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Abstract

Spatial transcriptomics is a breakthrough technology that enables spatially-resolved measurement of molecular profiles in
tissues, opening the opportunity for integrated analyses of morphology and transcriptional profiles through paired imaging
and gene expression data. However, the high cost of generating data has limited its widespread adoption. Predicting gene
expression profiles from histology images only can be an effective and cost-efficient in-silico spatial transcriptomics solution
but is computationally challenging and current methods are limited in model performance. To advance research in this
emerging and important field, this study makes the following contributions. We first provide a systematic review of deep
learning methods for predicting gene expression profiles from histology images, highlighting similarities and differences in
algorithm, model architecture, and data processing pipelines. Second, we performed extensive experiments to evaluate the
generalization performance of the reviewed methods on several spatial transcriptomics datasets for breast cancer, where
the datasets are generated using different technologies. Lastly, we propose several ideas for model improvement and
empirically investigate their effectiveness. Our results shed insight on key features in a neural network model that either
improve or not the performance of in-silico spatial transcriptomics, and we highlight challenges in developing algorithms
with strong generalization performance.
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Key Messages

e We comprehensively compared the performance of existing methods for predicting spatial gene expression profiles from
histology images

e We assessed the roles of different algorithms, model architectures, and data processing pipelines to model performance

e We performed extensive experiments to evaluate the generalization of the models on in-distribution and out-of-distribution
spatial transcriptomics datasets

e We proposed several strategies for improving existing models and empirically investigated their effectiveness

Introduction characterize the spatial heterogeneity of cancers, providing

new insights in cancer research, and opening an unprecedented
Spatial transcriptomics (ST) is a rapidly developing technology . & o P . & . P .
K . . . . R potential for novel capabilities in the diagnosis and prognosis
for producing histopathological images paired with gene .
. A of cancer (e.g., see the survey paper [3]). However, the wide
expression profiles of thousands of individual spots/cells, K L. R X
S . . adoption of ST has been limited by its high cost.
providing information on both the unseen molecular signatures K
. i . Several deep learning methods have been developed for
and imaging morphological features [1]. Technology such as the Lo K . .
N . . predicting gene expression profiles from Hematoxylin and Eosin
10x Genomics Visium platform [2] measures the gene expression A . . )

. . . . (H&E) stained histology images. These include methods that
on spots of resolutions 55 to 100 micrometers in diameter K K K .
L. . predict bulk or single-cell RNA profiles which do not provide
that are distributed close together at fixed locations across Lo . .
. . . spatial information [4, 5], and methods that are able to predict
the tissue, which can then be mapped back to the underlying i X
. . . . . spatially resolved profiles [6, 7, 8, 9, 10, 11]. In this work, we
high-resolution stained tissue image. ST has been used to . .
focus on the latter class of methods that are emerging with
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the potential to bring about new abilities to predict spatial
transcriptomic data for histopathological image assessments.
‘While the published results support the potential of the deep
learning approach, the performance of these existing methods
still requires significant improvement. At the same time, there
are several limitations in existing studies that prevent a good
understanding of the state of the field: (a) existing studies often
use different datasets to compare a subset of the algorithms,
instead of comparing existing algorithms on the same datasets;
(b) existing studies focus on in-distribution (ID) generalization
performance (where the training and test sets are sampled
from the same distribution), while in practice, it is even more
important to assess the generalization for out-of-distribution
(OOD) (where the training and test sets may follow different
distributions); (c) the methods often differ in multiple aspects,
including the model architectures, preprocessing techniques,
and data augmentation strategies, but it is often unclear which
of the differences account for the performance differences.

Our paper aims to address the above limitations and
advance research in the field by performing a comprehensive
assessment of the generalization performance of existing
approaches and experimenting some new ideas for improving
models. Specifically, we identify six existing methods and we
study the following questions:

e How do the methods compare with each other on datasets
generated by different technologies?

e How well do the methods generalize on OOD data?

e How effective are the different preprocessing and data
augmentation techniques?

e How effective are some new ideas for improving deep
learning models (e.g., the use of pre-trained models)?

We focus on breast cancer in this study, because of the
availability of relatively large datasets generated by a legacy
spatial transcriptomics protocol (100 pm resolution spots) and
a recent version of 10x Genomics Visium protocol (55 pm spots),
which have different resolutions and detection sensitivities, and
would allow us to study the above questions. In fact, some
previous work has partially compared different methods using
breast cancer tissues [12, 7, 8, 10], but the important questions
and limitations as mentioned above remained unaddressed. For
example, several methods [12, 7, 8] have not been quantitatively
evaluated on datasets generated by newer, higher-resolution
technologies, and their performance on OOD data has not been
evaluated.

Our paper contributes a systematic review of existing
methods, and results in several interesting empirical insights,
with some highlighted below.

e Top-performing methods: Hist2ST, BLEEP, and STimage
consistently achieved higher test set performance for both
the in-distribution and OOD settings.

e General performance: All the evaluated methods predicted
overall variable genes or cancer markers with relatively low
accuracy, resulting in low-performance metrics across the
diverse datasets. This raises the need for assessing which
genes can be predicted and at which performance ranges.

e Limited generalization: Most methods exhibited limited
generalization capability, with low performance when
applied to OOD data. Some methods exhibit overfitting to
the data, and we highlight differences in models that may
account for improved robustness.

e Negative transfer: Using pre-trained image encoders that
have been trained on general images led to negative
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transfer when applied to H&E images, resulting in lower
performance compared to training from the ground up.

e Impact of image augmentation and expression preprocessing:
Various image augmentation strategies did not have a
discernible impact on overall performance. In addition,
different preprocessing transformations for gene expression
values did not lead to significantly different results.

