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Abstract

An essential interaction between sunlight and eukaryotes involves the production of vitamin D
through exposure to ultraviolet-B (UV-B) radiation. While extensively studied in vertebrates, the
role of vitamin D in non-animal eukaryotes like microalgae remains unclear. Emiliania huxleyi, a
microalga inhabiting shallow ocean depths exposed to UV-B radiation, is well-suited for this
research. Our results show that E. huxleyi can produce vitamin D2 and Ds, pointing to their
potential role in the algal physiology. We further show that E. huxleyi algae respond to vitamin
D at the transcriptional level, regulating the expression of protective mechanisms such as the
light-harvesting complex stress-related protein (LHCSR) and heme oxygenase, and that vitamin
D enhances the algal photosynthetic performance while reducing harmful reactive oxygen
species buildup. Understanding the function of vitamin D in E. huxleyi has broader implications,
shedding light on its role in non-animal eukaryotes and its potential importance in marine
ecosystems. This research sets the stage for further investigations into the complex relationship
between sunlight, vitamin D, and microalgal physiology, which contributes to our understanding
of how eukaryotes adapt to diverse environmental conditions.
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Introduction

Life on Earth has a complex relationship with sunlight, relying on its energy for certain processes
while simultaneously requiring protection against its potential harmful effects. A molecular
process that is tightly linked to sunlight is the formation of vitamin D following exposure to
ultraviolet-B (UV-B) radiation emitted from the sun. Vitamin D (calciferol) comprises a group of
steroids that result from the photochemical transformation of several sterol precursors by UV-B
wavelengths'. The most common vitamin D species known to occur naturally are vitamin D2 and

D3, originating from the conversion of ergosterol and 7-dehydrocholesterol, respectively?2.

In mammals and other studied vertebrates, vitamin D functions as a hormone, involved in the
regulation of a multitude of intracellular and physiological processes vital for the organism
survival and well-being*. Vitamin D is pivotal in facilitating the absorption and homeostasis of
essential ions such as Ca?* and PO4% 56, and vitamin D deficiency has been linked to a range
of physiological disorders”8. Due to its key role in human health, vitamin D has been the focus
of biological and pharmaceutical research endeavors. These efforts have been directed towards
understanding the mechanisms through which it operates in humans and human models.

However, mounting evidence suggests that vitamin D has been a constituent of eukaryotes long
before the emergence of vertebrates. This is evident not only in the identification of vitamin D in
distant eukaryotic lineages like algae® ", plants'?, and fungi'®-'® but also in the preservation of
vitamin D-related biomarkers, likely from an algal source, in marine sediments dating back over

600 million years'®.

Despite its widespread presence across diverse lineages, our understanding of the physiological
role of vitamin D in non-animal eukaryotes remains limited. Non-animal eukaryotes, namely
microalgae, have been suggested as potential sources of vitamin D for higher trophic levels in
the marine environment!’-1°. But the processes underlying vitamin D production and regulation

in microalgae remain largely unexplored?.

While UV-B radiation is crucial for vertebrate health due to its role in vitamin D formation, it can
also be detrimental, causing direct damage to biomolecules like DNA, leading to the generation
of reactive oxygen species (ROS)?'-23, and can ultimately result in cell death?*. Photosynthetic
organisms, like algae, are particularly susceptible to UV-B damage, as their energy production
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hinges on exposure to solar radiation?>26, Although water acts as a UV-B filter?’, significant
intensities can still penetrate the upper layers of ocean surfaces?, potentially impacting

organisms such as algae®.

Microalgae of the species Emiliania huxleyi, also named Gephyrocapsa huxley®, are widely
distributed in modern oceans and play key roles in various biogeochemical cycles®'-32. These
algae are known to flourish in high light environments at shallow depths of about 10 to 20
meters®3, where exposure to UV-B wavelengths is likely. Earlier findings provided intermittent
indications that E. huxleyi algae might possess the inherent capability to synthesize vitamin D.
These reports highlighted the algal capacity to generate vitamin D2 upon exposure to UV-B
irradiation', its cholesterol content®43%, and the presence of a gene analogous to 7-
dehydrocholesterol reductase (DHCR7) responsible for converting 7-dehydrocholesterol into
cholesterol®®.

