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ABSTRACT 

Functional positron emission tomography (fPET) with [18F]FDG allows one to quantify 

stimulation-induced dynamics in glucose metabolism independent of neurovascular coupling. 

However, the gold standard for quantification requires arterial blood sampling, which can 

cause discomfort for the participant and increases complexity of the experimental protocol. 

These constraints have limited the widespread applicability of fPET, especially in the clinical 

routine. Therefore, we introduce a novel approach, which enables the assessment of the 

dynamics in cerebral glucose metabolism without the need for an input function. 

 

Methods: 

We tested the validity of a mathematical derivation on the basis of two independent data sets 

(DS). For DS1, 52 healthy volunteers (23.2 ± 3.3 years, 24 females) completed a visuo-

spatial motor coordination task (the video game Tetris®) and for DS2, 18 healthy participants 

(24.2 ± 4.3 years, 8 females) performed an eyes-open/finger tapping task, both during a 

[18F]FDG fPET scan. Task-specific changes in metabolism were assessed with the general 

linear model (GLM) and cerebral metabolic rate of glucose (CMRGlu) was quantified with the 

Patlak plot as the reference standard. Simplified outcome parameters, such as GLM beta 

values of task effects and percent signal change (%SC) of both parameters were estimated. 

These were compared for task-relevant brain regions and on a whole-brain level. 

 

Results: 

In general, we observed higher agreement with the reference standard for DS1 (radiotracer 

administration as bolus + constant infusion) compared to DS2 (constant infusion only). 

Across both data sets, strong correlations were found between regional task-specific beta 

estimates and CMRGlu (r = 0.763…0.912). Additionally, %SC of beta values exhibited 

excellent agreement with %SC of CMRGlu (r = 0.909…0.999). Average activation maps 

showed a high spatial similarity between CMRGlu and beta estimates (Dice = 0.870…0.979) 

as well as %SC (Dice = 0.932…0.997), respectively. 
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Conclusion: 

Task-specific changes in glucose metabolism can be reliably estimated using %SC of GLM 

beta values, eliminating the need for any blood sampling. This approach streamlines fPET 

imaging, albeit with the trade-off of being unable to quantify baseline metabolism. The 

proposed simplification enhances the applicability of fPET, allowing for widespread 

employment in research settings and clinical investigations. 
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INTRODUCTION 

Functional positron emission tomography (fPET) using the radiolabeled glucose analogue 2-

[18F]-fluorodeoxyglucose ([18F]FDG) holds significant promise for investigating the dynamics 

of brain metabolism (1). Using constant infusion of the radiotracer, fPET enables the 

assessment of changes in metabolic demands in response to external stimulation, such as 

cognitive tasks (2–4) within a single PET scan. Furthermore, these dynamics are 

independent from cerebral blood flow and neurovascular coupling (2) and the neuronal 

activation based on glucose metabolism can be absolutely quantified (3). Moreover, the 

widespread availability of [18F]FDG and the compatibility with standard PET scanners make 

fPET an easily accessible tool for functional neuroimaging. However, a major drawback 

limiting its widespread use is the need for arterial blood samples during the scan to 

determine the cerebral metabolic rate of glucose (CMRGlu). 

 

The gold standard for absolute quantification in PET imaging relies on the arterial input 

function (AIF). However, arterial cannulation has inherent disadvantages. These include the 

need for skilled physicians, increased experimental complexity as well as patient discomfort 

or pain and in rare cases potential complications (5). These limitations raise the question of 

whether task-specific changes in glucose metabolism using fPET can be obtained without 

arterial blood sampling. 

 

Several alternatives to obtain an AIF have been proposed for fPET. Venous samples (2,3,6) 

have been shown to yield sufficiently accurate quantification if the radiotracer is administered 

only via constant infusion (3). However, such a protocol results in low signal-to-noise ratio 

(SNR), which, among others, affects accuracy in movement correction and quantification of 

task effects. The use of an initial bolus resolves these issues (7). However, by adding a 

bolus, venous samples may not be adequate anymore due to a delay in the equilibration 

between blood pools and the subsequent underestimation of the area under the curve. The 

use of PBIF (8) is another option that avoids blood sampling. However, the assumption of 
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equal pharmacokinetics across participants makes the approach susceptible to individual 

variation (9). Image-derived input functions (IDIF) represent another option (10), but robust 

extraction from large blood pools may be limited to total-body PET scanners. In sum, the 

mentioned alternatives to AIF offer easier applicability at the expense of accuracy, but may 

not fully eliminate the need for blood sampling. 

