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Abstract

Acute liver failure is a life-threatening condition during infancy. Biallelic pathogenic
variants in LARS! cause infantile liver failure syndrome type 1 (ILFS1), which is characterized
by acute hepatic failure in infants. LARS functions as a protein associated with mTORC]1 and
plays a crucial role in amino acid-triggered mTORCI] activation and autophagy regulation. A
previous study demonstrated that larsb-knockout zebrafish show a condition resembling ILFS.
However, a comprehensive analysis of /arsb-knockout zebrafish has not yet been performed
because of early mortality. We herein generated a long-term viable zebrafish model carrying a
LARS1 variant identified in an ILFS1 patient (larsb-I1451F zebrafish) and analyzed the
pathogenesis of the affected liver of ILFS1. Hepatic dysfunction is most prominent in ILFS1
patients during infancy; correspondingly, the larsb-I1451F zebrafish manifested hepatic
anomalies during the developmental stages. The larsb-I451F zebrafish demonstrates
augmented lipid accumulation within the liver under autophagy activation. Inhibition of
DGAT1, which converts fatty acids to triacylglycerols, improved lipid droplets in the liver of
larsb-145 I F zebrafish. Notably, treatment with an autophagy inhibitor ameliorated hepatic lipid
accumulation in this model. Our findings suggested that enhanced autophagy caused by
biallelic LARS] variants contributes to ILFS1-associated hepatic dysfunction. Furthermore, the
larsb-1451F zebrafish model, which has a prolonged survival rate compared to the larsb-
knockout model, highlights its potential utility as a tool for investigating the pathophysiology

of ILFS1-associated liver dysfunction.
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Author Summary

Infantile liver failure (ALF) is a rare but life-threatening condition primarily caused by
various genetic and infectious factors during infancy. Comprehensive research into its causes
is crucial for treatment decisions, including liver transplantation and supportive interventions.
While specific therapies exist for some conditions, a significant proportion of infant ALF cases
remains unresolved. Recent advances in genetic sequencing have identified congenital
disorders, particularly involving the LARSI gene, as contributors to ALF. LARSI is essential
for regulating processes related to amino acids and autophagy. To better understand this
condition, we created a zebrafish model carrying specific LARSI gene variants seen in ALF
patients. These zebrafish displayed liver abnormalities similar to those observed in infants with
ALF. Our study revealed that enhanced autophagy, triggered by biallelic LARS! variants, plays
a significant role in liver dysfunction associated with ALF. Notably, inhibiting specific
enzymes involved in fat metabolism and autophagy showed promising results in reducing
hepatic lipid accumulation in our zebrafish model. This research provides insights that may

lead to improved understanding and potential treatments for this devastating condition.
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Introduction

Acute liver failure (ALF) in infancy is a rare but life-threatening event [1]. The primary
disorders causing ALF during this period include hereditary metabolic disorders, such as
mitochondrial respiratory chain disorders, type I hereditary tyrosinemia, and urea cycle
disorders [2]. Congenital infections of viruses or bacteria, such as cytomegalovirus, toxoplasma,
or herpes, and gastrointestinal alloimmune diseases, such as neonatal hemochromatosis, are
also known to cause ALF [2, 3]. Other types of ALF result from hyperimmune activation under
a genetic predisposition to cholestasis, such as hemophagocytic syndrome or Niemann-Pick
disease type C [3, 4].

Given the above, conducting a comprehensive investigation into the etiology of ALF in
infancy is crucial for treatment decisions, including liver transplantation, along with supportive
care with dietary therapy or supplementary intervention [5-8]. Disease-specific treatments have
been established for some diseases, such as chemotherapy for hemophagocytic syndrome,
inhibitors of glycosphingolipid synthesis, miglustat for Niemann-Pick disease type C, inhibitor
of tyrosine degradation, and nitisinone (NTBC) [5, 9, 10]. Nevertheless, a significant
proportion of infant ALF cases (approximately 20%-50%) remain unresolved [1, 2, 11].

Recent advances in whole-exome sequencing (WES) have revealed new congenital
disorders that cause ALF in infants. Since 2012, congenital defects in aminoacyl-tRNA
synthetases (ARSs) have been reported to cause ALF [12-17]. ARSs are essential enzymes that
catalyze the ligation of amino acids with their cognate transfer RNAs, which is the first step in
protein synthesis [18-21]; For example, leucyl-tRNA synthetase (LARS) catalyzes the ligation
of leucine to leucine tRNA. Biallelic pathogenic variants in the LARS! gene lead to infantile
hepatopathy, recently known as infantile liver failure syndrome type 1 (ILFS1), which is

characterized by ALF within the first few months after birth. It is also associated with failure
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to thrive, anemia, microcephaly, muscular hypotonia, and seizures [14, 22]. LARS plays a
unique, non-canonical role as a mammalian target of rapamycin complex 1 (mTORCI1)-
associated protein required for amino acid-induced mTORC1 activation, which acts as an
intracellular leucine sensor for mTORCI signaling [23-26]. Thus, LARSs play broad roles in
cellular homeostasis, including translation control, transcriptional regulation, tumorigenesis,
and senescence [23-28].

