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Abstract: 

Single-cell spatial transcriptomics such as in-situ hybridization or sequencing technologies can 

provide subcellular resolution that enables the identification of individual cell identities, 

locations, and a deep understanding of subcellular mechanisms. However, accurate segmentation 

and annotation that allows individual cell boundaries to be determined remains a major challenge 

that limits all the above and downstream insights. Current machine learning methods heavily rely 

on nuclei or cell body staining, resulting in the significant loss of both transcriptome depth and 

the limited ability to learn latent representations of spatial colocalization relationships. Here, we 

propose Bering, a graph deep learning model that leverages transcript colocalization 

relationships for joint noise-aware cell segmentation and molecular annotation in 2D and 3D 

spatial transcriptomics data. Graph embeddings for the cell annotation are transferred as a 

component of multi-modal input for cell segmentation, which is employed to enrich gene 

relationships throughout the process. To evaluate performance, we benchmarked Bering with 

state-of-the-art methods and observed significant improvement in cell segmentation accuracies 

and numbers of detected transcripts across various spatial technologies and tissues. To streamline 

segmentation processes, we constructed expansive pre-trained models, which yield high 

segmentation accuracy in new data through transfer learning and self-distillation, demonstrating 

the generalizability of Bering.  
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Introduction 

In recent years, there has been a significant advancement in single-cell spatial transcriptomics 

technologies, providing powerful tools to study transcript localization and cellular processes at a 

high resolution and scale1,2. These innovative technologies comprise in-situ hybridization 

methods, such as MERFISH and SeqFISH3,4, and in-situ sequencing approaches such as 

STARmap, pciSeq5–7.  Besides, Several commercially available technologies, such as 

MERSCOPE, Nanostring CosMx, and 10x Xneium, have been developed and made the spatial 

techniques more accessible to researchers8–10. Although single-cell spatial transcriptomics 

technologies were initially limited by the need for multiple rounds of tissue staining, resulting in 

lower throughput compared to Next-Generation-Sequencing (NGS) technologies, this constraint 

is outweighed by the ability to achieve high resolutions of hundreds of nanometers, reaching 

subcellular resolutions11. This attribute allows for extensive exploration of cellular processes and 

interactions at high spatial resolution. Moreover, cutting-edge image-based spatial 

transcriptomics technologies, including seqFISH+ and STARmap PLUS, have achieved 

significant advancements in gene throughput, reaching several thousand or even tens of 

thousands4,5. As a cutting-edge technology, single-cell spatial transcriptomics renders rich 

information on transcripts' spatial distribution at remarkably high resolutions, while staining 

images of the data offer valuable insights into cell morphological characteristics. 

 

Despite the vast potential of single-cell spatial transcriptomics technologies, analyzing the 

resulting data presents several complex computational challenges. One of the most significant 

obstacles is cell segmentation, which is critical for accurately delineating individual cells within 

a tissue sample in spatial data. Pioneering deep learning approaches, such as Cellpose and 

JSTA12,13, have proven effective for cell segmentation tasks using nuclei staining. However, 

there are two challenges associated with this strategy. Firstly, a significant number of transcripts 

are present in both the nuclei and cytoplasm, making them difficult to fully capture through 

nuclei staining alone6. Additionally, this strategy is unable to capture transcript spatial patterns or 

their colocalization, missing out valuable insights into cell compartments and structures14. For 

instance, transcription factors, such as OCT4, and histone genes, are predominantly found in 

nuclei, whereas cytoskeletal protein genes such as TLN1 are more commonly observed in the 

cytoplasm and membrane15. In light of this, some methods have sought to leverage spatial 

distributions of transcripts for cell segmentation in spatial transcriptomics data, such as 

ClusterMap and Baysor16,17. However, it remains challenging for these statistical methods to 

efficiently learn the latent representation of transcript colocalization relationships within such 

high-dimensional spatial data. An innovative approach taken by SCS involves the utilization of 
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transformer models on integrated imaging and transcript data to enhance cell segmentation 

accuracy. Nevertheless, one of the core steps of SCS relies on the identification of cell nuclei 

based on nuclei staining, which is often observed to be incomplete in its coverage of cells18. 

Consequently, this strategy may lead to a significant loss of cells and transcripts. 

 

In the face of these challenges, we embarked on a comprehensive exploration of the multi-modal 

data in single-cell spatial transcriptomics. We found significant loss of transcripts during 

segmentation in strategies that sorely rely on staining images, and highlighted gene patterns that 

are indicative of cell types and boundaries from transcript colocalization data. To tackle 

challenges in segmentation and build upon discoveries of transcript colocalization, we introduce 

a computational approach that utilizes a graph neural network to harness transcript colocalization 

relationships for cell-type annotation. Notably, the learned transcript representations are 

transferred to the segmentation task as a component of multi-modal learning input, 

circumventing the limitations of single-modal learning. Innovatively, we approached the 

segmentation task as the edge prediction task to fully leverage transcript colocalization 

relationships and achieve a finer level of segmentation compared to conventional pixel-level 

segmentation methods. We have successfully applied this method to various tissue types and 

technologies, whether image-free or image-dependent, and have showcased its superior 

performance in accurately identifying precise cells in 2D and 3D thick tissues. Additionally, we 

demonstrate the generalizability of our approach by transferring the pre-trained model to a 

completely new dataset and achieving accurate cell segmentation results through self-distillation, 

highlighting the potential of broad applications across various tissues, volumes, and 

technologies. 

 

Results 

  

Spatial transcriptomics data modalities for segmentation analysis 

Multiple types of staining images, such as DAPI, poly-A, and membrane staining, have been 

generated across spatial datasets and technologies for cellular morphological detection and cell 

segmentation (Fig.1a, Supplementary Fig.1). Among them, DAPI is the most widely used 

staining image for cell segmentation. However, when we projected transcripts onto the paired 

DAPI staining, we observed that a significant number of spots were not overlapped with strong 

DAPI signals, varying from 30% to 70% across samples and datasets (Supplementary Fig.2), 

which can lead to loss of information during segmentation. While membrane staining can 

provide rich information for segmentation17, its inadequate and imbalanced imaging signals 

across different cell types could cause biased segmentation and loss of information 

(Supplementary Fig.3).  

  

To gain a holistic understanding of the single-cell spatial omics data, we delved into transcript 

profiles, and revealed their patterns of cell compartments and subcellular structures11. We 
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utilized a factor analysis model19 in non-small cell lung cancer (NSCLC) and identified three 

distinct subcellular gene patterns in tumor cells, including nuclear genes (factor 2) and peripheral 

genes (factor 3) (Supplementary Fig.4a-c). Nucleus-specific genes, such as MALAT1 and 

NEAT1, exhibit a high enrichment within the nuclei region. In contrast, genes involved in kinase 

phosphatase activity, such as DUSP5, exhibit a notable enrichment within the cytoplasm of cells 

(Supplementary Fig.4d-e), providing compelling evidence of a subcellular pattern as indicated by 

the spatial distribution of transcripts. To further understand the underlying information of 

transcript physical colocalization, we constructed neighborhood gene components (NGCs) by 

grouping the nearest transcripts together (Fig.1b) and examined their latent dimensions using 

Uniform Manifold Approximation and Projection (UMAP) (see Methods). Remarkably, the 

distributions of NGCs on UMAP aligned closely with cell type and compartment annotations, 

highlighting the highly indicative nature of transcript neighbors in relation to cell-type-specific 

subcellular structures and boundaries (Supplementary Fig.5).  

 

Bering overview 

To effectively tackle the challenges mentioned above and fully capitalize on the information 

embedded in transcript distributions within spatial transcriptomics data, we have developed 

Bering, a novel approach that combines graph neural network (GNN) and transfer learning for 

joint cell segmentation and annotation (Fig.1c-f, Supplementary Fig.6). Drawing inspiration from 

the insights gleaned through the analysis of transcript colocalization data, Bering begins by 

harnessing the colocalization graph as its input. Subsequently, we employ GNN to predict both 

noises and cell types associated with transcripts, during which the model acquires the ability to 

encode representations for transcripts, leveraging the intricate information related to cell-type-

specific subcellular structures and their boundaries (Fig.1d). These informative representations 

will be used in the segmentation task as part of the multimodal input (Fig.1e). 