 

To resolve this issue, we evaluate the feasibility of quantifying task-induced metabolic 

demands using [18F]FDG fPET without any blood sampling. We hypothesize that the input 

function can be omitted when task-specific activation is the primary outcome of interest. This 

is because the general linear model (GLM) readily separates task effects from baseline 

metabolism, thus yielding task-specific estimates for activation. By eliminating the 

requirement for blood sampling, we aim to simplify both acquisition and processing thus 

increasing the accessibility of fPET. 
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MATERIALS AND METHODS 

Mathematical rationale 

Our proposition that the GLM may be adequate for evaluating task-specific changes in 

glucose metabolism is grounded in the following mathematical rationale. For irreversibly 

binding radiotracers such as [18F]FDG, the ratio of tracer concentration in tissue CT to that in 

plasma CP at a certain time point t can be characterized using the Patlak plot (11): 
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The net influx constant Ki is the estimated outcome parameter, which is determined as the 

slope of the Patlak plot when it approaches linearity after t* (11). The absolute amount of 

CMRGlu is then determined by: 
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LC refers to the lumped constant and GluP represents the concentration of glucose in 

plasma. Given that the intercept in [1] does not change the slope of the plot (Ki), we can 

therefore assume that it can be disregarded, thus rearrangement yields 
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as CP(t) cancels out. Furthermore, in the relationship between task effects and baseline 

metabolism, the integral of the plasma concentration also cancels out. This implies that the 

ratio between the tissue concentrations is directly proportional to the relative changes in Ki 

(and thus relative changes in CMRGlu, see [2]) 
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In this equation, β represents the output of the GLM when the respective regressors are used 

for modeling. Consequently, the ratio of the GLM’s output modeling task and baseline effects 

should also vary proportionally to the relative changes in CMRGlu. Since the multiplication of 

a beta value with its corresponding regressor represents a time course, we estimated its 

slope for the computation of percent signal changes (%SC, see surrogate parameters). This 
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approach was chosen because different regressors were used for task and baseline in the 

GLM, which implies that simple beta values cannot be directly compared. 

 

In-vivo datasets 

In order to test the hypothesis, we analyzed two separate datasets with different tasks and 

activated regions of interest (ROI). For both datasets, similar methods of preprocessing and 

statistical analysis were applied. 

The first dataset (DS1) includes simultaneous fPET/fMRI examinations in 52 healthy 

participants performing a challenging visuo-spatial motor coordination task in two levels of 

difficulty (modified version of Tetris®). Detailed descriptions of the design, acquisition and 

analysis are provided in our previous work (12), below and in the supplement. 

The second dataset (DS2) comprises data of 18 healthy participants. During the fPET/fMRI 

scan, participants either tapped their right thumb to their other fingers or opened their eyes. 

Details can be found in our previous work (13), below and in the supplement. 

 

Participants 

DS1 includes 52 healthy participants (23.2 ± 3.3 years, 24 females, all right-handed), who 

were partly also included in previous work (12,14–16). DS2 comprises 18 healthy 

participants’ data (24.2 ± 4.3 years, 8 females, all right-handed), of which 15 had previously 

contributed to another study (3). See supplement for details. 

 

PET/MRI data acquisition and data processing 

Administration of [18F]FDG was done according to a bolus plus constant infusion protocol for 

DS1 and with constant infusion only for DS2. This enables the assessment of the 

performance of both administration protocols. Data pre-processing of both studies’ fPET data 

was done with SPM12 and included motion correction, spatial normalization to MNI-space 

and smoothing. For both datasets manual arterial blood samples were collected to construct 

the AIF. See supplement for details. 
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Quantification of CMRGlu 

In order to analyze task activation within the two datasets, a general linear model (GLM) was 

applied. Both models included one regressor for baseline, one for movement artifacts and 

two regressors associated with task activation. For DS1, these regressors referred to the two 

levels of task difficulty. For DS2, they represented the separate tasks of eyes-open and right 

finger-tapping (see supplement). 

