer, Inc.) using five distinctly functionalized nanoparticles (NPs). Tryptic peptides from 5
NPs were then pooled into one single sample for TMT labeling. A total of 54 pooled samples were allocated into three
18-plex TMT mixtures, each of which contained two 6-month samples, three 24-month samples, three 36-month
samples and one interassay control sample from WT and CLN3%®78 respectively. Each TMT mixture was followed by
high pH reverse phase fractionation and LC-MS/MS analysis, comprised of a Proxeon EASY nanolLC system coupled to
an Orbitrap Fusion Lumos MS equipped with FAIMS Pro Interface (Thermo Fisher Scientific). The raw spectra data
were finally processed by SpectroMine (Biognosys) and R/Bioconductor package MSstatsTMT to generate statistical
analysis results. (B-F) Lysosomal proteins Cathepsin S (CTSS), Cathepsin (CTSB), and IFI30 and muscular proteins MYL2
and MHY7 are significantly elevated at multiple time points in CLN3®7% minipig serum when compared to age-
matched healthy control animals, (G) while NFL blood-serum levels are significantly elevated at 36 months only. Two-
way ANOVA with Sidak correction for multiple comparisons, 95% confidence interval, *p<0.05, **p<0.01, ***p<0.001,
****n<0.0001, n = 6; 9; 9 animals respectively, mean +/- SEM. (H) The 2,634 identified proteins were mapped to the
HPPP protein database, revealing their detection throughout the entire concentration range of the database. Notably,
the proteins NFL, MYL2, and IFI30 were found to be within the low abundance range.
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Figure 4: Sphingolipid Alterations at 36 Months in CLN3 Disease.

Network of proteins and metabolites involved in sphingolipid metabolism and related pathways that were
differentially abundant in serum of 36-month-old subjects. Network connections were derived from the KEGG
pathways for sphingolipid metabolism (top left), glycerophospholipid metabolism (top right), and glycosphingolipid
biosynthesis (bottom). Serum levels of B4AGALT4 and GBA were significantly lower in CLN3%7-8 pigs than in WT pigs,
while serum levels were significantly higher for BAGALNT1, HEXA, HEXB, lactosylceramide, sphinganine, sphingosine,
glycerophosphoethanolamine, sphingomyelin, and 1-acyl-GPE (uncorrected Student’s t-test, p < 0.05). Analytes not
significantly different between genotypes are outlined according to the magnitude and direction of their log fold
change, while analytes involved in the pathway that were not detected in the dataset are presented in gray. Many of
the metabolites in the KEGG pathways are general metabolite categories rather than specific chemical species (e.g.,
ceramide, 1-acyl-GPE). Multiple analytes were detected in the dataset that fall under the categories of 1-acyl-GPE
(n=5), ceramide (n=6), phosphatidylethanolamine (n=10), and sphingomyelin (n=28). Not all detected analytes within
these categories behaved the same way (supplementary information); the color of the category in the figure is based
on the overall trend. Other categories had only one representative detected in the dataset, including 2-acyl-GPE (2-
stearoyl-GPE (18:0)), dihydroceramide (N-palmitoyl-sphinganine (d18:0/16:0)), and lactosylceramide (lactosyl-N-
palmitoyl-sphingosine (d18:1/16:0)).
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Figure 5: Multiblock sPLS-DA Loadings Highlighting Protein Biomarkers for CLN3.

