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Abstract:

Single-cell spatial transcriptomics such as in-situ hybridization or sequencing technologies can
provide subcellular resolution that enables the identification of individual cell identities,
locations, and a deep understanding of subcellular mechanisms. However, accurate segmentation
and annotation that allows individual cell boundaries to be determined remains a major challenge
that limits all the above and downstream insights. Current machine learning methods heavily rely
on nuclei or cell body staining, resulting in the significant loss of both transcriptome depth and
the limited ability to learn latent representations of spatial colocalization relationships. Here, we
propose Bering, a graph deep learning model that leverages transcript colocalization
relationships for joint noise-aware cell segmentation and molecular annotation in 2D and 3D
spatial transcriptomics data. Graph embeddings for the cell annotation are transferred as a
component of multi-modal input for cell segmentation, which is employed to enrich gene
relationships throughout the process. To evaluate performance, we benchmarked Bering with
state-of-the-art methods and observed significant improvement in cell segmentation accuracies
and numbers of detected transcripts across various spatial technologies and tissues. To streamline
segmentation processes, we constructed expansive pre-trained models, which yield high
segmentation accuracy in new data through transfer learning and self-distillation, demonstrating
the generalizability of Bering.
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Introduction

In recent years, there has been a significant advancement in single-cell spatial transcriptomics
technologies, providing powerful tools to study transcript localization and cellular processes at a
high resolution and scale'-2. These innovative technologies comprise in-situ hybridization
methods, such as MERFISH and SeqFISH?#, and in-sifu sequencing approaches such as
STARmap, pciSeq®~’. Besides, Several commercially available technologies, such as
MERSCOPE, Nanostring CosMx, and 10x Xneium, have been developed and made the spatial
techniques more accessible to researchers® 0. Although single-cell spatial transcriptomics
technologies were initially limited by the need for multiple rounds of tissue staining, resulting in
lower throughput compared to Next-Generation-Sequencing (NGS) technologies, this constraint
is outweighed by the ability to achieve high resolutions of hundreds of nanometers, reaching
subcellular resolutions!!. This attribute allows for extensive exploration of cellular processes and
interactions at high spatial resolution. Moreover, cutting-edge image-based spatial
transcriptomics technologies, including seqFISH* and STARmap PLUS, have achieved
significant advancements in gene throughput, reaching several thousand or even tens of
thousands*>. As a cutting-edge technology, single-cell spatial transcriptomics renders rich
information on transcripts' spatial distribution at remarkably high resolutions, while staining
images of the data offer valuable insights into cell morphological characteristics.

Despite the vast potential of single-cell spatial transcriptomics technologies, analyzing the
resulting data presents several complex computational challenges. One of the most significant
obstacles is cell segmentation, which is critical for accurately delineating individual cells within
a tissue sample in spatial data. Pioneering deep learning approaches, such as Cellpose and
JSTA'213 have proven effective for cell segmentation tasks using nuclei staining. However,
there are two challenges associated with this strategy. Firstly, a significant number of transcripts
are present in both the nuclei and cytoplasm, making them difficult to fully capture through
nuclei staining alone®. Additionally, this strategy is unable to capture transcript spatial patterns or
their colocalization, missing out valuable insights into cell compartments and structures'*. For
instance, transcription factors, such as OCT4, and histone genes, are predominantly found in
nuclei, whereas cytoskeletal protein genes such as TLN are more commonly observed in the
cytoplasm and membrane'>. In light of this, some methods have sought to leverage spatial
distributions of transcripts for cell segmentation in spatial transcriptomics data, such as
ClusterMap and Baysor'®!”. However, it remains challenging for these statistical methods to
efficiently learn the latent representation of transcript colocalization relationships within such
high-dimensional spatial data. An innovative approach taken by SCS involves the utilization of
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transformer models on integrated imaging and transcript data to enhance cell segmentation
accuracy. Nevertheless, one of the core steps of SCS relies on the identification of cell nuclei
based on nuclei staining, which is often observed to be incomplete in its coverage of cells!®.
Consequently, this strategy may lead to a significant loss of cells and transcripts.

In the face of these challenges, we embarked on a comprehensive exploration of the multi-modal
data in single-cell spatial transcriptomics. We found significant loss of transcripts during
segmentation in strategies that sorely rely on staining images, and highlighted gene patterns that
are indicative of cell types and boundaries from transcript colocalization data. To tackle
challenges in segmentation and build upon discoveries of transcript colocalization, we introduce
a computational approach that utilizes a graph neural network to harness transcript colocalization
relationships for cell-type annotation. Notably, the learned transcript representations are
transferred to the segmentation task as a component of multi-modal learning input,
circumventing the limitations of single-modal learning. Innovatively, we approached the
segmentation task as the edge prediction task to fully leverage transcript colocalization
relationships and achieve a finer level of segmentation compared to conventional pixel-level
segmentation methods. We have successfully applied this method to various tissue types and
technologies, whether image-free or image-dependent, and have showcased its superior
performance in accurately identifying precise cells in 2D and 3D thick tissues. Additionally, we
demonstrate the generalizability of our approach by transferring the pre-trained model to a
completely new dataset and achieving accurate cell segmentation results through self-distillation,
highlighting the potential of broad applications across various tissues, volumes, and
technologies.

Results

Spatial transcriptomics data modalities for segmentation analysis

Multiple types of staining images, such as DAPI, poly-A, and membrane staining, have been
generated across spatial datasets and technologies for cellular morphological detection and cell
segmentation (Fig.1a, Supplementary Fig.1). Among them, DAPI is the most widely used
staining image for cell segmentation. However, when we projected transcripts onto the paired
DAPI staining, we observed that a significant number of spots were not overlapped with strong
DAPI signals, varying from 30% to 70% across samples and datasets (Supplementary Fig.2),
which can lead to loss of information during segmentation. While membrane staining can
provide rich information for segmentation'’, its inadequate and imbalanced imaging signals
across different cell types could cause biased segmentation and loss of information
(Supplementary Fig.3).

To gain a holistic understanding of the single-cell spatial omics data, we delved into transcript
profiles, and revealed their patterns of cell compartments and subcellular structures!!. We
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utilized a factor analysis model'® in non-small cell lung cancer (NSCLC) and identified three
distinct subcellular gene patterns in tumor cells, including nuclear genes (factor 2) and peripheral
genes (factor 3) (Supplementary Fig.4a-c). Nucleus-specific genes, such as MALATI and

NEATI, exhibit a high enrichment within the nuclei region. In contrast, genes involved in kinase
phosphatase activity, such as DUSP5, exhibit a notable enrichment within the cytoplasm of cells
(Supplementary Fig.4d-e), providing compelling evidence of a subcellular pattern as indicated by
the spatial distribution of transcripts. To further understand the underlying information of
transcript physical colocalization, we constructed neighborhood gene components (NGCs) by
grouping the nearest transcripts together (Fig.1b) and examined their latent dimensions using
Uniform Manifold Approximation and Projection (UMAP) (see Methods). Remarkably, the
distributions of NGCs on UMAP aligned closely with cell type and compartment annotations,
highlighting the highly indicative nature of transcript neighbors in relation to cell-type-specific
subcellular structures and boundaries (Supplementary Fig.5).

Bering overview

To effectively tackle the challenges mentioned above and fully capitalize on the information
embedded in transcript distributions within spatial transcriptomics data, we have developed
Bering, a novel approach that combines graph neural network (GNN) and transfer learning for
joint cell segmentation and annotation (Fig.1c-f, Supplementary Fig.6). Drawing inspiration from
the insights gleaned through the analysis of transcript colocalization data, Bering begins by
harnessing the colocalization graph as its input. Subsequently, we employ GNN to predict both
noises and cell types associated with transcripts, during which the model acquires the ability to
encode representations for transcripts, leveraging the intricate information related to cell-type-
specific subcellular structures and their boundaries (Fig.1d). These informative representations
will be used in the segmentation task as part of the multimodal input (Fig.1e).