For the calculation of the respective influx constants (Ki), the relevant Patlak plots were 

constructed and their respective slopes were identified as in [1]. The start of the linear fit for 

the Patlak plot was set to approximately a third of the total scan time for both datasets, t*=15 

min for DS1 and t*=30 min for DS2. The absolute quantification of CMRGlu was conducted in 

accordance with [2] and a value for the LC of 0.89, in both cases (17,18). The amount of 

CMRGlu was quantified in units of µmol/100g/min. 

 

Surrogate parameters 

Our primary goal was to obtain a metric that enables the identification of task-specific 

changes in glucose metabolism without invasive blood sampling. Thus, we compared four 

different parameters of interest: i) the absolutely quantified values for CMRGlu (see [2]), used 

as the gold standard, ii) the plain beta values calculated by the GLM, and iii-iv) the percent 

signal change (%SC) of both quantities in relation to the baseline condition (see [4]). 

Thereby, we established a relationship between the beta values and CMRGlu as well as 

%SC of betas with %SC of CMRGlu. %SC for CMRGlu was calculated as the ratio of task 

effects to baseline metabolism multiplied by 100. The %SC for the beta values cannot be 

directly retrieved from the GLM output since the betas are associated with different 

regressors. Consequently, the slopes of the time activity curves were estimated (in 

kBq/frame), represented by beta*regressor separately for task and baseline metabolism (see 

[4]). For the baseline, a similar time interval was chosen as for the Patlak plots. For DS1 the 

linear fit started from minute 16 after the beginning of the radiotracer application until the end 

of the PET scan. For DS2, the interval began later due to the absence of an initial bolus, 
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specifically from 30 minutes after the beginning until the end. Since the task regressors were 

modeled as ramp functions with a slope of 1 kBq/frame, the beta values for the tasks are 

already equivalent to the slope we aimed to extract. Hence, %SC of betas was then 

calculated as the ratio of the task and baseline slopes multiplied by 100. 

Furthermore, two different baseline metrics (BL, BL2) were considered. Notably, for BL and 

BL2, no %SC data could be calculated, as the percent signal change inherently refers to the 

baseline condition itself. BL simply represents the beta value of the baseline condition as 

calculated by the GLM. BL2 was determined by calculating the slope of the curve given by 

multiplying the baseline regressor with the corresponding baseline beta values. We opted for 

the second baseline metric because this calculation also enters the determination of %SC of 

the beta values, allowing for a direct comparison. Furthermore, BL2 takes the individual 

variation in the baseline regressor into account and is therefore comparable across 

participants. It is worth noting that BL is also identical to standard uptake value ratios (SUVR) 

with reference to global tracer uptake. That is, regional tracer uptake is represented by 

regional baseline beta * baseline regressor (3) and since the baseline regressor represents 

the global tracer uptake, this cancels out when computing the ratio. 

 

Statistical analysis 

The ROI analysis focused on the respective regions of significant activation (all p<0.05 FWE 

corrected) for each dataset. Linear regression analysis was performed for each pair of 

outcome parameters using MATLAB R2018b. For the ROI-specific analysis of DS1, the focus 

was placed on the frontal eye field (FEF), the intraparietal sulcus (IPS) and the secondary 

occipital cortex (Occ), as defined previously (15). DS2 displayed significant task activation in 

the primary occipital cortex (V1) as well as the primary motor cortex (M1) (13), which were 

used as the relevant ROI. 

For the voxel-wise analysis, group-level statistics were computed in SPM12 and a one-

sample t-test was performed for each of the four parameters. Activation maps were extracted 

(all p<0.05 FWE corrected cluster level following p<0.001 uncorrected voxel level) and 
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activation patterns across different approaches were compared using the Dice coefficient. 

For DS1, we extracted respective activation maps for the hard task difficulty and for DS2 for 

both open eyes and right finger-tapping tasks. 
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RESULTS 

Region of interest analysis 

For DS1, we observed strong associations between GLM beta values and gold standard 

CMRGlu values for task-specific estimates of activation in the FEF, IPS and Occ (r = 

0.833…0.912, Table 1). Crucially, near perfect correlations were discovered when comparing 

%SC of beta values with %SC of CMRGlu (all r ≥ 0.998). Moreover, the slopes were close to 

unity (1.00…1.02) and intercepts were near zero (-0.27…0.13) for the parameters of %SC. 