A,B. Training data projected onto the two proteomics components and two metabolomics components identified
using multiblock sPLS-DA. For both omics datasets, the first component separated the datapoints by genotype, and
the second component separated the datapoints by age. C. sPLS scores calculated for the entire dataset, with test set
points shown in dark green/magenta. At each time point, sPLS scores were significantly different between WT and
CLN3%®7-8 subjects in the dataset as a whole. Scores were also significantly different between WT and CLN32¢7-8
subjects in the test set at all time points combined (p < 0.0001, Student’s two-tailed t-test), demonstrating the
robustness of the sPLS score as a tool for differentiating CLN3%%”-8from WT samples. D. Comparison of sPLS score and
log2 normalized intensity values of the analytes that make up the sPLS score for separating data in the test set. The
sPLS score better separates the test set WT from CLN3%%7% samples compared to any individual analyte (bars
represent standard deviation; asterisks represent p-values from two-way ANOVA with Tukey’s post-hoc test). E.
Loadings of the analytes in the sPLS score created by combining the formulas for the protein first component and
metabolite first component. The formula for the protein first component relied on cathepsin S (CTSS) and cathepsin
B (CTSB), while the formula for the metabolite first component relied on glycerophosphoinositol (GPI) and
glycerophosphoethanolamine (GPE). The sPLS score formula places the greatest emphasis on CTSS, followed by GPI,
then GPE, and finally CTSB. F. Receiver operating characteristic curves for each of the analytes included in the sPLS
score, as well as neurofilament light (NFL), as classifiers for identifying CLN3%¢7-8 samples in the test set. The area
under the ROC curve is presented for each analyte along with its 95% confidence interval (computed with
Wilson/Brown method). CTSS and GPI both serve as perfect classifiers for the test set, and all four analytes included
in the sPLS score outperform NFL as individual classifiers.
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Supplementary Figures
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Supplementary Figure 1: Neurology 4-PlexA Targeted Proteomic Analysis. The total measurement of (A) TAU, (B) glial
fibrillary acidic protein (GFAP), (C) and ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) in wildtype CLN32¢”/8 minipig
serum at 6-, 24- and 36-months. No significant differences were observed. Two-way ANOVA with Sidék correction for
multiple comparisons, 95% confidence interval, n = 6; 9; 9 animals respectively, mean +/- SEM.
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Supplementary Figure 2: Variance Components Analysis on the Protein Intensities Generated by Different
Normalization Methods. In the context of normalization methods, "None" indicates no normalization was performed.
"48M" refers to the usage of pooling samples from 48-month-old subjects as the reference channel, while
"6M+24M+36M+48M" signifies the utilization of the mean across all samples from all ages as the artificial reference
channel. The x-axis represents the sources of different variance components, with "Conditions" representing the
combination of age and genotype, and "BioReplicate" representing distinct pigs. The percentage of each variance
component in the overall variation was calculated for each protein. The y-axis displays the average percentage of each
variance component across all proteins. Utilizing normalization based on all the samples effectively mitigates the
between-mixture variance, eliminating the undesirable batch effect.
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Supplementary Figure 3: Profiling Differentiated Metabolites. (A) Volcano plots of detected metabolites with
differentially expression levels identified at 6-, 24-, and 36-months (-log10 p-value > 1.3) highlighted in red. Top
metabolite biomarker candidates across all time points denoted with purple, early biomarker candidates denoted by
teal, and metabolites involved in sphingolipid metabolism are highlighted green. (B) Volcano plots of detected proteins
with differentially expressed proteins at 6-, 24-, and 36-months (-log10 p-value > 1.3) highlighted red. Top protein
biomarker candidates across all time points denoted by purple, early biomarker candidates denoted by teal, and
proteins involved in sphingolipid metabolism are highlighted green. Student’s t-test, n = 6; 9; 9 animals respectively.
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Supplementary Table 1: Can be found in the Excel sheet here.
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Supplementary Table 2: The six potential Batten disease protein biomarkers identified by our pig plasma model were
cross-referenced with previously reported plasma proteome data obtained through standard plasma proteomics
workflows>These workflows encompassed various approaches: "Neat" denotes a neat plasma digestion workflow,
“Depleted" signifies the use of a plasma depletion strategy, “Deep Fractionation" involves a high-pH fractionation of
depleted plasma, achieved by concatenating 19 fractions into 9, “Proteograph" represents a comprehensive five-NP
workflow. In all these workflows, Data-Independent Acquisition (DIA) was utilized to analyze a pooled plasma sample.
Notably, our pig plasma model demonstrated its capability to quantify novel putative disease biomarkers that are
often undetectable using standard plasma proteomics workflows.

Neat Depleted Fragssr?ation Proteograph Pig plasma
CTSB X X
MHY7
CTSS X X
NFL
MYL2
IFI30
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Supplementary Table 3: Cellular components associated with genotype at 6-, 24-, and 36-months using the DAVID
functional annotation tool.