The remainder of this paper is structured as follows. First,
we review and compare six existing deep-learning algorithms
for predicting spatial gene expression profiles from histology
images. We then describe our benchmark methodology, with
details on the datasets used, the performance metrics, and
variants of a top-performing algorithm Hist2ST [8]. This
is followed by assessing the ID and OOD generalization
performances of the existing methods and the variants of
Hist2ST. We then discuss the benchmarking results and
critically review the differences between methods and model
We also
describe experimental results from testing several new ideas

architectures in light of the observed results.

for improving the performance. Finally, we address the
limitations of this benchmarking work and highlight the
potential challenges of applying deep learning models for the

prediction of spatial transcriptomic profiles.

Review of existing methods

We identify and review six existing methods in this section.
All methods extract image patches from the whole-slide
histology images based on the spatial coordinates of the
measured gene expression. The transformer-based methods
(HisToGene, Hist2ST) treat all spots on a single tissue section
as an independent training sample, making use of the global
relationship between spots; the other methods treat all spots
(both within and between tissue samples) as independent
training samples, with the number of input images determined
by the batch size. Most methods (ST-Net, HisToGene, Hist2ST,
STimage, DeepSpaCE) learn to predict gene expression directly
by multivariate regression; the exception is BLEEP, which
infers the gene expression by querying through nearest-
neighbors in a learned joint embedding space for image and gene
expression. The architectures used in the first five methods all
share the same high-level structure: an image encoder is used
to extract features from the image patches, then a prediction
head is used to predict the gene expression profiles using
the extracted features. Some methods additionally include
a distribution module for predicting the distribution of the
gene expression values rather than a fixed value. This general
structure is illustrated in the top figure in Figure 1 (a).
The five methods differ in the specific networks used for the
encoder, the prediction head, and the distribution module,
as will be discussed below. In addition to differences in
model architecture, these methods employ different techniques
for processing image and gene expression data; summarized
in Table S1. The methods we have identified have publicly
available code and have been individually evaluated previously
on different datasets, including breast cancer data; we provide a
summary in Supplementary Table S4. In this section, we focus
on comparing the model architectures and loss functions used
and review each method separately below.

ST-Net [6] is a CNN model that employs a DenseNet-121
pre-trained on ImageNet [13] as an image encoder. The whole-
slide histology images are divided into 224x224-pixels patches
for each spot, which are transformed into features by the image
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encoder. The prediction head is a single fully connected output
layer, which directly predicts the vector of gene expression. ST-
Net is trained by minimizing the mean squared error (MSE).
HisToGene [7] utilizes a modified vision transformer (ViT)
model as an image encoder, which is able to incorporate the
spatial relation of image spots. 112x112-pixel image patches
are flattened and passed into a linear layer to produce the
patch embeddings of dimension 1024. In addition, a learnable
linear layer is used to map the spatial coordinates of each spot
into a positional embedding vector of the same dimension. The
patch embeddings and position embeddings are aggregated via
summation and then input into eight multi-headed attention
The prediction head
is a single feed-forward layer that directly outputs the gene

layers to generate latent embeddings.

expression values. The model is trained to minimize the MSE.

Hist2ST [8] consists of three main modules — Convmixer,
Transformer, and Graph Convolutional Network (GCN) — to
learn a global feature representation for all image spots on
a single tissue section. 112x112-pixel patches are extracted
around each spot. The initial image encoder is a Convmixer, a
variant of CNN, that produces image features for each spot. The
transformer module encodes spatial locations and fuses them
with the image features, employing eight multi-head attention
layers to learn global spatial dependencies. The aggregated
features from the transformer module are then input into the
GCN module to explicitly learn local spatial dependencies. The
prediction head is a fully connected layer. In addition, there is a
distribution module that estimates parameters for Zero-Inflated
Negative Binomial (ZINB) [14] distributions for each gene;
this is learned by minimizing the negative log-likelihood. Self-
distillation [15] is used to learn from augmented image patches.
The loss function combines the MSE from the prediction head,
the ZINB loss, and the self-distillation loss.

STimage [10] is a CNN model that uses a ResNet50 image
encoder to extract features from 299 x229-pixel image patches.
which
consists of two fully connected output layers to estimate

The features are input into a distribution module,

the parameters of a Negative Binomial (NB) distribution for
each gene. This is achieved by minimizing the negative log-
likelihood. The estimated mean of the NB distribution for
each gene is used as the prediction, and the parameters
can be used to quantify the uncertainty in the prediction.
STimage additionally employs an ensemble approach to account
for variation across independent training runs to improve
performance and robustness.

DeepSpaCE [9] is a CNN model that utilizes the VGG16
architecture as an image encoder. Image patches of size 150%
times the original spot dimensions are extracted from the
histology image. The prediction head consists of two fully
connected layers for predicting the gene expressions. The loss
function used is the smooth L1 loss.

BLEEP [11] learns a bimodal embedding for image and gene
expression data. Its architecture is illustrated by the bottom
figure in Figure 1 (a). The process involves extracting features
from the image tiles and expression vectors using separate
encoders. The image encoder is a pre-trained ResNet50, while
a fully connected network serves as the expression encoder.
The image and gene expression features are then separately
projected into image embeddings and expression embeddings,
with a shared dimension of 256. Contrastive learning [16] is
employed to align the latent space for the two embeddings
by minimizing the cross entropy. During inference, the image
patches are mapped to embeddings by the encoder, and the
k-nearest expression profiles from the reference dataset are

S?. . .
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selected based on their proximity, measured by FEuclidean
distance, to each patch in the joint embedding space. The
prediction of expression profiles for the query patches is then
performed by taking a linear combination of the selected

expression profiles.