DS2 showed similar results for task-related changes in glucose metabolism (eyes open and 

finger-tapping tasks, activating V1 and M1, respectively), albeit with slightly lower 

performance compared to DS1. Specifically, the correlation coefficients were higher for %SC 

(r = 0.909… 0.970) than beta values (r = 0.763…0.833). The slopes for %SC were close to 

one (1.03…1.15), but intercepts were slightly higher (1.63…4.73). 

In contrast, the baseline condition (BL) displayed a highly variable degree of association with 

CMRGlu, with r = 0.359…0.720 for DS1 and r = -0.137…0.018 for DS2. Although BL2 

resulted in more stable agreement, correlations with CMRGlu were still low (r = 

0.337…0.504). 

 

Voxel-wise activation maps 

In addition to the ROI analysis, we conducted an unbiased whole-brain analysis to explore 

whether the different approaches yield similar activation patterns (all p < 0.05 FWE corrected 

cluster level following p < 0.001 uncorrected voxel level). 

As in our previous work (12,15), task-related changes in CMRGlu were observed mainly in 

the FEF, IPS and Occ for DS1 (Figure 2A). Interestingly, this was also true for all of the other 

parameters, namely maps representing beta values as well as %SC of beta and %SC of 

CMRGlu (Figure 2B-D). For the easy and hard levels of difficulty, the dice coefficients of the 

beta maps and their respective CMRGlu counterparts amounted to 0.972 and 0.979, 

indicating high similarity. In accordance with the ROI results, comparing the %SC maps 

yielded even higher dice coefficients of 0.997 (for both conditions) between the parameters. 
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For DS2, task-induced changes in CMRGlu occurred within V1 and M1 for the eyes open 

and finger-tapping tasks, respectively (13) (Figure 2E). Again, the activation patterns for each 

of the two tasks were remarkably similar across all parameters (Figure 2F-H). The dice 

coefficients of the beta and CMRGlu maps for the eyes open and finger-tapping tasks 

amounted to 0.885 and 0.870, respectively. The %SC data yielded the coefficients 0.943 and 

0.932. 
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DISCUSSION 

In this work, we evaluated the feasibility of non-invasively quantifying task-induced changes 

in glucose metabolism with [18F]FDG fPET, i.e., without any blood sampling. We integrated 

theoretical concepts from the Patlak plot with output parameters of the GLM. Moreover, we 

compared this with CMRGlu quantified with the gold standard arterial input function in 

various tasks. Our findings reveal remarkably similar activation patterns across all 

parameters and excellent agreement between the relative changes of glucose metabolism 

(%SC CMRGlu) and task-specific beta values obtained from the GLM (%SC betas). 

Our proposed fPET technique differs from previous approaches in one important aspect, 

namely its independence from an input function in general, be it arterial, venous, image-

derived or population-based. The almost perfect correlation between %SC of task beta 

estimates and %SC of CMRGlu (i.e., r>0.998, slope~1, intercept~0, Table 1, Figure 1) and 

the virtually identical activation patterns across different parameters (Figure 2) validates the 

non-invasive approach as a robust alternative for performing fPET. This suggests that the 

underlying theoretical framework aligns excellently with the experimental data. Moreover, our 

approach appears to be suitable for tasks of different complexity, such as the demanding 

Tetris® paradigm and the simpler visual and finger tapping tasks. The slightly reduced 

performance in DS2 likely reflects lower SNR due to the constant infusion of the radiotracer, 

without the initial bolus. Nevertheless, the use of %SC is advantageous for participants as it 

eliminates the need for arterial cannulation and simplifies experimental procedures. This may 

be particularly valuable in clinical settings, where resources are often limited and procedural 

complexity should be minimized. Consequently, the adoption of %SC enhances the 

applicability of fPET in clinical environments and opens up new possibilities for diagnostic 

procedures beyond static PET imaging in patient cohorts (19). 

 

However, it is important to acknowledge certain limitations of the simplified fPET approach 

(Table 2). The obtained metabolic changes are relative to a baseline condition when using 

%SC of betas as outcome parameter. Moreover, absolute quantification is not possible, 
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neither for task nor baseline effects. Therefore, the technique is only suitable when the 

precise identification of baseline metabolism and absolute quantification are of no interest. 

