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Abstract

Multivariate analysis is becoming central in studies investigating high-throughput molecular data,
yet, some important features of these data are seldom explored. Here, we present MANOCCA
(Multivariate Analysis of Conditional CovAriance), a powerful method to test for the effect of a
predictor on the covariance matrix of a multivariate outcome. The proposed test is by construction
orthogonal to tests based on the mean and variance, and is able to capture effects that are missed by
both approaches. We first compare the performances of MANOCCA with existing correlation-based
methods and show that MANOCCA is the only test correctly calibrated in simulation mimicking omics
data. We then investigate the impact of reducing the dimensionality of the data using principal
component analysis when the sample size is smaller than the number of pairwise covariance terms
analysed. We show that, in many realistic scenarios, the maximum power can be achieved with a
limited number of components. Finally, we apply MANOCCA to 1,000 healthy individuals from the
Milieu Interieur cohort, to assess the effect of health, lifestyle and genetic factors on the covariance of
two sets of phenotypes, blood biomarkers and flow cytometry-based immune phenotypes. Our
analyses identify significant associations between multiple factors and the covariance of both omics
data.


https://doi.org/10.1101/2023.09.20.558234
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.20.558234; this version posted September 22, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Introduction

Human cohorts commonly collect high-dimensional phenotypic data, including high-throughput
omics, extended medical information, and biomarkers2. A variety of multivariate approaches have
been developed to leverage this wealth of data®®. The joint analysis of multiple outcomes can increase
statistical power to detect associations’®, help deciphering complex biological processes through
clustering approaches®, or improve the prediction accuracy of an outcome of interest’®. Regarding
association testing, existing methods and application have mostly focused on testing the impact of
predictors of interest on the mean of a multivariate outcome, typically using a composite null
hypothesis such as implemented in a multivariate ANOVA. Conversely, methods to investigate other
components of multivariate outcomes remain sparse. One of such components of multivariate
outcomes is correlation, which is commonly present in omics data. Although methods to investigate
predictors associated with the correlation between multiple outcomes exist!*4, their performance
and robustness have not been assessed, and their efficiency in large-scale agnostic screenings remains
unknown. Moreover, they carry substantial inherent limitations, including restriction to binary factors
and no adjustment for covariates.

Here, we present a new approach, named MANOCCA (Multivariate ANalysis Of Conditional
Covariance), that enables the identification of both categorical and continuous predictors associated
with changes in the covariance matrix of a multivariate outcome while allowing for covariates
adjustment. We first introduce the key principles and the main characteristics of the approach, and
demonstrate that, in most realistic scenarios, MANOCCA can outperform existing approaches showing
stronger power and robustness. We then describe the challenges faced when analysing high-
dimensional data, and present a robust solution based on principal components analysis. We next
investigate the power of MANOCCA conditional on alternative parametrizations, providing guidelines
for real data application across various settings. Finally, we illustrate the method by studying health,
lifestyle and genetic factors associated with variability of blood biomarkers and flow cytometry-based
immune phenotypes using data from 1,000 healthy subjects from the Milieu Intérieur cohort.