In the context of cell segmentation, traditional methods typically rely on pixel-level
segmentation on images which, however, struggles to adequately represent the intricate
relationships between adjacent transcripts and fails to discern cell assignments for transcripts at
sub-pixel granularity. In contrast, to address these limitations, we have innovatively approached
it as an edge prediction task, which significantly enriches the representations of gene
relationships, in addition to the transferred physical colocalization relationships. This involves
the classification of connections between nodes (transcripts or proteins) into two categories:
those originating from the same cell and those originating from different cells (Fig.1f).
Recognizing the pivotal role transcript colocalization in cell boundaries detection, we have
devised a novel strategy, where we leverage the learned cell-type-aware node representations
obtained from GNN and transfer them as edge embeddings for the edge prediction task (Fig.1e,
Supplementary Fig.6). These embeddings are augmented with image-aware embeddings
obtained from convolutional neural networks (CNN) and distance-aware embeddings derived
from learnable radial basis function (RBF) kernels, respectively (Fig.le, Supplementary Fig.6).
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Additionally, multi-modal input with cell-type-specific node embeddings and RBF distance
kernels provides flexibility for segmentation masks to adapt to varying sizes across different cell
types, mirroring real-world scenarios (Supplementary Fig.7). Following the predictions of edge
labels, we apply community detection techniques such as Leiden clustering to accurately identify
individual cells within the tissue slice (Fig.1f) (Methods). This comprehensive process ultimately
enables the precise segmentation of individual cells, which can be conveniently annotated using
transcript-level cell annotations, streamlining downstream analysis. In the Bering model, the
combination of node representations and distance kernels provides substantial knowledge for
accurate image-free segmentation, particularly in sparsely populated tissues like the cortex.
Conversely, densely packed tissues such as tumors and the ileum can benefit from the Bering
model that incorporates image-aware embeddings, improving segmentation performance, and
thus, generating more accurate mapping of gene expression in space.

Validating Bering performance of background noise and cell type prediction

Background noises pose a substantial challenge in some spatial technologies as they lack distinct
boundaries from real signals, as exemplified in MERFISH and STARmap??°. Bering addresses
this issue by leveraging its GNN model to predict both background noises and real signals with
cell-type annotations. To assess its performance, we conducted benchmarking experiments,
comparing Bering with other methods for noise prediction and transcript-level cell annotation. In
the case of mouse cortex MERFISH data, the original unsegmented transcripts accounted for
more than half of the total transcripts, encompassing both noise and unsegmented real signals
due to conservative segmentation in the original paper’. Baysor failed to accurately capture the
real signals, whereas Bering demonstrated a more cautious approach in real signal prediction,
resulting in more precise background noise prediction (Fig. 2a, Supplementary Fig.8). In this
case, Bering exhibited a notable improvement of up to 50% in noise prediction accuracy
compared to other methods (Fig. 2b). Image-based segmentation methods such as Watershed and
Cellpose often heavily rely on available staining images, particularly DAPI staining, which tends
to yield conservative segmentation results (Fig.2b, Supplementary Fig.8b). Importantly, Bering
consistently showcased superior performance in noise prediction across various technologies,
including and MERFISH and pciSeq (Fig.2b).

Furthermore, we conducted a benchmark comparison of transcript-level cell type annotation
using the state-of-the-art approach TACCO?!. In the case of ductal carcinoma in situ (DCIS)
Xenium data’®, Bering's predictions accurately identified cell labels and preserved more detailed
tumor microenvironment components compared to TACCO (Fig.2c, Supplementary Fig.9).
Specifically, Bering successfully distinguished proliferative invasive tumor cells from other
tumor cells in the niche, whereas TACCO failed to differentiate between these two types of
tumor cells (Fig. 2c). Additionally, Bering captured more comprehensive immune cell
distributions within the tumor microenvironment in non-small cell lung cancer (NSCLC)
(Supplementary Fig.9c). Importantly, Bering with graph models demonstrated fewer sporadic
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predictions and more consistent cell predictions compared to Bering without graph models,
highlighting the advantages of information sharing in the neighborhood facilitated by graph
models, which aligns with our initial hypothesis during model construction (Fig.2c,
Supplementary Fig.9a). Implemented across diverse technologies and tissues, Bering consistently

achieved higher accuracy in cell type prediction, with improvements ranging from approximately
10% to 50% compared to TACCO (Fig.2d).

Validating Bering performance on cell segmentation

The Bering model for cell segmentation incorporates various components, including graph
models, RBF kernels, and image embeddings learned from CNNs. To assess the contribution of
each module and understand the model's capabilities, we conducted ablation studies and
evaluated the performance of cell segmentation using quantitative metrics such as adjusted
mutual information (AMI), the fraction of assigned molecules, and the number of segmented
cells. The results revealed that the inclusion of either image embeddings or RBF distance kernels
led to significant improvements in segmentation accuracies (Supplementary Fig.10a) and
sensitivities (Supplementary Fig.10b). While image-free segmentation performed well in the
CosMx NSCLC data, the addition of image embeddings increased the number of segmented cells
by approximately 10% (Supplementary Fig.10c). Consequently, for most datasets, we
implemented Bering with graph models and RBF kernels, and incorporated image embeddings if
cell staining images were available.

Prior to conducting comprehensive benchmark studies, we performed a hyperparameter search
for both Bering and the benchmark methods (Supplementary Fig.11-14). In Bering, we
thoroughly compared hyperparameters such as the number of GNN layers, number of training
cells, and structures of RBF distance kernels to determine the optimal settings (Supplementary
Fig.11). In the cell segmentation process of Bering, unsupervised clustering is involved, and the
hyperparameter of clustering resolution can be set manually. It was observed that stable cell
segmentation results were achieved when the edge prediction accuracy was high (Supplementary
Fig.12). This implies that stable segmentation can be obtained by focusing on improving the
accuracy of edge prediction, rather than purely adjusting the clustering resolution
hyperparameter. Additionally, we searched hyperparameters for the benchmark methods to
achieve the best segmentation performance for benchmark studies (Supplementary Fig.12-13).

We then implemented the benchmark methods on the NSCLC CosMx data and observed that
Bering accurately preserved cell boundaries compared to other methods. In contrast, Watershed
and Cellpose exhibited a relatively conservative segmentation approach, while ClusterMap and
Baysor predicted a certain number of cells with abnormal sizes (Fig.3a). Similar observations
were made in other tissues, including ileum, cortex, and DCIS (Supplementary Fig.15).
Quantitative measurements also indicated the superior segmentation performance of Bering in
terms of prediction accuracies across different datasets and technologies (Fig.3b). Moreover,
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Bering consistently detected a higher number of transcripts in individual cells with a relatively
lower standard deviation, indicating a higher signal detection capacity and stable segmentation
sizes (Fig.3c). This observation is supported by the measurement of segmented cell areas and the
fraction of assigned molecules, where Bering segmented cells with larger average sizes (up to
40% compared to the original paper) and harvested more transcripts during the segmentation
process compared to other methods (Supplementary Fig.16).

To gain insights into the quality of single cells derived from different segmentation methods, we
conducted benchmark comparisons at the single-cell level using the NSCLC CosMx data, where
cell labels obtained from model predictions or label transfers were displayed within reduced
dimensions. (Fig.3d, Supplementary Fig.17a, Methods). We measured the correlations between
cell types. Remarkably, we observed that Bering exhibited low correlations between tumor and
non-tumor cells, and closely mirrored the correlation patterns observed in the original paper
(Fig.3e, Supplementary Fig.17b). In contrast, other methods demonstrated strong cross-
correlations between tumor and non-tumor cells, alongside diminished correlation within non-
tumor cells (Supplementary Fig.17b). These findings suggest that Bering's segmentation results
have cleaner captured signals and less contamination. Furthermore, the expression of marker
genes clearly indicates the separation of tumor and non-tumor cells (Fig.3f).