Our previous research using /larsb-knockout zebrafish demonstrated that mutant
zebrafish exhibited a phenotype similar to that of ILFS1 [29]. Excessive autophagy activation
was observed in larsb-knockout zebrafish, and the suppression of autophagy by bafilomycin
treatment significantly recovered the liver size and improved the survival curve [29]. However,
early lethality, probably due to severe liver damage, nervous system disorders, and anemia in
larsb-knockout larvae, did not allow us to analyze the exact molecular mechanism by which
LARS pathogenic variants affect the development and function of the liver in ILFS1 patients.

To further evaluate the role of LARS and the effects of its defect in the pathogenesis of
the liver, we generated /arsb-knockin zebrafish with a biallelic missense variant of the LARS!
gene identified in the ILFS1 patient in our hospital. We then investigated the molecular function

of Lars in the context of ILFS1 pathogenesis.
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100 Results

101 ILFS1 patient with liver dysfunction

102 The patient was the first male child born to a non-consanguineous Japanese couple, and
103 his younger brother and parents had no congenital abnormalities, including liver disease (Fig
104  1A). He was delivered at 37 weeks’ gestation with a birth weight 0f 2,320 g (9.2 %tile). Marked
105  hepatomegaly and failure to thrive were detected during routine checkups by a primary
106  pediatrician at seven months old, and he was referred to our hospital. At 8 months old, his
107 height was 62.2 cm (-3.3 standard deviations [SD]), his body weight was 6.6 kg (-2.1 SD), and
108  his head circumference was 43.9 cm (0.0 SD). He presented with a cherubic face with full
109  cheeks, hepatomegaly (approximately 8 cm below the costa), and mild hypotonia. He was able
110  to control his head by himself but lacked the ability to roll over and sit up unaided. Abdominal
111 computed tomography revealed a diffuse, low-density, enlarged liver (Fig 1B).

112 Laboratory findings demonstrated mild elevation of serum AST and ALT levels (103
113 U/l and 70 U/], respectively) with mild anemia (hemoglobin 10.6 g/dl). Several days later, he
114  developed a high fever for the first time after birth, caused by a human herpesvirus 6 infection.
115  His liver dysfunction soon progressed to ALF as elevation of transaminases (AST 870 U/I, ALT
116 263 U/l) with reduction of protein synthesis (PT-INR 1.53) and hypoalbumininema (albumin
117 2.47 g/dl), remarkable anemia (hemoglobin 6.3 g/dl), and thrombocytopenia (platelet count
118 19,000/ul) (Fig 1C). He continued to have a fever, generalized edema, oliguria, and respiratory
119  distress and received treatments that included acetaminophen administration, albumin infusion,
120 red blood cell transfusion, and oxygen therapy.

121 His critical condition recovered with defervescence after five days. Following this
122 episode, he experienced four episodes of febrile illnesses, including acute pharyngitis, hand-
123 foot-mouth disease, and acute gastroenteritis, over the next two years. However, the symptoms

6


https://doi.org/10.1101/2023.09.21.558924
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.21.558924; this version posted September 22, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

124  appeared to be mild, and ALF did not recur, as transaminase levels peaked at AST 80-220 U/l
125  and ALT 70-260 U/l during these episodes, and growth retardation gradually normalized by 3
126  years old (Fig 1C and 1D). His febrile episodes after his first three years of life included
127  negligible deterioration of the liver function. His psychomotor development progressed
128  normally, with a developmental quotient at 3 years old as assessed by the Enjohji
129  Developmental Test in Infancy and Early Childhood of 106; however, cognitive dysfunction
130 was identified at 6 years old using the Wechsler Intelligence Scale for Children-Fourth edition.
131 The patient is now 12 years old, and the most recent data are as follows: height, 147.3
132 cm (-0.2 SD); weight, 34.9 kg (body mass index 16.1); serum AST level, 24 U/l; serum ALT
133 level, 22 IU/l; serum albumin level 4.04 g/dl; hemoglobin 12.6 g/dl; platelet count, 395,000/pl;
134  and white blood cell count, 6,870/ul, indicating a normal physical growth and liver function
135  with mild anemia.