In this study we explore the overlooked role of vitamin D in E. huxleyi. Specifically, we investigate
the relationship between vitamin D formation following exposure to UV-B and the regulation of
cellular mechanisms that operate in response to harmful radiation.

Results

E. huxleyi algae produce vitamin D2 and D3

To investigate whether vitamin D species are formed by E. huxleyi algae upon exposure to UV,
we cultivated algal cultures in a chamber with environmentally relevant UV-B radiation levels
(see Materials and Methods). Metabolic analyses revealed the presence of both D2 and Ds in
these algal cultures (Table 1). Our results show that D2 was significantly enriched in UV-exposed
cultures, with levels of approximately ~4 ng/mg dry weight, while it was barely detected in
cultures that were not exposed to UV. The D2 precursor ergosterol was found in both UV-treated
and control cultures. Lower amounts of vitamin D3 (~0.04 ng/mg dry weight) were detected in
both UV-treated and control cultures.

Importantly, while D2 detection was consistent across all analyzed UV-exposed samples, Ds was
identified only in part of the experiments during our research. Interestingly, when Ds was
detected, its precursor 7-dehydrocholesterol, was detected as well. Inconsistent detection of D3

3
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was previously reported in plants, and was attributed to the sensitivity of the analytical method
used?’. Our many efforts to resolve the variable measurements of D3 were not successful (see
detailed description of attempts in Materials and Methods). Collectively, our findings
demonstrate that E. huxleyi algae produce D2 and D3, suggesting a possible cellular function for

vitamin D.

E. huxleyi algae show a transcriptomic response to UV radiation

UV radiation is necessary for the formation of vitamin D2. Therefore, we sought to explore the
transcriptomic response of E. huxleyi algae to UV exposure, aiming to elucidate cellular
processes that may be related to vitamin D. To achieve this, we analyzed the E. huxleyi
transcriptome using cultures that were grown under continuous UV exposure during the light
period of the daily light/dark cycle, in comparison to algal cultures that were protected from the
UV source. Cultures were sampled for RNA-sequencing at three time points representing
different growth phases (days 7, 10, and 13, see Fig. S1).

The transcriptomic analysis revealed differential expression (DE) of 374 genes between UV-
exposed and control cultures (Table S1). Of these genes, 172 were annotated with GO terms
related to a known function or process. The annotated genes that were DE in the transcriptome
under UV exposure were associated with various cellular processes including intracellular

signaling pathways and stress response mechanisms. Notably, genes participating in the inositol

Compound UV (ng / mg) Control (ng / mg)
D, 432+1.39* 0.09 + 0.01

D, 0.038 + 0.001 0.039 + 0.001
Ergosterol 83.01 +28.96 71.76 + 9.53
7-dehydrocholesterol 0.24+£0.04* 0.16 £0.02

Table 1. E. huxleyi algae produce vitamin D and Ds. Metabolic analysis of vitamin D species and
precursors under UV and control conditions, using algal cultures at day 10 of growth. Values are of
ng / mg dry weight. Statistically significant differences (P < 0.05) between treatments are marked by
*, calculated using two-sample t-test assuming equal variances.  values indicate standard deviation
based on 4 biological replicates.
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3-phosphate/calcium (IP3/Ca?*) and the oxylipin signaling pathways were DE (Table 2), both