Bering’s applications in versatile spatial technologies and 3D thick tissues

A diverse range of technologies now exists for generating single-cell spatial transcriptomics data,
offering distinct data qualities and gene throughput capabilities. For instance, osmFISH enables
the capture of 35 genes, while seqFISH+ has scaled throughput to accommodate up to 10,000
genes (Supplementary Fig.1, Table S1). However, the application of these technologies across
different tissues presents significant challenges in terms of cell segmentation®. To showcase the
effectiveness of Bering, we have applied the model to various tissues, including densely packed
tissues like the ileum and embryo (Fig.4a-h). Our model generates precise cell boundaries with
corresponding cell annotations, providing a convenient resource for downstream analysis. A holy
grail of spatial transcriptomics is to generate spatially resolved gene expression in 3D tissues and
organs, thus, we applied Bering to the latest 100-um thick-tissue MERFISH cortex tissue?? for
3D segmentation (Fig.41). We segmented 397 cells and harvested 530,912 transcripts, 9.3%
higher than the original paper. In summary, Bering successfully segments cell boundaries and
accurately predicts their corresponding cell types, thereby demonstrating its efficacy in
simultaneous cell segmentation and annotation across diverse datasets and technologies, in both
2D and 3D settings.

Generalized Bering model using transfer learning and self-distillation

Bering, as a deep learning approach, provides the distinct advantage of cross-dataset portability.
For example, we successfully applied a pre-trained model developed from one slice of the mouse
cortex to another slice, yielding highly satisfactory segmentation performance. This led to
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unambiguous cell type annotations (Supplementary Fig.18a) while achieving comparable
performance to the fine-tuned model (Supplementary Fig.18b).

However, the portability of the Bering pre-trained model can be significantly hindered by batch
effects across datasets, where the throughput of genes, which serve as features in the node
classification task, can vary dramatically. This presents substantial challenges when applying
pre-trained models to new data. To overcome this obstacle, we employed transfer learning
techniques and employed the self-distillation method to enhance prediction results on the new
data (see Methods). In the specific case of the cortex MERFISH data, we acquired a pre-trained
Bering model from Zhang et al.? and utilized it to predict cells and annotations in the new cortex
VISp data from Biancalani et al.?*. Less than 20% of molecules were assigned cell labels initially
by the pre-trained model (Fig.5a-c). To better capture the latent representation of the new data,
we improved the pre-trained model through two rounds of self-distillation, leveraging the coarse
prediction labels in the new data (see Methods). As a result, a larger number of transcripts were
successfully labeled and segmented, with over 80% of transcripts assigned labels and more than
2,000 cells segmented (Fig.5c). Notably, the different layers of neurons (L2-L6) were accurately
predicted, with intermittent distributions of interneurons and supporting cells (Fig.5a, b).
Furthermore, the predicted single cells from various cell types exhibited distinct distributions on
the UMAP, highlighting a more pronounced separation between cell types compared to the
predictions prior to self-distillation.

We further applied this strategy to tumor datasets, where the pre-trained model was derived from
NSCLC CoxMx data comprising 980 genes, and the validation data was obtained from the DCIS
dataset, consisting of 313 genes. Without any fine-tuning, approximately 40% of transcripts in
DCIS were successfully segmented and assigned cell labels (Supplementary Fig.18c). However,
the resulting transcript distribution landscape on the tumor slice lacked sufficient details for
individual cells (Fig.5e,f). Through the process of self-distillation, we achieved significant
improvements. More than 80% of transcripts were labeled, and over 3,000 cells were
successfully segmented, which is approximately three times more compared to the results before
self-distillation (Supplementary Fig.18c). This enhancement allowed us to reveal finer details of
tumor niches, such as the colocalization of immune cells and tumor cells, as well as the precise
boundaries of tumor regions (Fig.5e,f). Notably, the expression patterns of marker genes
demonstrated specific expression across different cell types, confirming the accuracy of our cell
segmentation and annotation.

Discussion

Cell segmentation remains a challenging task today for several reasons. One of the primary
difficulties is that some tissues have densely packed cells with unclear boundaries, making it
difficult to make accurate segmentation. For instance, some cells in tumor tissues and ileum!”
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have almost no gaps between them, presenting a very different scenario than the cortex, where
tissues have a sparse distribution of cells. Additionally, the limitations of capture rates and RNA
diffusion in some technologies, such as pciSeq and MERFISHS, result in sparse and noisy spots.
Cell staining imaging, including DAPI, poly-A, and membrane staining, reveals imbalanced
image signals among different cell types and incomplete capturing of entire cells due to
limitations in scanning depth. While traditional methods have struggled to achieve accurate cell
segmentation masks, the molecular information generated by spatial technologies has opened a
new avenue to address this challenge.

The field of subcellular transcriptomics has gained popularity as a result of the rapid
advancement of spatial omics technologies!!:1415:19.24 These cutting-edge technologies have
enabled researchers to obtain more detailed information about cellular processes than ever
before. For example, recording the transmission of neurotransmitters has been difficult in the
past, but with high-resolution technology such as Ex-seq’, it is now possible to study neuron
interactions within the synapse. Over the last few years, high-throughput sequencing-based
spatial technologies, such as Slide-tag and Stereo-Seq have greatly enhanced the spatial
resolution to near-single-cell or subcellular levels?. Additionally, the size of features in image-
based spatial transcriptomics technologies has increased from 30 to 10,000*, making it
increasingly feasible to use deep learning models. However, the primary obstacle to
implementing such models remains the shortage of labels for specific tasks. Consequently,
previous methods for analyzing subcellular data, such as Bento and FISHFactor, have primarily
relied on statistical models for unsupervised learning >, However, cell segmentation, which is
relatively easier to obtain a large number of labels using traditional methods, presents the
possibility of exploring the application of deep learning models in subcellular resolutions.
Benchmark results in our study demonstrate the superior performance of deep learning models
compared to traditional methods by inferring the complicated underlying relationships of gene
colocalizations.

In our paper, we explore the possibility of detecting cell borders using subcellular transcript
distributions and demonstrate the successful application of the graph model. Although Bering
gained good performance in cell annotation and segmentation, we expect Bering can be further
improved in future studies. First, graphs in the model were built using k-nearest neighbors, which
mainly consider the relationships of transcript location within a local region. However, cells are
usually sphere shapes in their 3D tissue environments and the relationships of transcripts on the
membrane of two sides of the cell may not be efficiently captured by the graph. Second, the
model requires labels for training purposes. If the labels come from Watershed, which may over-
rely on the nuclei position and give conservative cell masks, it may also lead to conservative
prediction in the Bering model. Third, the speed of training for the image-based encoder is
relatively slow compared to image-free segmentation, where we only use the gene-colocalization
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information as the input. Technical performance can still be improved for better and faster
training and prediction.

Obtaining pre-trained labels can be a difficult and labor-intensive task. Consequently, it would
be advantageous if we could obtain pre-trained models for specific tissues based on large-scale
data. The cortex?’, with its accessible subcellular transcriptomics data, is an example of such a
tissue. We have demonstrated that a pre-trained model can be readily applied to a new dataset or
a new technology of the same tissue and enhanced through fine-tuning the data itself. However,
the main hurdle in obtaining practical pre-trained models for various technologies is the
variability in the features being measured and the lack of a large amount of data. For instance,
the overlap of measured genes between the MERFISH cortex data and the osmFISH cortex data
is limited to less than 15. This presents a significant challenge for transfer learning in such cases.
The selection of genes to be probed and measured is heavily influenced by authors' interests,
which can result in significant heterogeneity across datasets. The varying choices and depth of
features create challenges for portable models. Nevertheless, as more genes are probed in new
versions of these technologies and more datasets from various tissues are generated, this issue
will become less problematic in the future.

In summary, we tackled the cell segmentation task for spatial data using a graph model and
transfer learning, incorporating multi-modality information during training. We demonstrated the
model's portability across various datasets and technologies. Nonetheless, there are still some
challenges that we hope to address with future technological advancements.