136

137

138  Fig 1. Clinical information of an infantile liver failure syndrome type 1 patient with
139  biallelic LARS1 variants in our hospital. (A) Pedigree of the family. (B) Abdominal
140  computed tomography image at eight months old. (C) Changes in serum levels of AST and
141  ALT. (D) Developmental curve.

142

143

144 LARSI as a single candidate gene by WES

145 WES using the child-parent trio revealed compound heterozygosity in the infant for two
146 potentially pathogenic variants of LARSI [NM _020117.9] (Fig 1A). One missense variant,

147 ¢.601T>G; p.W201G in exon 7 [NM_020117.9], was paternally inherited and had not been
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148  previously reported in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar). An in silico analysis
149  suggested that W201G probably damaged the protein structure and/or function (Polyphen2:
150  score 1.000; probably damaging [http://genetics.bwh.harvard.edu/pph2/]) (S1 Table). Another
151  missense variant, c.1351A>T; p.I451F in exon 14 [NM_020117.9], was maternally inherited
152 and had been previously described in a Japanese patient with ILFS1 [30]. It is located in the
153  LARS editing domain (Fig 2A). Importantly, 9 of the 23 pathogenic variants previously
154  reported in ILFS1 patients were located in this domain. Three editing-domain variants,
155  including [451F, showed severe symptoms during the neonatal period [14, 22, 30-33]. The in
156  silico analysis predicted that [451F was also probably damaging to the protein structure and/or
157  function (PolyPhen-2:0.921; probably damaging) (S1 Table). Notably, both missense variants
158  affected the evolutionarily conserved residues (Fig 2B).

159

160  Fig 2. Leucine-tRNA synthetase (LARS) mutations. (A) LARS domains and pathogenic
161  variants found in infantile liver failure syndrome type 1 patients. Variants in our patients are
162 shown in bold. Variants in another reported case with severe manifestation in the neonatal
163 period are in red. (B) Conservations of the missense variant in LARS.

164

165
166 Liver defects in larsb-1451F zebrafish during liver development

167 To assess the pathological relevance of LARS variants in the liver, we generated A-to-
168 T at codon 1351 and C-to-T at codon 1353 knock-in zebrafish lines using CRISPR/Cas9. To
169  obtain more efficient knock-in using genome editing, we replaced the two bases that changed
170  the PAM sequence (Fig 3A). Among the pathogenic variants in the LARS gene

171 (p.-W201G/p.I451F) identified in our patient, we focused on the p.I451F variant, as it has been
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172 found in other Japanese patients, suggesting a Japanese founder effect, and is located within
173 the editing domain of the LARS protein, where pathological variants have accumulated [30].
174 We designed a model of the larsb 1451 F mutation (larsb-1451F) to elucidate the pathogenesis
175 of ILFS1 (Fig 3B).

176 First, we measured the amount of Lars protein in the whole body of larsb 1451F
177  zebrafish larvae. Western blotting confirmed that the amount of Lars protein in larsb-1451F
178  zebrafish was similar to that in wild-type (WT) larsb zebrafish (S1A and 1B Fig). Patients with
179 ILFS1 exhibit hepatomegaly and liver damage with rapid progression after viral infection
180  during neonatal and infancy [22]. To analyze the morphology of the liver, larsb-145 1 F zebrafish
181  were crossed with Tg[fabpl0O:mcherry]| transgenic zebrafish, which constitutively express
182  mCherry fluorescent protein in the liver [34, 35]. Because zebrafish livers mature at the larval
183  stage by five days old [36], we observed larsb-1451F zebrafish livers at approximately five
184  days post-fertilization (dpf). At 5 dpf, larsb-I451F zebrafish exhibited increased liver
185  circularity (Fig 3C and 3D), a common feature of liver diseases [37]. As larsb-145 1 F zebrafish
186  grew, morphological abnormalities in the liver gradually improved by 7 dpf. In addition, larsb-
187  I451F zebrafish survived to adulthood in the same manner as WT zebrafish. Since hepatoblasts
188  proliferate and differentiate between 2 and 5 dpf in zebrafish livers [38], we found
189  morphological abnormalities predominantly appearing in developing hepatocytes in larsb-
190  [451F zebrafish.

191

192 Fig 3. Larsb-knockin larvae display liver abnormality during the liver developmental
193  stage. (A) Diagram showing the larsb genomic locus and larsb-knockin (larsb-1451F)
194  zebrafish mutant genotype. (B) In the genomic sequencing analysis chromatograms, the
195  mutation site in the larsb-1451F zebrafish is shown in red. (C) Morphological abnormality at 4

196  to 7 dpf in the livers of larsb-I1451F larvae with a Tg[fabp0:mcherry] background. White

9
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197  arrows indicate the loss of liver edges in larsb-1451F larvae. Scale bar: 200 pm. (D) Circularity
198  of liver in larsb-1451F larvae with a Tg[fabp10:mcherry] background (4 to 7 dpf). Error bars
199  indicate SEM. *P < (.05, **P < 0.01.