Methods

The MANOCCA approach

Previous work™ showed that variability in the correlation between two standardized outcomes Y;
and Y, can be investigated through the element-wise product of those outcomes. The Pearson
correlation coefficient between Y; and Y, is expressed as pyy, = cov(Yl,YZ)/(aylayz), with
cov(Yy,Y,) = E[Y,Y,] — E[Y;]E[Y;]. For standardized outcomes and a sample size N, it can be re-
expressed as the average of the element-wise product across individuals: py,y, = (Xi=1..n Y1:Y2:)/N.
It follows that the effect of a predictor X on cor(Y;,Y,) can be tested using a standard least-squares
regression framework where X is treated as a predictor and the product Y; Y, as the outcome. One can
easily demonstrate that, under reasonable assumptions, this test is independent of mean and variance
effect. Consider the following models: Y; = ayU + ;X + €, andY, = a,U + B,X + €,, where Y; and
Y, are random variables correlated through an unmeasured normally distributed variable U, and
depend linearly on a binary predictor X, inducing an effect on the means of Y; and Y,. The conditional
covariance between Y; and Y, can be expressed as cov(Yy,Y,|X = x) = a;a,var(U), and does not
depend on X. Consider the alternative models: Y; = a;U 4+ 1AX + €, and Y, = a,U + €5, where Y;
and Y, are correlated, and the variance of Y; depends on the product of a latent continuous variable
A multiplied by the binary predictor X. The conditional covariance can again be expressed as
cov(Yy,Y5|X = x) = aja,var(U), and does not depend on X. Finally, consider the models: Y; =
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a;UX + €, and Y, = a,U + €,, where Y; and Y, are correlated, with the strength of the correlation
depending on the predictor X. The covariance can now be expressed as cov(Y},Y7|X =x) =
a,a,x var(U), and does depend on X. Further details on those approximations are provided in the
Supplementary Notes.

The approach can easily be extended to more than two outcomes by deriving an N X p matrix of
products between centered outcomes, defined as P = P, ... P, with p, the number of products, equals
k(k —1)/2 where k is the number of outcomes and N the sample size. The association between a
predictor X and P can then be derived by applying a standard two-way analysis of variance (MANQOVA),
that is P~8X. While valid, this approach is limited to situations where the effective sample size N is
substantially larger than the number of products p. When this criterion is not met, we use principal
component analysis to reduce the dimension of the product matrix, and use the top m principal
components (PCs) to form an N X m matrix Q used as input in our test. Given the independence
between the principal components, we first considered using a sum of univariate PC tests to form a
joint test, however, this approach was not calibrated (see Results and Figs. S1-2). Instead, we used a
MANOVA, that is Q~BX. For fast computation, the joint effect estimates B = f; ... f,,, of association
between each principal component ; i € [1...m] and the predictor X are first derived using a single
matrix  operation: B=&X"X)"1XTQ. The  Wilks’ lambda statistics, W =
det(QTQ — BXTXBT)/det(QTQ) is derived in a second step. Under the null hypothesis of no
association, W follows a Fisher distribution F(m, N —m — 1). Figure 1 presents an overview of the
steps for applying the approach.

In a standard MANOVA, potential confounding factors C = (C; ...C.) can be incorporated as
covariate: Q~C + BX. Again, for fast computation, we used a two steps procedure that consists in
adjusting a priori both the outcome and the predictor for the covariates: Q* = Q — .. ¥;C; , where
¥ is a vector of estimated effect of C; on Q, and X* = X — ). T;C;, where T; is the estimated effect
of C; on X, and applying the MANOVA on the residual variables: Q*~BX*.

Type I error rate simulation

We first assess the calibration under the null of MANOCCA and four existing approaches, Mantel
test!?, the Fisher method??, the Jennrich test®, and the BoxM test!, using fully simulated data and
simple scenarios (Fig. 2). We drew a series of 10,000 replicates with a sample size of 1,000, each
including a multivariate outcome Y and a binary predictor X~B(0.4) drawn independently of Y under
two different models. Note that we used a binary predictor as the four existing approaches do not
allow for the analysis of continuous predictors. In the first model, replicates included five outcomes
drawn from a multivariate normal with modest pairwise correlation. In the second model, replicates
included 30 highly correlated non-normal outcomes drawn from a multivariate chi-squared
distribution. The overall calibrations of all tests were derived by testing for association between X and
the correlation between Y variables, and conducting a visual inspection of the P-value distribution.