Methods

Bering model framework

The Bering model, illustrated in Figure 1 and Supplementary Fig.7, consists of two main
components. The first component involves node classification to distinguish between noise and
real signals, with predictions made for cell types. In the second component, cell segmentations
are performed, which entails predicting edges. Initially, we construct a gene colocalization graph,
which serves as the input for a graph neural network used in the node classification task. The
node representations, along with auxiliary edge embeddings derived from image staining and
distance kernels, are employed as edge embeddings. These combined edge embeddings are
utilized to predict edge labels, wherein intercellular and intracellular edges are binarized as
negative and positive labels, respectively. The final edge predictions are then utilized to build a
molecular connection graph, where a community detection algorithm is applied to achieve cell
segmentation. Finally, the outcomes of both node classification and cell segmentation tasks are
merged to obtain annotated single-cell data.
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Gene colocalization graph
In this model, molecules, such as transcripts, are depicted as nodes on the slice, and we utilize
their 2-dimension (2D) or 3-dimension (3D) spatial coordinates to construct k-nearest neighbor
graphs (KNN) to capture gene colocalization information. By default, we consider the 20 nearest
neighbors. Edges of the graph depict equal-weight neighborhood relationships between nodes.
The graph is described as below:

ch = (V' Egc)' Egc = {(u' U) |v e ad]k(u)} (1):
where V represents the node set, Ey. represents the edge set and adjy (u) represents the k-nearest
neighboring nodes of node u in Euclidean space.

Node features
To capture gene colocalization information in 2D or 3D spatial coordinates more effectively, we
utilize neighborhood gene components (NGCs) as node features. NGCs consist of gene
components within the k-nearest neighborhoods, resulting in sparse count matrices where genes
serve as features. This enables us to incorporate spatial relationships and uncover insights about
gene colocalization patterns. Below is the definition of NGC:

NGC;q = [{ulu € adj,(i),gene, =q}| (2),
where i represents molecule i in the node set V and q denotes gene g in the gene set. The matrix
value NGC; , indicates the count of detected genes g in the neighborhood of node i. The total
number of genes in the dataset is defined as Nyepes, and each gene u corresponds to a column in
the NGC matrix. The matrix values indicate the count of detected genes u in the NGC. Nygpeq
can vary across technologies and datasets. For instance, osmFISH has been reported to detect 35
genes?%, whereas SeqFISH+ has the capacity to detect up to 10,000 genes in a single experiment*.

Graph convolutional networks

Assuming that spatially proximal nodes exhibit similar node embeddings, our hypothesis aligns
with graph neural networks. These networks propose that the node representation in a graph
should consider not only its own features but also the characteristics of its neighboring nodes. In
our model, we employed the Graph Convolutional Network (GCN) to analyze the gene
colocalization graph. The GCN layer is defined as follows:

171
H =0 <D_§A D5X01> 3),
1.1
Hiy1 =0|D 24AD2H, (4),
where H represents the matrix of node representations h,,, and X represents the NGC of node

features x,,. o(-) denotes the activation function (ReLU in our case). 4 is the graph adjacency

matrix augmented with self-loops. D is the graph degree matrix, and © is a matrix of trainable
parameters.
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Fully connected neural networks
After obtaining the node representation from GCNs, Fully Connected Networks (FCNs) are
employed. The FCN is defined as

FC(hj) = o(Wh; + b) (5),
Here h; denotes the representation of node j. The weight matrix W and bias term b are learned
for each layer. a(+) denotes the activation function (ReLU in our case). Multiple FCN layers are
stacked to get the final prediction. Similar networks are employed for edge predictions in the
segmentation task as well, which will be mentioned below.

Node classification

Node label prediction is accomplished by leveraging the node representations acquired through
GCNs and FCNGs. In the training phase, the objective function is determined by computing the
cross-entropy loss between the ground truth labels and the predicted labels.

1

N Cc
Lnodeclf = = N (Z C’)csoftrnax(f’n,c) “Yne T wbsoftmax(yn,b) ) Yn,b> (6)r

n=1 c=1

exp(Xnc
softmax(x,.) = log % ™),
where the loss of node classification is denoted as Lpogecis- 7 € RVI*(E*D is the output from
FCNs and y is the ground truth labels. C is the number of classes, and w is the weight. w. and w,
represent the weight of real signal nodes with various cell types and background noises,
respectively. These weights can be adjusted by users according to the background noise

prevalence to effectively identify real signals and noises.

Transfer node representation for segmentation

NGCs are employed to learn the node representations of molecules, primarily for the node
classification task. However, our ablation study revealed that this representation proves
advantageous for edge classification in the cell segmentation task as well. Consequently, we
transfer the node representations acquired from NGCs and concatenate the representation matrix
of two end nodes of an edge, forming a new matrix that becomes a part of the edge
representation. Throughout this process, the parameters of GCNs and FCNs learned for the node
classification task remain frozen.

E(e)y ={hih;j}, wheree=(i,j) (8),
where E (e), represents the edge embedding of edge e by concatenating node representation h;
and h; of node i and j from the layer [ of the node classification model. By default, we select the

output of the first fully connected layer after GCNs as the node representation.

Distance kernels
The RBF distance kernel is a kernel function that measures the similarity between two vectors
based on the distance. Since the spatial distance between two nodes is highly correlated with
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their intercellular relationship, we utilize distance kernels as a part of the edge embeddings to
effectively learn the appropriate cell sizes.

E()p ={Kewip) )., (9
Ka(pi,py) = exp(—1bilizlay (g,

204°

where E (e) represents the edge embedding derived from distance kernels K, . Total number of
kernels is denoted as D. p; and p; represents coordinates of nodes i and j. u, and o4 are the
mean and standard deviation of each kernel, which can be learnable.

Image representation

Cell boundaries are highly indistinct without image staining in densely packed tissue, such as
tumor and ileum. Latent image representations prove beneficial in these cases. Consequently, the
image representations serve as an additional edge representation in such scenarios. In this model,
CNNs followed by spatial pyramid pooling (SPP) are applied to learn the embeddings of input
images of different sizes. FCNs are further utilized to learn the edge representation using the
output of SPP.

E(e)img = FCN (SPP (CNN (img,))) ~ (11),

where E(€);,, represents the image representation in the edge embedding, and img, is the

image of edge e. The image of an edge is defined as the rectangular region it covers, with the
edge itself forming the diagonal line. While the size of these images falls within a specific range,
the exact dimensions can vary significantly (such as 7 x 12 or 14 x 19 pixels), depending on the
length of the edge. To optimize computational resources, we categorize edge sizes into distinct
groups (such as 5 x 10 or 15 x 20 pixels). The actual images are then adjusted by expanding or
cropping to fit within the designated bin size, which serves as the training input.

Edge representation

The edge representation serves as the input for the edge classification and the segmentation task,
comprising three aforementioned key components, including node representation, distance
kernels and image representation.

E(e) = {E(e)n.E(e)p. E(€)mg}  (12),

These three components play a crucial role in efficiently learning the underlying knowledge of
gene colocalization relationships, cell sizes, and image-informed cell boundaries, respectively.
Moreover, their combination holds the potential to learn cell type-specific cell sizes. Node
representations and distance kernels prove to be adequate for sparsely populated tissues with
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clear cell boundaries, such as the cortex. However, in densely packed tissues like tumors, ileum,
and liver, where cell boundaries are often challenging to discern, image representation becomes a
vital component. The incorporation of image channels, such as DAPI staining, provides valuable
information about cell boundaries in these densely packed tissues.

Edge classification

The edge classification task serves as input for the cell segmentation community detection
algorithm. It is formulated as a binary classification problem, training the fully connected neural
network to discern intracellular and intercellular molecular colocalization. Predicted edge labels
are obtained using the sigmoid function applied to the neural network output. Binary cross-
entropy is employed as the objective function.

Lpageciy = —w[y-logy + (1-y)-log(1— )] (13),

where Lgggecir represents the loss of the edge classification model. w is the weight; x and y are
the probability of predicted binary labels and ground truth labels, respectively.

