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Abstract 

Multivariate analysis is becoming central in studies investigating high-throughput molecular data, 

yet, some important features of these data are seldom explored. Here, we present MANOCCA 

(Multivariate Analysis of Conditional CovAriance), a powerful method to test for the effect of a 

predictor on the covariance matrix of a multivariate outcome. The proposed test is by construction 

orthogonal to tests based on the mean and variance, and is able to capture effects that are missed by 

both approaches. We first compare the performances of MANOCCA with existing correlation-based 

methods and show that MANOCCA is the only test correctly calibrated in simulation mimicking omics 

data. We then investigate the impact of reducing the dimensionality of the data using principal 

component analysis when the sample size is smaller than the number of pairwise covariance terms 

analysed. We show that, in many realistic scenarios, the maximum power can be achieved with a 

limited number of components. Finally, we apply MANOCCA to 1,000 healthy individuals from the 

Milieu Interieur cohort, to assess the effect of health, lifestyle and genetic factors on the covariance of 

two sets of phenotypes, blood biomarkers and flow cytometry-based immune phenotypes. Our 

analyses identify significant associations between multiple factors and the covariance of both omics 

data. 
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Introduction  

Human cohorts commonly collect high-dimensional phenotypic data, including high-throughput 

omics, extended medical information, and biomarkers1,2. A variety of multivariate approaches have 

been developed to leverage this wealth of data3-6. The joint analysis of multiple outcomes can increase 

statistical power to detect associations7,8, help deciphering complex biological processes through 

clustering approaches9, or improve the prediction accuracy of an outcome of interest10. Regarding 

association testing, existing methods and application have mostly focused on testing the impact of 

predictors of interest on the mean of a multivariate outcome, typically using a composite null 

hypothesis such as implemented in a multivariate ANOVA. Conversely, methods to investigate other 

components of multivariate outcomes remain sparse. One of such components of multivariate 

outcomes is correlation, which is commonly present in omics data. Although methods to investigate 

predictors associated with the correlation between multiple outcomes exist11-14, their performance 

and robustness have not been assessed, and their efficiency in large-scale agnostic screenings remains 

unknown. Moreover, they carry substantial inherent limitations, including restriction to binary factors 

and no adjustment for covariates.  

Here, we present a new approach, named MANOCCA (Multivariate ANalysis Of Conditional 

Covariance), that enables the identification of both categorical and continuous predictors associated 

with changes in the covariance matrix of a multivariate outcome while allowing for covariates 

adjustment. We first introduce the key principles and the main characteristics of the approach, and 

demonstrate that, in most realistic scenarios, MANOCCA can outperform existing approaches showing 

stronger power and robustness. We then describe the challenges faced when analysing high-

dimensional data, and present a robust solution based on principal components analysis. We next 

investigate the power of MANOCCA conditional on alternative parametrizations, providing guidelines 

for real data application across various settings. Finally, we illustrate the method by studying health, 

lifestyle and genetic factors associated with variability of blood biomarkers and flow cytometry-based 

immune phenotypes using data from 1,000 healthy subjects from the Milieu Intérieur cohort. 

 

Methods 

The MANOCCA approach  

Previous work15 showed that variability in the correlation between two standardized outcomes ā1 

and ā2 can be investigated through the element-wise product of those outcomes. The Pearson 

correlation coefficient between ā1 and ā2 is expressed as ÿ�1�2 = �ā�(ā1, ā2) (ÿ�1ÿ�2)⁄ , with �ā�(ā1, ā2) = �[ā1ā2] 2 �[ā1]�[ā2]. For standardized outcomes and a sample size ý, it can be re-

expressed as the average of the element-wise product across individuals: ÿ�1�2 = (∑ ā1�ā2��=1&þ ) ý⁄ . 