We next assessed the robustness of MANOCCA under a wider range of scenarios, while modifying
some of the modelling parameters. We first compared performance when using a binary or a
continuous predictor (Fig. $3). We simulated a series of 100 replicates, each including 1,000 individuals
and a multivariate outcome Y including 400 variables drawn from a multivariate chi-squared
distribution with a point mass at 0 including 0% to 50% of the data. For each replicate we drew 1,000
predictors, either from a normal or binary distribution, and applied MANOCCA while varying the
number of PCs used and applying no transformation, a rank inverse normal transformation on the
product matrix, the principal component matrix, or both. The validity of MANOCCA was assessed using
a Kolmogorov—Smirnov test for deviation from a uniform [0,1] distribution of the P-values across the
1,000 predictors tested. We then conducted simulations using real covariance matrices derived from
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the Milieu Interieur 169 flow cytometry-based variables and for a ranging sample sizes from 1000 until
5000 to draw guidelines on the parametrization of MANOCCA (Fig. S6-7). For predictors, we considered
binary predictors with frequencies in [0.01 ; 0.40], but also categorical ones mimicking genetic variants
with minor allele frequency in [0.01 ; 0.40], both generated independently of the multivariate outcome
Y.

Power simulation

To investigate power, we drew a series of 50 replicates with sample size of 1,000 including a binary
exposure X with frequency of 0.5 and a multivariate outcome Y including 50 to 169 variables (Fig. 4).
For each replicate, we used two covariance matrices, one for the exposed (C;), and the other for the
unexposed (C5), and tested the association between X and Y using MANOCCA. We generated the
outcome from a multivariate normal and real covariance matrix (C) derived from the Milieu Interieur
flow cytometry data under three scenarios. In scenario (i), C; = C and C, = |C|Y X sign(C), inducing
a covariance with similar pattern among exposed but variability in the magnitude of covariance. In
scenario (ii), C; = C and C, = 6C + (1 — §)A, where A is a random covariance generated using the R
randcorr package?®, thus inducing random noise between exposed and unexposed. In scenario (iii), we
first drew C; = C; = C and then attenuated the covariance in an arbitrary chosen subset w of C,, so

6 . N .
that C(u) = |Ciwy| X 5ign(Ciyy). We arbitrarily set y to 1.5, § t0 0.2, and 6 to 0.5, as it allowed for
a similar average power across scenarios given the other simulation parameters.

MANOCCA association screening in Milieu Intérieur

The Milieu Intérieur (M1) Consortium is a population-based cohort initiated in September, 20127
It comprises 1,000 healthy volunteers from western France, with a 1:1 sex ratio. The cohort collected
a broad range of variables, including genomic, immunological, environmental, and clinical outcomes.
We conducted systematic MANOCCA screenings for environmental effects on the covariance of two
sets of data: 169 flow cytometry-based immune cell phenotypes!® and 33 health-related blood
biomarkers, including 22 metabolites and 11 cell counts!’ (Table S1-52). We focused on two types of
predictors: health and lifestyle factors collected from questionnaires, and genome-wide variants.
Health and lifestyle factors included demographics, medical and vaccination history, psychological
traits, socio-professional information, smoking habits, physiological measurements and nutrition
measured as part of the Nutrinet?® study (Table S3). After the filtering of ancestral outliers
individuals?®?, the genetic screening was conducted in 894 participants for a total of 5,667,803
variants after filtering and imputation using IMPUTE2%2, Except when used as predictor, all analyses
were adjusted for age, sex and body mass index (BMI). For blood metabolites, the number of products
allowed for a direct analysis of the products without requiring the PCA step, and we considered both
the products and the PCs as outcomes. For comparison purposes, we also conducted, for each
screening, a standard MANOVA on the mean of the multivariate outcome (see Supplementary Notes).

