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GRAPHICAL ABSTRACT

Non-Invasive Functional PET Imaging (fPET)
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ABSTRACT

Functional positron emission tomography (fPET) with [*®FJFDG allows one to quantify
stimulation-induced dynamics in glucose metabolism independent of neurovascular coupling.
However, the gold standard for quantification requires arterial blood sampling, which can
cause discomfort for the participant and increases complexity of the experimental protocol.
These constraints have limited the widespread applicability of fPET, especially in the clinical
routine. Therefore, we introduce a novel approach, which enables the assessment of the

dynamics in cerebral glucose metabolism without the need for an input function.

Methods:

We tested the validity of a mathematical derivation on the basis of two independent data sets
(DS). For DS1, 52 healthy volunteers (23.2 + 3.3 years, 24 females) completed a visuo-
spatial motor coordination task (the video game Tetris®) and for DS2, 18 healthy participants
(24.2 + 4.3 years, 8 females) performed an eyes-open/finger tapping task, both during a
[*®FIFDG fPET scan. Task-specific changes in metabolism were assessed with the general
linear model (GLM) and cerebral metabolic rate of glucose (CMRGIu) was quantified with the
Patlak plot as the reference standard. Simplified outcome parameters, such as GLM beta
values of task effects and percent signal change (%SC) of both parameters were estimated.

These were compared for task-relevant brain regions and on a whole-brain level.

Results:

In general, we observed higher agreement with the reference standard for DS1 (radiotracer
administration as bolus + constant infusion) compared to DS2 (constant infusion only).
Across both data sets, strong correlations were found between regional task-specific beta
estimates and CMRGIu (r = 0.763...0.912). Additionally, %SC of beta values exhibited
excellent agreement with %SC of CMRGIu (r = 0.909...0.999). Average activation maps
showed a high spatial similarity between CMRGIu and beta estimates (Dice = 0.870...0.979)

as well as %SC (Dice = 0.932...0.997), respectively.
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Conclusion:

Task-specific changes in glucose metabolism can be reliably estimated using %SC of GLM
beta values, eliminating the need for any blood sampling. This approach streamlines fPET
imaging, albeit with the trade-off of being unable to quantify baseline metabolism. The
proposed simplification enhances the applicability of fPET, allowing for widespread

employment in research settings and clinical investigations.
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INTRODUCTION

Functional positron emission tomography (fPET) using the radiolabeled glucose analogue 2-
[*®F]-fluorodeoxyglucose ([**F]FDG) holds significant promise for investigating the dynamics
of brain metabolism (1). Using constant infusion of the radiotracer, fPET enables the
assessment of changes in metabolic demands in response to external stimulation, such as
cognitive tasks (2—-4) within a single PET scan. Furthermore, these dynamics are
independent from cerebral blood flow and neurovascular coupling (2) and the neuronal
activation based on glucose metabolism can be absolutely quantified (3). Moreover, the
widespread availability of [*®FJFDG and the compatibility with standard PET scanners make
fPET an easily accessible tool for functional neuroimaging. However, a major drawback
limiting its widespread use is the need for arterial blood samples during the scan to

determine the cerebral metabolic rate of glucose (CMRGIu).

The gold standard for absolute quantification in PET imaging relies on the arterial input
function (AIF). However, arterial cannulation has inherent disadvantages. These include the
need for skilled physicians, increased experimental complexity as well as patient discomfort
or pain and in rare cases potential complications (5). These limitations raise the question of
whether task-specific changes in glucose metabolism using fPET can be obtained without

arterial blood sampling.

Several alternatives to obtain an AIF have been proposed for fPET. Venous samples (2,3,6)
have been shown to yield sufficiently accurate quantification if the radiotracer is administered
only via constant infusion (3). However, such a protocol results in low signal-to-noise ratio
(SNR), which, among others, affects accuracy in movement correction and quantification of
task effects. The use of an initial bolus resolves these issues (7). However, by adding a
bolus, venous samples may not be adequate anymore due to a delay in the equilibration
between blood pools and the subsequent underestimation of the area under the curve. The

use of PBIF (8) is another option that avoids blood sampling. However, the assumption of
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equal pharmacokinetics across participants makes the approach susceptible to individual
variation (9). Image-derived input functions (IDIF) represent another option (10), but robust
extraction from large blood pools may be limited to total-body PET scanners. In sum, the
mentioned alternatives to AlF offer easier applicability at the expense of accuracy, but may

not fully eliminate the need for blood sampling.