 

In the context of cell segmentation, traditional methods typically rely on pixel-level 

segmentation on images which, however, struggles to adequately represent the intricate 

relationships between adjacent transcripts and fails to discern cell assignments for transcripts at 

sub-pixel granularity. In contrast, to address these limitations, we have innovatively approached 

it as an edge prediction task, which significantly enriches the representations of gene 

relationships, in addition to the transferred physical colocalization relationships. This involves 

the classification of connections between nodes (transcripts or proteins) into two categories: 

those originating from the same cell and those originating from different cells (Fig.1f). 

Recognizing the pivotal role transcript colocalization in cell boundaries detection, we have 

devised a novel strategy, where we leverage the learned cell-type-aware node representations 

obtained from GNN and transfer them as edge embeddings for the edge prediction task (Fig.1e, 

Supplementary Fig.6). These embeddings are augmented with image-aware embeddings 

obtained from convolutional neural networks (CNN) and distance-aware embeddings derived 

from learnable radial basis function (RBF) kernels, respectively (Fig.1e, Supplementary Fig.6). 
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Additionally, multi-modal input with cell-type-specific node embeddings and RBF distance 

kernels provides flexibility for segmentation masks to adapt to varying sizes across different cell 

types, mirroring real-world scenarios (Supplementary Fig.7). Following the predictions of edge 

labels, we apply community detection techniques such as Leiden clustering to accurately identify 

individual cells within the tissue slice (Fig.1f) (Methods). This comprehensive process ultimately 

enables the precise segmentation of individual cells, which can be conveniently annotated using 

transcript-level cell annotations, streamlining downstream analysis. In the Bering model, the 

combination of node representations and distance kernels provides substantial knowledge for 

accurate image-free segmentation, particularly in sparsely populated tissues like the cortex. 

Conversely, densely packed tissues such as tumors and the ileum can benefit from the Bering 

model that incorporates image-aware embeddings, improving segmentation performance, and 

thus, generating more accurate mapping of gene expression in space.  

 

Validating Bering performance of background noise and cell type prediction 

 Background noises pose a substantial challenge in some spatial technologies as they lack distinct 

boundaries from real signals, as exemplified in MERFISH and STARmap3,20. Bering addresses 

this issue by leveraging its GNN model to predict both background noises and real signals with 

cell-type annotations. To assess its performance, we conducted benchmarking experiments, 

comparing Bering with other methods for noise prediction and transcript-level cell annotation. In 

the case of mouse cortex MERFISH data, the original unsegmented transcripts accounted for 

more than half of the total transcripts, encompassing both noise and unsegmented real signals 

due to conservative segmentation in the original paper3. Baysor failed to accurately capture the 

real signals, whereas Bering demonstrated a more cautious approach in real signal prediction, 

resulting in more precise background noise prediction (Fig. 2a, Supplementary Fig.8). In this 

case, Bering exhibited a notable improvement of up to 50% in noise prediction accuracy 

compared to other methods (Fig. 2b). Image-based segmentation methods such as Watershed and 

Cellpose often heavily rely on available staining images, particularly DAPI staining, which tends 

to yield conservative segmentation results (Fig.2b, Supplementary Fig.8b). Importantly, Bering 

consistently showcased superior performance in noise prediction across various technologies, 

including and MERFISH and pciSeq (Fig.2b). 

 

Furthermore, we conducted a benchmark comparison of transcript-level cell type annotation 

using the state-of-the-art approach TACCO21. In the case of ductal carcinoma in situ (DCIS) 

Xenium data9, Bering's predictions accurately identified cell labels and preserved more detailed 

tumor microenvironment components compared to TACCO (Fig.2c, Supplementary Fig.9). 

Specifically, Bering successfully distinguished proliferative invasive tumor cells from other 

tumor cells in the niche, whereas TACCO failed to differentiate between these two types of 

tumor cells (Fig. 2c). Additionally, Bering captured more comprehensive immune cell 

distributions within the tumor microenvironment in non-small cell lung cancer (NSCLC) 

(Supplementary Fig.9c). Importantly, Bering with graph models demonstrated fewer sporadic 
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predictions and more consistent cell predictions compared to Bering without graph models, 

highlighting the advantages of information sharing in the neighborhood facilitated by graph 

models, which aligns with our initial hypothesis during model construction (Fig.2c, 

Supplementary Fig.9a). Implemented across diverse technologies and tissues, Bering consistently 

achieved higher accuracy in cell type prediction, with improvements ranging from approximately 

10% to 50% compared to TACCO (Fig.2d). 

 

Validating Bering performance on cell segmentation 

The Bering model for cell segmentation incorporates various components, including graph 

models, RBF kernels, and image embeddings learned from CNNs. To assess the contribution of 

each module and understand the model's capabilities, we conducted ablation studies and 

evaluated the performance of cell segmentation using quantitative metrics such as adjusted 

mutual information (AMI), the fraction of assigned molecules, and the number of segmented 

cells. The results revealed that the inclusion of either image embeddings or RBF distance kernels 

led to significant improvements in segmentation accuracies (Supplementary Fig.10a) and 

sensitivities (Supplementary Fig.10b). While image-free segmentation performed well in the 

CosMx NSCLC data, the addition of image embeddings increased the number of segmented cells 

by approximately 10% (Supplementary Fig.10c). Consequently, for most datasets, we 

implemented Bering with graph models and RBF kernels, and incorporated image embeddings if 

cell staining images were available. 

 

Prior to conducting comprehensive benchmark studies, we performed a hyperparameter search 

for both Bering and the benchmark methods (Supplementary Fig.11-14). In Bering, we 

thoroughly compared hyperparameters such as the number of GNN layers, number of training 

cells, and structures of RBF distance kernels to determine the optimal settings (Supplementary 

Fig.11). In the cell segmentation process of Bering, unsupervised clustering is involved, and the 

hyperparameter of clustering resolution can be set manually. It was observed that stable cell 

segmentation results were achieved when the edge prediction accuracy was high (Supplementary 

Fig.12). This implies that stable segmentation can be obtained by focusing on improving the 

accuracy of edge prediction, rather than purely adjusting the clustering resolution 

hyperparameter. Additionally, we searched hyperparameters for the benchmark methods to 

achieve the best segmentation performance for benchmark studies (Supplementary Fig.12-13). 

 

We then implemented the benchmark methods on the NSCLC CosMx data and observed that 

Bering accurately preserved cell boundaries compared to other methods. In contrast, Watershed 

and Cellpose exhibited a relatively conservative segmentation approach, while ClusterMap and 

Baysor predicted a certain number of cells with abnormal sizes (Fig.3a). Similar observations 

were made in other tissues, including ileum, cortex, and DCIS (Supplementary Fig.15). 

Quantitative measurements also indicated the superior segmentation performance of Bering in 

terms of prediction accuracies across different datasets and technologies (Fig.3b). Moreover, 
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Bering consistently detected a higher number of transcripts in individual cells with a relatively 

lower standard deviation, indicating a higher signal detection capacity and stable segmentation 

sizes (Fig.3c). This observation is supported by the measurement of segmented cell areas and the 

fraction of assigned molecules, where Bering segmented cells with larger average sizes (up to 

40% compared to the original paper) and harvested more transcripts during the segmentation 

process compared to other methods (Supplementary Fig.16). 

 

To gain insights into the quality of single cells derived from different segmentation methods, we 

conducted benchmark comparisons at the single-cell level using the NSCLC CosMx data, where 

cell labels obtained from model predictions or label transfers were displayed within reduced 

dimensions. (Fig.3d, Supplementary Fig.17a, Methods). We measured the correlations between 

cell types. Remarkably, we observed that Bering exhibited low correlations between tumor and 

non-tumor cells, and closely mirrored the correlation patterns observed in the original paper 

(Fig.3e, Supplementary Fig.17b). In contrast, other methods demonstrated strong cross-

correlations between tumor and non-tumor cells, alongside diminished correlation within non-

tumor cells (Supplementary Fig.17b). These findings suggest that Bering's segmentation results 

have cleaner captured signals and less contamination. Furthermore, the expression of marker 

genes clearly indicates the separation of tumor and non-tumor cells (Fig.3f). 