Human samples

Samples came from the Milieur Intérieur Cohort, which was approved by the Comité de Protection
des Personnes — Ouest 6 (Committee for the protection of persons) on June 13th, 2012 and by French
Agence nationale de sécurité du médicament (ANSM) on June 22nd, 2012. The study is sponsored by
Institut Pasteur (Pasteur ID-RCB Number: 2012-A00238-35), and was conducted as a single centre
interventional study without an investigational product. The original protocol was registered under
ClinicalTrials.gov (study# NCT01699893). The samples and data used in this study were formally
established as the Milieu Interieur biocollection (NCT03905993), with approvals by the Comité de
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Protection des Personnes — Sud Méditerranée and the Commission nationale de I'informatique et des
libertés (CNIL) on April 11, 2018. All donors gave written informed consent. All data used in this study
are available at https://dataset.owey.io/.

Results

Method comparison and MANOCCA characteristics

We identified four existing approaches allowing to test for the effect of a predictor on the
covariance matrix of a multivariate outcome: (i) the Mantel test!!, which consists in deriving a distance
metric between two square matrices of the same dimension and comparing this distance to an
empirical distribution derived through permutation; (ii) the Fisher method??, which builds a statistic
based on the sum of the squared correlations over all cells from the covariance matrix; (iii) the Jennrich
test!3, which, in its simplest form, consists in estimating the statistic based on the Hadamard product
of a given correlation matrix and the inverse of a second matrix of the same dimension; and (iv) the
BoxM test'*, which extends the Levene’s test of homogeneity of variance, an approach often used in
human genetics®. Further description of each of the four approaches is provided in Supplementary
Notes. We conducted series of simulations to assess their robustness under the null using a binary
predictor and no covariates, as these approaches cannot handle continuous predictors and do not
allow adjustment for covariates. Except for the Mantel test, all methods performed relatively well for
a simple model with a few normally distributed outcomes. Conversely, they all displayed severe type |
error rate inflation when confronted with non-normal correlated variables, mimicking omics data (Fig.
2a-h). In comparison, when applied to the same simulated data, MANOCCA was correctly calibrated in
all simulations (Figure 2i-j).

The effect of the predictor on the covariance, the mean and the variance of a set of outcomes are
expected to be statistically independent (see Supplementary Notes). We confirmed this orthogonality
between mean (derived using a two-ways MANOVA), variance (Levene’s test), and the proposed
covariance tests through simulation. Figure 3 shows that, under realistic modelling assumptions, the
MANOCCA test captures only effects on the covariance, and can therefore identify effects missed by
both mean and variance-based approaches. Figure 3d further illustrates bivariate data where a binary
predictor X is associated with covariance but neither the mean nor the variance of the outcomes.
Importantly, the independence of the three tests does not imply signal across the three approaches
will necessarily be uncorrelated in real data. Indeed, one can easily draw scenarios with e.g. effect of
a predictor on both the mean and covariance of a multivariate outcome. Also, unless specified
otherwise, we modelled the effect of a predictor on the covariance through an interaction with a latent
variable associated shared across the outcomes tested (see Methods). Under this modelling, effects
on the covariance can in general be transposed to effects on the correlation. However, when the
predictor has an effect on the variance of either outcome, this equality is not valid anymore, as the
correlation will depend on X, while the covariance will not (Supplementary Notes).

Extension to high-dimension data

MANOCCA is readily applicable to the matrix of outcome product in all scenarios where p is
substantially smaller than N. We used Principal Components Analysis (PCA) to reduce the dimension
of P, using the top principal components as the primary outcome. As for all linear models, the
maximum number of PCs that can be analysed jointly remained bounded by the sample size. More
generally, high dimension outcomes data brings the question of the latent space dimension, that is,
the number of PCs kept in the analysis to achieve maximum power while maintaining a correct type |
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error rate. Moreover, by construction, both products and PCs tend to display kurtotic distributions,
especially for omics-like data, which might also impact performance. We conducted a series of
simulations to investigate the validity of these two components. Specifically, we measured the type |
error rate while varying the number of top m PCs selected, and applying (i) no transformation, or an
inverse rank transformation on (ii) the product, (iii) the PCs, or (iv) both products and PCs. As shown in
Figure S3a, if the predictor being tested is continuous, the test remains well calibrated regardless of
the transformation applied, allowing for the use of a large number of PCs. Conversely, when analysing
binary predictors, the test requires a normalization of the PCs, only allowing a limited number of PCs
to be analysed jointly (Fig. S3b). Figure S4-5 present the results from extended simulations, providing
guidelines to determine the number of PCs that can be analysed jointly conditionally on the predictor
frequency and the cohort sample size.