It follows that the effect of a predictor Ā on �āĄ(ā1, ā2) can be tested using a standard least-squares 

regression framework where Ā is treated as a predictor and the product ā1ā2 as the outcome. One can 

easily demonstrate that, under reasonable assumptions, this test is independent of mean and variance 

effect. Consider the following models:  ā1 = ÿ1� + Ā1Ā + �1 and ā2 = ÿ2� + Ā2Ā + �2, where ā1 and ā2 are random variables correlated through an unmeasured normally distributed variable �, and 

depend linearly on a binary predictor Ā, inducing an effect on the means of ā1 and ā2. The conditional 

covariance between ā1 and ā2 can be expressed as �ā�(ā1, ā2|Ā = �) =  ÿ1ÿ2��Ą(�), and does not 

depend on Ā. Consider the alternative models:  ā1 = ÿ1� + Ā1ýĀ + �1 and ā2 = ÿ2� + �2, where ā1 

and ā2 are correlated, and the variance of ā1 depends on the product of a latent continuous variable ý multiplied by the binary predictor Ā. The conditional covariance can again be expressed as �ā�(ā1, ā2|Ā = �) =  ÿ1ÿ2��Ą(�), and does not depend on Ā. Finally, consider the models:  ā1 =
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ÿ1�Ā + �1 and ā2 = ÿ2� + �2, where ā1 and ā2 are correlated, with the strength of the correlation 

depending on the predictor Ā. The covariance can now be expressed as �ā�(ā1, ā2|Ā = �) = ÿ1ÿ2� ��Ą(�), and does depend on Ā. Further details on those approximations are provided in the 

Supplementary Notes. 

The approach can easily be extended to more than two outcomes by deriving an ý × Ă matrix of 

products between centered outcomes, defined as � = ÿ1, & ÿĂ, with Ă, the number of products, equals �(� 2 1) 2⁄  where � is the number of outcomes and ý the sample size. The association between a 

predictor Ā and � can then be derived by applying a standard two-way analysis of variance (MANOVA), 

that is �~āĀ. While valid, this approach is limited to situations where the effective sample size ý is 

substantially larger than the number of products Ă. When this criterion is not met, we use principal 

component analysis to reduce the dimension of the product matrix, and use the top ÿ principal 

components (PCs) to form an ý × ÿ matrix � used as input in our test. Given the independence 

between the principal components, we first considered using a sum of univariate PC tests to form a 

joint test, however, this approach was not calibrated (see Results and Figs. S1-2). Instead, we used a 

MANOVA, that is �~ÿĀ. For fast computation, the joint effect estimates ÿ̂ = Ā̂1 & Ā̂ÿ of association 

between each principal component �� � ∈ [1 & ÿ] and the predictor Ā are first derived using a single 

matrix operation: ÿ̂ = (Ā�Ā)21Ā��. The Wilks’ lambda statistics, ÿ =det(��� 2 �Ā�Ā��) det(���)⁄  is derived in a second step. Under the null hypothesis of no 

association, ÿ follows a Fisher distribution �(ÿ, ý 2 ÿ 2 1). Figure 1 presents an overview of the 

steps for applying the approach.  

In a standard MANOVA, potential confounding factors � = (ÿ1 & ÿā) can be incorporated as 

covariate: �~� + ÿĀ. Again, for fast computation, we used a two steps procedure that consists in 

adjusting a priori both the outcome and the predictor for the covariates: �∗ =  � 2 ∑ Ā̂�ÿ�ā  , where Ā̂� is a vector of estimated effect of ÿ� on �, and Ā∗ =  Ā 2 ∑ �̂�ÿ�ā , where �̂� is the estimated effect 

of ÿ� on Ā, and applying the MANOVA on the residual variables: �∗~ÿĀ∗. 

 

Type I error rate simulation 

We first assess the calibration under the null of MANOCCA and four existing approaches, Mantel 

test11, the Fisher method12, the Jennrich test13, and the BoxM test14, using fully simulated data and 

simple scenarios (Fig. 2). We drew a series of 10,000 replicates with a sample size of 1,000, each 

including a multivariate outcome � and a binary predictor Ā~þ(0.4) drawn independently of � under 

two different models. Note that we used a binary predictor as the four existing approaches do not 

allow for the analysis of continuous predictors. In the first model, replicates included five outcomes 

drawn from a multivariate normal with modest pairwise correlation. In the second model, replicates 

included 30 highly correlated non-normal outcomes drawn from a multivariate chi-squared 

distribution. The overall calibrations of all tests were derived by testing for association between Ā and 

the correlation between � variables, and conducting a visual inspection of the P-value distribution. 