 

Bering’s applications in versatile spatial technologies and 3D thick tissues 

A diverse range of technologies now exists for generating single-cell spatial transcriptomics data, 

offering distinct data qualities and gene throughput capabilities. For instance, osmFISH enables 

the capture of 35 genes, while seqFISH+ has scaled throughput to accommodate up to 10,000 

genes (Supplementary Fig.1, Table S1). However, the application of these technologies across 

different tissues presents significant challenges in terms of cell segmentation2. To showcase the 

effectiveness of Bering, we have applied the model to various tissues, including densely packed 

tissues like the ileum and embryo (Fig.4a-h). Our model generates precise cell boundaries with 

corresponding cell annotations, providing a convenient resource for downstream analysis. A holy 

grail of spatial transcriptomics is to generate spatially resolved gene expression in 3D tissues and 

organs, thus, we applied Bering to the latest 100-µm thick-tissue MERFISH cortex tissue22 for 

3D segmentation (Fig.4i). We segmented 397 cells and harvested 530,912 transcripts, 9.3% 

higher than the original paper. In summary, Bering successfully segments cell boundaries and 

accurately predicts their corresponding cell types, thereby demonstrating its efficacy in 

simultaneous cell segmentation and annotation across diverse datasets and technologies, in both 

2D and 3D settings. 

 

Generalized Bering model using transfer learning and self-distillation 

Bering, as a deep learning approach, provides the distinct advantage of cross-dataset portability. 

For example, we successfully applied a pre-trained model developed from one slice of the mouse 

cortex to another slice, yielding highly satisfactory segmentation performance. This led to 
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unambiguous cell type annotations (Supplementary Fig.18a) while achieving comparable 

performance to the fine-tuned model (Supplementary Fig.18b). 

 

However, the portability of the Bering pre-trained model can be significantly hindered by batch 

effects across datasets, where the throughput of genes, which serve as features in the node 

classification task, can vary dramatically. This presents substantial challenges when applying 

pre-trained models to new data. To overcome this obstacle, we employed transfer learning 

techniques and employed the self-distillation method to enhance prediction results on the new 

data (see Methods). In the specific case of the cortex MERFISH data, we acquired a pre-trained 

Bering model from Zhang et al.3 and utilized it to predict cells and annotations in the new cortex 

VISp data from Biancalani et al.23. Less than 20% of molecules were assigned cell labels initially 

by the pre-trained model (Fig.5a-c). To better capture the latent representation of the new data, 

we improved the pre-trained model through two rounds of self-distillation, leveraging the coarse 

prediction labels in the new data (see Methods). As a result, a larger number of transcripts were 

successfully labeled and segmented, with over 80% of transcripts assigned labels and more than 

2,000 cells segmented (Fig.5c). Notably, the different layers of neurons (L2-L6) were accurately 

predicted, with intermittent distributions of interneurons and supporting cells (Fig.5a, b). 

Furthermore, the predicted single cells from various cell types exhibited distinct distributions on 

the UMAP, highlighting a more pronounced separation between cell types compared to the 

predictions prior to self-distillation. 

 

We further applied this strategy to tumor datasets, where the pre-trained model was derived from 

NSCLC CoxMx data comprising 980 genes, and the validation data was obtained from the DCIS 

dataset, consisting of 313 genes. Without any fine-tuning, approximately 40% of transcripts in 

DCIS were successfully segmented and assigned cell labels (Supplementary Fig.18c). However, 

the resulting transcript distribution landscape on the tumor slice lacked sufficient details for 

individual cells (Fig.5e,f). Through the process of self-distillation, we achieved significant 

improvements. More than 80% of transcripts were labeled, and over 3,000 cells were 

successfully segmented, which is approximately three times more compared to the results before 

self-distillation (Supplementary Fig.18c). This enhancement allowed us to reveal finer details of 

tumor niches, such as the colocalization of immune cells and tumor cells, as well as the precise 

boundaries of tumor regions (Fig.5e,f). Notably, the expression patterns of marker genes 

demonstrated specific expression across different cell types, confirming the accuracy of our cell 

segmentation and annotation. 

 

 

Discussion 

Cell segmentation remains a challenging task today for several reasons. One of the primary 

difficulties is that some tissues have densely packed cells with unclear boundaries, making it 

difficult to make accurate segmentation. For instance, some cells in tumor tissues and ileum17 
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have almost no gaps between them, presenting a very different scenario than the cortex, where 

tissues have a sparse distribution of cells. Additionally, the limitations of capture rates and RNA 

diffusion in some technologies, such as pciSeq and MERFISH6, result in sparse and noisy spots. 

Cell staining imaging, including DAPI, poly-A, and membrane staining, reveals imbalanced 

image signals among different cell types and incomplete capturing of entire cells due to 

limitations in scanning depth. While traditional methods have struggled to achieve accurate cell 

segmentation masks, the molecular information generated by spatial technologies has opened a 

new avenue to address this challenge. 

 

The field of subcellular transcriptomics has gained popularity as a result of the rapid 

advancement of spatial omics technologies11,14,15,19,24. These cutting-edge technologies have 

enabled researchers to obtain more detailed information about cellular processes than ever 

before. For example, recording the transmission of neurotransmitters has been difficult in the 

past, but with high-resolution technology such as Ex-seq7, it is now possible to study neuron 

interactions within the synapse. Over the last few years, high-throughput sequencing-based 

spatial technologies, such as Slide-tag and Stereo-Seq have greatly enhanced the spatial 

resolution to near-single-cell or subcellular levels25.  Additionally, the size of features in image-

based spatial transcriptomics technologies has increased from 30 to 10,0004, making it 

increasingly feasible to use deep learning models. However, the primary obstacle to 

implementing such models remains the shortage of labels for specific tasks. Consequently, 

previous methods for analyzing subcellular data, such as Bento and FISHFactor, have primarily 

relied on statistical models for unsupervised learning15,19. However, cell segmentation, which is 

relatively easier to obtain a large number of labels using traditional methods, presents the 

possibility of exploring the application of deep learning models in subcellular resolutions. 

Benchmark results in our study demonstrate the superior performance of deep learning models 

compared to traditional methods by inferring the complicated underlying relationships of gene 

colocalizations. 

 

In our paper, we explore the possibility of detecting cell borders using subcellular transcript 

distributions and demonstrate the successful application of the graph model. Although Bering 

gained good performance in cell annotation and segmentation, we expect Bering can be further 

improved in future studies. First, graphs in the model were built using k-nearest neighbors, which 

mainly consider the relationships of transcript location within a local region. However, cells are 

usually sphere shapes in their 3D tissue environments and the relationships of transcripts on the 

membrane of two sides of the cell may not be efficiently captured by the graph. Second, the 

model requires labels for training purposes. If the labels come from Watershed, which may over-

rely on the nuclei position and give conservative cell masks, it may also lead to conservative 

prediction in the Bering model. Third, the speed of training for the image-based encoder is 

relatively slow compared to image-free segmentation, where we only use the gene-colocalization 
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information as the input. Technical performance can still be improved for better and faster 

training and prediction.  

 

Obtaining pre-trained labels can be a difficult and labor-intensive task. Consequently, it would 

be advantageous if we could obtain pre-trained models for specific tissues based on large-scale 

data. The cortex20, with its accessible subcellular transcriptomics data, is an example of such a 

tissue. We have demonstrated that a pre-trained model can be readily applied to a new dataset or 

a new technology of the same tissue and enhanced through fine-tuning the data itself. However, 

the main hurdle in obtaining practical pre-trained models for various technologies is the 

variability in the features being measured and the lack of a large amount of data. For instance, 

the overlap of measured genes between the MERFISH cortex data and the osmFISH cortex data 

is limited to less than 15. This presents a significant challenge for transfer learning in such cases. 

The selection of genes to be probed and measured is heavily influenced by authors' interests, 

which can result in significant heterogeneity across datasets. The varying choices and depth of 

features create challenges for portable models. Nevertheless, as more genes are probed in new 

versions of these technologies and more datasets from various tissues are generated, this issue 

will become less problematic in the future. 