We next evaluated the power of MANOCCA across different scenarios in which the true covariance
depends on a binary predictor X with a frequency of 0.5. We tested up to 400 PCs, and normalized
either the products and PCs or the PCs only, the two transformations that display a calibrated null
distribution (Fig S3). The optimal number of PCs varied substantially across the simulated scenarios.
Figure 4 illustrates three complementary cases. When X acts as a global scaling factor of the
covariance, the maximum power is observed when using a limited number of top PCs and decreases
after reaching that optimum (Fig. 4a). When X affects only a subset of outcomes, the maximum power
is reached when including a fairly large number of PCs and converge afterward (Fig. 4b). As expected,
when X induces random noise in the covariance matrix, the power increases continuously with the
number of PCs (Fig. 4c). Among the scenarios we considered, the double normalization (on products
and PCs) produced on average larger power, and this transformation was therefore used in all
subsequent analyses.

Efficient implementation

The MANOCCA approach requires multiple steps that can be computationally expensive in large-
scale data. The main limiting step is the computation of the product matrix followed by the PCA
transformation, but it is a one-time cost regardless of the number of predictors tested. With N the
sample size, k the number of outcomes and q the number of predictors to test, the computation time
is divided in O(Nk?) for the computation of the product matrix, O(max(N, k?)? = min(N, k?)) for
the computation of the PCA, and O(Nq) for the test of q predictors (Fig. 5). Most steps were
implemented with limited usage to exterior libraries, but ground proofed against multiple existing
tools. The approach is implemented in a Python package with dependencies to numpy, scipy for the
fisher distribution, scikit-learn for the PCA and pandas for dataframe integration, but all computations
are performed under numpy array to increase performance. Each step was optimized to minimize
computational time and, given that most steps are independent, especially the product matrix, the
python version allows for a user-friendly parallel computing implementation if multiple cores are
available. An R version, though less optimized, is also available and was used to verify our results.

Application to Milieu Intérieur omics data

We applied MANOCCA in 1,000 healthy individuals from the Milieu Intérieur (M) cohort to screen
for factors associated with changes in the covariance of 33 blood biomarkers and 169 flow cytometry-
based immune phenotypes (Table S1-3). Both datasets display high correlation, ranging from -0.71 to
0.99 for the flow cytometry data, and from 0.08 to 0.98 for the biomarkers (Fig. S6). We first
investigated the effect of 49 health-related and lifestyle factors using a subset of 992 participants with
complete data. We applied the proposed PCA reduction, and investigated power when using 5 to 200
top PCs with a step of 5, resulting in 40 tests per variable. As showed in Figure 6a-b, multiple features
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were associated at a stringent Bonferroni corrected significance level (P < 2.5 x 10° accounting for
1,960 tests). Flow cytometry-based phenotypic covariance was associated with age (P < 6.0 x 10°) and
all smoking variables: smoking status (P < 2.1 x 10%2), smoking frequency (P < 1.2 x 10'1}), number of
years smoked (P < 3.8 x 1019, number of years since last smoke (P < 7.5 x 10?). Likewise, blood
biomarkers covariance was strongly associated with age (P < 3.5 x 1033) and sex (P < 1.3 x 10%°), and
to a lesser extent with BMI (P < 1.6 x 107) and smoking variables (minimum P < 5.5 x 102, for smoking
status). Except for the age-flow cytometry association, the maximum association signal was almost
reached when including the top 50 PCs and display only modest improvement when including more
PCs (Fig. 6).