We next assessed the robustness of MANOCCA under a wider range of scenarios, while modifying 

some of the modelling parameters. We first compared performance when using a binary or a 

continuous predictor (Fig. S3). We simulated a series of 100 replicates, each including 1,000 individuals 

and a multivariate outcome � including 400 variables drawn from a multivariate chi-squared 

distribution with a point mass at 0 including 0% to 50% of the data. For each replicate we drew 1,000 

predictors, either from a normal or binary distribution, and applied MANOCCA while varying the 

number of PCs used and applying no transformation, a rank inverse normal transformation on the 

product matrix, the principal component matrix, or both. The validity of MANOCCA was assessed using 

a Kolmogorov–Smirnov test for deviation from a uniform [0,1] distribution of the P-values across the 

1,000 predictors tested. We then conducted simulations using real covariance matrices derived from 
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the Milieu Interieur 169 flow cytometry-based variables and for a ranging sample sizes from 1000 until 

5000 to draw guidelines on the parametrization of MANOCCA (Fig. S6-7). For predictors, we considered 

binary predictors with frequencies in [0.01 ; 0.40], but also categorical ones mimicking genetic variants 

with minor allele frequency in [0.01 ; 0.40], both generated independently of the multivariate outcome �.  

 

Power simulation 

To investigate power, we drew a series of 50 replicates with sample size of 1,000 including a binary 

exposure Ā with frequency of 0.5 and a multivariate outcome � including 50 to 169 variables (Fig. 4). 

For each replicate, we used two covariance matrices, one for the exposed (ÿ1), and the other for the 

unexposed (ÿ2), and tested the association between Ā and � using MANOCCA. We generated the 

outcome from a multivariate normal and real covariance matrix (ÿ) derived from the Milieu Interieur 

flow cytometry data under three scenarios. In scenario (i), ÿ1 = ÿ and ÿ2 = |ÿ|� × ą��Ā(ÿ), inducing 

a covariance with similar pattern among exposed but variability in the magnitude of covariance. In 

scenario (ii), ÿ1 = ÿ and ÿ2 = Ăÿ + (1 2 Ă)Δ, where Δ is a random covariance generated using the R 

randcorr package16, thus inducing random noise between exposed and unexposed. In scenario (iii), we 

first drew ÿ1 = ÿ2 = ÿ and then attenuated the covariance in an arbitrary chosen subset � of ÿ2, so 

that ÿ2{�} = |ÿ{�}|� × ą��Ā(ÿ{�}). We arbitrarily set ā to 1.5, Ă to 0.2, and � to 0.5, as it allowed for 

a similar average power across scenarios given the other simulation parameters. 

 

MANOCCA association screening in Milieu Intérieur 

The Milieu Intérieur (MI) Consortium is a population-based cohort initiated in September, 201217. 

It comprises 1,000 healthy volunteers from western France, with a 1:1 sex ratio. The cohort collected 

a broad range of variables, including genomic, immunological, environmental, and clinical outcomes. 

We conducted systematic MANOCCA screenings for environmental effects on the covariance of two 

sets of data: 169 flow cytometry-based immune cell phenotypes18 and 33 health-related blood 

biomarkers, including 22 metabolites and 11 cell counts17 (Table S1-S2). We focused on two types of 

predictors: health and lifestyle factors collected from questionnaires, and genome-wide variants. 

Health and lifestyle factors included demographics, medical and vaccination history, psychological 

traits, socio-professional information, smoking habits, physiological measurements and nutrition 

measured as part of the Nutrinet19 study (Table S3). After the filtering of ancestral outliers 

individuals20,21, the genetic screening was conducted in 894 participants for a total of 5,667,803 

variants after filtering and imputation using IMPUTE222. Except when used as predictor, all analyses 

were adjusted for age, sex and body mass index (BMI). For blood metabolites, the number of products 

allowed for a direct analysis of the products without requiring the PCA step, and we considered both 

the products and the PCs as outcomes. For comparison purposes, we also conducted, for each 

screening, a standard MANOVA on the mean of the multivariate outcome (see Supplementary Notes). 