Molecular connectivity graph
After the edge prediction, we create the molecular connectivity graph using predicted edge labels
e; ;. Positive labels (e; ; = 1) indicate a connection between two nodes, where they belong to the
same cell according to the model. Negative labels (e; ; = 0) imply no connection between nodes,
indicating they belong to separate cells.
Gne = (V, Eme) (14),
(i:j) € Emc if € = 1 (15):

Due to the large number of nodes and edges involved (potentially in the millions and billions,
respectively), it is infeasible to predict labels for all pairwise edges. Currently, technology
typically covers fewer than 300 nodes in a single cell, suggesting that positive edges for a node
primarily come from its 300 closest neighbors. Consequently, we only predict edge labels for
nearest neighbors.

Cell segmentation with community detection algorithms

Once the molecular connectivity graph is constructed, we apply the community detection
algorithms, such as Louvain and Leiden, to identify clusters from the graph. These clusters
correspond to individual cells in the tissue.

Single-cell annotation

After obtaining node classes and cell boundaries, we utilize both outcomes to generate single-cell
data with annotations. We select cells that meet specific criteria, including (1) a minimum
number of total transcripts per cell, (2) a minimum number of transcripts for the dominant cell
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type per cell, and (3) a minimum ratio of transcripts of the dominant cell type per cell. We
introduce a threshold for the transcripts of the dominant cell type as we posit that transcripts
within a segmented cell should belong to the same cell type. If transcripts within a segmented
cell are annotated as many different cell types, we lack confidence in the accuracy of the cell
annotation. By default, these thresholds are set as 50, 30, and 0.6, respectively. Segmented cells
that satisfy the criteria are annotated with the dominant cell class of transcripts within each cell.

Model implementation

The GCNs are implemented using PyTorch Geometric?’, with batch normalization and dropout
layers (dropout rate = 0.2) applied to each graph convolutional layer during training. The FCNs
and CNNs are implemented using PyTorch, with batch normalization incorporated into each
FCN layer. To handle the heterogeneous shapes of input images, spatial pyramid pooling is
employed. This is achieved through the PyTorch AdaptiveMaxPool2d function, utilizing three
pooling sizes (4, 2, and 1) to ensure consistent sizes of output embeddings. The resulting
embeddings from the spatial pyramid pooling layers are passed through two layers of FCNs to
generate the image representation, which becomes a part of the edge representation. The RBF
distance kernel, referred to as the GaussianSmearing function, is implemented using the
TorchDrug package?®®. The parameters u and o in the distance kernels are learnable during the
training phase.

In both the node classification and edge prediction tasks, a learning rate of 1 x 10-3 and weight
decay of 5 x 10 are set. Early stopping can be triggered when the loss fails to decrease.

Generalized model using transfer learning

Fine-tuning is essential when working with new data that exhibits observable variations, as it
helps enhance the model's performance in both node classification and edge prediction. By
retraining pre-trained Bering models using new data from the same tissue, the model parameters
are updated using the training data and labels from the new dataset. This process ensures that the
model adapts to the specific characteristics and patterns present in the new dataset, thereby
improving its overall performance.

Analysis of Neighborhood Gene Component

To unravel the underlying information regarding gene colocalization, we construct atlases of
neighborhood gene components (NGCs) using the CoxMx NSCLC dataset and the MERFISH
cortex ileum dataset. In each cell, a random selection of two molecules is made, and their k-
nearest neighbors are identified, resulting in the formation of two NGCs. These NGCs were
derived from various cell types and compartments, including nuclei, cytoplasm, and membrane.
The information about cell type and compartment is derived from the original papers. The NGCs
from different cell types and compartments are then concatenated to form a matrix, similar to
single-cell matrices where genes serve as features. The distinction lies in the fact that NGCs
utilize neighborhoods as objects within the matrix, rather than individual cells. These NGC
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matrices are stored as Scanpy objects?®, and an analysis pipeline resembling single-cell analysis
is applied to the data. By employing UMAPs and Leiden clusters, we obtain reduced dimensions
and clustering patterns from these matrices. For further details, please refer to the single-cell
analysis section.

Ablation study

First, we employed baseline fully connected neural network (FCN) models and graph
convolutional network (GCN) models with identical layer dimensions for the node classification
task. We evaluated the classification accuracies across multiple datasets, as depicted in Figure
2c, d and Supplementary Fig.9. Furthermore, we conducted eight ablation studies on the NSCLC
CosMx data to assess the impact of different model components, such as GCNs, RBF distance
kernels, and image embeddings. All other model hyperparameters remained constant. The
ablation studies involved measuring various segmentation metrics, including adjusted mutual
information (AMI), fractions of assigned molecules, and the number of detected cells.

Benchmark metrics

Node classification task

In this project, we employed multiple metrics to evaluate the performance of the model from
various angles. For the node classification task, we focused on two aspects for comparison:
background noise prediction and cell type prediction. In in-situ hybridization methods like
MERFISH, significant noise is observed due to RNA diffusion during the staining rounds. To
assess the effectiveness of background noise classification, we utilized accuracy as the
evaluation metric. We obtained the ground truth by extracting foreground real signals and
background noise, and then calculated the accuracy using the predicted labels generated by the

model.
N

Accyy = =1 IE/yl — yi),where ., y; € ['background’,’ foreground’]

N is the total number of molecules, and ¥, and y; are predicted labels and ground truths of real
signals and background noises for the molecule i. Apart from background accuracy, we also
evaluated the performance of cell type classification. The accuracy of cell type predictions is
used for the comparison,

N (§my:
AcCeepp—type = w,where ¥, yi € ['background’,'typel’,..."type C'],

where ¥, and y, are predicted labels and ground truth of cell types for the molecule i.

Cell segmentation task

The cell segmentation task can be seen as an unsupervised clustering problem, where the
similarity between our predicted cells and the cells in the ground truth needs to be assessed. To
measure this similarity, we employed a widely used metric known as adjusted mutual
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information (AMI). AMI served as the quantification metric in evaluating the performance of our
cell segmentation method.
[MI(cellsrye, cellsyreq) — E(MI(cellsirye, cellsyreq) |

[avg(H(cellsirye), H(cellspreq)) — E(MI(cellstrye, cellsyyeq)

AMI(CellStrue) Cellspred) =

where cellSiyye, cellsyyqq represent cell ids from ground truth and predictions. H () represents

the entropy of a vector, and MI(-) represents mutual information. AMI considers the fact that
mutual information is generally higher for two clusterings with a large number of clusters. In our
case, the number of cells in a dataset is usually large and AMI could be a more appropriate
option.

Fraction of assigned molecules

The fraction of assigned molecules is utilized as a metric to compare the effectiveness of
segmentation. We hypothesize that more conservative methods that solely rely on nuclei staining
images may yield lower performance in this metric. It is defined as below.

Nmolecules & background
Frac =

Ntotal molecules

Number of cells and cell areas

The number of cells is utilized as an indicator to assess the capability of identifying individual
cells. Nevertheless, it is important to note that a higher number of cells does not necessarily
indicate superior segmentation performance. Certain methods may employ an aggressive
approach that results in numerous cells with small areas. Therefore, we also evaluated the sizes
of the segmented cells to determine whether they exhibit appropriate shapes.

Correlation of single cell expressions

To assess the correlation between clusters, we initially identified representative cell markers by
conducting differential expression analysis within the single-cell clusters from the original
paper®. Subsequently, we calculated the Spearman correlation by averaging the gene expression
values across clusters. This allowed us to evaluate the degree of correlation between the clusters.

Benchmark methods

TACCO classification

TACCO, an optimal transport method, enables the transfer of annotations from single-cell data to
spatial data. In our benchmark studies, we utilized the benchmark datasets with annotations
obtained from the original papers to create the reference single-cell data. The cell type
annotations for molecules were generated by projecting the single-cell labels using the
"annotate_single_molecules" function.