playing key roles in stress response mechanisms across different organisms38-+2,

Furthermore, a substantial number of DE genes were involved in various stress responses,
including DNA damage sensing and repair, oxidative stress mitigation, protective pigment
biosynthesis, and maintenance of the photosynthetic machinery. Interestingly, several of the
genes and pathways that were DE in E. huxleyi algae, are known to be associated with UV
exposure and vitamin D biosynthesis in vertebrates. For instance, the IPs/Ca?* and
prostaglandins pathways are involved in UV stress response in mammals*344, and vitamin D is
involved in the regulation of these pathways*>-*°, In mammals, vitamin D also plays a role in
oxidative stress mitigation, DNA repair, and the regulation of various enzymes related to stress
response including heme oxygenase, glutathione peroxidase, and tyrosinase®-54. Considering
the role of vitamin D in regulating stress response mechanisms in mammals, and the presence
of similar mechanisms regulated by UV in E. huxleyi, it seems plausible that vitamin D plays a

role in regulating the algal stress responses.

To further explore the observed transcriptomic response induced by UV using an independent
approach, several genes that were regulated in the algal transcriptome were analyzed by gRT-
PCR. RNA was extracted from cultures that were exposed to UV for a duration of 1 hour at day
10 of growth (Fig. 1, S2). Under these conditions, the investigated genes showed significant
upregulation. The differences observed between the two transcriptomic assays, could be the
result of a different response elicited by a prolonged compared to a brief UV exposure.

Vitamin D upreqgulates expression of UV-requlated genes

Next, we explored whether vitamin D is indeed involved in regulating stress response
mechanisms in E. huxleyi under UV. If vitamin D is synthesized upon UV exposure and plays a
role in regulating the algal stress response to UV, external addition of vitamin D could potentially
induce algae to react as if they were exposed to UV. Therefore, we
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130

Gene ID Putative protein or domain :’;::::itj)ar: Protein function
Genes related to intracellular signaling d7 d.10 d.13
G10384 Lipoxygenase domain -0.46 -1.27 2.04 Oxylipin biosynthesis
G14992 Prostaglandin F(2-alpha) synthase 0.38 0.22 1.75  Oxylipin biosynthesis
G12340 Cytosolic phospholipase A2 domain -0.51 -0.82 1.70 Oxylipin biosynthesis; Intracellular signaling
G14502 Ca-binding domain 057 112 167 g:‘oat;?rf Tmli:;‘ﬁ’u:grilg”;:’l'li’;a calmodulin-like
G21784 Phosphoinositide phospholipase C 052 062 150 :2; Eig;‘ig:“g initiation; cytosolic calcium
G15496 Phosphoinositide 5-phosphatase 0.54 0.74 1.46  IP; signaling; cytosolic calcium regulation
G25467  Steroid hydroxylase 115 1.49 116 Shares similarity to rat cyp7a2 with a suggested
25-cholesterol hydroxylase activity
G1648 2’;?1':;;’:;" phosphorylinositol ceramide 0.37 -021 098 Potentially involved in Calcium signaling
G19702 Phosphatidylinositol 3-kinase -0.17  0.00 095 P4 signaling
G27192 Calcineurin B-like interacting protein kinase 0.3 125  -0.3 'S':;’;S"fr‘i;';;z':e‘jiated signaling; Abiotic
Genes related to stress response
G27084 Deoxyribodipyrimidine photolyase 0.93 1.9 429  UV-damage DNA repair
G647  3-dehydroquinate synthase domain 031 533 407 g:’;';h“;:fnp;ta‘ffgmﬁgt;:“\fﬂm;;ﬁs'“ the
G22973 Sirtuin 2 1.16 0.89 1.49  DNA transcription and repair
G16746 Tyrosinase Cu-binding domain 054 -1.09 146 Ln;%\;?;a::t;ymh%is of protective pigments and
G18590  Light-harvesting protein 051 122 113 i:?:\:?;:’;";fc:t”oy;;gg&e’ Simhardii LACSR:
G12503 ggg E‘:‘Ep'”bc’se polymerase Zn-finger 062 113 1.08 DNA damage sensor
G18115 Deoxyribodipyrimidine photolyase 024 025 099 UV-damage DNA repair
G6690  Glutathione peroxidase 0.05 0.32 0.98 Oxidative stress mitigation
G25108 Chalcone synthase 2 -0.36 -0.43 0.82 Potentially involved in UV protection
G2876  DNA-(apurinic or apyrimidinic site) lyase 056 0.52 0.81 DNA repair
G26038 ATP-dependent DNA helicase -0.34 -0.76 0.79 DNA stability and repair
G8907  (6-4)DNA photolyase 0.07 0.43 0.78 UV-damage DNA repair
G2511 Heme oxygenase 0.37 096 0.67 Oxidative stress mitigation
G16133 Formamidopyrimidine-DNA glycosylase 0.49 0.89 0.53 DNA repair
G832 Protochlorophyllide reductase 123  -0.41 0.2 Chlorophyll biosynthesis
G22197 S'-tyrosyl DNA phosphodiesterase 0.83 0.22 0.10 DNA repair
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Table 2. Differential expression (DE) of genes associated with signaling and stress response
mechanisms in E. huxleyi that were upregulated under UV. DE values calculated according to the
transcriptomic analysis are given for days 7, 10 and 13 of growth (designated d. 7, d. 10 and d. 13).
Genes are ordered according to DE values at day 13. Full DE and NCBI accession data is presented
in Table S1 and Data S1.