 

Human samples 

Samples came from the Milieur Intérieur Cohort, which was approved by the Comité de Protection 

des Personnes – Ouest 6 (Committee for the protection of persons) on June 13th, 2012 and by French 

Agence nationale de sécurité du médicament (ANSM) on June 22nd, 2012. The study is sponsored by 

Institut Pasteur (Pasteur ID-RCB Number: 2012-A00238-35), and was conducted as a single centre 

interventional study without an investigational product. The original protocol was registered under 

ClinicalTrials.gov (study# NCT01699893). The samples and data used in this study were formally 

established as the Milieu Interieur biocollection (NCT03905993), with approvals by the Comité de 
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Protection des Personnes – Sud Méditerranée and the Commission nationale de l'informatique et des 

libertés (CNIL) on April 11, 2018. All donors gave written informed consent. All data used in this study 

are available at https://dataset.owey.io/. 

 

 

Results 

Method comparison and MANOCCA characteristics 

We identified four existing approaches allowing to test for the effect of a predictor on the 

covariance matrix of a multivariate outcome: (i) the Mantel test11, which consists in deriving a distance 

metric between two square matrices of the same dimension and comparing this distance to an 

empirical distribution derived through permutation; (ii) the Fisher method12, which builds a statistic 

based on the sum of the squared correlations over all cells from the covariance matrix; (iii) the Jennrich 

test13, which, in its simplest form, consists in estimating the statistic based on the Hadamard product 

of a given correlation matrix and the inverse of a second matrix of the same dimension; and (iv) the 

BoxM test14, which extends the Levene’s test of homogeneity of variance, an approach often used in 

human genetics23. Further description of each of the four approaches is provided in Supplementary 

Notes. We conducted series of simulations to assess their robustness under the null using a binary 

predictor and no covariates, as these approaches cannot handle continuous predictors and do not 

allow adjustment for covariates. Except for the Mantel test, all methods performed relatively well for 

a simple model with a few normally distributed outcomes. Conversely, they all displayed severe type I 

error rate inflation when confronted with non-normal correlated variables, mimicking omics data (Fig. 

2a-h). In comparison, when applied to the same simulated data, MANOCCA was correctly calibrated in 

all simulations (Figure 2i-j).  

The effect of the predictor on the covariance, the mean and the variance of a set of outcomes are 

expected to be statistically independent (see Supplementary Notes). We confirmed this orthogonality 

between mean (derived using a two-ways MANOVA), variance (Levene’s test), and the proposed 
covariance tests through simulation. Figure 3 shows that, under realistic modelling assumptions, the 

MANOCCA test captures only effects on the covariance, and can therefore identify effects missed by 

both mean and variance-based approaches. Figure 3d further illustrates bivariate data where a binary 

predictor Ā is associated with covariance but neither the mean nor the variance of the outcomes. 

Importantly, the independence of the three tests does not imply signal across the three approaches 

will necessarily be uncorrelated in real data. Indeed, one can easily draw scenarios with e.g. effect of 

a predictor on both the mean and covariance of a multivariate outcome. Also, unless specified 

otherwise, we modelled the effect of a predictor on the covariance through an interaction with a latent 

variable associated shared across the outcomes tested (see Methods). Under this modelling, effects 

on the covariance can in general be transposed to effects on the correlation. However, when the 

predictor has an effect on the variance of either outcome, this equality is not valid anymore, as the 

correlation will depend on Ā, while the covariance will not (Supplementary Notes). 

 

Extension to high-dimension data 

MANOCCA is readily applicable to the matrix of outcome product in all scenarios where Ă is 

substantially smaller than ý. We used Principal Components Analysis (PCA) to reduce the dimension 

of ÿ, using the top principal components as the primary outcome. As for all linear models, the 

maximum number of PCs that can be analysed jointly remained bounded by the sample size. More 

generally, high dimension outcomes data brings the question of the latent space dimension, that is, 

the number of PCs kept in the analysis to achieve maximum power while maintaining a correct type I 
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error rate. Moreover, by construction, both products and PCs tend to display kurtotic distributions, 

especially for omics-like data, which might also impact performance. We conducted a series of 

simulations to investigate the validity of these two components. Specifically, we measured the type I 

error rate while varying the number of top ÿ PCs selected, and applying (i) no transformation, or an 

inverse rank transformation on (ii) the product, (iii) the PCs, or (iv) both products and PCs. As shown in 