 

In summary, we tackled the cell segmentation task for spatial data using a graph model and 

transfer learning, incorporating multi-modality information during training. We demonstrated the 

model's portability across various datasets and technologies. Nonetheless, there are still some 

challenges that we hope to address with future technological advancements. 

 

 

Methods 

 

Bering model framework 

The Bering model, illustrated in Figure 1 and Supplementary Fig.7, consists of two main 

components. The first component involves node classification to distinguish between noise and 

real signals, with predictions made for cell types. In the second component, cell segmentations 

are performed, which entails predicting edges. Initially, we construct a gene colocalization graph, 

which serves as the input for a graph neural network used in the node classification task. The 

node representations, along with auxiliary edge embeddings derived from image staining and 

distance kernels, are employed as edge embeddings. These combined edge embeddings are 

utilized to predict edge labels, wherein intercellular and intracellular edges are binarized as 

negative and positive labels, respectively. The final edge predictions are then utilized to build a 

molecular connection graph, where a community detection algorithm is applied to achieve cell 

segmentation. Finally, the outcomes of both node classification and cell segmentation tasks are 

merged to obtain annotated single-cell data. 
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Gene colocalization graph 

In this model, molecules, such as transcripts, are depicted as nodes on the slice, and we utilize 

their 2-dimension (2D) or 3-dimension (3D) spatial coordinates to construct k-nearest neighbor 

graphs (KNN) to capture gene colocalization information. By default, we consider the 20 nearest 

neighbors. Edges of the graph depict equal-weight neighborhood relationships between nodes. 

The graph is described as below: ăąā   =  (ý,  āąā), āąā = {(ċ, Č) | Č * ÿĂĀā(ċ)}           (1), 
where ý represents the node set, āąā  represents the edge set and ÿĂĀā(ċ) represents the k-nearest 

neighboring nodes of node ċ in Euclidean space. 

 

Node features 

To capture gene colocalization information in 2D or 3D spatial coordinates more effectively, we 

utilize neighborhood gene components (NGCs) as node features. NGCs consist of gene 

components within the k-nearest neighborhoods, resulting in sparse count matrices where genes 

serve as features. This enables us to incorporate spatial relationships and uncover insights about 

gene colocalization patterns. Below is the definition of NGC: Ăăÿÿ,ć  =  |{ċ|ċ *  ÿĂĀā(ÿ), ąăĄăċ = ć} |     (2), 
where ÿ represents molecule ÿ in the node set ý and ć denotes gene ć in the gene set.  The matrix 

value Ăăÿÿ,ć  indicates the count of detected genes ć in the neighborhood of node ÿ. The total 

number of genes in the dataset is defined as ĂąăĄăĉ, and each gene ċ corresponds to a column in 

the NGC matrix. The matrix values indicate the count of detected genes ċ in the NGC. ĂąăĄăĉ  

can vary across technologies and datasets. For instance, osmFISH has been reported to detect 35 

genes26, whereas SeqFISH+ has the capacity to detect up to 10,000 genes in a single experiment4. 

 

Graph convolutional networks 

Assuming that spatially proximal nodes exhibit similar node embeddings, our hypothesis aligns 

with graph neural networks. These networks propose that the node representation in a graph 

should consider not only its own features but also the characteristics of its neighboring nodes. In 

our model, we employed the Graph Convolutional Network (GCN) to analyze the gene 

colocalization graph. The GCN layer is defined as follows: Ą1 = � (Ā212� �̂ Ā12� ÿ�1)          (3), 
Ąÿ+1 = � (Ā212� �̂ Ā12� Ąÿ�ÿ)          (4), 

where Ą represents the matrix of node representations /ċ, and ÿ represents the NGC of node 

features Ďċ. �(∙) denotes the activation function (ReLU in our case). �̂ is the graph adjacency 

matrix augmented with self-loops.  Ā� is the graph degree matrix, and � is a matrix of trainable 

parameters. 
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Fully connected neural networks 

After obtaining the node representation from GCNs, Fully Connected Networks (FCNs) are 

employed. The FCN is defined as Ăÿ(/Ā) = �(þ/Ā + Ā)        (5), 
Here /Ā denotes the representation of node Ā. The weight matrix þ and bias term Ā are learned 

for each layer. �(∙) denotes the activation function (ReLU in our case). Multiple FCN layers are 

stacked to get the final prediction. Similar networks are employed for edge predictions in the 

segmentation task as well, which will be mentioned below. 

 

Node classification 

Node label prediction is accomplished by leveraging the node representations acquired through 

GCNs and FCNs. In the training phase, the objective function is determined by computing the 

cross-entropy loss between the ground truth labels and the predicted labels. ĀĄąĂăāĂĄ  =  2 1Ă ∑�
Ą=1 (∑ÿ

ā=1 �āĉąĄĊăÿĎ(ď�Ą,ā) ∙ ďĄ,ā + �ĀĉąĄĊăÿĎ(ď�Ą,Ā) ∙ ďĄ,Ā)          (6), ĉąĄĊăÿĎ(ĎĄ,ā) = Ăąą ăýĆ(ý�,ý)∑�ÿ = 1 ăýĆ(ý�,ÿ)                  (7), 
where the loss of node classification is denoted as ĀĄąĂăāĂĄ.  ď� * ý|�|×(ÿ+1) is the output from 

FCNs and ď is the ground truth labels. ÿ is the number of classes, and � is the weight. �ā and �Ā 

represent the weight of real signal nodes with various cell types and background noises, 

respectively. These weights can be adjusted by users according to the background noise 

prevalence to effectively identify real signals and noises.     

 

Transfer node representation for segmentation 

NGCs are employed to learn the node representations of molecules, primarily for the node 

classification task. However, our ablation study revealed that this representation proves 

advantageous for edge classification in the cell segmentation task as well. Consequently, we 

transfer the node representations acquired from NGCs and concatenate the representation matrix 

of two end nodes of an edge, forming a new matrix that becomes a part of the edge 

representation. Throughout this process, the parameters of GCNs and FCNs learned for the node 

classification task remain frozen. ā(ă)� = {/ÿ , /Ā} , č/ăĈă ă = (ÿ, Ā)      (8), 
where ā(ă)�  represents the edge embedding of edge ă by concatenating node representation /ÿ 
and /Ā of node ÿ and Ā from the layer Ă of the node classification model. By default, we select the 

output of the first fully connected layer after GCNs as the node representation. 

 

Distance kernels 

The RBF distance kernel is a kernel function that measures the similarity between two vectors 

based on the distance. Since the spatial distance between two nodes is highly correlated with 
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their intercellular relationship, we utilize distance kernels as a part of the edge embeddings to 

effectively learn the appropriate cell sizes. ā(ă)Ā  = {ÿĂ(Ćÿ , ĆĀ ) }Ă=1Ā         (9), 
   ÿĂ(Ćÿ , ĆĀ )  =  ăĎĆ(2 || Ćÿ 2 ĆĀ ||2 2 �þ 2�þ2 )        (10),             

 

where ā(ă)Ā  represents the edge embedding derived from distance kernels ÿĂ . Total number of 

kernels is denoted as Ā. Ćÿ  and Ćÿ  represents coordinates of nodes ÿ and Ā. �Ă and �Ă are the 

mean and standard deviation of each kernel, which can be learnable.  

 

Image representation 

Cell boundaries are highly indistinct without image staining in densely packed tissue, such as 

tumor and ileum. Latent image representations prove beneficial in these cases. Consequently, the 

image representations serve as an additional edge representation in such scenarios. In this model, 

CNNs followed by spatial pyramid pooling (SPP) are applied to learn the embeddings of input 

images of different sizes. FCNs are further utilized to learn the edge representation using the 

output of SPP. 