Methods

We evaluate the ID and OOD generalization performance of
all six models and multiple variants of Hist2ST using two data
settings, as detailed below.

Datasets

In this study, we utilized two spatial transcriptomic breast
cancer datasets generated by the Visium technology and the
legacy spatial transcriptomics technology. The two datasets,
summarized in Table 1 and described in detail below, differ
in terms of the technology, the number of spots, the spot
resolution, the number of genes detected per spot, and the
number of patients per datatype. Patient samples were collected
in different cohorts and data was generated by different
laboratories, representing technical variations likely observed in
the real application settings. This approach allowed us to assess
how various models perform across datasets with different

characteristics.
Dataset|Patients|Tissues|Cohorts|Resolution|Spots|Genes
HER2+ 36 Frozen |He et al. 100 pm 13,620 11,871
Visium 6 Frozen |Wu et al. 55 pm 16,456| 36,601
Visium 2 Frozen 10x 55 pm 7,785 136,601
Visium 1 FFPE 10x 55 pm 2,518 (36,601
Table 1. Summary of samples from the HER2+ Legacy and Visium

datasets.

The lower resolution (100 pm per spot) HER2+ breast
tumour ST dataset [17] comprises 36 tissue sections from 36
HER2+ patients, with data generated using the initial version
of the spatial transcriptomics protocol before the method was
further developed by 10x Genomics to increase the resolution to
55 nm per spot. The term legacy ST is referred to for historical
reasons, without implying about quality of the data. Among the
36 samples, there are annotated cell type labels for 8 tissues, by
trained pathologists. Each sample consists of around 300 to 600
spots, with each spot containing the measurements for 11,871
genes. The images are low resolution, less than 9000 pixels in
height and width.

The higher
introduced and described in [10], consists of nine breast cancer

resolution Visium breast cancer dataset,
tissue samples, which includes 3 samples (2 fresh-frozen and
1 formalin-fixed-paraffin-embedded, FFPE, tissue) from 10x
Genomics [18] and six samples obtained from Swarbrick’s
laboratory [19]. Each sample is measured on the 10x Visium
platform and contains around 1300 to 4900 spots, with each
spot containing the measurements for up to 36,601 genes. The
images are high resolution, ranging from approximately 9000 to
40000 pixels in height and width.

Genes selected for evaluation

Although spatial transcriptomic data contains measurements
for thousands of genes, the methods considered have not been
designed to scale to predict more than a small subset of usually
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200 to 1000 genes. As the performance is likely dependent on
the gene targets for prediction, we considered the prediction
of two sets of genes: highly variable genes (HVGs), and a
smaller set of 12 cancer-associated genes (marker genes). For
the HER24 dataset, the performance was assessed on the
prediction of the 769 shared HVGs and the Visium dataset was
assessed on both the HVGs (685 shared), and the 12 marker
genes. Of note is that the selection of HVGs for prediction is a
common practice across all methods, although the rationale for
why the HVGs are suitable or not is not clearly justified, except
for the fact that these methods are not scalable to predict all
genes.

For the BLEEP method, the model appears to be more
scalable and the selected gene panel may incorporate a larger
set of highly variable genes for both training and inference.
Therefore, we also assess the model performance when a larger
set of genes are used, and so we have benchmarked the BLEEP
method in two ways for comparison: for the HVGs, the gene
set was fixed which is the same case as the other methods; and
another gene set was union of the 12 marker genes and 1000
HVGs across all samples, resulting in an enlarged set.

Performance measures
We describe how we evaluate a method’s ID and OOD
generalization performance below. We measure the predictive

performance of a method for a gene using the Pearson
correlation coefficient (PCC), defined by

COV(Xp[‘eda Xtarget)

PCC = )
Var(Xpred)7 Var(Xtarget)

where Xpred, Xtarget is the predicted and measured target gene
expression for all spots in the sample, respectively. PCC is
a better measure than the mean squared error or the mean
absolute error, because it is not dependent on the differences in
the absolute scale between abundant and lowly-expressed genes.

The ID generalization performance is measured using
LOOCV (leave-one-out cross-validation) as the number of
samples is small in the datasets used. Specifically, we leave
one sample out at a time and train a model on the remaining
samples. We then make predictions on the hold-out sample and
measure the PCC for each gene.

The OOD generalization performance is measured only
on the Visium dataset, using the marker genes. Specifically,
we partitioned the Visium dataset (illustrated in 2a) into a
training set, a validation set, and a test set. The training
set and the validation set contain 4 samples and 2 samples
respectively from the Swarbrick data [19]. The test set contains
samples from 10x Genomics. We used the validation set for
measuring the ID generalization performance instead of for
hyperparameter tuning. The test set is used for measuring the
OOD generalization performance. The partition was motivated
by the observation that data produced from two different
laboratories are likely to have distribution shifts in the image
and gene expression data. To verify this, Figure 2a shows that
the whole slide images for the training and validation dataset
are separated into two groups with different color profiles, which
are further different from the test set. Figure 2b verifies that
the color distribution of the RGB channels is distinctive and
varies across individual samples and laboratories. In terms of
gene expression, Figure 2c shows that the distribution of gene
expression has similar distinctiveness between the training and
validation sets and the test set samples.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Algorithm settings

All the methods were first trained and tested with their
default hyperparameters, pre-and post-processing steps, and
data augmentation methods. We provide a concise overview
of the processing steps applied to both gene expression data
and image data for each method in Table S1 and a detailed
summary in Supplementary section 7.1. Each model was trained
on a single NVIDIA Tesla V100 SMX2 GPU with 32 GB RAM.