Thanks to a limited number of outcomes, the blood biomarker dataset could also be analysed by
applying MANOCCA directly on the 528 pair-wise products. To investigate the value of using the PCA
in such situations, we applied MANOCCA on the product and compared results against the PCA-based
approach. Note that the product-based test should be approximately equivalent to the test of all PCs,
which was confirmed for these data (Fig. S7). Comparing the minimum P-value across the 40 PCA-
based test (Ppc4) against the P-value from product-based test (Pp;.,4), we observed a substantial gain
for the PCA-based approach, even when accounting for the multiple testing cost of the PCA approach.
The product-based test identified only five of the seven signals from the PCA-based approach (Fig. 7).
For the strongest signals, the association P-value from the best PCA-based test was several orders of
magnitude larger than for the product-based test (e.g., for age, P= 3.5 x 103% and 2.6 x 10,
respectively). This suggests that the benefit of testing multiple sets of PCs can strongly outpace the
statistical cost of multiple testing.

When comparing the MANOCCA results to a standard MANOVA applied to both datasets, MANOVA
identified significant associations (P < 1.0 x 10 to account for the 49 tests conducted) with 8 and 13
predictors associated in the flow cytometry data and the blood biomarkers data, respectively (Table
S4). These associations included all associations detected by MANOCCA. More generally, while the two
tests are expected to be independent, we observed a strong correlation between association signal as
measured by the -log10(P-value) (0piomarkers = 0-88, Pcytomerry = 0.65), suggesting that many of
the predictors are associated with effects on both the mean and variance of the outcome studied (Fig.
S8). However, several predictors display discordant associations, with a significant effect on the mean
but no effect on the covariance. This includes, for example, systolic blood pressure (Pygnova = 2-6 X
10", Pyanocca = 0.14), and heart rate (Pygnova = 4.9 X 10%*, Pyanocca = 0.001) effect on blood
biomarkers. On the other hand, one predictor, the number of years of second-hand smoking, display
suggestive significance with MANOCCA on the flow cytometry data, but did not display mean effect
(Pmanova =0-31, Pyanocca = 3.0 x10°).

Finally, we conducted genome-wide association studies (GWAS) for both blood biomarkers and flow
cytometry datasets, testing 5,699,237 genetic variants with a minor allele frequency (MAF) > 5% in up
to 894 samples where both genetic and phenotypic data were available. All tests were adjusted for
age, sex, BMI and the 10 first genetic PCs of the genotyping matrix. Note that for this genetic screening
we only applied the adjustment on the outcomes. Two-sided adjustment has already been used for
mean effect tests in GWAS to account for relatedness?, but would require further investigation to be
extended in the MANOCCA test. Following the results from our simulations for genetic variants with a
MAF 5% or larger, the type | error will remain robust only for up to 50 principal components (Fig. S4c),
resulting in 10 GWAS per dataset. MANOCCA did not detected any genome-wide significant signals at
a stringent Bonferroni corrected threshold (P = 5 x 10, Fig. $9). Yet, 46 genetic variants from eleven
loci show suggestive significance association (P = 5 x 107, Table S5). We conducted phenome-wide
association study on each variants using the jeu database API**. Most variants showed strong
association with multiple phenotypes from this database (Table S6). In particular, four out of the
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eleven loci harboured genetic variants that were eQTL for one or multiple genes (Table S7), suggesting
that our covariance-based approach might capture variants involved in the regulation of gene
expression.