On the other hand, the baseline definition itself becomes critical as different baselines (e.g., 

eyes closed, eyes open, crosshair fixation, etc.) will result in a different %SC. This reflects a 

similar situation encountered in fMRI, where the contrast of interest (compared to baseline or 

a control task) determines increases or decreases in activation (20,21). Furthermore, there is 

a monotonic increase of the signal over time due to the inherent property of [18F]FDG to 

remain mostly trapped in the cell. Therefore, not only the definition but also the timing of the 

baseline acquisition becomes relevant. To ensure robust modeling, it is recommended to 

acquire baseline periods in the beginning and end of the scan as well as between tasks (7). 

 

Regarding the use of plain beta estimates (without additional computation of %SC), it is 

important to note that the agreement with CMRGlu across individuals was generally lower for 

task effects, and poor for baseline metabolism (Figure 1, Table 1). Despite this, group-level 

activations still exhibited high similarity (Figure 2), suggesting that this outcome parameter 

may only be used to identify overall activation patterns. However, %SC only requires minimal 

computational effort and is thus preferable, particularly if individual values are to be related to 

other metrics of behavior or disease progression. Interestingly, a previous study has reported 

task-induced signal changes of approximately 2% (4), in contrast to 20- 30% observed in this 

work (Figure 1B, 1D). However, their %SC was calculated only as a ratio of plain betas and 

using the same ratio for our data would result in changes in a similar range of approximately 

3% (DS1). This discrepancy (and presumably also the lower agreement with CMRGlu) arises 

from the fact that beta values alone can be compared across participants only if the 

underlying regressors are identical. For this reason, we computed %SC from the slope of the 

product of beta*regressor (see [4]). 

 

Although the use of fPET %SC as a proxy of neuronal activation may at first glance appear 

similar to BOLD fMRI, several essential differences should be kept in mind. The BOLD signal 
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is a composite signal derived not only from neuronal oxygen consumption but also from 

variations in cerebral blood flow and volume (22), while glucose metabolism is a more direct 

measure of synaptic activity (23,24). Furthermore, fPET is independent of cerebral blood 

flow, as demonstrated by hypercapnia experiments (2). Thus, BOLD fMRI and [18F]FDG fPET 

capture complementary aspects of neuronal activation, as demonstrated by task-evoked 

dissociations between the two parameters in the default mode network (8,16,25). Another 

significant distinction lies in the test-retest variability of the methods. Previous work has 

indicated higher reliability for fPET than for fMRI (14,26). As a consequence, fPET seems to 

be a promising approach to compare intra-individual changes over time or group 

comparisons between imaging sites. Moreover, the approach might be relevant to assess 

changes in neuronal activation as induced by more potent stimulations, such as 

pharmacological interventions and brain stimulations. 

 

Conclusions: 

Our results suggest that plain beta estimates from the GLM may only be suitable when the 

overall group-averaged activation pattern is to be identified. However, computing %SC of 

beta values only requires minimal additional effort and represents a valid parameter to study 

task activation with fPET. Our data further indicates that the introduced approach is 

generalizable across cognitive domains and load. Still, differences between tasks may occur, 

which should be considered when defining the baseline condition or using control tasks for 

comparison. Finally, if absolute CMRGlu and baseline metabolism are of interest, full 

quantification is required. In sum, assessing task-specific changes in glucose metabolism 

with %SC is a simple and robust approach that eliminates the need for potentially painful and 

resource-intensive arterial blood sampling, thereby increasing the accessibility of the 

technique. The removal of barriers could facilitate the integration of fPET into clinical 

settings, where arterial blood sampling has traditionally been a major limitation. 
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TABLES  

 

 

Table 1: Agreement between different quantification methods. The table displays the results 

of correlation and regression analyses conducted for both datasets. Comparisons were 

performed for two different levels, either relating the GLM beta values to the respective 

Condition 

 