200
201 Hepatic adiposity in larsb-1451F zebrafish

202 The liver was histopathologically analyzed. The livers of larsbh-1451F larvae contained
203  more vacuoles than those of larsb-WT larvae (Fig 4A and 4B). Multiple vacuoles in the
204  cytoplasm and clear circular spaces with sharp outlines and contours are characteristic of fat-
205  type vacuolation [39].

206 Next, to examine whether or not intrahepatic vacuoles in larsb-1451F zebrafish were
207  lipid droplets, we evaluated intrahepatic lipids using fluorescent staining [40]. Many lipid
208  droplets visualized by lipid dye droplet staining were observed in the livers of larsb-1451F
209  larvae compared to those of larsb-WT larvae (Fig 4C and 4D). These data indicate that Lar
210  dysfunction induces hepatic lipid droplet formation. Most patients with ILFS1 present with
211 liver steatosis [22]. Thus, larsb-I1451F zebrafish exhibited a phenotype analogous to that
212 observed in ILFSI, indicating that the function of LARS in the liver is conserved between
213 zebrafish and humans.

214

215  Fig 4. Histopathology and lipids staining of the liver in larsb-knockin larvae. (A)
216 ~ Hematoxylin and eosin staining of the liver in larsb-knockin (larsb-I451F) larvae at 5 dpf.
217 Scale bar: 20 um. (B) Quantification of the vesicle number in larsb-1451F larvae liver at 5 dpf.
218  Error bars indicate SEM. *P < 0.05. (C) Lipids staining of the liver in larsb-1451F larvae at 5
219 dpf. Scale bar: 20 um. (D) Quantification of the lipid area in larsb-1451F larvae liver at 5 dpf.

220 Error bars indicate SEM. **P < 0.01. Dpf: days post fertilization.
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221
222 The larsb-1451F mutation augments autophagy in liver

223 Excessive activation of autophagy has been observed in /arsb-deficient zebrafish [29].
224 Therefore, to assess whether or not autophagy is involved in liver abnormalities in larsb-1451F
225  zebrafish, we evaluated the status of autophagy by fluorescent immunostaining for LC-3 and
226 p62 in larsb-I1451F larvae. LC-3, a downstream component of the autophagy pathway that
227  participates in autophagosome formation, is widely used to monitor autophagy [41]. While the
228  expression of p62, a selective autophagy substrate, did not differ markedly between larsb-
229 I451F and larsb-WT larvae (S2A and 2B Fig), many autophagosomal structures visualized with
230  LC-3 were observed in the livers of larsb-1451F larvae compared to larsb-WT larvae (Fig SA
231  and 5B). Therefore, Lar dysfunction appears to enhance autophagy in the developing liver.
232 Next, to validate whether or not the lipid droplets detected in the livers of larsb-1451F
233 larvae were induced by enhanced autophagy, larsb-1451F larvae were treated with an inhibitor
234 specific to diacylglycerol acyltransferase 1 (DGAT1) (A922500). DGAT1 and DGAT?2 mediate
235  the final step in the synthesis of triacylglycerols from fatty acids stored in lipid droplets [42,
236 43]. Because both DGAT1 and DGAT?2 act on liver lipid droplet formation due to overnutrition,
237  inhibition of DGAT1 alone does not usually improve lipid droplets [42-44]. In contrast, hepatic
238  lipid accumulation via autophagy is specifically mediated by DGAT1 [44]. We demonstrated
239  that A922500 treatment improved the accumulation of intrahepatic lipids in larsb-1451F larvae
240  (S3A and 3B Fig), and consequently, it was likely that the accumulated lipid droplets in the
241  livers of larsb-1451F zebrafish had been induced by autophagy.

242 To verify whether or not liver abnormalities in larsb-145 1 F larvae were due to excessive
243  autophagy, we treated larsb-I451F larvae with the autophagy inhibitor bafilomycin Al.

244  Bafilomycin treatment improved liver abnormalities and decreased liver circularity in /arsb-
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245 I451F larvae at 5 dpf (Fig 5C and 5D). The accumulation of intrahepatic lipids was significantly
246  reduced by bafilomycin treatment (Fig SE and 5F). We concluded that hyperactivated
247  autophagy induced by larsb-1451F was responsible for liver steatosis.