Watershed segmentation
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The watershed method, implemented using the spateo package®, was utilized for segmentation
based on nuclei staining images with some modifications. Firstly, the masks of nuclei were
identified using both global and local adaptive thresholding techniques. Subsequently, peak
detections were performed based on the results obtained from the distance transform algorithm.
The connected peaks were merged to form individual markers. Finally, the masks and markers
were used as input for the watershed algorithm. Molecules were assigned to the nearest pixels,
and cell IDs were determined based on the corresponding pixels.

Cellpose segmentation
Cellpose, a U-Net based deep convolutional neural network approach, was used as a benchmark
method in the paper. We used the pretrained model ‘cyto’ and nuclei staining for segmentation.

ClusterMap segmentation

ClusterMap is a cell identification method that utilizes density peak clustering of spots in spatial
data, with the option to incorporate staining images as an auxiliary input. In our benchmarking,
we evaluated both modes of ClusterMap, namely with and without aligned nuclei images.
Specifically, we employed the 2D segmentation mode for this particular task. When available
publicly, DAPI staining imaging was employed during the preprocessing stage. In cases of noisy
data, such as MERFISH? and pciSeq®, the noise ratio was estimated by referencing the
percentage of unsegmented transcripts as indicated in the original paper; this parameter, termed
"pct_filter," was then configured during preprocessing. Furthermore, for these noisy datasets, the
local noise rejection mechanism ("LOF") was activated during the preprocessing phase.

Baysor segmentation

Baysor is a Bayesian model-based method designed for segmenting spots in spatial data. It has
the capability to incorporate prior segmentation masks, such as those obtained from Watershed
or other segmentation methods. In our benchmark study, we evaluated the performance of
Baysor both with and without prior segmentation. For the tests with prior information, we
performed Watershed segmentation on the nuclei staining images and utilized the resulting
masks as input for Baysor.

Hyperparameter tuning

To ensure a fair benchmark comparison, we carefully fine-tuned the hyperparameters of Bering
and other benchmark methods, selecting the best parameter combinations for the final evaluation.
In the case of the Watershed algorithm, we considered three important parameters: the minimal
distance for peak detection, the kernel size for morphological open and close operations, and the
block size for adaptive thresholding. For Cellpose, we conducted benchmarking experiments to
determine optimal diameters and flow thresholds. In Clustermap, we separately benchmarked
two modes: one with auxiliary images and one without. In both modes, we evaluated three
hyperparameters, including thresholds for cell numbers, estimated radius in the x-y plane, and
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sample interval in the DAPI image. Similarly, in Baysor, we evaluated its performance in two
modes: one with a prior segmentation mask and one without. For Baysor, we first benchmarked
hyperparameter selections, including scale, the standard deviation of scale, and the minimal
number of molecules. Once we obtained the best hyperparameter combination, we applied it to
the Baysor mode with a prior segmentation mask and further benchmarked the confidence of the
prior segmentation. Lastly, for Bering, we benchmarked several hyperparameters, including the
number of layers, the number of cells for pretraining, neighborhood sizes of graphs, and the
numbers and size ranges of RBF distance kernels. The benchmark experiment across
segmentation methods was conducted using the best hyperparameter selections we obtained.

Thick tissue analysis

The thick tissue MERFISH cortex dataset®> was harnessed to assess the 3D segmentation
performance of Bering. The original cell boundaries and labels served as the pre-trained
references during the model's training phase. By employing Euclidean distances within the 3D
context, we computed k-nearest neighbors and subsequently established colocalization graphs.
The trained model's prowess was then put to the test in a designated 200 x 200 x 100 um region
for comprehensive evaluation.

Subcellular pattern identification

Utilizing FISHFactor, we discerned distinct subcellular gene patterns within tumor cells from the
NSCLC CosMx dataset. A cohort of 200 tumor cells was randomly selected, and three distinct
factors were computed for all genes. The gene weights within these factors, along with spatial
factor scores, were subsequently plotted to unveil subcellular gene patterns. Factor 2 and factor 3
were denoted as "nucleus-pattern" and "peripheral-pattern,"” respectively. The genes with the
highest weights within these two factors were identified, and their subcellular distributions were
visualized. To portray these distributions (Fig. 1¢), boundaries for cell nuclei and cell bodies
were established through Cellpose segmentation of DAPI imaging and the convex hulls of all
transcripts, respectively. Furthermore, we computed the normalized distance to the cell nuclei
centroid. This calculation entailed determining the distance between the query transcript and the
nuclei centroid, which was then divided by the maximal distance between all transcripts and the
nuclei centroid. Finally, we employed kernel density estimation (KDE) plots to artistically depict
the smoothed distributions of these distances.

Single cell analysis

Single cell analysis was performed using Scanpy?’. We started by extracting count matrices from
the segmented cells, which were then normalized to a total count of 1000 per cell. Cells with
insufficient counts (minimum 10 counts per cell) were removed due to low coverage. Then, log
transformation and scaling were applied to the normalized counts. Principal Component Analysis
(PCA) was subsequently employed to reduce the dimensionality of the data. Using the resulting
PCA components, a neighbor graph was constructed by considering the 10 nearest neighbors for
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each cell. The UMAP algorithm was applied to obtain a reduced-dimensional representation of
the data, which facilitated visualization and exploration. To understand cell identities in the
results, we used the “ingest” function in Scanpy to map labels from the reference data
(annotations in the original paper in this case) to single cell data generated from benchmark
methods, including Watershed, Cellpose, ClusterMap and Baysor. Predicted labels from Bering
results were used directly for the comparison with other benchmark methods.

Alignment of image signals and spot information

DAPI staining images are usually available for image-based spatial technologies. We get the
coordinates of transcript spots and project them onto DAPI images based on the closest pixels.
The DAPI image intensity of the corresponding pixels were used as the DAPI staining strength
of the spots. DAPI image intensity scale from 0 to 255 and 25 is used as the threshold for low
signal pixels.

Data availability

Raw data of all datasets used in the paper can be found in the Supplementary Table 1. Processed
data and pre-trained models are deposited in Figshare
(https://figshare.com/ndownloader/articles/23605539/versions/2).

Code availability

The source code and Python package are freely available at https://github.com/jian-shu-
lab/Bering. The analysis performed in this paper can be found at https://github.com/jian-shu-
lab/Bering_analysis.
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Figure 1. The overview of Bering model for cell segmentation. (a) An animation illustrating
image-based spatial transcriptomics approaches. Multiple slices in the z-axis are generated and
transcripts from nuclei and cytoplasm are detected in each slice. Additionally, staining images,
including the nuclei image, are captured. (b) The concept of Neighborhood Gene Components
(NGCs) 1s introduced for transcripts in image-based spatial transcriptomics data. NGCs are
defined as count matrices, where each value in the matrix corresponds to the number of detected
transcripts for each gene in the neighborhood of the query transcript. (c-f) Overview of the
Bering model. (c) The animation of spatial profiling of molecules in single-cell spatial omics
data. Colored spots indicate mRNA or proteins, while hollow spots represent noise. Different
colors of cells indicate distinct cell types, with the nucleus shown in blue. (d) Construction of
spatial colocalization neighborhoods using k-nearest graphs, with graph convolutional neural
networks (GCN) trained for cell type prediction on the node level (transcript or other molecules).
(e) Input for the edge prediction task, including required node embeddings transferred from the
node classification task, along with auxiliary input of staining images and distance information
calculated from the 2/3-dimensional (2/3D) coordinates. (f) Cell segmentation task defined as an
edge prediction task, utilizing multimodal input of edge embeddings (from e) to train neural
networks. The prediction outcome is binary classification, indicating whether the edges connect
intercellular or intracellular spots. Molecular connectivity graphs are then constructed, and
community detection algorithms such as Leiden Clustering are employed to identify cell borders.
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Results from the node classification task and segmentation task are combined to obtain single
cells with annotations for downstream analysis. More details can be found in Supplementary
Figure. 6.
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Figure 2. Performance of noise and cell type predictions on transcripts.