 ā(ă)�ăą  = ĂÿĂ  (þ�� (ÿĂĂ (ÿăąă)))         (11), 
 

where ā(ă)ÿăą represents the image representation in the edge embedding, and ÿăąă  is the 

image of edge ă. The image of an edge is defined as the rectangular region it covers, with the 

edge itself forming the diagonal line. While the size of these images falls within a specific range, 

the exact dimensions can vary significantly (such as 7 x 12 or 14 x 19 pixels), depending on the 

length of the edge. To optimize computational resources, we categorize edge sizes into distinct 

groups (such as 5 x 10 or 15 x 20 pixels). The actual images are then adjusted by expanding or 

cropping to fit within the designated bin size, which serves as the training input. 

 

Edge representation 

The edge representation serves as the input for the edge classification and the segmentation task, 

comprising three aforementioned key components, including node representation, distance 

kernels and image representation.  

 ā(ă)  =  {ā(ă)�, ā(ă)Ā, ā(ă)�ăą}         (12), 
 

These three components play a crucial role in efficiently learning the underlying knowledge of 

gene colocalization relationships, cell sizes, and image-informed cell boundaries, respectively. 

Moreover, their combination holds the potential to learn cell type-specific cell sizes. Node 

representations and distance kernels prove to be adequate for sparsely populated tissues with 
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clear cell boundaries, such as the cortex. However, in densely packed tissues like tumors, ileum, 

and liver, where cell boundaries are often challenging to discern, image representation becomes a 

vital component. The incorporation of image channels, such as DAPI staining, provides valuable 

information about cell boundaries in these densely packed tissues. 

 

Edge classification 

The edge classification task serves as input for the cell segmentation community detection 

algorithm. It is formulated as a binary classification problem, training the fully connected neural 

network to discern intracellular and intercellular molecular colocalization. Predicted edge labels 

are obtained using the sigmoid function applied to the neural network output. Binary cross-

entropy is employed as the objective function. 

 ĀāĂąăāĂĄ  = 2�[ď ⋅ Ăąąď  + (1 2 ď) ⋅ Ăąą(1 2  ď )]           (13), 
 

where ĀāĂąăāĂĄ represents the loss of the edge classification model. � is the weight; Ď and ď are 

the probability of predicted binary labels and ground truth labels, respectively. 

 

Molecular connectivity graph 

After the edge prediction, we create the molecular connectivity graph using predicted edge labels ăÿ,Ā . Positive labels (ăÿ,Ā = 1) indicate a connection between two nodes, where they belong to the 

same cell according to the model. Negative labels (ăÿ,Ā = 0) imply no connection between nodes, 

indicating they belong to separate cells.  ăăā  =  (ý, āăā)           (14), (ÿ, Ā) * āăā ÿĄ ăÿ,Ā = 1                 (15),  
 

Due to the large number of nodes and edges involved (potentially in the millions and billions, 

respectively), it is infeasible to predict labels for all pairwise edges. Currently, technology 

typically covers fewer than 300 nodes in a single cell, suggesting that positive edges for a node 

primarily come from its 300 closest neighbors. Consequently, we only predict edge labels for 

nearest neighbors. 

 

Cell segmentation with community detection algorithms 

Once the molecular connectivity graph is constructed, we apply the community detection 

algorithms, such as Louvain and Leiden, to identify clusters from the graph. These clusters 

correspond to individual cells in the tissue.  

 

Single-cell annotation 

After obtaining node classes and cell boundaries, we utilize both outcomes to generate single-cell 

data with annotations. We select cells that meet specific criteria, including (1) a minimum 

number of total transcripts per cell, (2) a minimum number of transcripts for the dominant cell 
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type per cell, and (3) a minimum ratio of transcripts of the dominant cell type per cell. We 

introduce a threshold for the transcripts of the dominant cell type as we posit that transcripts 

within a segmented cell should belong to the same cell type. If transcripts within a segmented 

cell are annotated as many different cell types, we lack confidence in the accuracy of the cell 

annotation. By default, these thresholds are set as 50, 30, and 0.6, respectively. Segmented cells 

that satisfy the criteria are annotated with the dominant cell class of transcripts within each cell. 

 

Model implementation 

The GCNs are implemented using PyTorch Geometric27, with batch normalization and dropout 

layers (dropout rate = 0.2) applied to each graph convolutional layer during training. The FCNs 

and CNNs are implemented using PyTorch, with batch normalization incorporated into each 

FCN layer. To handle the heterogeneous shapes of input images, spatial pyramid pooling is 

employed. This is achieved through the PyTorch AdaptiveMaxPool2d function, utilizing three 

pooling sizes (4, 2, and 1) to ensure consistent sizes of output embeddings. The resulting 

embeddings from the spatial pyramid pooling layers are passed through two layers of FCNs to 

generate the image representation, which becomes a part of the edge representation. The RBF 

distance kernel, referred to as the GaussianSmearing function, is implemented using the 

TorchDrug package28. The parameters � and � in the distance kernels are learnable during the 

training phase. 

In both the node classification and edge prediction tasks, a learning rate of 1 x 10-3 and weight 

decay of 5 x 10-4 are set. Early stopping can be triggered when the loss fails to decrease. 

 

Generalized model using transfer learning 

Fine-tuning is essential when working with new data that exhibits observable variations, as it 

helps enhance the model's performance in both node classification and edge prediction. By 

retraining pre-trained Bering models using new data from the same tissue, the model parameters 

are updated using the training data and labels from the new dataset. This process ensures that the 

model adapts to the specific characteristics and patterns present in the new dataset, thereby 

improving its overall performance. 

  

Analysis of Neighborhood Gene Component 

To unravel the underlying information regarding gene colocalization, we construct atlases of 

neighborhood gene components (NGCs) using the CoxMx NSCLC dataset and the MERFISH 

cortex ileum dataset. In each cell, a random selection of two molecules is made, and their k-

nearest neighbors are identified, resulting in the formation of two NGCs. These NGCs were 

derived from various cell types and compartments, including nuclei, cytoplasm, and membrane. 

The information about cell type and compartment is derived from the original papers. The NGCs 

from different cell types and compartments are then concatenated to form a matrix, similar to 

single-cell matrices where genes serve as features. The distinction lies in the fact that NGCs 

utilize neighborhoods as objects within the matrix, rather than individual cells. These NGC 
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matrices are stored as Scanpy objects29, and an analysis pipeline resembling single-cell analysis 

is applied to the data. By employing UMAPs and Leiden clusters, we obtain reduced dimensions 

and clustering patterns from these matrices. For further details, please refer to the single-cell 

analysis section. 

 

Ablation study 

First, we employed baseline fully connected neural network (FCN) models and graph 

convolutional network (GCN) models with identical layer dimensions for the node classification 

task. We evaluated the classification accuracies across multiple datasets, as depicted in Figure 

2c, d and Supplementary Fig.9. Furthermore, we conducted eight ablation studies on the NSCLC 

CosMx data to assess the impact of different model components, such as GCNs, RBF distance 

kernels, and image embeddings. All other model hyperparameters remained constant. The 

ablation studies involved measuring various segmentation metrics, including adjusted mutual 

information (AMI), fractions of assigned molecules, and the number of detected cells. 

 

Benchmark metrics 

Node classification task 

In this project, we employed multiple metrics to evaluate the performance of the model from 

various angles. For the node classification task, we focused on two aspects for comparison: 

background noise prediction and cell type prediction. In in-situ hybridization methods like 

MERFISH, significant noise is observed due to RNA diffusion during the staining rounds. To 

assess the effectiveness of background noise classification, we utilized accuracy as the 

evaluation metric. We obtained the ground truth by extracting foreground real signals and 

background noise, and then calculated the accuracy using the predicted labels generated by the 

model. �āāĀą  = ∑�ÿ=1 (ď�� = ďÿ)Ă , č/ăĈă ď��, ďÿ *  [′ĀÿāāąĈąċĄĂ′, ′ĄąĈăąĈąċĄĂ′] 

 Ă is the total number of molecules, and ďÿ�  and ďÿ are predicted labels and ground truths of real 

signals and background noises for the molecule ÿ. Apart from background accuracy, we also 

evaluated the performance of cell type classification. The accuracy of cell type predictions is 

used for the comparison, 

 �āāāăĂĂ2ĊþĆă  =  ∑�ÿ=1 (þ�� =þÿ)� , č/ăĈă ď��, ďÿ  *  [′ĀÿāāąĈąċĄĂ′, ′ĊďĆă1′, . . . ′ĊďĆă ÿ′], 
where ďÿ�  ÿĄĂ ďÿ ÿĈă ĆĈăĂÿāĊăĂ ĂÿĀăĂĉ ÿĄĂ ąĈąċĄĂ ĊĈċĊ/  of cell types for the molecule ÿ. 
 