248

249  Fig 5. Enhanced autophagy in the liver of larsb-knockin larvae. (A) Immunostaining of LC-
250 3 in the liver of larsb-knockin (larsb-1451F) larvae at 5 dpf. Scale bar: 20 pm. White
251  arrowheads indicate LC3-positive dots. (B) Quantification of the number of LC-3 dots in /arsb-
252 I451F larvae liver at 5 dpf. Error bars indicate SEM. **P < 0.01. (C) Morphological
253  abnormality in the livers of larsb-1451F larvae at 5 dpf with a Tg[fabp10:mcherry] background
254  treated with DMSO or bafilomycin. Scale bar: 200 um. (D) Circularity of the liver in larsb-
255  I451F larvae at 5 dpf with a Tg[fabplO:mcherry] background treated with DMSO or
256  bafilomycin. Error bars indicate SEM. *P < 0.05. (E) Lipids staining of the liver in larsb-1451F
257  larvae at 5 dpf treated with DMSO or bafilomycin. Scale bar: 20 um. (F) Quantification of the
258  lipid area in larsb-1451F larvae liver at 5 dpf treated with DMSO or bafilomycin. Error bars
259  indicate SEM. **P < 0.01. Dpf: days post fertilization.

260

12


https://doi.org/10.1101/2023.09.21.558924
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.21.558924; this version posted September 22, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

261 Discussion

262 In this study, we demonstrated the pathogenesis of ALF in ILFS1 by excessive
263  autophagy during Lar dysfunction. Liver dysfunction was most prominent in ILFS1 patients
264  during infancy, which aligns with the finding of this study that /arsb-1451F zebrafish exhibited
265  liver abnormalities during the developmental stage. A histopathological analysis of larsb-1451F
266  zebrafish showed the accumulation of lipid droplets in the liver, which mimicked the liver of
267  ILFS1 patients caused by biallelic variants of the human LARS gene. In addition, enhanced
268  autophagy was observed in the liver of larsb-1451F zebrafish. Inhibition of DGAT1, which
269  converts fatty acids to triacylglycerols, improves lipid droplets in the liver of larsb-1451F
270 zebrafish. Furthermore, the inactivation of autophagy by bafilomycin treatment significantly
271  decreased the accumulation of intrahepatic lipids. These results suggest that Lars dysfunction
272 in ILFS1 induced steatosis in the developing zebrafish liver via enhanced autophagy, pointing
273 to the potential treatment of ALF by inhibiting autophagy.

274 In our previous study, larsb-knockout zebrafish exhibited progressive liver failure,
275  anemia, and neurological defects that resembled the symptoms of human ILFS1 patients [29].
276 However, the liver of larsb-knockout zebrafish exhibited cytoplasmic loss due to severe
277  damage, and early lethality precluded a further histological examination [29]. In the present
278  study, we demonstrated the accumulation of lipids through enhanced autophagy in the liver of
279  larsb-1451F zebrafish larvae. Although larsb-1451F zebrafish had the same amount of Lars
280  protein as larsb-WT zebrafish, pathological variants of LARS led to a reduction in the
281  aminoacylation activity of Lars, as previously reported in fibroblasts from ILFS1 patients [22].
282  The process of aminoacylation is executed through the precise functioning of leucine sensing
283  and binding to the Lars protein, ATP binding, and structural alterations in Lars [45, 46].

284  Pathogenic variants of LARS]1 that exhibit abnormalities in any of these functions lose their
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285  capacity to stimulate the mTORC1 pathway, which regulates autophagy [47]. Autophagy serves
286  as an alternative energy source during nutrient deficiency by facilitating the breakdown of
287  cellular components to produce fatty acids [48, 49]. However, excessive enhancement of
288  autophagy beyond physiological limits can lead to autophagic cell death [50], which has also
289  been confirmed in larsb-knockout zebrafish. While moderate autophagy serves as a protective
290  mechanism against cell death during starvation, the surplus fatty acids generated during this
291  process can be toxic and need to be directed into the mitochondria and used for energy
292 production or stored as lipid droplets through DGAT1-mediated pathways [44, 51], as shown
293 by larsb-I1451F zebrafish in this study. The dysregulation of liver autophagy might differ
294  between cases with complete deficiency and a partially retained function of Lars. Notably, the
295  C-terminal region is known to interact with mTORCI at the lysosomal membrane [26]. Further
296  analyses using knock-in zebrafish with other genotypes will elucidate the mechanism by which
297  Lar dysfunction activates autophagy.