To resolve this issue, we evaluate the feasibility of quantifying task-induced metabolic
demands using [*®F]JFDG fPET without any blood sampling. We hypothesize that the input
function can be omitted when task-specific activation is the primary outcome of interest. This
is because the general linear model (GLM) readily separates task effects from baseline
metabolism, thus vyielding task-specific estimates for activation. By eliminating the
requirement for blood sampling, we aim to simplify both acquisition and processing thus

increasing the accessibility of fPET.
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MATERIALS AND METHODS

Mathematical rationale

Our proposition that the GLM may be adequate for evaluating task-specific changes in
glucose metabolism is grounded in the following mathematical rationale. For irreversibly
binding radiotracers such as [*®F]FDG, the ratio of tracer concentration in tissue Cr to that in
plasma Cr at a certain time point t can be characterized using the Patlak plot (11):

cr@®) _ _foth(r)dr
Cp(t) Yoo

+ intercept [1]

The net influx constant K| is the estimated outcome parameter, which is determined as the
slope of the Patlak plot when it approaches linearity after t* (11). The absolute amount of

CMRGlu is then determined by:

Glup

CMRGlu = K, * 100 [2]
LLe

LC refers to the lumped constant and Glup represents the concentration of glucose in
plasma. Given that the intercept in [1] does not change the slope of the plot (K;), we can

therefore assume that it can be disregarded, thus rearrangement yields

_Cr(
K= [Eepoyar (3]

as Cp(t) cancels out. Furthermore, in the relationship between task effects and baseline
metabolism, the integral of the plasma concentration also cancels out. This implies that the
ratio between the tissue concentrations is directly proportional to the relative changes in K;
(and thus relative changes in CMRGlu, see [2])

%SC « Kitask CT task(t) Brask*regressoryask(t) [4]
KiBL Cr,gL(t) BpL*regressorgL(t)

In this equation, B represents the output of the GLM when the respective regressors are used
for modeling. Consequently, the ratio of the GLM’s output modeling task and baseline effects
should also vary proportionally to the relative changes in CMRGIu. Since the multiplication of
a beta value with its corresponding regressor represents a time course, we estimated its

slope for the computation of percent signal changes (%SC, see surrogate parameters). This
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approach was chosen because different regressors were used for task and baseline in the

GLM, which implies that simple beta values cannot be directly compared.

In-vivo datasets

In order to test the hypothesis, we analyzed two separate datasets with different tasks and
activated regions of interest (ROI). For both datasets, similar methods of preprocessing and
statistical analysis were applied.

The first dataset (DS1) includes simultaneous fPET/fMRI examinations in 52 healthy
participants performing a challenging visuo-spatial motor coordination task in two levels of
difficulty (modified version of Tetris®). Detailed descriptions of the design, acquisition and
analysis are provided in our previous work (12), below and in the supplement.

The second dataset (DS2) comprises data of 18 healthy participants. During the fPET/fMRI
scan, participants either tapped their right thumb to their other fingers or opened their eyes.

Details can be found in our previous work (13), below and in the supplement.

Participants

DS1 includes 52 healthy participants (23.2 + 3.3 years, 24 females, all right-handed), who
were partly also included in previous work (12,14-16). DS2 comprises 18 healthy
participants’ data (24.2 + 4.3 years, 8 females, all right-handed), of which 15 had previously

contributed to another study (3). See supplement for details.

PET/MRI data acquisition and data processing

Administration of [**F]JFDG was done according to a bolus plus constant infusion protocol for
DS1 and with constant infusion only for DS2. This enables the assessment of the
performance of both administration protocols. Data pre-processing of both studies’ fPET data
was done with SPM12 and included motion correction, spatial normalization to MNI-space
and smoothing. For both datasets manual arterial blood samples were collected to construct

the AIF. See supplement for details.
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Quantification of CMRGIu

In order to analyze task activation within the two datasets, a general linear model (GLM) was
applied. Both models included one regressor for baseline, one for movement artifacts and
two regressors associated with task activation. For DS1, these regressors referred to the two
levels of task difficulty. For DS2, they represented the separate tasks of eyes-open and right
finger-tapping (see supplement).