When testing Hist2ST and HisToGene with the Visium high-
resolution data, we faced out-of-memory issues. Since these
methods include transformer modules that process all the spots
in tissue samples at once, processing Visium samples that
usually contain more than 2000 spots exceeds the available
memory. To address this, we divided each whole image
into smaller, non-overlapping square windows of 4000x4000-
pixel sections, resulting in multiple training instances for
each sample, and each instance can be trained in memory
successfully, with each batch containing hundreds of spots
rather than thousands.

Proposed modifications for Hist2ST

To explore possible approaches to improve predictive
performance and robustness, we adopted Hist2ST as a baseline
model and experimented with the following modifications,
which are illustrated in the Supplementary section 7.1. We
also empirically compare different augmentation techniques and
transformations for gene preprocessing to determine if there is
an augmentation and preprocessing method that can optimally

improve the model performance.

Image augmentation and color normalization
Existing methods employ different data augmentation methods
to improve model robustness to variation in image data and
improve generalization. These techniques are summarized in
Figure S2a. To investigate whether different augmentation
techniques result in better performance, we benchmarked each
technique using the Hist2ST backbone model.

H&E
laboratories can vary greatly in stain levels and color

images produced by different equipment and
distribution. We observe such variations in the Visium dataset
(Figure 2b). Although some existing techniques apply random
color augmentation such as color jitter (see Table S1), many
do not employ processing steps that take into consideration the
unique characteristics of H&E images, which possess a color
distribution greatly distinct from natural images. For example,
only STimage applies stain normalization to the images prior
to training. Thus, we also systematically benchmarked the
effects of applying dedicated stain color augmentation and
normalization methods on model performance and robustness.
This included stainlib [20], which offers H&E-intensity
color augmentation and Reinhard color normalization, and
RandStainNA [21], which integrates stain normalization and
stain augmentation in a combined fashion to constrain the
variability of stain styles within a practicable range.

Preprocessing for gene expression

Different methods utilize different transformations for the gene
expression values; this is summarized in Table S1. Here, log-
transformation refers to a log-transformation on the counts
with a pseudocount addition. To determine whether there is
a transformation that results in better predictive performance,
we benchmarked the effect of the following transformations: no
transformation (raw), log-transformation, log-transformation
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on normalized counts (log counts per million), and MinMax
scaling (counts scaled to the range [0, 1]).

Auxiliary classification loss
We investigated whether the addition of an auxiliary
classification task in training could improve the performance
of gene expression prediction. As a subset of the Visium
and HER24 datasets contain spot annotations by pathologists
for the same tissue section with the spatial data, employing
this information by introducing a classifier module during
training could potentially lend the model to learn more
informative features for each image spot. Furthermore, the
classification loss could act as a regularization term to improve
the generalization of the model to images of similar tissue
characteristics in new data. Here, we proposed Regclass, a
variant of Hist2ST, which introduces an auxiliary classification
head in the model and is trained to jointly optimize the original
loss for regression and the cross-entropy loss for classification.
The workflow of Regclass is shown in Algorithm 1. The
classification head is a 4-layer multilayer perceptron, and
the remaining components are the same as in Hist2ST,
including the Convmixer, position encoder, transformer, graph
convolution network, and regression head.

Algorithm 1 Regclass model

Input: Image patches I, Spatial coordinates S, Adjacency
matrix A, Convmixer CONV, Position encoder POS,
Transformer T, Graph convolutional network GCN, ZINB
layer ZINB, Classification head CLS, Regression head REG
Output: Gene expression Xpred, Cell types Ypred

Ho < CONV(J)

P + POS(S)

H, < T(Ho + P)

Hs + GCN(Hy, A)
m,d,p — ZINB(Hz)
Yprea < CLS(H2)
Xpred + REG(H>)
Return: X ed, Ypred

> Image embeddings

> Position embeddings
> Self-attention

> Message passing

> ZINB parameters

> Classification

> Regression

The loss is calculated as follows.

Loss = MSE(Xpred, Xtarget) + LzINB

+ MSEself—distillation + v CE(Ypreda Ytarget)v (1)

where Xpred, Xtarget are the predicted and ground truth gene
expression values, respectively; Ypred, Yiarget are the predicted
and ground truth tissue classes, respectively; and ~ is a
hyperparameter to scale the cross-entropy loss CE. The MSE,
Lzing, and MSEcgeif distillation lOSses are the same as in Hist2ST.
‘We investigated different values of v to determine an optimal
value for both accuracy and generalization.

Pre-trained image encoders

Here, we investigated whether using transfer learning with
different image encoders trained on ImageNet could improve the
performance of the baseline Hist2ST model. As the datasets are
small, using pre-trained image encoders could be advantageous
as it allows the model to leverage the knowledge gained
from broader training data, enabling it to extract better
features from a model initialized with meaningful weights.

S?. .
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We benchmarked the original Hist2ST model, which used a
Convmixer as the initial image encoder, with the following
models pre-trained on ImageNet: ResNet50 [12], EfficientNet
V2 [22] and Swin Transformer [23]. Only the last layer of each
backbone was fine-tuned.

Simplification with graph attention network

The original Hist2ST model includes a transformer and GCN
module to learn spatially aware representations. However, we
have found that the transformer does not scale well to newer ST
data, such as for the Visium samples, which contain thousands
of spots on one tissue section. This is due to the quadratic
complexity of the transformer in terms of the input sequence
length from global self-attention.