298 Larsb-1451F zebrafish exhibited an atypical liver morphology at 5 dpf. In zebrafish
299  embryogenesis, critical organ systems, such as the liver, rapidly develop by 5 dpf [52]. During
300  this process, the complex mechanism of autophagy plays a crucial role in the regulation of
301  cellular proliferation and differentiation. In zebrafish embryo development, autophagic activity
302  sufficiently increases from 3 dpf to 5 dpf.[53, 54] In patients diagnosed with ILFS1, ALF is
303  predominantly observed in the neonatal and infantile phases [22]. Given the resemblance
304  between clinical liver pathology in ILFS1 patients and histopathological findings in larsb-
305  I[451F zebrafish larvae, it is plausible that liver damage is predominantly observed in neonates
306 and infants due to defects in the LARS gene caused by increased autophagy. We further
307  postulate that if remarkable and specific stimuli activate autophagy in cells, organ-specific
308  damage can occur at any time during the lifespan.

309 Our findings suggest that dysregulation of autophagy caused by biallelic pathogenic
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310  variants of /arsb leads to liver steatosis. Since significant similarities were observed between
311  the liver tissues of human ILFS 1 and those of larsb-I1451F zebrafish, this knock-in zebrafish
312 more closely replicates ILFS1 than the /arsb-knockout zebrafish. While patients with ILFS1
313  have a reduced risk of ALF after infancy, neurological and hematopoietic complications may
314  relapse or newly appear in the long term. Unlike larsb-knockout larvae, larsb-145 1 F larvae can
315  survive for a long time as adult zebrafish, so a straightforward evaluation of neurodevelopment
316  and hematopoiesis can be achieved. Inborn errors of metabolism, such as Niemann-Pick
317  disease type C and Gaucher disease, are known to present with distinct hepatic abnormalities
318  during infancy and neurological symptoms in adolescence or adulthood. Similarly, citrin
319  deficiency, which causes transient cholestatic liver disease in infancy, suddenly manifests as
320  hyperammonemia in later adulthood after a long asymptomatic period. Consequently, long-
321  term clinical trajectories can only be elucidated using model organisms capable of long-term
322 observation. Previous case reports of ILFS1 are limited in number, and the long-term clinical
323 characteristics of the surviving cases remain unclear. Zebrafish offer advantages as a suitable
324  model organism for such observations and screening for potential drugs or chemical
325  compounds.

326 Larsb-1451F zebrafish may thus serve as an optimal model for the long-term study of

327  ILFS1 and may provide invaluable findings for further basic and clinical research.

328
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329  Materials and Methods

330 Ethics statement

331 This study using human data was approved by the ethics committee of the Institutional
332  Review Board of Oita University Hospital, Japan (approval no. 2565). Written informed
333 consent was obtained from all participants. The animal study protocol was approved by the
334  Institutional Review Board of Oita University (approval nos. 230501 and 4-5).

335
336 WES analysis

337 Genomic DNA was extracted from the peripheral blood of the proband and his sister,
338  and the parents were sequenced by WES. The sequence library was prepared using a Human
339  All Exon V6 Kit (Agilent Technologies, Santa Clara, CA, USA) and sequenced using a 2500
340  Illumina with 125-bp paired-end reads (Illumina, San Diego, CA, USA). Sequence reads were
341  aligned to GRCh38 and annotated using CompStor NOVOS and CompStor Insight (OmniTier,
342 San Jose, CA, USA). First, variants with allele frequencies greater than 0.01 in gnomAD, 14
343  KJPN (jJMORP), and our in-house exome variant data were removed. Next, the variants were
344  narrowed down based on assumed modes of inheritance, such as autosomal dominant,
345  autosomal recessive, X-linked, and compound heterozygous inheritance. Finally, three variants
346  were segregated, one of which was inconsistent with the clinical symptoms (S1 Table) [30].
347  No pathogenic copy number variation was detected in the WES data. The two LARS! variants
348 were confirmed by Sanger sequencing (ABI3130) wusing the primers 5'-
349 GGGTCTCATAACAATGAATACTTC -3" and 5'- GGGAAAAGGTAGGCTACAAGG -3’ for
350  NM 020117:c.601T>G, and 5- GGCAGTGTCGTAATGACATATAC-3' and 5'-
351 CCATAGAGATTCCTAGAGGG-3' for c.1351A>T.

352
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353 Zebrafish maintenance

354 The zebrafish AB genetic background larsb mutant and Tg[fabpl0:mcherry] were
355  raised and maintained following standard procedures [34, 35]. They were maintained at 28—
356 29 °Cunder a 14-h:10-h light:dark cycle. Embryos were collected and housed at 28.5 °C.

357 All animal experimental procedures were performed in accordance with institutional
358  and national guidelines and regulations. The study was conducted in compliance with the
359  ARRIVE guidelines.