(a) Background noise prediction in the MERFISH cortex data using different segmentation
methods. The background noise annotated in the original paper of the data was shown on the left.
(b) Bering demonstrates superior performance in predicting noise and real signals compared to
other segmentation methods across datasets. CM: ClusterMap; CM(img): ClusterMap with DAPI
image input. (c) Cell type prediction in the 10x Xenium data of Ductal Carcinoma In Situ (DCIS)
using different transcript-level annotation methods, including TACCO and Bering with and
without graph models (top). The zoomed-in visualization of a particular section of the tissue is
presented below. (d) The accuracies of cell type prediction by TACCO and Bering, with and
without graph models, were evaluated across various datasets.
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Figure 3. Performance of cell segmentation. (a) Zoomed-in sections of CosMx NSCLC data
illustrate the cell segmentation results obtained using various segmentation approaches. Different
cell types are depicted in distinct colors, while background noises are visualized as gray dots.
Cell boundaries are depicted using hulls. The segmentation result from the original paper is
displayed in the top-left corner. CM: ClusterMap. CM (img): ClusterMap with DAPI image
input. (b-c) Quantitative metrics, such as adjusted mutual information (AMI) (b) and the number
of transcripts per cell (¢), are employed to benchmark the segmentation results across diverse
datasets. The error bars represent the standard deviations of transcripts per cell. Image-dependent
methods were excluded from the benchmark if processed nuclei staining images were
unavailable. (d) The UMAP shows single cells and labels generated from Bering segmentation
results. (e) Spearman correlation calculated for gene expression levels in cell labels shown in (d).
Representative cell markers, obtained through differential expression analysis from the original
single-cell data in the paper, were utilized for correlation measurement (See Methods). (f)
Expression levels of tumor and non-tumor genes across cell types in (d). Additional single-cell
analysis and correlation matrices from other segmentation results can be found in Fig. S17 for
comparison.
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Figure 4. Bering applications across technologies and tissues. (a-h) Bering was applied to
various single-cell image-based spatial datasets, with predicted cell types and boundaries
depicted in different colors and hulls in zoomed-in regions. Predicted background noises were
colored in light gray. (i) Bering was applied to thick-tissue MERFISH mouse cortex dataset,
resulting in the prediction of diverse cell types (left) and the successful segmentation of
individual cells. A cross-section at 10 um (£5 um) was magnified and presented on the right,
highlighting the segmentation outcome for a specific plane.
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Figure 5: Generalizability of the Bering model using transfer learning and self-distillation.
(a-d) Transfer learning of the Bering pre-trained model on a new mouse cortex MERFISH
dataset. (a) Application of a pre-trained model from mouse cortex MERFISH data (Zhang et al.)
to new mouse cortex data (Biancalani et al.), with and without fine-tuning. Fine-tuning labels
were derived from the prediction results of the pre-trained model, shown in the leftmost figure.
Two rounds of fine-tuning were conducted through distillation of the prediction results (see
Methods). A specific region is highlighted for further investigation. (b) Enlarged view of the
highlighted region in (a). Cell boundaries are depicted by hulls. (c) Quantitative metrics
depicting the increasing percentages of assigned molecules (left) and the number of segmented
cells (right). (d) UMAPs displaying the distributions of cells from prediction results, with and
without fine-tuning. (e-g) Similarly, transfer learning of Bering on tumor spatial transcriptomics
data. (e) Application of a pre-trained model from CosMx NSCLC to Xenium DCIS data,
resulting in prediction results without and with fine-tuning, respectively. Two specific regions
are highlighted for further investigation. (f) Enlarged views of the highlighted regions in (e)
showing predicted cell types and cell boundaries in the results with and without fine-tuning. (g)
The heatmap shows the expression levels of marker genes in the segmented cells from the tumor
microenvironment.
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Figure S1. Survey of staining images in various image-based spatial transcriptomics
technologies. The table displays the availability of major image channels in different spatial

datasets and technologies.
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Figure S2. Inadequate image signals in spatial transcriptomics data. (a, c) A CosMx non-small-
cell lung cancer slice (a) and a MERFISH mouse ileum slice (c) are presented, where transcripts
are visualized as blue and red dots. Blue dots represent transcripts covered by strong DAPI
signals, while red dots represent transcripts covered by weak DAPI signals (See Methods).
Additionally, selected windows highlight areas with insufficient image staining information. (b,
d) Enlarged views of the windows shown in (a) and (c), highlighting DAPI signals in grayscale.


https://doi.org/10.1101/2023.09.19.558548
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.19.558548; this version posted September 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

@ Smooth Muscl

@ Myenteric Plexu; ;
Endothelial
Telocyte
Stromal

® Stem+ TA
Paneth
Macmphage + o

° T (cm»)
® Enterocyte (Bottom
. En(smcyte (Mid Villu: ‘?

. T (coaq

2 B {Folicur, Circuiating) ':;;
@ Enterocyte (Top Villus) A

200 A

150

100

[®)]
o

Membrane signal intensity

o

TN TN e N
DT B PP BTOOLOLELOgcT T O &
EES2358200285F3&50
T g£SSST Q0 + 8585 +s5008
_m«u>>>0 © =0 L
2oStoa %&&&’EEﬁng
E=~cgsS Qe @ 2 £2 FF
oonow ST c o o w
o n‘-']’mcb = =]
S TR c > 17s)
3 2 50 5]
o = e e ==
3 gee
c c