Discussion

Covariance is a fundamental feature of omics data. Covariances might be explained by multiple
factors, including shared biological mechanisms, shared environmental risk factors, or causal effects
between the outcomes measured. However, our understanding of the factors involved in covariance
has been very limited, partly due to the lack of adapted methodologies and software allowing for
systematic screening of large-scale omics datasets. Here, we present MANOCCA, a robust and
computationally efficient approach for the identification of predictors associated with the covariance
of a multivariate outcome. We show that MANOCCA outperforms existing covariance methods and
that, given the appropriate parametrization, it can maintain a calibrated type | error in a range of
realistic scenarios when analysing highly multidimensional data. The application of MANOCCA to the
Milieu Intérieur dataset demonstrates the validity and relevance of our approach, identifying multiple
health-related and lifestyle factors significantly associated with the covariance of blood biomarkers
and immune phenotypes.

The MANOCCA approach has three main limitations. First, we used principal components analysis
to address situations where the number of covariance terms is larger than the sample size. We defined
guidelines that constrain the maximum number of PCs that can be used to ensure the validity of the
test when analysing binary or categorical predictors. Regarding power, both simulation and empirical
data analyses show that the optimal number of PCs to be included to maximize power can vary
substantially conditional on the true covariance association pattern. Here, we use systematic
screenings testing a range of PCs, and corrected the association results for multiple testing. Our
analyses suggest that the benefit of this strategy largely overcomes its statistical cost. Note that this
correction strategy might be further improved as it does not account for correlation between each PC
test. Second, our extensive simulation analyses show that when reaching high dimensions, the validity
of the test relies on a strong data pre-processing to circumvent the non-normal distribution of products
and principal components. Future work is required to identify a refined modelling of these non-normal
distributions and avoid this pre-processing. Third, we investigated the performance of our approach
on two types of omics data (blood flow cytometry and metabolites), and confirmed its validity and
power in these data. Omics data from other sources (e.g., RNAseq) might carry additional complexity
that would have to be investigated by simulations before conducting real data applications.

Given the increasing number of high dimensional omics data available in existing human cohorts,
our approach provides opportunities to investigate multivariate outcomes from a new perspective.
Because MANOCCA is built on a standard linear framework, the approach can be extended in many
directions, including the derivation of the individual contribution of outcomes and the development of
predictive models. Altogether, we expect the application of our method to produce novel insights on
the complex structure linking highly intertwined omics data.
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Figures

Figure 1. Overview of the MANOCCA approach

Starting with a multivariate outcome matrix of N samples and k variables, the data are first centered.
The pairwise product of each of the k outcomes is computed, generating a high dimensional matrix of
size N X k(k—1)/2.1f N >> k(k —1)/2, a joint test of all products can be derived, otherwise the
dimension of the product matrix is reduced using a Principal Component Analysis, to form a principal
component space of size N X m. The final test, including covariates, can be performed on the products
or the top m PCs using a Wilk’s lambda test.
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Figure 2. Limitation of existing methods

We assessed the calibration under the null of four approaches representing the state-of-the-art for
covariance matrix comparison: the Fisher method (a,b), the Jenrich test (c,d), BoxM (e,f), and Mantel
test (g,h), against the proposed MANOCCA approach (i, j). Note that we applied MANOCCA directly on
the product matrix thanks to the high sample size compared to the number of products. We simulated
series of 10 000 replicates, with a sample size of 1000 each, under two different null models. In the
first model (a,c,e,g,i), replicates included five outcomes Y drawn from a multivariate normal with
modest pairwise correlation. In the second model (b,d,f,h,j), closer to the expected distribution of
omics data, replicates included 30 non-normal outcomes with high correlation. Calibration was derived
by splitting each replicate in two random sets according to a random binary variable X~B(0.4), and
testing for association between X and the correlation between Y variables. The panels present the
distribution of the P-values, expected to be uniformly distributed under this null model, for the five
approaches and the two models.
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Figure 3: Orthogonality between MANOCCA and other tests