On the other hand, the graph attention network (GAT)
uses the attention mechanism to learn node embeddings by
considering only the neighbourhood information of each node.
Attending to only a subset of neighbouring nodes for each
node reduces the overall computation when compared to the
transformer. We hypothesized that a simpler model, which
consists of replacing the transformer and GCN modules in
Hist2ST with a 4-layer GAT, could perform similarly to
the original. This was modified in conjunction with the
replacement of the initial feature extractor and benchmarked
for comparison.

Results

Performance of existing methods

ID generalization performance

Figures 1b,c shows the results of the performance comparison
between the six methods across the two datasets. In general,
BLEEP, and
Hist2ST, which consistently outperform other methods based

the best-performing methods are STimage,

on average PCC values across all tissues from different datasets.
HisToGene had a slightly lower performance on average, with
a median accuracy of around 0.1 correlation. In contrast, ST-
Net and DeepSpaCE were unable to consistently predict HVGs
and markers with median accuracy above 0.1 correlation. The
relative performance ranking between methods is similar across
HER2+ and Visium datasets, suggesting that the performance
of methods remains consistent and does not change much with
an increase in image resolution and number of spots. On the
HER2+ dataset, the performance of BLEEP and STimage
is significantly better than that of the other models. On
the Visium dataset, the performance of Hist2ST consistently
outperforms other models. We find that the ranking between
methods is consistent across predicting the smaller set of
marker genes and the larger set of HVGs on the Visium dataset,
with slightly higher average PCC on the markers.

OO0D generalization performance

Figure 2d shows that in general, the average PCC on the
validation (ID samples) and test sets (OOD) are similar.
STimage has the highest median performance on the OOD
test data. For Hist2ST, there is a large discrepancy between
the high performance on the validation dataset and the lower
performance on the test dataset, suggesting possible overfitting
to the training data and less generalizability.
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Fig. 1. a) Schematic overview of the general model architecture shared by the six existing methods that predict gene expression from H&E images:
ST-Net, HisToGene, Hist2ST, STimage, DeepSpaCE and BLEEP. The top diagram illustrates the common feed-forward architecture of regression-based
methods, and the bottom displays the query-reference method BLEEP. b) Model performances on the Visium breast cancer and HER2+ datasets,
showing the averaged LOOCYV results. Box plots indicate the Pearson correlation coefficient (PCC) for highly variable genes (leftmost and rightmost),
and marker genes (middle). ¢) Individual results of the LOOCV for each hold-out test sample. The top panel corresponds to HVGs for the HER2+
dataset; the bottom left and right, marker genes and HVGs for the Visium dataset, respectively.
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Performance of Hist2ST modifications

We empirically assessed the performance changes due to each
of the new modifications in model architecture, regularization,
and data augmentation to the backbone Hist2ST model.
We applied the data preprocessing methods as shown in
Figure Sla to the images in the training set and the
trained models were tested on the unseen, unprocessed image
data.
between different augmentation techniques and gene expression

The Hist2ST’s performance results were compared

transformation methods. Our comparisons suggest that the
data augmentation techniques resulted in similar performance
(Figure Slc).
normalization we also observed that both steps did not improve

Comparing stain augmentation and color

the performance (Figure S1d). In addition, we found that
the various transformations for the gene expression values
resulted in similar performance in terms of PCC, where the only
significant difference is that the variance for the log-normalized
transformation is smaller than the others (Figure S2e).

To assess the usefulness of the auxiliary -classification
module in a modified Regclass model as illustrated in Figure
S2, we found that the model can be trained to classify tissue
types successfully in most of the samples, with both the
F1 score and Area under the ROC Curve (AUC) generally
above 0.8 Figure S3. However, this did not translate to
performance improvements for predicting gene expression, with
the performance being similar to the original Hist2ST (Figure
S3a). Figure S3b shows that Regclass slightly improves the
performance on OOD data, for values of v above 0.

Comparing the performance of the pre-trained feature
extractors as shown in Figure S3a , we found that alternative
extractors show a large performance reduction compared to
the method used in Hist2ST. Similarly, the use of the graph
attention network did not result in any improvements in
performance on both datasets.

Discussion

We benchmarked six methods to assess the prediction accuracy
and generalization across two datasets. The comparison
demonstrates that, on average, existing methods do not
predict expression to a high correlation for both HVGs and
marker genes. For top-performing methods — Hist2ST, BLEEP,
and STimage — the majority of genes are predicted with a
correlation between 0.1 and 0.3. We observe slightly higher
average performance when predicting the set of marker genes,
indicating that useful biological markers may be predicted to
a somewhat higher degree of accuracy. Thus, prior selection
of useful genes and use of a smaller subset of genes may
be beneficial in general to improve performance and reduce
computational cost.

We did not observe substantial differences between the
overall performance of the model when applying to the Visium
and HER2+ datasets, despite the fact that the Visium dataset
has an increased resolution and spot density. Although the total
number of Visium spots is nearly double that in the HER2+
dataset, the number of independent Visium samples is lower (36
vs 9 patients), possibly reducing the generalization capability
as spots from the same sample are correlated [24].

Our assessment of the generalizability and robustness of
each method on ID validation and OOD test sets indicate
that each method has similar performance on both sets,
with the exception of Hist2ST, which shows a drop-off in
performance in the OOD set. This may be in part due to the
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higher model complexity of Hist2ST. However, the relationship
between the number of parameters and overfitting is not simple
[25], and the performance and generalization may be in part
limited by the lack of training data, which only consisted of
4 samples. The other top-performing methods BLEEP and
STimage demonstrate robust and consistent performance in
the OOD set, which may be due to their different methods
of inference that contrast them from the other methods that
directly produce point-wise predictions. For STimage, learning
the negative binomial distributions for each gene allows the
model to account for noise and variance present in the data.
For BLEEP, performing inference by querying and using a
weighted combination of existing values may be more robust
than using a parameterized function, which only indirectly
contains information about the true distributions of genes in
the training data. These results and observations can provide
insight into how deep learning models can be designed to take
into account noise and uncertainty in the data and improve
robustness.