Figure S3a, if the predictor being tested is continuous, the test remains well calibrated regardless of 

the transformation applied, allowing for the use of a large number of PCs. Conversely, when analysing 

binary predictors, the test requires a normalization of the PCs, only allowing a limited number of PCs 

to be analysed jointly (Fig. S3b). Figure S4-5 present the results from extended simulations, providing 

guidelines to determine the number of PCs that can be analysed jointly conditionally on the predictor 

frequency and the cohort sample size. 

We next evaluated the power of MANOCCA across different scenarios in which the true covariance 

depends on a binary predictor Ā with a frequency of 0.5. We tested up to 400 PCs, and normalized 

either the products and PCs or the PCs only, the two transformations that display a calibrated null 

distribution (Fig S3). The optimal number of PCs varied substantially across the simulated scenarios. 

Figure 4 illustrates three complementary cases. When Ā acts as a global scaling factor of the 

covariance, the maximum power is observed when using a limited number of top PCs and decreases 

after reaching that optimum (Fig. 4a). When Ā affects only a subset of outcomes, the maximum power 

is reached when including a fairly large number of PCs and converge afterward (Fig. 4b). As expected, 

when Ā induces random noise in the covariance matrix, the power increases continuously with the 

number of PCs (Fig. 4c). Among the scenarios we considered, the double normalization (on products 

and PCs) produced on average larger power, and this transformation was therefore used in all 

subsequent analyses.  

 

Efficient implementation  

The MANOCCA approach requires multiple steps that can be computationally expensive in large-

scale data. The main limiting step is the computation of the product matrix followed by the PCA 

transformation, but it is a one-time cost regardless of the number of predictors tested. With ý the 

sample size, � the number of outcomes and ă the number of predictors to test, the computation time 

is divided in þ(ý�2) for the computation of the product matrix, þ(ÿ��(ý, �2)2 ∗ ÿ�Ā(ý, �2)) for 

the computation of the PCA, and þ(ýă) for the test of ă predictors (Fig. 5). Most steps were 

implemented with limited usage to exterior libraries, but ground proofed against multiple existing 

tools. The approach is implemented in a Python package with dependencies to numpy, scipy for the 

fisher distribution, scikit-learn for the PCA and pandas for dataframe integration, but all computations 

are performed under numpy array to increase performance. Each step was optimized to minimize 

computational time and, given that most steps are independent, especially the product matrix, the 

python version allows for a user-friendly parallel computing implementation if multiple cores are 

available. An R version, though less optimized, is also available and was used to verify our results.  

 

Application to Milieu Intérieur omics data 

We applied MANOCCA in 1,000 healthy individuals from the Milieu Intérieur (MI) cohort to screen 

for factors associated with changes in the covariance of 33 blood biomarkers and 169 flow cytometry-

based immune phenotypes (Table S1-3). Both datasets display high correlation, ranging from -0.71 to 

0.99 for the flow cytometry data, and from 0.08 to 0.98 for the biomarkers (Fig. S6). We first 

investigated the effect of 49 health-related and lifestyle factors using a subset of 992 participants with 

complete data. We applied the proposed PCA reduction, and investigated power when using 5 to 200 

top PCs with a step of 5, resulting in 40 tests per variable. As showed in Figure 6a-b, multiple features 
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were associated at a stringent Bonferroni corrected significance level (P < 2.5 x 10-5 accounting for 

1,960 tests). Flow cytometry-based phenotypic covariance was associated with age (P < 6.0 x 10-9) and 

all smoking variables: smoking status (P < 2.1 x 10-12), smoking frequency (P < 1.2 x 10-11), number of 

years smoked (P < 3.8 x 10-10), number of years since last smoke (P < 7.5 x 10-9). Likewise, blood 

biomarkers covariance was strongly associated with age (P < 3.5 x 10-33) and sex (P < 1.3 x 10-30), and 

to a lesser extent with BMI (P < 1.6 x 10-7) and smoking variables (minimum P < 5.5 x 10-12, for smoking 

status). Except for the age-flow cytometry association, the maximum association signal was almost 

reached when including the top 50 PCs and display only modest improvement when including more 

PCs (Fig. 6). 