We simulated series of datasets under three models where a binary predictor X influences
orthogonally either the mean, the variance or the covariance of a bivariate outcome Y. In model a),
each outcome Y; is drawn from a standard additive model: Y; = U + [5;X + ¢;, where U is a normally
distributed variable shared across Y and ¢; are independent normal residuals. In model b), each Y; is
drawn from Y; = U + y;A4; X + ¢;, where 4; is normally distributed variables producing heterogeneity
in the variance of Y; conditional on X. In model c), each Y; are drawn from the interaction model Y; =
6;UX + ¢;, that produces heterogeneity in the correlation across Y; conditional on X. For each model,
we derived the power at the P-value threshold of 0.05 for a joint mean effect test (MANOVA), a test of
variance for a randomly selected Y; (LEVENE), and the proposed covariance test (MANOCCA). The
parameters f5;, y; and §; were chosen to maximize the power of the at least one of the three tests. The
blue dash line indicates the P-value threshold of 0.05. Panel d) shows an example of a bivariate
distribution where X is not associated with the mean and variance of the two outcomes but with their
covariance.
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Figure 4. Impact of transformation and number of PCs on statistical power

Power of MANOCCA as a function of the number of principal components retained in the joint test (2
to 400), while applying two different pre-processings: a rank-inverse normal (rkv) on the principal
component only, or a rank-inverse normal on the principal components and the products. We drew
series of 50 replicates with sample size 1,000, including a binary exposure with frequency of 0.5 and
30 to 169 outcomes. For each replicate, we drew two covariance matrices, one for the exposed, and
one for the unexposed. We generated the outcome under three scenarios using a multivariate normal
and covariance derived from real data. In panel a) the two matrices are similar but with attenuated
covariances among exposed. In panel b) random noise is added to the covariance of the exposed group.
In panel c) the two matrices are equal, except for a subset of outcomes where the covariances have
been attenuated. Left panels show the average over the 100 replicates of the -logio(P-value) derived
using MANOCCA for the two pre-processings. Right panels present the matrix produced for each
scenario using data from an arbitrarily chosen replicate, with upper and lower triangles showing the
true covariance in unexposed and exposed, respectively.
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Figure 5. Computational efficiency

Computational time for running MANOCCA on varying sample sizes, numbers of outcomes and
numbers of predictors tested. Over 1000 simulations each time, we simulated a multivariate normal
distributions of various sizes and computed the product Matrix > Rank transform > PCA > Rank
transform using sequential computation. Panel a) displays the running time to transform the outcome
matrix into the reduced covariance matrix for the test, as a function of the number of outcomes (10,
100, 150, 200, 300, 400), and sample size (100, 1000, 5000 and 10000). Y-axis is in logio-scale. Panel b)
displays the running time for the testing part for a ranging number of sample sizes (100, 1000, 5000
and 10000) and ranging number of predictors (1000, 10000, 100000).
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Figure 6. Screenings for host factors

Screenings for effect of 49 health and lifestyle factors on the covariance of 169 flow cytometry-based
immune phenotypes (a) and 33 blood biomarkers (b) using the MANOCCA approach. We ran each
screening using 5 to 200 principal components (PC) with a step of 5. Variables with a P-value below the
adjusted Bonferroni threshold (2.6 x 10, red dashed line) for each screening are displayed in colour:
age (green), sex (yellow), body mass index (orange), smoking (purple gradient). Panel c) presents the
list of predictors considered and displays the number of PCs corresponding to the minimum P-value
observed.
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Figure 7. Comparison of PCA-based and product-based MANOCCA

Screening comparison for covariance signal using MANOCCA on the 33 blood biomarkers as outcomes
and using the health and lifestyle eCRF questionnaire data as predictors. We ran the MANOCCA
screening using the full 528 pair-wise biomarkers products (blue dots) and the principal components
(PCs) derived from the product matrix (red dots). For the latter, we kept the min(P-value) out of 40
models including 5 to 200 PCs with a step of 5 PCs. The corresponding Bonferroni correction threshold
(dashed line) were derived for each approach based on the number of tests conducted (P-value
threshold of 1.0x102 and 2.6x10°, respectively).
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