DAVID - Cellular Component
Related

Age Terms Count % P-value Benjamini

6 Months Cytoplasm 36 20.6 4.8E-9 7.3E-8
Proteasome 9 8.1 5.7E-9 7.3E-8
Secreted 26 14.9 7.6E-8 6.6E-7
Nucleosome core 4 23 8.1E-3 5.3E-2
Nucleus 24 13.7 1.9E-2 9.7E-2
Thick filament 2 1A 3.9E-2 1.7E-1
Mitochondrion 8 4.6 5.3E-2 2.0E-1
i?iiﬁifmic 7 4.0 9.6E-2 3.4E-1

24 Months | Secreted 42 225 6.0E-19 1.2E-17
Proteasome 9 4.8 1.1E-8 1.1E-7
Cytoplasm 27 14.4 7.7E-4 5.1E-3
Lysosome 4 21 7.5E-2 3.7E-1

36 Months | Proteasome 12 10.4 4.0E-15 8.5E-14
Secreted 23 20.0 9.8E-9 1.0E-7
Lysosome 7 6.1 4.5E-5 3.2E-4
Cytoplasm 21 18.3 4.1E-4 2.1E-3
Mitochondrion 3 26 4.7E-2 2.0E-1
outer membrane
Sylapiastoic 4 35 7.6€-2 2.7E-1
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Supplementary Table 4: Biological processes associated with genotype at 6-, 24-, and 36-month using the DAVID
functional annotation tool.

DAVID - Biological Process

Rel "
Age blated Count % P-value  Benjamini
Terms
6 Months Tricarboxylic 4 23 6.5E-4 3.1E-2
acid cycle
Protein 6 3.4 2.2E-3 5.3E-2
biosynthesis
Isoprene 2 14 5.7E-2 6.8E-1
biosynthesis
Chemotaxis 3 1.7 5.8E-2 6.8E-1
24 Months | Blood 4 2.1 6.0E-4 1.6E-2
coagulation
Hemostasis -4 21 6.9E-4 1.6E-2
Immunity 9 4.8 3.8E-3 6.0E-2
Chemotaxis 4 24 7.2E-3 8.5E-2
Hosbvirus 2 1.1 9.8E-2 9.2E-1
interaction
36 Months Immunity 12 10.4 2.6E-6 8.0E-5
S 9 7.8 2.9E-5 4.4E-4
immunity
Chemotaxis 5 4.3 2.4E-4 2.4E-3
Sphingolipid 2 17 8.9E-2 6.9E-1

metabolism
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Supplementary Figure 4: Metabolites and Proteins Involved in Sphingolipid Metabolism. Metabolites and proteins
involved in sphingolipid metabolism were compared in wildtype and CLN32%*”7¢ minipig serum samples at 36-months.
(A-F) Differentially expressed metabolites at 36-months included sphingomyelin (d18:1/14:0, d16:1/16:0)*, lactosyl-
N-palmitoyl-sphingosine (d18:1/16:0), sphinganine, sphingosine, sphingomyelin (d18:0/18:0, d19:0/17:0)*, and
sphingomyelin (d18:2/18:1)*, all of which were upregulated in CLN3%¢”4 serum samples. (G-L) Sphingolipid proteins
SAMDS, BAGALNT1, HEXA, and HEXB were significantly upregulated in CLN34®”/% minipigs, while BAGALT4 and GBA
were significantly downregulated.
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Supplementary Figure 5: Identification of Biomarkers Appearing Early in Disease Progression, Prior to the Onset of
Symptoms. (A-C)) Of the 230 protein targets associated with genotype at 6-months, ITGB2, CAST, and MYL3
demonstrate significant dysregulation, all stabilizing to wild type levels at later time points. (D-F) Similarly, Glucuronide
of C12H2003, 3-aminoisobutyrate, and maleate demonstrate utility as “early” metabolite biomarkers and are only
dysregulated at 6-months.
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Supplementary Info:

Formula for calculating sPLS score from normalized data:
First protein component: ¢\ = 0.983*CTSS + 0.236*CTSB - 0.096
First metabolite component: th) = 0.355*GPE + 0.864*GPI - 0.121

sPLS score = t1M 4 t{P) = 0.355*GPE + 0.864*GPI + 0.983*CTSS + 0.236*CTSB — 0.217
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