supplemented algal cultures with vitamin D and monitored the expression of stress response-
related genes via qRT-PCR.

Algal cultures were treated with D2, D3, or with a combination of both, as this combination had a
synergistic impact on algal growth compared to each species alone (Fig. S2). Control cultures
were not treated with vitamin D and were exposed to either normal growth conditions or to UV

radiation for 1 hour. RNA was collected from all cultures 1 hour post treatment.

Our analyses revealed four genes that exhibit upregulated expression both upon vitamin D
treatment and UV radiation (Fig. 1). The upregulation of these genes by UV was observed also
in the transcriptomic analysis (Tables 2, S1). Notably, in vitamin D-treated cultures, the
upregulation was only observed following the addition of both D2 and Ds. The four upregulated
genes encode for light-harvesting complex stress-related protein (LHCSR, G18590), heme
oxygenase (G2511), steroid hydroxylase (G25467), and a Ca-binding protein (G26534). Both

LHCSR and heme oxygenase are proteins related to the algal stress response.

The LHCSR gene is known to exhibit increased expression in moss and green algae under UV-
B and high-light stress, promoting excess energy dissipation in the light-harvesting complex and
thereby reducing photo-oxidative stress®>-%’. Heme oxygenases are enzymes involved in the
formation of antioxidants in plants and animals, with known upregulated expression in response
to UV-B and other ROS-forming stressors®®-0. UV-B radiation is a fundamental component of
high-light environments, and vitamin D is produced under UV-B radiation (Table 1) and triggers
the upregulation of oxidative- and photooxidative-stress mitigation pathways. Therefore, it is
likely that vitamin D is part of a cellular signaling cascade that reports on and reacts to harmful
light intensities or radiation.
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Figure 1. Combined treatment of vitamin D2 and Ds; upregulates UV-responsive genes. qRT-PCR
analysis of genes following 1 hour of UV exposure or vitamin D treatments. Top title denotes gene
products. In brackets: gene identifier in E. huxleyi CCMP3266° and matching gene transcript in the E.
huxleyi CCMP1516 reference genome®. Statistical significance compared to control was calculated
using two-tailed t-test assuming equal variances. One, two or three asterisks indicate P <0.05, P <0.01
and P < 0.001, respectively.