Thanks to a limited number of outcomes, the blood biomarker dataset could also be analysed by 

applying MANOCCA directly on the 528 pair-wise products. To investigate the value of using the PCA 

in such situations, we applied MANOCCA on the product and compared results against the PCA-based 

approach. Note that the product-based test should be approximately equivalent to the test of all PCs, 

which was confirmed for these data (Fig. S7). Comparing the minimum P-value across the 40 PCA-

based test (ÿĀ��) against the P-value from product-based test (ÿĂÿāĂ), we observed a substantial gain 

for the PCA-based approach, even when accounting for the multiple testing cost of the PCA approach. 

The product-based test identified only five of the seven signals from the PCA-based approach (Fig. 7). 

For the strongest signals, the association P-value from the best PCA-based test was several orders of 

magnitude larger than for the product-based test (e.g., for age, P= 3.5 x 10-33 and 2.6 x 10-11, 

respectively). This suggests that the benefit of testing multiple sets of PCs can strongly outpace the 

statistical cost of multiple testing.  

When comparing the MANOCCA results to a standard MANOVA applied to both datasets, MANOVA 

identified significant associations (P < 1.0 x 10-3 to account for the 49 tests conducted) with 8 and 13 

predictors associated in the flow cytometry data and the blood biomarkers data, respectively (Table 

S4). These associations included all associations detected by MANOCCA. More generally, while the two 

tests are expected to be independent, we observed a strong correlation between association signal as 

measured by the -log10(P-value) (ÿĀ�āÿÿÿ�ăÿĀ = 0.88, ÿā�āāÿăāÿ� = 0.65), suggesting that many of 

the predictors are associated with effects on both the mean and variance of the outcome studied (Fig. 

S8). However, several predictors display discordant associations, with a significant effect on the mean 

but no effect on the covariance. This includes, for example, systolic blood pressure (ÿýÿĀā�ÿ = 2.6 x 

10-11, ÿý�þÿ��� = 0.14), and heart rate (ÿýÿĀā�ÿ = 4.9 x 10-24, ÿý�þÿ��� = 0.001) effect on blood 

biomarkers. On the other hand, one predictor, the number of years of second-hand smoking, display 

suggestive significance with MANOCCA on the flow cytometry data, but did not display mean effect 

(ÿýÿĀā�ÿ = 0.31, ÿý�þÿ��� = 3.0 x 10-5). 

Finally, we conducted genome-wide association studies (GWAS) for both blood biomarkers and flow 

cytometry datasets, testing 5,699,237 genetic variants with a minor allele frequency (MAF) > 5% in up 

to 894 samples where both genetic and phenotypic data were available. All tests were adjusted for 

age, sex, BMI and the 10 first genetic PCs of the genotyping matrix. Note that for this genetic screening 

we only applied the adjustment on the outcomes. Two-sided adjustment has already been used for 

mean effect tests in GWAS to account for relatedness20, but would require further investigation to be 

extended in the MANOCCA test. Following the results from our simulations for genetic variants with a 

MAF 5% or larger, the type I error will remain robust only for up to 50 principal components (Fig. S4c), 

resulting in 10 GWAS per dataset. MANOCCA did not detected any genome-wide significant signals at 

a stringent Bonferroni corrected threshold (P = 5 x 10-9, Fig. S9). Yet, 46 genetic variants from eleven 

loci show suggestive significance association (P = 5 x 10-7, Table S5). We conducted phenome-wide 

association study on each variants using the ieu database API24. Most variants showed strong 

association with multiple phenotypes from this database (Table S6). In particular, four out of the 
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eleven loci harboured genetic variants that were eQTL for one or multiple genes (Table S7), suggesting 

that our covariance-based approach might capture variants involved in the regulation of gene 

expression.  