For the calculation of the respective influx constants (K;), the relevant Patlak plots were
constructed and their respective slopes were identified as in [1]. The start of the linear fit for
the Patlak plot was set to approximately a third of the total scan time for both datasets, t*=15
min for DS1 and t*=30 min for DS2. The absolute quantification of CMRGIu was conducted in
accordance with [2] and a value for the LC of 0.89, in both cases (17,18). The amount of

CMRGIu was quantified in units of pmol/100g/min.

Surrogate parameters

Our primary goal was to obtain a metric that enables the identification of task-specific
changes in glucose metabolism without invasive blood sampling. Thus, we compared four
different parameters of interest: i) the absolutely quantified values for CMRGIu (see [2]), used
as the gold standard, ii) the plain beta values calculated by the GLM, and iii-iv) the percent
signal change (%SC) of both quantities in relation to the baseline condition (see [4]).
Thereby, we established a relationship between the beta values and CMRGIu as well as
%SC of betas with %SC of CMRGIu. %SC for CMRGIu was calculated as the ratio of task
effects to baseline metabolism multiplied by 100. The %SC for the beta values cannot be
directly retrieved from the GLM output since the betas are associated with different
regressors. Consequently, the slopes of the time activity curves were estimated (in
kBg/frame), represented by beta*regressor separately for task and baseline metabolism (see
[4]). For the baseline, a similar time interval was chosen as for the Patlak plots. For DS1 the
linear fit started from minute 16 after the beginning of the radiotracer application until the end

of the PET scan. For DS2, the interval began later due to the absence of an initial bolus,
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specifically from 30 minutes after the beginning until the end. Since the task regressors were
modeled as ramp functions with a slope of 1 kBg/frame, the beta values for the tasks are
already equivalent to the slope we aimed to extract. Hence, %SC of betas was then
calculated as the ratio of the task and baseline slopes multiplied by 100.

Furthermore, two different baseline metrics (BL, BL2) were considered. Notably, for BL and
BL2, no %SC data could be calculated, as the percent signal change inherently refers to the
baseline condition itself. BL simply represents the beta value of the baseline condition as
calculated by the GLM. BL2 was determined by calculating the slope of the curve given by
multiplying the baseline regressor with the corresponding baseline beta values. We opted for
the second baseline metric because this calculation also enters the determination of %SC of
the beta values, allowing for a direct comparison. Furthermore, BL2 takes the individual
variation in the baseline regressor into account and is therefore comparable across
participants. It is worth noting that BL is also identical to standard uptake value ratios (SUVR)
with reference to global tracer uptake. That is, regional tracer uptake is represented by
regional baseline beta * baseline regressor (3) and since the baseline regressor represents

the global tracer uptake, this cancels out when computing the ratio.

Statistical analysis

The ROI analysis focused on the respective regions of significant activation (all p<0.05 FWE
corrected) for each dataset. Linear regression analysis was performed for each pair of
outcome parameters using MATLAB R2018b. For the ROI-specific analysis of DS1, the focus
was placed on the frontal eye field (FEF), the intraparietal sulcus (IPS) and the secondary
occipital cortex (Occ), as defined previously (15). DS2 displayed significant task activation in
the primary occipital cortex (V1) as well as the primary motor cortex (M1) (13), which were
used as the relevant ROI.

For the voxel-wise analysis, group-level statistics were computed in SPM12 and a one-
sample t-test was performed for each of the four parameters. Activation maps were extracted

(all p<0.05 FWE corrected cluster level following p<0.001 uncorrected voxel level) and
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activation patterns across different approaches were compared using the Dice coefficient.