Cell segmentation task 

The cell segmentation task can be seen as an unsupervised clustering problem, where the 

similarity between our predicted cells and the cells in the ground truth needs to be assessed. To 

measure this similarity, we employed a widely used metric known as adjusted mutual 
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information (AMI). AMI served as the quantification metric in evaluating the performance of our 

cell segmentation method. �āą(āăĂĂĉĊĈċă , āăĂĂĉĆĈăĂ)  =  [āą(āăĂĂĉĊĈċă , āăĂĂĉĆĈăĂ)  2  ā(āą(āăĂĂĉĊĈċă , āăĂĂĉĆĈăĂ) ][ÿČą(Ą(āăĂĂĉĊĈċă), Ą(āăĂĂĉĆĈăĂ))  2  ā(āą(āăĂĂĉĊĈċă , āăĂĂĉĆĈăĂ) 

 

where āăĂĂĉĊĈċă , āăĂĂĉĆĈăĂ represent cell ids from ground truth and predictions. Ą(∙) represents 

the entropy of a vector, and āą(∙) represents mutual information. AMI considers the fact that 

mutual information is generally higher for two clusterings with a large number of clusters. In our 

case, the number of cells in a dataset is usually large and AMI could be a more appropriate 

option. 

 

Fraction of assigned molecules 

The fraction of assigned molecules is utilized as a metric to compare the effectiveness of 

segmentation. We hypothesize that more conservative methods that solely rely on nuclei staining 

images may yield lower performance in this metric. It is defined as below. ĂĈÿā =  ĂăąĂăāċĂăĉ + ĀÿāāąĈąċĄĂĂĊąĊÿĂ ăąĂăāċĂăĉ  

 

Number of cells and cell areas 

The number of cells is utilized as an indicator to assess the capability of identifying individual 

cells. Nevertheless, it is important to note that a higher number of cells does not necessarily 

indicate superior segmentation performance. Certain methods may employ an aggressive 

approach that results in numerous cells with small areas. Therefore, we also evaluated the sizes 

of the segmented cells to determine whether they exhibit appropriate shapes. 

 

Correlation of single cell expressions 

To assess the correlation between clusters, we initially identified representative cell markers by 

conducting differential expression analysis within the single-cell clusters from the original 

paper8. Subsequently, we calculated the Spearman correlation by averaging the gene expression 

values across clusters. This allowed us to evaluate the degree of correlation between the clusters. 

 

Benchmark methods 

TACCO classification 

TACCO, an optimal transport method, enables the transfer of annotations from single-cell data to 

spatial data. In our benchmark studies, we utilized the benchmark datasets with annotations 

obtained from the original papers to create the reference single-cell data. The cell type 

annotations for molecules were generated by projecting the single-cell labels using the 

"annotate_single_molecules" function. 

 

Watershed segmentation 
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The watershed method, implemented using the spateo package30, was utilized for segmentation 

based on nuclei staining images with some modifications. Firstly, the masks of nuclei were 

identified using both global and local adaptive thresholding techniques. Subsequently, peak 

detections were performed based on the results obtained from the distance transform algorithm. 

The connected peaks were merged to form individual markers. Finally, the masks and markers 

were used as input for the watershed algorithm. Molecules were assigned to the nearest pixels, 

and cell IDs were determined based on the corresponding pixels. 

  

Cellpose segmentation 

Cellpose, a U-Net based deep convolutional neural network approach, was used as a benchmark 

method in the paper. We used the pretrained model 8cyto9 and nuclei staining for segmentation. 
  

ClusterMap segmentation 

ClusterMap is a cell identification method that utilizes density peak clustering of spots in spatial 

data, with the option to incorporate staining images as an auxiliary input. In our benchmarking, 

we evaluated both modes of ClusterMap, namely with and without aligned nuclei images. 

Specifically, we employed the 2D segmentation mode for this particular task. When available 

publicly, DAPI staining imaging was employed during the preprocessing stage. In cases of noisy 

data, such as MERFISH3 and pciSeq6, the noise ratio was estimated by referencing the 

percentage of unsegmented transcripts as indicated in the original paper; this parameter, termed 

"pct_filter," was then configured during preprocessing. Furthermore, for these noisy datasets, the 

local noise rejection mechanism ("LOF") was activated during the preprocessing phase. 

  

Baysor segmentation 

Baysor is a Bayesian model-based method designed for segmenting spots in spatial data. It has 

the capability to incorporate prior segmentation masks, such as those obtained from Watershed 

or other segmentation methods. In our benchmark study, we evaluated the performance of 

Baysor both with and without prior segmentation. For the tests with prior information, we 

performed Watershed segmentation on the nuclei staining images and utilized the resulting 

masks as input for Baysor. 

 

Hyperparameter tuning 

To ensure a fair benchmark comparison, we carefully fine-tuned the hyperparameters of Bering 

and other benchmark methods, selecting the best parameter combinations for the final evaluation. 

In the case of the Watershed algorithm, we considered three important parameters: the minimal 

distance for peak detection, the kernel size for morphological open and close operations, and the 

block size for adaptive thresholding. For Cellpose, we conducted benchmarking experiments to 

determine optimal diameters and flow thresholds. In Clustermap, we separately benchmarked 

two modes: one with auxiliary images and one without. In both modes, we evaluated three 

hyperparameters, including thresholds for cell numbers, estimated radius in the x-y plane, and 
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sample interval in the DAPI image. Similarly, in Baysor, we evaluated its performance in two 

modes: one with a prior segmentation mask and one without. For Baysor, we first benchmarked 

hyperparameter selections, including scale, the standard deviation of scale, and the minimal 

number of molecules. Once we obtained the best hyperparameter combination, we applied it to 

the Baysor mode with a prior segmentation mask and further benchmarked the confidence of the 

prior segmentation. Lastly, for Bering, we benchmarked several hyperparameters, including the 

number of layers, the number of cells for pretraining, neighborhood sizes of graphs, and the 

numbers and size ranges of RBF distance kernels. The benchmark experiment across 

segmentation methods was conducted using the best hyperparameter selections we obtained. 

 

Thick tissue analysis 

The thick tissue MERFISH cortex dataset22 was harnessed to assess the 3D segmentation 

performance of Bering. The original cell boundaries and labels served as the pre-trained 

references during the model's training phase. By employing Euclidean distances within the 3D 

context, we computed k-nearest neighbors and subsequently established colocalization graphs. 

The trained model's prowess was then put to the test in a designated 200 x 200 x 100 µm region 

for comprehensive evaluation. 

 

Subcellular pattern identification 

Utilizing FISHFactor, we discerned distinct subcellular gene patterns within tumor cells from the 

NSCLC CosMx dataset. A cohort of 200 tumor cells was randomly selected, and three distinct 

factors were computed for all genes. The gene weights within these factors, along with spatial 

factor scores, were subsequently plotted to unveil subcellular gene patterns. Factor 2 and factor 3 

were denoted as "nucleus-pattern" and "peripheral-pattern," respectively. The genes with the 

highest weights within these two factors were identified, and their subcellular distributions were 

visualized. To portray these distributions (Fig. 1c), boundaries for cell nuclei and cell bodies 

were established through Cellpose segmentation of DAPI imaging and the convex hulls of all 

transcripts, respectively. Furthermore, we computed the normalized distance to the cell nuclei 

centroid. This calculation entailed determining the distance between the query transcript and the 

nuclei centroid, which was then divided by the maximal distance between all transcripts and the 

nuclei centroid. Finally, we employed kernel density estimation (KDE) plots to artistically depict 

the smoothed distributions of these distances. 