Our results provide evidence that current methods that
transform gene expression in different ways do not have
a discernible impact on the performance of the Hist2ST
model. Thus, although prior normalization of counts and
variance stabilizing transformations such as log-transformation
are usually applied to reduce technical variation [26], we
find that there are no significant benefits for improving
predictive performance for the currently existing models and
data. We observe that normalization of the counts with log-
transformation results in a smaller spread in the accuracy
across predicted genes, which may be beneficial for stabilising
predictions.

Although we have tested various methods for improving
the state-of-the-art model Hist2ST, such as stain augmentation
and normalization, no improvement in the average LOOCV
performance or improved generalization to OOD data was
observed. This may be due to the complexity of the relationship
between stain levels and gene expression, making the effect of
color perturbations on the generalization of models unclear and
possibly less effective. We did not find improvement by using
an auxiliary classification loss, meaning that the use of tissue
type information this way did not improve the model at the
task of predicting gene expression. Moreover, using pre-trained
feature extractors, or simplifying the architecture with a graph
attention network, resulted in worse performance compared to
the original model. This suggests that models pre-trained on
natural image datasets do not transfer well to the domain of
histology slide images, and that the global attention layers in
the transformer are important for higher performance.

In terms of scalability, we note that the transformer-based
methods Hist2ST and HisToGene do not scale well to data
with thousands of spots, such as the Visium data, due to
the computation of global attention between spots. Although
a workaround was implemented in this work, this sacrificed
global attention between all the spots in a sample. In contrast,
the other methods that treat spots as independent training
samples are more scalable as the batch size is independent.
Improvements in efficiency and scalability for deep learning
methods should be considered for future developments and will
be crucial as ST technology develops, providing increases in
spot resolution and total spot counts.
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Limitations

Our benchmarking comparison shows that there is still a large
gap between the performance of existing models and effectively
usable outcomes. However, there are a number of limitations
that should be considered when drawing conclusions from our
results.
Firstly,
datasets used, which was due to limited availability of publicly

the limited size of the spatial transcriptomic

accessible data, poses a challenge in drawing comprehensive
benchmarking conclusions. In this work, the higher resolution
Visium data comprised only 9 independent samples, and the
HER24 dataset only 36. Deep learning methods require a
large training and diverse training set to avoid overfitting and
generalize effectively [24]. Consequently, caution should be
exercised when generalizing the findings and extrapolating the
performance of these models to datasets of different sizes. In
addition, we focused on datasets consisting of breast cancer
tissue samples but did not include data from other types of
tissues due to the limited amount of training samples from
available data. Thus, it may be possible that our results and
conclusions are not generalizable to other cancer or tissue types,
where the relationship between morphological features and gene
expression in the data is different.

In addition, we note that there could be variation in
performance due to the set of genes chosen to train and
evaluate the models. Although we have focused on a larger set
of highly variable genes and a smaller set of cancer markers
and found consistent results between methods, this is only
a subset of the available expression panel which consists of
over 30,000 genes in total for the Visium data. For current
methods, it is infeasible to predict all the possible genes, and is
computationally expensive to train or re-train models to predict
different or larger sets of genes. Therefore, further work on
finding a useful biologically relevant set of genes or a set of
genes that can be consistently predicted to high accuracy is
highly desirable.

Conclusions and perspectives

While the idea of cost-effective in-silico transcriptomics is
appealing, several intricate challenges hinder the potential
for an effective and reliable solution. As described by some
authors [11], a fundamental challenge lies in the ill-posed nature
of the problem. Histology images and spatial transcriptomics
data offer complementary views of tissue composition and gene
expression patterns. However, expecting image features to
predict the expression of all genes is ambitious, and difficult
due to the complex, multifaceted nature of gene regulation.
Nevertheless, this challenge prompts researchers to identify
and prioritize specific gene categories that are biologically
relevant for the intended applications. A collection of genes as
signatures for cell types or subtypes or those that are associated
with the morphological changes and spatial distribution during
cancer progression emerge as crucial candidates, as they hold
significant diagnostic and therapeutic implications.

However, the joint relationship between gene distribution
and tissue image features is still unclear for the majority of
genes, and thus there is a large component of uncertainty in
both the choice of genes to train on and the model predictions,
with many genes not being able to be predicted reliably
by current methods. Most existing methods do not have a
way of quantifying the uncertainty in the model predictions,
which is important for establishing reliability and robustness
when testing on new data [27]. STimage is among the first
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methods to quantify uncertainty prediction for each gene in
each spot [10]. More work and improvements in this area and
a better understanding of spatial gene expression and tissue
relationships will be important to improve these methods and
support their use in practice.

Furthermore, the rapidly evolving landscape of spatial
transcriptomic methods introduces additional complexities [28].
New technologies generate data that are different in resolution
and fidelity to older data. Experimental artifacts, batch
effects, and variations within and across samples can confound
prediction models, potentially leading to unreliable results.
Addressing these challenges requires robust preprocessing
techniques and machine-learning algorithms that can properly
separate biological signals from noise [29]. In addition, the
development of deep learning methods would benefit greatly
from having larger amounts of available data across a diverse
range of sample types; efforts to promote the open sharing
of spatial transcriptomic data would greatly enhance the
robustness and reproducibility of experimental outcomes in this
field.