360
361  Generation of the larsb I1451F zebrafish line

362 The larsb 145 I F zebrafish line was generated via CRISPR/ Cas9 gene editing [55, 56].
363  The site of the larsb sgRNA target was 5'-CCAAAGCCAGAATGACAGAGAGA-3' in the
364  editing domain of the LARS protein. Single-stranded oligodeoxynucleotides (ssODNs) were
365  designed with the following sequences (phosphorothioate modifications in the first and last
366  nucleotides) and ordered as ultramers from Integrated DNA Technologies (Coralville, IA,
367  USA) to generate single nucleotide polymorphism mutations:
368  A*G*TGGCTTATTGGTTTGTTCTACCAGGTTCCCATCATTGAAATTCCAGGGTATGG

369 GAATCTGTCAGCTCCACTGGTGTGCGATGAACTGAAGTTTCAAAGCCAGAATGAC

370  AGAGAGAAACTGGCCGAGG*C*T. Cas9 protein (300 pg), gRNA (30 pg), and ssODNs
371 (41 pg) were injected into one-cell-stage wild-type embryos. Mutations at the target site were
372 verified using Sanger sequencing.

373
374  Generation of transgenic zebrafish

375 Tglfabp10:mCherry] fish expressing mCherry exclusively in hepatocytes were

376  generated using the MultiSite Gateway kit (Thermo Fisher Scientific, Waltham, MA, USA) to
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377  produce vectors with Tol2 transposon sites [57]. A 2.8-kb promoter of the fabpl0 gene [34]
378  was cloned into the pSE-mcs vector. Multisite Gateway cloning [58] was performed using the
379  destination vector pDestTol2pA2, the 5’ entry vector containing the fabpl0 promoter, the
380  middle entry vector containing pME-mCherry, and the 3" entry vector containing p3E-polyA.
381  DNA constructs (25 pg) and Tol2 mRNA (25 pg) were injected into wild-type zebrafish
382  embryos at the single-cell stage.

383
384  Western blotting

385 Samples for Western blotting were lysed with lysis buffer (0.5% NP-40, 10% glycerin,
386 50 mM HEPES-KOH [pH 7.8], 150 mM NaCl, and 1 mM EDTA) using protease and a
387  phosphatase inhibitor cocktail (Thermo Fisher Scientific). Protein samples were separated by
388 capillary electrophoresis using 12- to 230-kDa Wes Separation Module capillary cartridges in
389  the Simple Protein Wes system (ProteinSimple Wes; ProteinSimple. San Jose, CA, USA)
390  according to the manufacturer's protocol. The antibodies used were as follows: Lars (#13868;
391  Cell Signaling Technology, Beverly, MA, USA; 1:50) and B-actin (A3854; Sigma-Aldrich, St.
392  Louis, MO, USA; 1:100). The anti-rabbit and anti-mouse modules for the Wes kit (DM-001
393 and DM-002, ProteinSimple), which includes luminol-S, peroxide, antibody diluent 2,
394  streptavidin-HRP, anti-rabbit secondary antibody, and anti-mouse secondary antibody, were
395  used for detection. The intensities of the acquired chemiluminescence signals were quantified
396  using the AlphaView and Compass software programs (ProteinSimple).

397
398  Morphological analyses

399 Zebrafish larvae were placed in 3% methylcellulose, and images were acquired using a

400  Leica M205 FA fluorescent stereo microscope (Leica, Wetzlar, Germany). Liver circularity was
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401  measured manually using the Imagel Fiji software program (1.53t; National Institutes of Health,
402  Bethesda, MD, USA).

403
104 Histopathological staining and fluorescent immunostaining

405 Histopathological staining and fluorescent immunostaining were performed on the
406  paraffin or frozen sections. For histopathological staining, samples were initially stained with
407  hematoxylin solution for 20 s and rinsed with deionized water. They were then stained with
408  eosin solution for 60 s and rinsed again with deionized water, and then they were dehydrated
409  using a series of ascending ethanol concentrations. The excess blot was removed using xylene
410  for 30 s (three repetitions). Finally, the coverslips were mounted using a mounting medium.
411  The immunofluorescence analysis was performed using the following primary antibodies: anti-
412 p62 (PMO045; Medical & Biological Laboratories, Nagoya, Japan) and anti- LC-3 pAb (PM036;
413  Medical & Biological Laboratories). Alexa Fluor 488 donkey anti-rabbit IgG (A21206;
414  Molecular Probes, Eugene, OR, USA; 1:500) was used as the secondary antibody. Images were
415  captured using a laser scanning microscope (BZ-9000; Keyence, Osaka, Japan).

416

417  Fluorescent staining of accumulated lipids

418 Frozen samples were rinsed with phosphate-buffered saline. The samples were then
419  stained with 1 uM Lipi Dye II solution (Funakoshi, Tokyo, Japan) in phosphate-buffered saline
420  and incubated for 1 h at 37 °C. The cells were rinsed three times with phosphate-buffered saline
421  and mounted with a fluorescence mounting medium (S3023; Dako, Agilent Technologies).
422 Images were captured using a laser scanning microscope (BZ-9000; Keyence).