ROI 
 Beta vs. CMRGlu  

%SC of Beta vs. %SC of 

CMRGlu 

  R slope intercept  R slope intercept 

BL 

 FEF  0.483 0.005 1.107     

 IPS  0.720 0.008 0.992     

 Occ  0.359 0.005 1.041     

 V1  0.018 0.000 1.137     

 M1  -0.137 -0.001 1.043     

BL2 

 FEF  0.466 0.005 0.137     

 IPS  0.504 0.005 0.131     

 Occ  0.433 0.004 0.142     

 V1  0.398 0.002 0.140     

 M1  0.337 0.002 0.131     

Tetris 

Easy 

 FEF  0.904 0.009 0.006  0.999 0.997 0.134 

 IPS  0.857 0.008 0.007  0.998 1.001 0.053 

 Occ  0.912 0.010 0.001  0.999 1.004 0.011 

Tetris 

Hard 

 FEF  0.849 0.009 0.007  0.998 1.001 0.094 

 IPS  0.833 0.008 0.008  0.998 1.003 0.028 

 Occ  0.843 0.010 0.001  0.998 1.022 -0.273 

Eye  V1  0.833 0.007 0.008  0.970 1.150 1.633 

Finger  M1  0.763 0.005 0.016  0.909 1.029 4.728 
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CMRGlu (left) or the percent signal change (%SC) of both quantities with each other (right). 

The first dataset (DS1) comprised three regions of interest (ROI): the frontal eye field (FEF), 

intraparietal sulcus (IPS) and occipital cortex (Occ). For these regions, two separate levels of 

task difficulty (easy, hard) were regarded. For the second dataset (DS2), the primary visual 

(V1) and motor cortices (M1) were evaluated during the eyes-open condition and right-finger-

tapping task, respectively. For all datasets, two approaches for the computation of baseline 

metabolism (BL and BL2) were calculated. For each comparison, Pearson’s correlation 

coefficient, slope and intercept were calculated. For the baseline conditions, the %SC 

analyses were not performed, as this parameter always refers to the baseline condition itself. 
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Feature Beta estimate %SC of beta CMRGlu 

Identification of overall task 

activation 
� � � 

Identification of individual 

effects 
 � � 

Absolute quantification   + 

Quantification of baseline 

metabolism 
  + 

Influence of baseline 

definition 
 -  

Input function required   - 

Applicable for tasks of 

different complexity 
� � � 

 

Table 2: Visual representation of the three outcome parameters and their main features. The 

table displays several key features of the main outcome parameters, as obtained by 

[18F]FDG fPET and analysis with the general linear model (GLM). The parameters include the 

beta maps as output of the GLM, the percent signal change (%SC) of beta estimates (see 

[4]) and the gold standard cerebral metabolic rate of glucose (CMRGlu). The general 

availability of a feature for a certain outcome parameter is marked by a tick, advantages are 

indicated by a plus sign and disadvantages by a minus sign. 
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FIGURES 

 

Figure 1: Analysis of the datasets with respect to metabolic changes in the region of interest 

(ROI). The figure displays the results of the regression analysis to assess whether beta 

values, obtained by applying the general linear model (GLM), are correlated with the cerebral 

metabolic rate of glucose (CMRGlu) across all participants. This was done for beta and 

CMRGlu values (A, C), as well as for their percent signal change (%SC) values (B, D). The 

figure compares these sets of analysis for task “hard”, for the Tetris®-dataset (DS1, A-B), 

and eye opening as well as right finger-tapping for the second PET-MR dataset (DS2, C-D). 

For DS1, the frontal eye field (FEF), the intraparietal sulcus (IPS) and the secondary occipital 

cortex (Occ) were considered as ROI. DS2 displayed activation in the primary visual cortex 

(V1) for eye opening and the primary motor cortex (M1) for finger-tapping. 
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Figure 2: Group-level maps of the datasets, displaying activation within the respective 

regions of interest (ROI). The figure displays the activation patterns for both of the regarded 

datasets, considering task “hard” for the Tetris®-dataset (DS1, A-D), and both tasks within 

the second dataset (DS2, E-H). The maps were p < 0.05 FWE corrected at cluster level 

following p < 0.001 uncorrected voxel level. Group-level maps were calculated for the beta 

parameters (B, F), resulting from the general linear model (GLM), and the cerebral metabolic 

rate of glucose (CMRGlu, A, E) as well as for both quantities’ rate of percent signal change 

(%SC, C-D, G-H). For each of the group-level maps, two layers were selected to represent 

the activation within the respective dataset. For DS1 (A-D), the figure displays layers 

extracted at z = 6mm (right) and z = 50 mm (left). For DS2 (E-H), the regarded layers are z = 

3mm (right) and z = 63mm (left). The colorbars represent t-values of the group level analysis. 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2023. ; https://doi.org/10.1101/2023.09.20.558617doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.20.558617
http://creativecommons.org/licenses/by/4.0/