 

Discussion 

Covariance is a fundamental feature of omics data. Covariances might be explained by multiple 

factors, including shared biological mechanisms, shared environmental risk factors, or causal effects 

between the outcomes measured. However, our understanding of the factors involved in covariance 

has been very limited, partly due to the lack of adapted methodologies and software allowing for 

systematic screening of large-scale omics datasets. Here, we present MANOCCA, a robust and 

computationally efficient approach for the identification of predictors associated with the covariance 

of a multivariate outcome. We show that MANOCCA outperforms existing covariance methods and 

that, given the appropriate parametrization, it can maintain a calibrated type I error in a range of 

realistic scenarios when analysing highly multidimensional data. The application of MANOCCA to the 

Milieu Intérieur dataset demonstrates the validity and relevance of our approach, identifying multiple 

health-related and lifestyle factors significantly associated with the covariance of blood biomarkers 

and immune phenotypes. 

The MANOCCA approach has three main limitations. First, we used principal components analysis 

to address situations where the number of covariance terms is larger than the sample size. We defined 

guidelines that constrain the maximum number of PCs that can be used to ensure the validity of the 

test when analysing binary or categorical predictors. Regarding power, both simulation and empirical 

data analyses show that the optimal number of PCs to be included to maximize power can vary 

substantially conditional on the true covariance association pattern. Here, we use systematic 

screenings testing a range of PCs, and corrected the association results for multiple testing. Our 

analyses suggest that the benefit of this strategy largely overcomes its statistical cost. Note that this 

correction strategy might be further improved as it does not account for correlation between each PC 

test. Second, our extensive simulation analyses show that when reaching high dimensions, the validity 

of the test relies on a strong data pre-processing to circumvent the non-normal distribution of products 

and principal components. Future work is required to identify a refined modelling of these non-normal 

distributions and avoid this pre-processing. Third, we investigated the performance of our approach 

on two types of omics data (blood flow cytometry and metabolites), and confirmed its validity and 

power in these data. Omics data from other sources (e.g., RNAseq) might carry additional complexity 

that would have to be investigated by simulations before conducting real data applications. 

Given the increasing number of high dimensional omics data available in existing human cohorts, 

our approach provides opportunities to investigate multivariate outcomes from a new perspective. 

Because MANOCCA is built on a standard linear framework, the approach can be extended in many 

directions, including the derivation of the individual contribution of outcomes and the development of 

predictive models. Altogether, we expect the application of our method to produce novel insights on 

the complex structure linking highly intertwined omics data. 
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Figures 

Figure 1. Overview of the MANOCCA approach 

Starting with a multivariate outcome matrix of ý samples and � variables, the data are first centered. 

The pairwise product of each of the � outcomes is computed, generating a high dimensional matrix of 

size ý × �(� 2 1) 2⁄ . If ý >>  �(� 2 1) 2⁄ , a joint test of all products can be derived, otherwise the 

dimension of the product matrix is reduced using a Principal Component Analysis, to form a principal 

component space of size ý × ÿ. The final test, including covariates, can be performed on the products 

or the top ÿ PCs using a Wilk’s lambda test.  
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Figure 2. Limitation of existing methods 

We assessed the calibration under the null of four approaches representing the state-of-the-art for 

covariance matrix comparison: the Fisher method (a,b), the Jenrich test (c,d), BoxM (e,f), and Mantel 

test (g,h), against the proposed MANOCCA approach (i, j). Note that we applied MANOCCA directly on 

the product matrix thanks to the high sample size compared to the number of products. We simulated 

series of 10 000 replicates, with a sample size of 1000 each, under two different null models. In the 

first model (a,c,e,g,i), replicates included five outcomes � drawn from a multivariate normal with 

modest pairwise correlation. In the second model (b,d,f,h,j), closer to the expected distribution of 

omics data, replicates included 30 non-normal outcomes with high correlation. Calibration was derived 

by splitting each replicate in two random sets according to a random binary variable Ā~þ(0.4), and 

testing for association between Ā and the correlation between � variables. The panels present the 

distribution of the P-values, expected to be uniformly distributed under this null model, for the five 

approaches and the two models.  
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Figure 3: Orthogonality between MANOCCA and other tests 