 

Single cell analysis 

Single cell analysis was performed using Scanpy29. We started by extracting count matrices from 

the segmented cells, which were then normalized to a total count of 1000 per cell. Cells with 

insufficient counts (minimum 10 counts per cell) were removed due to low coverage. Then, log 

transformation and scaling were applied to the normalized counts. Principal Component Analysis 

(PCA) was subsequently employed to reduce the dimensionality of the data. Using the resulting 

PCA components, a neighbor graph was constructed by considering the 10 nearest neighbors for 
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each cell. The UMAP algorithm was applied to obtain a reduced-dimensional representation of 

the data, which facilitated visualization and exploration. To understand cell identities in the 

results, we used the <ingest= function in Scanpy to map labels from the reference data 

(annotations in the original paper in this case) to single cell data generated from benchmark 

methods, including Watershed, Cellpose, ClusterMap and Baysor. Predicted labels from Bering 

results were used directly for the comparison with other benchmark methods.  

 

Alignment of image signals and spot information 

DAPI staining images are usually available for image-based spatial technologies. We get the 

coordinates of transcript spots and project them onto DAPI images based on the closest pixels. 

The DAPI image intensity of the corresponding pixels were used as the DAPI staining strength 

of the spots. DAPI image intensity scale from 0 to 255 and 25 is used as the threshold for low 

signal pixels. 

  

Data availability 

Raw data of all datasets used in the paper can be found in the Supplementary Table 1. Processed 

data and pre-trained models are deposited in Figshare 

(https://figshare.com/ndownloader/articles/23605539/versions/2).  

 

Code availability 

The source code and Python package are freely available at https://github.com/jian-shu-

lab/Bering. The analysis performed in this paper can be found at https://github.com/jian-shu-

lab/Bering_analysis. 
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Figure 1. The overview of Bering model for cell segmentation. (a) An animation illustrating 

image-based spatial transcriptomics approaches. Multiple slices in the z-axis are generated and 

transcripts from nuclei and cytoplasm are detected in each slice. Additionally, staining images, 

including the nuclei image, are captured. (b) The concept of Neighborhood Gene Components 

(NGCs) is introduced for transcripts in image-based spatial transcriptomics data. NGCs are 

defined as count matrices, where each value in the matrix corresponds to the number of detected 

transcripts for each gene in the neighborhood of the query transcript. (c-f) Overview of the 

Bering model. (c) The animation of spatial profiling of molecules in single-cell spatial omics 

data. Colored spots indicate mRNA or proteins, while hollow spots represent noise. Different 

colors of cells indicate distinct cell types, with the nucleus shown in blue. (d) Construction of 

spatial colocalization neighborhoods using k-nearest graphs, with graph convolutional neural 

networks (GCN) trained for cell type prediction on the node level (transcript or other molecules). 

(e) Input for the edge prediction task, including required node embeddings transferred from the 

node classification task, along with auxiliary input of staining images and distance information 

calculated from the 2/3-dimensional (2/3D) coordinates. (f) Cell segmentation task defined as an 

edge prediction task, utilizing multimodal input of edge embeddings (from e) to train neural 

networks. The prediction outcome is binary classification, indicating whether the edges connect 

intercellular or intracellular spots. Molecular connectivity graphs are then constructed, and 

community detection algorithms such as Leiden Clustering are employed to identify cell borders. 
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Results from the node classification task and segmentation task are combined to obtain single 

cells with annotations for downstream analysis. More details can be found in Supplementary 

Figure. 6. 
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Figure 2. Performance of noise and cell type predictions on transcripts.  

(a) Background noise prediction in the MERFISH cortex data using different segmentation 

methods. The background noise annotated in the original paper of the data was shown on the left. 

(b) Bering demonstrates superior performance in predicting noise and real signals compared to 

other segmentation methods across datasets. CM: ClusterMap; CM(img): ClusterMap with DAPI 

image input. (c) Cell type prediction in the 10x Xenium data of Ductal Carcinoma In Situ (DCIS) 

using different transcript-level annotation methods, including TACCO and Bering with and 

without graph models (top). The zoomed-in visualization of a particular section of the tissue is 

presented below. (d) The accuracies of cell type prediction by TACCO and Bering, with and 

without graph models, were evaluated across various datasets. 
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Figure 3. Performance of cell segmentation. (a) Zoomed-in sections of CosMx NSCLC data 

illustrate the cell segmentation results obtained using various segmentation approaches. Different 

cell types are depicted in distinct colors, while background noises are visualized as gray dots. 

Cell boundaries are depicted using hulls. The segmentation result from the original paper is 

displayed in the top-left corner. CM: ClusterMap. CM (img): ClusterMap with DAPI image 

input. (b-c) Quantitative metrics, such as adjusted mutual information (AMI) (b) and the number 

of transcripts per cell (c), are employed to benchmark the segmentation results across diverse 

datasets. The error bars represent the standard deviations of transcripts per cell. Image-dependent 

methods were excluded from the benchmark if processed nuclei staining images were 

unavailable. (d) The UMAP shows single cells and labels generated from Bering segmentation 

results. (e) Spearman correlation calculated for gene expression levels in cell labels shown in (d). 

Representative cell markers, obtained through differential expression analysis from the original 

single-cell data in the paper, were utilized for correlation measurement (See Methods). (f) 

Expression levels of tumor and non-tumor genes across cell types in (d). Additional single-cell 

analysis and correlation matrices from other segmentation results can be found in Fig. S17 for 

comparison. 
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Figure 4. Bering applications across technologies and tissues. (a-h) Bering was applied to 

various single-cell image-based spatial datasets, with predicted cell types and boundaries 

depicted in different colors and hulls in zoomed-in regions. Predicted background noises were 

colored in light gray. (i) Bering was applied to thick-tissue MERFISH mouse cortex dataset, 

resulting in the prediction of diverse cell types (left) and the successful segmentation of 

individual cells. A cross-section at 10 µm (±5 µm) was magnified and presented on the right, 

highlighting the segmentation outcome for a specific plane. 
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Figure 5: Generalizability of the Bering model using transfer learning and self-distillation. 

(a-d) Transfer learning of the Bering pre-trained model on a new mouse cortex MERFISH 

dataset. (a) Application of a pre-trained model from mouse cortex MERFISH data (Zhang et al.) 

to new mouse cortex data (Biancalani et al.), with and without fine-tuning. Fine-tuning labels 

were derived from the prediction results of the pre-trained model, shown in the leftmost figure. 

Two rounds of fine-tuning were conducted through distillation of the prediction results (see 

Methods). A specific region is highlighted for further investigation. (b) Enlarged view of the 

highlighted region in (a). Cell boundaries are depicted by hulls. (c) Quantitative metrics 

depicting the increasing percentages of assigned molecules (left) and the number of segmented 

cells (right). (d) UMAPs displaying the distributions of cells from prediction results, with and 

without fine-tuning. (e-g) Similarly, transfer learning of Bering on tumor spatial transcriptomics 

data. (e) Application of a pre-trained model from CosMx NSCLC to Xenium DCIS data, 

resulting in prediction results without and with fine-tuning, respectively. Two specific regions 

are highlighted for further investigation. (f) Enlarged views of the highlighted regions in (e) 

showing predicted cell types and cell boundaries in the results with and without fine-tuning. (g) 

The heatmap shows the expression levels of marker genes in the segmented cells from the tumor 

microenvironment. 
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Figure S1. Survey of staining images in various image-based spatial transcriptomics 

technologies. The table displays the availability of major image channels in different spatial 

datasets and technologies.  
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Figure S2. Inadequate image signals in spatial transcriptomics data. (a, c) A CosMx non-small-

cell lung cancer slice (a) and a MERFISH mouse ileum slice (c) are presented, where transcripts 

are visualized as blue and red dots. Blue dots represent transcripts covered by strong DAPI 

signals, while red dots represent transcripts covered by weak DAPI signals (See Methods). 