For DS1, we extracted respective activation maps for the hard task difficulty and for DS2 for

both open eyes and right finger-tapping tasks.
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RESULTS

Region of interest analysis

For DS1, we observed strong associations between GLM beta values and gold standard
CMRGIu values for task-specific estimates of activation in the FEF, IPS and Occ (r =
0.833...0.912, Table 1). Crucially, near perfect correlations were discovered when comparing
%SC of beta values with %SC of CMRGIu (all r > 0.998). Moreover, the slopes were close to
unity (1.00...1.02) and intercepts were near zero (-0.27...0.13) for the parameters of %SC.
DS2 showed similar results for task-related changes in glucose metabolism (eyes open and
finger-tapping tasks, activating V1 and M1, respectively), albeit with slightly lower
performance compared to DS1. Specifically, the correlation coefficients were higher for %SC
(r =0.909... 0.970) than beta values (r = 0.763...0.833). The slopes for %SC were close to
one (1.03...1.15), but intercepts were slightly higher (1.63...4.73).

In contrast, the baseline condition (BL) displayed a highly variable degree of association with
CMRGIu, with r = 0.359...0.720 for DS1 and r = -0.137...0.018 for DS2. Although BL2
resulted in more stable agreement, correlations with CMRGlu were still low (r =

0.337...0.504).

Voxel-wise activation maps

In addition to the ROI analysis, we conducted an unbiased whole-brain analysis to explore
whether the different approaches yield similar activation patterns (all p < 0.05 FWE corrected
cluster level following p < 0.001 uncorrected voxel level).

As in our previous work (12,15), task-related changes in CMRGIu were observed mainly in
the FEF, IPS and Occ for DS1 (Figure 2A). Interestingly, this was also true for all of the other
parameters, namely maps representing beta values as well as %SC of beta and %SC of
CMRGIu (Figure 2B-D). For the easy and hard levels of difficulty, the dice coefficients of the
beta maps and their respective CMRGIlu counterparts amounted to 0.972 and 0.979,
indicating high similarity. In accordance with the ROI results, comparing the %SC maps
yielded even higher dice coefficients of 0.997 (for both conditions) between the parameters.

13
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For DS2, task-induced changes in CMRGIu occurred within V1 and M1 for the eyes open
and finger-tapping tasks, respectively (13) (Figure 2E). Again, the activation patterns for each
of the two tasks were remarkably similar across all parameters (Figure 2F-H). The dice
coefficients of the beta and CMRGIu maps for the eyes open and finger-tapping tasks
amounted to 0.885 and 0.870, respectively. The %SC data yielded the coefficients 0.943 and

0.932.
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DISCUSSION

In this work, we evaluated the feasibility of non-invasively quantifying task-induced changes
in glucose metabolism with [**F]JFDG fPET, i.e., without any blood sampling. We integrated
theoretical concepts from the Patlak plot with output parameters of the GLM. Moreover, we
compared this with CMRGIu quantified with the gold standard arterial input function in
various tasks. Our findings reveal remarkably similar activation patterns across all
parameters and excellent agreement between the relative changes of glucose metabolism
(%SC CMRGIu) and task-specific beta values obtained from the GLM (%SC betas).

Our proposed fPET technique differs from previous approaches in one important aspect,
namely its independence from an input function in general, be it arterial, venous, image-
derived or population-based. The almost perfect correlation between %SC of task beta
estimates and %SC of CMRGIu (i.e., r>0.998, slope~1, intercept~0, Table 1, Figure 1) and
the virtually identical activation patterns across different parameters (Figure 2) validates the
non-invasive approach as a robust alternative for performing fPET. This suggests that the
underlying theoretical framework aligns excellently with the experimental data. Moreover, our
approach appears to be suitable for tasks of different complexity, such as the demanding
Tetris® paradigm and the simpler visual and finger tapping tasks. The slightly reduced
performance in DS2 likely reflects lower SNR due to the constant infusion of the radiotracer,
without the initial bolus. Nevertheless, the use of %SC is advantageous for participants as it
eliminates the need for arterial cannulation and simplifies experimental procedures. This may
be particularly valuable in clinical settings, where resources are often limited and procedural
complexity should be minimized. Consequently, the adoption of %SC enhances the
applicability of fPET in clinical environments and opens up new possibilities for diagnostic

procedures beyond static PET imaging in patient cohorts (19).