w o W uw
(23] €

L


https://doi.org/10.1101/2023.09.19.558548
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.19.558548; this version posted September 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure S3. Limitation of cell membrane staining for segmentation. (a) A MERFISH mouse ileum
slice is presented, showcasing transcripts from various cell types depicted in distinct colors. Four
representative regions are highlighted for further investigation. (b) Enlarged visualization of the
four highlighted regions in (a) reveals grayscale membrane imaging, while transcripts in
different cells are displayed using unique colors. Inadequate and imbalanced membrane signals
are observed across regions, particularly in regions highlighted by W2 and W4. (¢) The bar plot
illustrates the imbalance in membrane staining signals across different cell types.
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Figure S4. Subcellular patterns of genes in NSCLC tumor cells by FISHFactor. (a) FISHFactor
was applied to tumor cells from CosMx NSCLC data, resulting in the identification of three
factors representing specific subcellular spatial distributions of genes (see Methods). The weight
matrix of genes with high weights across factors is displayed. (b) The visualization of factor
scores in nine tumor cells offers valuable insights into the underlying subcellular spatial patterns
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associated with the factors. Factor 2 reveals high scores primarily in the nuclei region of the cell,
suggesting the presence of nuclear genes. Conversely, factor 1 demonstrates high scores at the
cell periphery, indicating the potential distribution of cytoplasmic or membrane genes. (c) Scatter
plots illustrate the associations between factors. Factor 1 and factor 3 display a positive
correlation, while factor 2 and factor 3 demonstrate a negative correlation. (d) Six spatially
variable genes were derived from factor 2 and 3. Four representative tumor cells are shown,
where cytoplasm and nuclei regions were depicted in yellow and orange, respectively. (€)
Density curves depict the distribution of transcripts at varying distances from the nuclei centroid
within NSCLC tumor cells. These curves indicate relative positioning of transcripts in relation to
the nuclei. The estimation of these density curves was performed using Kernel Density
Estimation (KDE).
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Figure S5. Uniform Manifold Approximation and Projection (UMAPs) depicting NGCs derived
from CosMx NSCLC data. Cell type annotations (a) and subcellular compartments (b) for NGCs
are displayed in different colors (see Methods).
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Figure S6. The framework of Bering mode. This framework serves as a supplementary plot to
the model framework presented in Fig. 1, providing more detailed information about the neural
networks involved. The first part of the Bering model is transcript classification. To accomplish
this, a transcript colocalization graph is constructed, followed by the learning of node
representations using Graph Convolutional Networks (GCNs). These node representations are
utilized for both the transcript classification task and the cell segmentation task, serving as input
for edge representation. In addition to node representation, the edge representation incorporates
learned distance information and image information. Learnable RBF kernels and Convolutional
Neural Networks (CNNs) are employed to capture distance and image features, respectively. The
concatenated edge representation is then utilized as input for the edge prediction task, aiming to
predict whether two nodes connected by an edge originate from the same cell.
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Figure S7. Cell size and shape heterogeneity. (a-b) Violin plots displaying the wide dispersion of
cell areas (a) and aspect ratios (b) within specific cell types or across different cell types, using
CosMx NSCLC data as an example.
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Figure S8. Prediction of real signals and noises in real cases. (a, b) Two windows displaying
foreground and background predictions using different segmentation algorithms in the mouse
cortex MERFISH data (a) and the non-small cell lung cancer CosMx data (b). Real signals are
denoted by blue dots, while background noises are represented by gray dots.
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Figure S9. Node classification performance of TACCO and Bering. (a) Two enlarged views of
mouse cortex MERIFSH slice showing original labels, TACCO predicted labels, and Bering
labels (with and without graph models) from left to right. Different cell types are color-coded,
while background noises are depicted in gray. (b-c) Original labels and predicted labels from
TACCO and Bering (with graph models) in mouse ileum (b) and NSCLC (c). Highlighted boxes
depict microenvironment regions where Bering predicts more details compared with TACCO.
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Figure S10. Ablation studies of the Bering model. Ablation studies were conducted to assess the
impact of various model components, including graph models, RBF distance kernels, and image
embeddings. The segmentation performance was assessed by evaluating different combinations
of these model components using quantitative metrics such as Adjusted Mutual Information
(AMI), fraction of assigned molecules, and number of detected cells. The analysis was
performed on NSCLC CosMx data. wo.G: without graph models (learn the node representation
by fully connected layers); G: with graph models (learn the node representation by GCNs); RBF:
RBF distance kernels; Img: image embeddings.
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Figure S11. Hyperparameter search of the Bering model. (a-c) The segmentation performance of
the Bering model was evaluated in NSCLC data using multiple metrics, including Adjusted
Mutual Information (AMI), fraction of assigned molecules, and number of detected cells.
Various hyperparameters were examined, including the number of neural network layers in the
Bering model (a), the number of neighbors (b), and the number of RBF distance kernels (c).
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Figure S12. Hyperparameters in the community detection algorithm of cell segmentation. (a)
Adjusted Mutual Information (AMI) is utilized to evaluate the segmentation performance across
various hyperparameters, including true positive rates (TPR), false positive rate (FPR) in the
edge prediction task, and resolutions in Leiden Clustering. Error bars represent standard
deviation. (b-c) The community detection performance demonstrates minimal sensitivity to
resolution selection when FPR is low in the edge prediction task and there are a higher number
of measured edges. Notably, in the edge prediction task with high FPR and low numbers of
edges for measurement, the Leiden clustering algorithm shows a reduction in AMI for predicted
cells (b). Conversely, it achieves stable and high AMI in the segmentation with low FPR and
high numbers of edges for measurement (c).
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Figure S13. Hyperparameter search of benchmark methods. (a-f) The segmentation performance
of the Bering model was evaluated in NSCLC data using multiple metrics, including Adjusted
Mutual Information (AMI), fraction of assigned molecules, and number of detected cells.
Various hyperparameters were examined for different benchmark approaches, including Baysor
(without prior) (a), Baysor (with prior) (b), Cellulose (c), Clustermap (without image) (d),
Clustermap (with image) (e), and Watershed (f).
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Figure S14.Hyperparameter tuning of benchmark methods for image-free segmentation. (a-b)
Image-free segmentation was performed in mouse cortex MERFISH data without the input of
images, and various metrics were used to measure the segmentation performance in Clustermap
(a) and Baysor (b).
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Figure S15. Comparison of cell segmentation methods across datasets is depicted, including
Ileum MERFISH data (a), cortex MERFISH data (b), and DCIS Xenium data (c). In cases where
processed nuclei images were unavailable for a dataset, image-dependent segmentation methods
were excluded from the comparison.
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Figure S16. Performance of cell segmentation across datasets. (a-b) Quantitative metrics, such as
cell areas (a) and fractions of assigned molecules (b), are employed to benchmark the
segmentation results across diverse datasets. The error bars represent the standard deviations of
fractions of assigned molecules. Image-dependent methods were excluded from the benchmark if
processed nuclei staining images were unavailable.


https://doi.org/10.1101/2023.09.19.558548
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.19.558548; this version posted September 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a Original Paper Watershed Cellpose ClusterMap (no image)
3 > % §
UMAPL UMAP1 UMAPL UMAP1
ClusterMap (w. image) Baysor (no prior) Baysor (w. prior)
Tumor
»  Epithelial
o Fibroblast
o Endothelial
Neutrophil
Macrophage
N N o mDC
< < < Mast
z z 3 o CD4+T
o CDB4+T
. WK
B
s pDC
Plasmablast
UMAP1 UMAPL UMAP1
Original Paper Watershed Cellpose ClusterMap (no image)
T = T T
Epihelal = - Epithetal Epthelial Epitla i
Endothelial 10 Endothelial 1.0 Endothelial Endothelial 10
Fibroblast ': Fibroblast ': Fibroblast Fibroblast =]
cos+T W 08 Neutrophil 08 Neutrophil Ccog+ T m 08
Neutrophil A NK A NK Neutrophil
NK 06 - 06 s NK W -06
B -04 CD4+ T -04 CD4+ T 8 L
co4+ T o4
pDC I N fo2 pOC 02 o Cm;:DE l 02
Macrophage Macrophage Macrophage Macrophage t
oc B 0.0 mDC 00 mDC mbc W 0.0
t Mast Mast Mast
Plasmablast [l Plasmablast [l Plasmablast ] Plasmablast )
= X0 Q % e r=5%+QeQF e R=5%-R¢Q% 5 b= X010 %
588% ° § § 8885 ° ¢ § 5523 S & ¢ §528f 8¢ ¢
L LRG| LEC I I A
ClusterMap (w. image) Baysor (no prior) Baysor (w. prior)
Tumor om0 Tumor 12| [ Tumor
Epithelial Epithelial ) Epithelial
Endothetial 10 Endothelial Endothelial
Fibroblast m [ ‘Fbroblast I Fibroblast
CD8+ T [ 08 Neutrophil CD8+ T
Neutrophil Neutrophil
NK -06 N: "B NK
B -04 CD4+T CD4+ TB i
CD‘;,’DTC to 2 pOC [N pl l
Macrophage Macrophage Macrophage
mDC 00 mDC | po
Mast Mast
Plasmablast Plasmablast Plasmablast
o b X0 B s v e B e X0 0 O
333 1R B335 4180 A 2
P£288¢8 3 g 3 r—.f.£§ 3858 "g%?S« 8 £°°3
586°3 °© § 8883 ° g § wEE" 3 E &
@t 2 LI &= i & @ 2z

Figure S17. Comparison of single-cell analysis in different benchmark methods. (a) UMAP plots
illustrating single-cell clustering results using segmented cells obtained from the original papers
(top left) and other benchmark methods (See methods). (b) Spearman correlation computed for
gene expression levels in the clusters depicted in (a). Representative cell markers, identified
through differential expression analysis from the original single-cell data in the paper, were used

for correlation measurement. For Bering results, please refer to Figure 3.
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Figure S18. Generalizability of the Bering model within and across datasets. (a) UMAP plots
displaying the labels (left) and sources (right) of integrated single-cell data from slice 21 and
slice 10 of the MERFISH mouse cortex dataset. The pre-trained model was obtained from slice
21 and applied to slice 10. The cells and labels in slice 10 were derived from the segmentation
prediction results. (b) Performance comparison between model application with and without
fine-tuning of the pre-trained Bering model for the task described in (a). Quantitative metrics,
including adjusted mutual information (AMI), fraction of assigned molecules, and number of
segmented cells, were measured for both strategies in slice 10. (c) The segmentation
performance of the pre-trained tumor model with and without fine-tuning. The pre-trained model
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was obtained from NSCLC CosMx data and applied in DCIS Xenium data, as illustrated in Fig.
Se-g.
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