Vitamin D treatment improves the algal photosynthetic performance following excess light

To investigate the involvement of vitamin D in the cellular response towards harmful light
intensities, we tested the impact of vitamin D treatment on algal physiology, namely
photosynthetic performance, under excess light. To this end, algal cultures were exposed to low,
non-saturating light levels that are regularly used during incubation®' (130 umol photons m=2 s,
or PAR), and to saturating light®? (1000 PAR) for 2 hours. Algal cultures under each light regime
were either treated with both D2 and Ds, or not treated as control. Algal photosynthetic
performance was evaluated by measuring nonphotochemical chlorophyll fluorescence
quenching (NPQ) as a proxy for the ability of algae to dissipate excess absorbed light energy
into heat®. In addition, the maximum PSII quantum yield (Fv/Fm) was measured as an indicator
of photosynthetic efficiency®*. Our results showed that algae under saturating light display
decreased NPQ and Fv/Fm, indicative of photoinhibition®' (Fig. 2a, b). Furthermore, vitamin D-
treated cultures exhibited significantly higher NPQ following exposure to excess light (Fig. 2a,
S4), in comparison to untreated cultures. The cultures that were treated with vitamin D also
demonstrated enhanced Fv/Fm (Fig. 2b). These findings emphasize the potentially central role

of vitamin D in algal physiology under harmful light levels. Vitamin D appears to activate cellular
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processes that enhance excess light energy dissipation
and improve photosynthetic quantum yields. a

Vitamin D alleviates ROS accumulation under excess B control

= D, D
Hgm 9- 2 3 B=

Under excess light, photosynthetic organisms are likely g .
to experience oxidative stress®®, and NPQ is a key 1 EI
process in mitigating oxidative stress induced by =
excess light. Our analyses revealed elevated NPQ in 0 1000 PAR 130 PAR
vitamin D-treated cultures following excess light.
Therefore, we assessed whether addition of vitamin D b 0.6- =
to algal cultures under excess light, indeed alleviates EI
oxidative stress resulting in decreased cellular levels of 0.4-
ROS. To achieve this, we subjected algal cultures to E -
excess light (1000 PAR) and assessed the intracellular & 0.2- E
ROS levels using the cell-permeable fluorescent probe
2,7-Dichlorodihydrofluorescein diacetate (H2.DCF-DA). 0.0 Ell :
The tested algal cultures were either treated with both 1000 PAR 130 PAR
D2 and Ds or were untreated. Additionally, control C
cultures were exposed to regular light intensities (130 1.89 .
PAR) and subjected to the same treatments. Our % 164 —
findings revealed a substantial decrease in intracellular E 1.4
ROS levels in algae that were treated with vitamin D é 1.2
(18
and exposed to excess light, compared with untreated 8N 104 B E| B
algae under the same light regime (Fig. 2c). These T
findings further support a cellular role of vitamin D in 08 1000 PAR 130 PAR

Figure 2. Vitamin D treatment improves photosynthetic performance and alleviates oxidative
stress following exposure to excess light. (a) Non photochemical quenching (NPQ) and (b) Fv/Fnm
values of vitamin D-treated and control algae, exposed to regular (130 PAR) or excess (1000 PAR) light
intensities. (c) Fluorescence values of vitamin D-treated and control algae stained with the intracellular
reactive oxygen species (ROS) probe H:DCF-DA, exposed to regular (130 PAR) or excess light (1000
PAR) intensities. Statistically significant values (P < 0.05) compared to control are marked by *, calculated
from three biological replicates using two-tailed paired t-test for (a,b) and one-tailed paired t-test for (c).
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algal cells under excess light conditions, demonstrating that vitamin D is involved in mitigating
ROS-induced oxidative stress.

Discussion

The current study reveals the photoprotective role of vitamin D in a globally abundant marine
algal species. Our findings introduce a novel cellular mechanism that utilizes the photochemical
transformation of vitamin D as an indicator of exposure to harmful radiation, consequently
enhancing the algal physiological response to excess-light stress. This enhanced response is
manifested by an increase in photosynthetic efficiency following exposure to conditions that
inhibit photosynthesis, along with an overall reduction in the development of ROS (Fig. 2).
Furthermore, the elevation in NPQ observed after vitamin D treatment, coupled with the
upregulation of LHCSR, suggests that a significant aspect of the response triggered by vitamin
D is aimed at mitigating photo-oxidative stress. Additionally, the fact that the physiological
response in E. huxleyi algae to vitamin D is only observed following saturating light conditions

may hint at a light-dependent regulatory mechanism.