In conclusion, predicting gene expression from histology
images and spatial transcriptomics data is a formidable
challenge that is still largely unsolved by existing methods.
Overcoming the challenging nature of the problem by focusing
on a subset of predictable genes, dealing with scarce
training data, and navigating the complexities introduced by
experimental variability are crucial steps toward achieving an
effective solution. Success in this endeavour holds the promise
of providing cost-effective solutions for digital pathology.

Data and code availability

The datasets analysed in this study are available here: human
HER2-positive breast tumor ST data https://github.com/
almaan/her2st, 10x Genomics Visium data and Swarbrick’s
Laboratory Visium data https://doi.org/10.48610/4fb74a9.

Our code used to produce the data reported here is
available at https://github.com/BiomedicalMachineLearning/
DeepHis2Exp.
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Supplementary Materials

Data preprocessing and augmentation

The default preprocessing and augmentation methods for each
method are summarized concisely in Table S1. Below, we
provide a more detailed overview of the processing steps applied
to both gene expression data and image data for each method.

ST-Net
ST-Net first transforms the total expression in each spot
by adding a pseudocount,
transformation.

then applying a logarithmic
Image patches centred on each spot are
extracted, with dimensions of 224 x224 pixels. During training,
image augmentation techniques are utilized, including random
rotations and flips at a 50% probability.
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HisToGene

HisToGene first excludes genes expressed in fewer than 1,000
spots across all sections. For each spot, gene expression values
are normalized by calculating the UMI count for each gene
relative to the total UMI counts across all genes in that spot.
This normalized value is then multiplied by 1,000,000 and log-
transformed after adding a pseudocount. The image patches are
of size 112x112 pixels, equivalent to the diameter of each spot
in the HER2+ breast cancer dataset. Image augmentation is
applied by random rotation, horizontal flip, and color jitter.
Hist2ST

Hist2ST follows the same preprocessing of images and gene
Unlike HisToGene, Hist2ST
uses data augmentation in training, specifically, in the self-

expression as in HisToGene.

distillation strategy. This is done by creating five randomly
perturbed image views of the original image patch. These
augmented views are generated using random grayscale,
rotation, and horizontal flip transformations.

STimage

STimage preprocesses the gene counts by log transformation
after adding a pseudocount. Image patches of size 299x299
pixels are extracted from each spot. Stain normalization using
the Vahadane method [30] is conducted on the tiles to ensure
colour distribution patterns are akin to a template image. Tiles
with low tissue coverage (less than 70%) are removed. For
training, image augmentation techniques are utilized, including
random flipping, scaling, rotation, blurring, adding noise, and
colour jitter.

DeepSpaCE

DeepSpaCE preprocesses the data by filtering out spots with
low UMI counts or a low number of measured genes. UMI
counts are normalized using the SCTransform [31] function
from the Seurat package, and expression values are adjusted
through min-max scaling. Images of size 224x224 pixels are
used, and those with high mean RGB values, above 80%,
are excluded. Image augmentation is performed using diverse
transformations, including flipping, cropping, noise addition,
blurring, distortion, contrast adjustment, and colour-shifting,
to enhance the model’s performance and adaptability.

BLEEP

The BLEEP workflow involves normalizing the expression levels
of each spot by dividing them by the total count and applying
a log transformation. To address batch effects, the Harmony
algorithm is utilized to adjust the expressions of the samples.
Image patches with dimensions of 224 x 224 pixels are extracted
around each spot, and during training, they are augmented by
random flips and rotations to enhance the model’s performance.
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Table S1. Summary of data preprocessing methods from six methods.

Tile si .
Model ! .e size Data augmentation Gene expres%lon
(pixels) Pre-processing
ST-Net 224x224 Random Rotation & Flipping Log Transformation
HisToGene | 112x112 Random Rotation & Flipping + ColorJitter Normalization 4+ Log Transformation

Random Rotation & Flipping + ColorJitter

Hist25T H2x112 (Self-distillation strategy)

Normalization + Log Transformation

Color Normalization (Vahadane)
+ Random one of flipping, cropping,
STimage 299 %299 noise addition, blurring, distortion, Log Transformation

contrast adjustment, colour-shifting
+ Remove tiles with low tissue coverage (< 70%)

DeepSpaCE | 224x224 Remove tiles with high RGB values SCTransform + MinMax Scaling
BLEEP 224x224 Random rotation & flip Normalization 4+ Log Transformation

Table S2. Summary of image encoders and loss functions from six models.

Model Image Encoder Loss Function
ST-Net Densenet121 (Pre-trained) Mean Squared Error
HisToGene MLP + Transformer Mean Squared Error

Mean Squared Error (Regression)
Hist2ST CNN + Transformer + GCN | 4+ Mean Squared Error (Self-distillation)
+ Negative log likelihood

STimage Resnet50 (Pre-trained) Negative log likelihood
DeepSpaCE VGG16 (Pre-trained) Mean Squared Error
BLEEP Resnet50 (Pre-trained) Cross Entropy

Table S3. List of breast cancer datasets.

No. | Name URL Technology
BCO | Human breast cancer in situ capturing transcriptomics | https://tinyurl.com/355myrts Legacy ST
BC1 | Human HER2-positive breast tumor ST data https://github.com/almaan/her2st Legacy ST
BC2 | 10x Genomics breast cancer dataset https://tinyurl.com/ywtfbctr Visium
BC3 | Swarbrick breast cancer dataset https://tinyurl.com/2xboavb3 Visium

Table S4. Published algorithms and datasets. See Table S3 for abbreviated breast cancer dataset details.