Additionally, selected windows highlight areas with insufficient image staining information. (b, 

d) Enlarged views of the windows shown in (a) and (c), highlighting DAPI signals in grayscale.  
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Figure S3. Limitation of cell membrane staining for segmentation. (a) A MERFISH mouse ileum 

slice is presented, showcasing transcripts from various cell types depicted in distinct colors. Four 

representative regions are highlighted for further investigation. (b) Enlarged visualization of the 

four highlighted regions in (a) reveals grayscale membrane imaging, while transcripts in 

different cells are displayed using unique colors. Inadequate and imbalanced membrane signals 

are observed across regions, particularly in regions highlighted by W2 and W4. (c) The bar plot 

illustrates the imbalance in membrane staining signals across different cell types. 
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Figure S4. Subcellular patterns of genes in NSCLC tumor cells by FISHFactor. (a) FISHFactor 

was applied to tumor cells from CosMx NSCLC data, resulting in the identification of three 

factors representing specific subcellular spatial distributions of genes (see Methods). The weight 

matrix of genes with high weights across factors is displayed. (b) The visualization of factor 

scores in nine tumor cells offers valuable insights into the underlying subcellular spatial patterns 
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associated with the factors. Factor 2 reveals high scores primarily in the nuclei region of the cell, 

suggesting the presence of nuclear genes. Conversely, factor 1 demonstrates high scores at the 

cell periphery, indicating the potential distribution of cytoplasmic or membrane genes. (c) Scatter 

plots illustrate the associations between factors. Factor 1 and factor 3 display a positive 

correlation, while factor 2 and factor 3 demonstrate a negative correlation. (d) Six spatially 

variable genes were derived from factor 2 and 3. Four representative tumor cells are shown, 

where cytoplasm and nuclei regions were depicted in yellow and orange, respectively. (e) 

Density curves depict the distribution of transcripts at varying distances from the nuclei centroid 

within NSCLC tumor cells. These curves indicate relative positioning of transcripts in relation to 

the nuclei. The estimation of these density curves was performed using Kernel Density 

Estimation (KDE). 
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Figure S5. Uniform Manifold Approximation and Projection (UMAPs) depicting NGCs derived 

from CosMx NSCLC data. Cell type annotations (a) and subcellular compartments (b) for NGCs 

are displayed in different colors (see Methods). 
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Figure S6. The framework of Bering mode. This framework serves as a supplementary plot to 

the model framework presented in Fig. 1, providing more detailed information about the neural 

networks involved. The first part of the Bering model is transcript classification. To accomplish 

this, a transcript colocalization graph is constructed, followed by the learning of node 

representations using Graph Convolutional Networks (GCNs). These node representations are 

utilized for both the transcript classification task and the cell segmentation task, serving as input 

for edge representation. In addition to node representation, the edge representation incorporates 

learned distance information and image information. Learnable RBF kernels and Convolutional 

Neural Networks (CNNs) are employed to capture distance and image features, respectively. The 

concatenated edge representation is then utilized as input for the edge prediction task, aiming to 

predict whether two nodes connected by an edge originate from the same cell. 
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Figure S7. Cell size and shape heterogeneity. (a-b) Violin plots displaying the wide dispersion of 

cell areas (a) and aspect ratios (b) within specific cell types or across different cell types, using 

CosMx NSCLC data as an example. 
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Figure S8. Prediction of real signals and noises in real cases. (a, b) Two windows displaying 

foreground and background predictions using different segmentation algorithms in the mouse 

cortex MERFISH data (a) and the non-small cell lung cancer CosMx data (b). Real signals are 

denoted by blue dots, while background noises are represented by gray dots. 
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Figure S9. Node classification performance of TACCO and Bering. (a) Two enlarged views of 

mouse cortex MERIFSH slice showing original labels, TACCO predicted labels, and Bering 

labels (with and without graph models) from left to right. Different cell types are color-coded, 

while background noises are depicted in gray. (b-c) Original labels and predicted labels from 

TACCO and Bering (with graph models) in mouse ileum (b) and NSCLC (c). Highlighted boxes 

depict microenvironment regions where Bering predicts more details compared with TACCO. 
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Figure S10. Ablation studies of the Bering model. Ablation studies were conducted to assess the 

impact of various model components, including graph models, RBF distance kernels, and image 

embeddings. The segmentation performance was assessed by evaluating different combinations 

of these model components using quantitative metrics such as Adjusted Mutual Information 

(AMI), fraction of assigned molecules, and number of detected cells. The analysis was 

performed on NSCLC CosMx data. wo.G: without graph models (learn the node representation 

by fully connected layers); G: with graph models (learn the node representation by GCNs); RBF: 

RBF distance kernels; Img: image embeddings. 
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Figure S11. Hyperparameter search of the Bering model. (a-c) The segmentation performance of 

the Bering model was evaluated in NSCLC data using multiple metrics, including Adjusted 

Mutual Information (AMI), fraction of assigned molecules, and number of detected cells. 

Various hyperparameters were examined, including the number of neural network layers in the 

Bering model (a), the number of neighbors (b), and the number of RBF distance kernels (c). 
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Figure S12. Hyperparameters in the community detection algorithm of cell segmentation. (a) 

Adjusted Mutual Information (AMI) is utilized to evaluate the segmentation performance across 

various hyperparameters, including true positive rates (TPR), false positive rate (FPR) in the 

edge prediction task, and resolutions in Leiden Clustering. Error bars represent standard 

deviation. (b-c) The community detection performance demonstrates minimal sensitivity to 

resolution selection when FPR is low in the edge prediction task and there are a higher number 

of measured edges. Notably, in the edge prediction task with high FPR and low numbers of 

edges for measurement, the Leiden clustering algorithm shows a reduction in AMI for predicted 

cells (b). Conversely, it achieves stable and high AMI in the segmentation with low FPR and 

high numbers of edges for measurement (c). 
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Figure S13. Hyperparameter search of benchmark methods. (a-f) The segmentation performance 

of the Bering model was evaluated in NSCLC data using multiple metrics, including Adjusted 

Mutual Information (AMI), fraction of assigned molecules, and number of detected cells. 

Various hyperparameters were examined for different benchmark approaches, including Baysor 

(without prior) (a), Baysor (with prior) (b), Cellulose (c), Clustermap (without image) (d), 

Clustermap (with image) (e), and Watershed (f). 
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Figure S14.Hyperparameter tuning of benchmark methods for image-free segmentation. (a-b) 

Image-free segmentation was performed in mouse cortex MERFISH data without the input of 

images, and various metrics were used to measure the segmentation performance in Clustermap 

(a) and Baysor (b). 
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Figure S15. Comparison of cell segmentation methods across datasets is depicted, including 

Ileum MERFISH data (a), cortex MERFISH data (b), and DCIS Xenium data (c). In cases where 

processed nuclei images were unavailable for a dataset, image-dependent segmentation methods 

were excluded from the comparison. 
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Figure S16. Performance of cell segmentation across datasets. (a-b) Quantitative metrics, such as 

cell areas (a) and fractions of assigned molecules (b), are employed to benchmark the 

segmentation results across diverse datasets. The error bars represent the standard deviations of 

fractions of assigned molecules. Image-dependent methods were excluded from the benchmark if 

processed nuclei staining images were unavailable.  
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Figure S17. Comparison of single-cell analysis in different benchmark methods. (a) UMAP plots 

illustrating single-cell clustering results using segmented cells obtained from the original papers 

(top left) and other benchmark methods (See methods). (b) Spearman correlation computed for 

gene expression levels in the clusters depicted in (a). Representative cell markers, identified 

through differential expression analysis from the original single-cell data in the paper, were used 

for correlation measurement. For Bering results, please refer to Figure 3. 
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Figure S18. Generalizability of the Bering model within and across datasets. (a) UMAP plots 

displaying the labels (left) and sources (right) of integrated single-cell data from slice 21 and 

slice 10 of the MERFISH mouse cortex dataset. The pre-trained model was obtained from slice 

21 and applied to slice 10. The cells and labels in slice 10 were derived from the segmentation 

prediction results. (b) Performance comparison between model application with and without 

fine-tuning of the pre-trained Bering model for the task described in (a). Quantitative metrics, 

including adjusted mutual information (AMI), fraction of assigned molecules, and number of 

segmented cells, were measured for both strategies in slice 10. (c) The segmentation 

performance of the pre-trained tumor model with and without fine-tuning. The pre-trained model 
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was obtained from NSCLC CosMx data and applied in DCIS Xenium data, as illustrated in Fig. 

5e-g. 
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