423

124 Bafilomycin A1 and A922500 treatments
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Embryos were treated with bafilomycin Al (2.5 nM; EMD Millipore, Darmstadt,
Germany), A922500 (2 mM; Sigma-Aldrich, St. Louis, MO, USA), or dimethyl sulfoxide
(DMSO) as the control, in embryo medium from 72 to 120 hpf for morphological experiments.

Water containing the drug was replaced daily.

Statistical analyses

Statistical analyses were performed using the GraphPad Prism software version 8
(GraphPad Software, Inc., San Diego, CA, USA). All values are expressed as the mean +
standard error of the mean. Shapiro—Wilk and Brown—Forsythe tests were performed to analyze
the normal distribution and homogeneity of the data, respectively. The different groups were
compared using nonparametric independent samples Kruskal-Wallis test for non-normally
distributed variables, and the results obtained were expressed as median and interquartile
ranges. In contrast, when the data had a normal distribution, they were analyzed through a one-
way analysis of variance (ANOVA) followed by Tukey’s pairwise comparison tests. Statistical
differences in survival curves were analyzed using the log-rank (Mantel-Cox) test. Statistical

significance was set at P < 0.05.
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464  Supporting information

465  S1 Table. Segregated variants in the family.

466  S1 Fig. Western blot analysis of the Larsb protein expression in larsb-knockin zebrafish.
467  (A) A Western blot analysis for Larsb protein in wild-type and larsb-knockin (larsb-1451F)
468  zebrafish at 5 dpf. B-actin levels served as the loading control. (B) Densitometric quantification
469  of the relative ratio of Larsb protein to f-actin protein in three independent experiments. Error
470  bars indicate SEM. *P < 0.05. Dpf: days post fertilization.

471  S2 Fig. The evaluation of p62 in the liver of larsb-knockin larvae.

472 (A) Immunostaining of p62 in the liver of /arsb-knockin (larsb-I1451F) larvae at 5 dpf. Scale
473 bar: 20 um. (B) Quantification of the number of p62 dots in larsb-1451F larvae liver at 5 dpf.
474  Error bars indicate SEM. Dpf: days post fertilization.

475  S3 Fig. Inhibition of DGTA1 prevents the liver steatosis in /arsb-knockin larvae.

476  (A) Lipid staining of the liver in /arsb-knockin (larsb-1451F) larvae at 5 dpf treated with
477  DMSO or A922500. Scale bar: 20 um. (B) Quantification of the lipid area in larsb-1451F larvae
478  liver at 5 dpf treated with DMSO or A922500. Error bars indicate SEM. *P < 0.05. DGAT1:
479  Diacylglycerol acyltransferase 1, dpf: days post fertilization.
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S1 Table. Segregated variants in the family

GENES  RefSeq_ID Nucleotide  Amino acid Genotype . PubMed_ID Allele Frequency In silico prediction OMIM ACMG_Evidence
change change Proband Mother Father ~ Sister gnomAD 14KPN  Inhouse ~ CADD PolyPhen SIFT

LARS1 NM_020117.11 c.601T>G  p.Trp201Gly 0/1 0/0 0/1 0/0 i not reported nd nd nd , 31.0 probably_damaging deleterious Infantile liver failure syndrome 1, Autosomal recessive PM2, PM3, PP3

LARS1 NM_020117.11 c.1351A>T  p.lle451Phe 0/1 0/1 0/0 0/1 33300650 0.000006569  0.000106 0.0005061 24.6  probably_damaging deleterious Infantile liver failure syndrome 1, Autosomal recessive

LAMA4 NM_001105206.3 ¢.2260C>A  p.Pro754Thr 0/1 0/0 0/0 0/0 not reported nd * nd " 233 possibly_damaging tolerated Cardiomyopathy, dilated, 1JJ, Autosomal dominant PS2, PM1, BS4

*, p.Pro747Ala was registered at 0.000035.

nd; not registered

Databases and bioinformatics tools used in this analysis.
gnomAD: https://gnomad.broadinstitute.org
JMORP: https://jmorp.megabank.tohoku.ac.jp/202102/
PolyPhen?2: http://genetics.bwh.harvard.edu/pph2/
SIFT: http://provean.jcvi.org/genome_submit_2.php?species=human
CADD: https://cadd.gs.washington.edu
ACMG: https://www.nature.com/gim/articles?type=acmg-standards-and-guidelines
OMIM: https://www.ncbi.nIm.nih.gov/omim

7 1 3 Integrative Genomics Viewer (IGV): Broad Institute and the Regents of the University of California, CA, USA)
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