No. | Algorithm | Year | Datasets Compared
1 ST-Net | 9020 | BCo
URL Code
HisToG
2 UELOCGSQ 2021 | (1) BC1 (2) Human cutaneous squamous cell carcinoma 10x | ST-Net
ode Visium data (GSE144240)
Hist2ST T-Net
3 URIE Csd 2022 | (1) BC1 (2) Human cutaneous squamous cell carcinoma 10x ;"T eG
ode Visium data (GSE144240) istolzene
DeepSpaCE . . .
4 URL Cod 2022 | Six human breast cancer tissue sections (DNA Data Bank of | ST-Net
oce Japan: accession number JGAS000202 and JGAS000290)
5 BLEEP 2023 | Human liver tissue dataset (Link) ST-Net
URL Code HisToGene
ST ST-Net
image .
6 2023 1) BC1 (2) BC2 + BC3 HisT
URL Code (1) (2) + isToGene

Hist2ST



https://tinyurl.com/355myrts
https://github.com/almaan/her2st
https://tinyurl.com/ywtfbctr
https://tinyurl.com/2xboavb3
https://www.nature.com/articles/s41551-020-0578-x
https://github.com/bryanhe/ST-Net
https://www.biorxiv.org/content/10.1101/2021.11.28.470212v1.abstract
https://github.com/maxpmx/HisToGene
https://academic.oup.com/bib/article-abstract/23/5/bbac297/6645485
https://github.com/biomed-AI/Hist2ST
https://www.nature.com/articles/s41598-022-07685-4
https://github.com/tmonjo/DeepSpaCE/tree/main
https://arxiv.org/pdf/2306.01859.pdf
https://github.com/bowang-lab/BLEEP/tree/main
https://figshare.com/projects/Human_Liver_SC_vs_SN_paper/98981
https://www.biorxiv.org/content/10.1101/2023.05.14.540710v1
https://github.com/BiomedicalMachineLearning/STimage
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Data Augmentation

Color space transformations:
RandomGrayscale
ColorlJitter
GaussianBlur

Geometric transformations:
RandomFlip
RandomRoation
RandomResizedCrop
Random Erasing

B NN S

Image Patches Augmented
(Num_spots, Color Channel, Width, Height) Image Patches
b Original Reference Reinhard H&E Intensity RandStainNA

— »-

Color
Transformation

c 0.8 Method d Method
STimage Aug 0.8 Reinhard
06 ST-Net Aug RandStainNA
’ HisToGene Aug 0.6 H&E-Intensity
Default Aug Default
0.4 BLEEP Aug
(@) Autoaug Aug (@) 0.4
] ]
a 0.2 o
0.2
0.0
0.0
-0.2
oit -0.2 =
Validation Set(l.D) Testing Set(0.0.D) Validation Set(l.D) Testing Set(0.0.D)
0.8 - — .
e _ Preprocessing Methods
T — o EE Raw
0.6 I Log Transformation
T B LogNorm Transformation
0.4 I MinMax Scaling
O
g 02
0.0
-0.2 - - 1 1

HER2+ Dataset Visium Dataset

Fig. S1. a) Summary of image augmentation techniques used by different methods. b) Demonstration of different colour augmentation and stain
normalization methods, for example, H&E image patch. c-e) Comparing augmentation and gene expression processing techniques using Hist2ST as the
base model. ¢) Evaluation of augmentation methods on the generalization ability of the Hist2ST model using in-distribution validation set (Swarbrick
data samples) and out-of-distribution data (10x Genomics data samples). d) Evaluation of color augmentation and normalization methods on the
generalization ability of the Hist2ST model (validation and testing set same as in c). ) Evaluation of the effect of gene expression preprocessing on
Hist2ST model performance by LOOCV. Box plots show the distribution of PCC values for the 12 marker genes.
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Fig. S2. Workflow of Hist2ST variants. a) The Hist2ST model with auxiliary classification loss (Regclass). The red frame highlights the addition of the
classifier module. The extracted features are shared for the cell type classification head and gene expression prediction head. b ) The architecture of the
Hist2ST model with pre-trained image encoders. The blue frame highlights the modification, replacing the Convmixer module with pre-trained models
(Swin-Transformer, ResNet-50, EfficientNetV2) model. ¢ ) Simplified Hist2ST architecture based on previous pre-trained feature extractor modification,
and further replacing the Transformer and Graph Convolutional Network with the Graph Attention Network (purple frame).
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a 08 Method
I Regclass(gamma=0.5)
I Regclass{gamma=1)
06 HEl Regclass(gamma=0)
HEE Hist2ST
04 I Hist2ST(Resnet50 Backbone)
@] B Hist2ST(Efficientnet Backbone)
@) [ Hist2ST(Swin-Transformer Backbone)
o 02 I Efficientnet+GAT
[ Resnet+GAT
00 [ Swin-Transformer+GAT
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HER2+ Dataset
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02 [ Regclass(gamma=0.5)
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O o1
O
0. 00
0.1
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OQOD Performance

Fig. S3. a) Performance comparison of Hist2ST variants on the HER2+ and Visium dataset. The variants include Regclass, Hist2ST with 3 different pre-
trained feature extractors (Resnet50, Efficientnet v2, Swin-transformer) and Hist2ST with combined pre-trained feature extractors and graph attention
network. b) Generalization performance of Regclass on the out-of-distribution dataset, with different values of the gamma hyper-parameter. Box plots

show the distribution of PCC values for the 12 marker genes.
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Fig. S4. Classification performance of Regclass on Visium dataset (6 samples with annotations) under leave-one-out cross-validation. a) Receiver
operating characteristic curve and F1 score for each sample. b) Confusion matrix for each sample.
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