We simulated series of datasets under three models where a binary predictor Ā influences 

orthogonally either the mean, the variance or the covariance of a bivariate outcome �. In model a), 

each outcome ā�  is drawn from a standard additive model: ā� = � + Ā�Ā + ă�, where � is a normally 

distributed variable shared across ā. and ă�  are independent normal residuals. In model b), each ā�  is 

drawn from ā� = � + ā�ý�Ā + ă�, where ý�  is normally distributed variables producing heterogeneity 

in the variance of ā�  conditional on Ā. In model c), each ā�  are drawn from the interaction model ā� =Ă��Ā + ă�, that produces heterogeneity in the correlation across ā�  conditional on Ā. For each model, 

we derived the power at the P-value threshold of 0.05 for a joint mean effect test (MANOVA), a test of 

variance for a randomly selected ā�  (LEVENE), and the proposed covariance test (MANOCCA). The 

parameters Ā�, ā�  and Ă�  were chosen to maximize the power of the at least one of the three tests. The 

blue dash line indicates the P-value threshold of 0.05. Panel d) shows an example of a bivariate 

distribution where Ā is not associated with the mean and variance of the two outcomes but with their 

covariance. 
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Figure 4. Impact of transformation and number of PCs on statistical power 

Power of MANOCCA as a function of the number of principal components retained in the joint test (2 

to 400), while applying two different pre-processings: a rank-inverse normal (rkv) on the principal 

component only, or a rank-inverse normal on the principal components and the products. We drew 

series of 50 replicates with sample size 1,000, including a binary exposure with frequency of 0.5 and 

30 to 169 outcomes. For each replicate, we drew two covariance matrices, one for the exposed, and 

one for the unexposed. We generated the outcome under three scenarios using a multivariate normal 

and covariance derived from real data. In panel a) the two matrices are similar but with attenuated 

covariances among exposed. In panel b) random noise is added to the covariance of the exposed group. 

In panel c) the two matrices are equal, except for a subset of outcomes where the covariances have 

been attenuated. Left panels show the average over the 100 replicates of the -log10(P-value) derived 

using MANOCCA for the two pre-processings. Right panels present the matrix produced for each 

scenario using data from an arbitrarily chosen replicate, with upper and lower triangles showing the 

true covariance in unexposed and exposed, respectively. 
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Figure 5. Computational efficiency 

Computational time for running MANOCCA on varying sample sizes, numbers of outcomes and 

numbers of predictors tested. Over 1000 simulations each time, we simulated a multivariate normal 

distributions of various sizes and computed the product Matrix > Rank transform > PCA > Rank 

transform using sequential computation. Panel a) displays the running time to transform the outcome 

matrix into the reduced covariance matrix for the test, as a function of the number of outcomes (10, 

100, 150, 200, 300, 400), and sample size (100, 1000, 5000 and 10000). Y-axis is in log10-scale. Panel b) 

displays the running time for the testing part for a ranging number of sample sizes (100, 1000, 5000 

and 10000) and ranging number of predictors (1000, 10000, 100000). 
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Figure 6. Screenings for host factors  

Screenings for effect of 49 health and lifestyle factors on the covariance of 169 flow cytometry-based 

immune phenotypes (a) and 33 blood biomarkers (b) using the MANOCCA approach. We ran each 

screening using 5 to 200 principal components (PC) with a step of 5. Variables with a P-value below the 

adjusted Bonferroni threshold (2.6 x 10-5, red dashed line) for each screening are displayed in colour: 

age (green), sex (yellow), body mass index (orange), smoking (purple gradient). Panel c) presents the 

list of predictors considered and displays the number of PCs corresponding to the minimum P-value 

observed. 
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Figure 7. Comparison of PCA-based and product-based MANOCCA 

Screening comparison for covariance signal using MANOCCA on the 33 blood biomarkers as outcomes 

and using the health and lifestyle eCRF questionnaire data as predictors. We ran the MANOCCA 

screening using the full 528 pair-wise biomarkers products (blue dots) and the principal components 

(PCs) derived from the product matrix (red dots). For the latter, we kept the min(P-value) out of 40 

models including 5 to 200 PCs with a step of 5 PCs. The corresponding Bonferroni correction threshold 

(dashed line) were derived for each approach based on the number of tests conducted (P-value 

threshold of 1.0x10-3 and 2.6x10-5, respectively). 
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