However, it is important to acknowledge certain limitations of the simplified fPET approach
(Table 2). The obtained metabolic changes are relative to a baseline condition when using

%SC of betas as outcome parameter. Moreover, absolute quantification is not possible,
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neither for task nor baseline effects. Therefore, the technique is only suitable when the
precise identification of baseline metabolism and absolute quantification are of no interest.
On the other hand, the baseline definition itself becomes critical as different baselines (e.g.,
eyes closed, eyes open, crosshair fixation, etc.) will result in a different %SC. This reflects a
similar situation encountered in fMRI, where the contrast of interest (compared to baseline or
a control task) determines increases or decreases in activation (20,21). Furthermore, there is
a monotonic increase of the signal over time due to the inherent property of [**F]JFDG to
remain mostly trapped in the cell. Therefore, not only the definition but also the timing of the
baseline acquisition becomes relevant. To ensure robust modeling, it is recommended to

acquire baseline periods in the beginning and end of the scan as well as between tasks (7).

Regarding the use of plain beta estimates (without additional computation of %SC), it is
important to note that the agreement with CMRGIu across individuals was generally lower for
task effects, and poor for baseline metabolism (Figure 1, Table 1). Despite this, group-level
activations still exhibited high similarity (Figure 2), suggesting that this outcome parameter
may only be used to identify overall activation patterns. However, %SC only requires minimal
computational effort and is thus preferable, particularly if individual values are to be related to
other metrics of behavior or disease progression. Interestingly, a previous study has reported
task-induced signal changes of approximately 2% (4), in contrast to 20- 30% observed in this
work (Figure 1B, 1D). However, their %SC was calculated only as a ratio of plain betas and
using the same ratio for our data would result in changes in a similar range of approximately
3% (DS1). This discrepancy (and presumably also the lower agreement with CMRGIu) arises
from the fact that beta values alone can be compared across participants only if the
underlying regressors are identical. For this reason, we computed %SC from the slope of the

product of beta*regressor (see [4]).

Although the use of fPET %SC as a proxy of neuronal activation may at first glance appear

similar to BOLD fMRI, several essential differences should be kept in mind. The BOLD signal
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is a composite signal derived not only from neuronal oxygen consumption but also from
variations in cerebral blood flow and volume (22), while glucose metabolism is a more direct
measure of synaptic activity (23,24). Furthermore, fPET is independent of cerebral blood
flow, as demonstrated by hypercapnia experiments (2). Thus, BOLD fMRI and [*®F]JFDG fPET
capture complementary aspects of neuronal activation, as demonstrated by task-evoked
dissociations between the two parameters in the default mode network (8,16,25). Another
significant distinction lies in the test-retest variability of the methods. Previous work has
indicated higher reliability for fPET than for fMRI (14,26). As a consequence, fPET seems to
be a promising approach to compare intra-individual changes over time or group
comparisons between imaging sites. Moreover, the approach might be relevant to assess
changes in neuronal activation as induced by more potent stimulations, such as

pharmacological interventions and brain stimulations.

Conclusions:

Our results suggest that plain beta estimates from the GLM may only be suitable when the
overall group-averaged activation pattern is to be identified. However, computing %SC of
beta values only requires minimal additional effort and represents a valid parameter to study
task activation with fPET. Our data further indicates that the introduced approach is
generalizable across cognitive domains and load. Still, differences between tasks may occur,
which should be considered when defining the baseline condition or using control tasks for
comparison. Finally, if absolute CMRGIu and baseline metabolism are of interest, full
guantification is required. In sum, assessing task-specific changes in glucose metabolism
with %SC is a simple and robust approach that eliminates the need for potentially painful and
resource-intensive arterial blood sampling, thereby increasing the accessibility of the
technique. The removal of barriers could facilitate the integration of fPET into clinical

settings, where arterial blood sampling has traditionally been a major limitation.
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TABLES
%SC of Beta vs. %SC of
Beta vs. CMRGIu
Condition ROI CMRGlu
R slope intercept R slope intercept

FEF 0.483 0.005 1.107

IPS 0.720 0.008 0.992
BL Occ 0.359 0.005 1.041

V1 0.018 0.000 1.137

M1 -0.137 -0.001 1.043

FEF 0.466 0.005 0.137

IPS 0.504 0.005 0.131
BL2 Occ 0.433 0.004 0.142

V1 0.398 0.002 0.140

M1 0.337 0.002 0.131

FEF 0.904 0.009 0.006 0.999 0.997 0.134
Tetris

IPS 0.857 0.008 0.007 0.998 1.001 0.053
Easy

Occ 0.912 0.010 0.001 0.999 1.004 0.011

FEF 0.849 0.009 0.007 0.998 1.001 0.094
Tetris

IPS 0.833 0.008 0.008 0.998 1.003 0.028
Hard

Occ 0.843 0.010 0.001 0.998 1.022 -0.273
Eye V1 0.833 0.007 0.008 0.970 1.150 1.633
Finger M1 0.763 0.005 0.016 0.909 1.029 4.728

Table 1: Agreement between different quantification methods. The table displays the results
of correlation and regression analyses conducted for both datasets. Comparisons were

performed for two different levels, either relating the GLM beta values to the respective
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CMRGIlu (left) or the percent signal change (%SC) of both quantities with each other (right).
The first dataset (DS1) comprised three regions of interest (ROI): the frontal eye field (FEF),
intraparietal sulcus (IPS) and occipital cortex (Occ). For these regions, two separate levels of
task difficulty (easy, hard) were regarded. For the second dataset (DS2), the primary visual
(V1) and motor cortices (M1) were evaluated during the eyes-open condition and right-finger-
tapping task, respectively. For all datasets, two approaches for the computation of baseline
metabolism (BL and BL2) were calculated. For each comparison, Pearson’s correlation
coefficient, slope and intercept were calculated. For the baseline conditions, the %SC

analyses were not performed, as this parameter always refers to the baseline condition itself.
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Feature Beta estimate %SC of beta CMRGIu
Identification of overall task v v v
activation
Identification of individual v v
effects
+

Absolute quantification

Quantification of baseline

+
metabolism
Influence of baseline _
definition
Input function required B
Applicable for tasks of v v v

different complexity

Table 2: Visual representation of the three outcome parameters and their main features. The
table displays several key features of the main outcome parameters, as obtained by
[*®F]FDG fPET and analysis with the general linear model (GLM). The parameters include the
beta maps as output of the GLM, the percent signal change (%SC) of beta estimates (see
[4]) and the gold standard cerebral metabolic rate of glucose (CMRGIu). The general
availability of a feature for a certain outcome parameter is marked by a tick, advantages are

indicated by a plus sign and disadvantages by a minus sign.
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Figure 1: Analysis of the datasets with respect to metabolic changes in the region of interest
(ROI). The figure displays the results of the regression analysis to assess whether beta
values, obtained by applying the general linear model (GLM), are correlated with the cerebral
metabolic rate of glucose (CMRGIu) across all participants. This was done for beta and
CMRGIu values (A, C), as well as for their percent signal change (%SC) values (B, D). The
figure compares these sets of analysis for task “hard”, for the Tetris®-dataset (DS1, A-B),
and eye opening as well as right finger-tapping for the second PET-MR dataset (DS2, C-D).
For DS1, the frontal eye field (FEF), the intraparietal sulcus (IPS) and the secondary occipital
cortex (Occ) were considered as ROI. DS2 displayed activation in the primary visual cortex

(V1) for eye opening and the primary motor cortex (M1) for finger-tapping.
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Tetris®

Eyes / Finger

Figure 2: Group-level maps of the datasets, displaying activation within the respective
regions of interest (ROI). The figure displays the activation patterns for both of the regarded
datasets, considering task “hard” for the Tetris®-dataset (DS1, A-D), and both tasks within
the second dataset (DS2, E-H). The maps were p < 0.05 FWE corrected at cluster level
following p < 0.001 uncorrected voxel level. Group-level maps were calculated for the beta
parameters (B, F), resulting from the general linear model (GLM), and the cerebral metabolic
rate of glucose (CMRGIu, A, E) as well as for both quantities’ rate of percent signal change
(%SC, C-D, G-H). For each of the group-level maps, two layers were selected to represent
the activation within the respective dataset. For DS1 (A-D), the figure displays layers
extracted at z = 6mm (right) and z = 50 mm (left). For DS2 (E-H), the regarded layers are z =

3mm (right) and z = 63mm (left). The colorbars represent t-values of the group level analysis.
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