Vitamin D can serve as a sensitive light indicator in phytoplankton. For example, phytoplankton
residing in surface mixed layers of oceans often encounter significant fluctuations in PAR
intensity throughout the day. These environments, which can extend depths of over 200
meters®, may result in cells being transported over considerable vertical distances®’, leading to
rapid change in light intensity of hundreds of PAR within a matter of hours338, In such a dynamic
scenario, as cells ascend, they experience an increase in UV-B and subsequently may generate
vitamin D. The specificity of the photochemical conversion of vitamin D under UV-B wavelengths,
coupled with its relatively high photochemical quantum yield®®, suggests that it could function as
an independent and sensitive proxy for assessing exposure to UV-B radiation, high light levels,
or fluctuations in light intensity.

Interestingly, the impact of vitamin D on gene expression became evident only under a combined
treatment with D2 and Ds (Fig. 1). Similarly, the combined treatment led to a lower cell density
compared to separate D2 or D3 treatments (Fig S2). Decreased cell densities might be a result
of cell cycle arrest, which is a phenomenon previously described in E. huxleyi’® and is known to

10
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occur in response to UV radiation across various organisms’'-73. Whether vitamin D influences
the algal cell cycle, and why a combination of D2 and D3 drives a detectable response, merits

further investigation.

When studying algal physiology, it is essential to acknowledge the significance of UV-B as an
influential environmental factor. In experimental setups aimed at studying algal physiology and
ecology, UV-B radiation has traditionally been excluded due to its detrimental effects. However,
this contradicts the natural conditions in which algae thrive, where they regularly encounter low
levels of UV-B. While the omission of UV-B simplifies experimental conditions for precise
variable isolation, our study unveils the profound influence of vitamin D, a product of UV-B
exposure, on the physiological response of E. huxleyi to environmental stress. These findings
shed light on the potentially advantageous role of UV-B for algae facing excess-light stress,
encouraging further exploration of the interplay between algae and this often-overlooked

environmental factor.

Our study offers comparative insights on the role of vitamin D in vertebrates and in E. huxleyi
algae. The extensive knowledge on vitamin D biology primarily originates from research on
humans and other vertebrates. Transposing this knowledge to E. huxleyi presents challenges
due to significant phylogenetic and physiological differences between multicellular organisms
and unicellular entities. Nevertheless, parallels can be drawn. Vitamin D was shown to enhance
cellular defense in human and mice keratinocytes against UV-induced oxidative stress and DNA
damage®%4. Vitamin D has also been shown to mitigate oxidative stress in rat liver and
intestine®%74, partly through the upregulation of heme oxygenase, a response mirrored in vitamin
D-treated algal cells. Furthermore, the upregulation by vitamin D of certain genes in E. huxleyi,
potentially involved in intracellular signaling cascades (Fig. 2c, d), suggests the involvement of
vitamin D in initiating or contributing to signaling mechanisms. In mammals, vitamin D plays a
role in the activation of key signaling proteins, such as phospholipase C (PLC), phospholipase
Az (PLA2) and phosphatidylinositol-3 kinase (PI3K)75, which are essential for the rapid generation
of secondary messengers such as Ca? and IPs. While E. huxleyi cells demonstrated the
upregulation of PLC, PLA2, and PI3K following prolonged UV exposure (Table 1), further
investigation is needed to determine if vitamin D also participates in regulating these proteins in
algae. Interestingly, the involvement of Ca2* signaling in photo-oxidative stress mitigation has
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been reported in other marine algal species’®. Another possible similarity between vertebrates
and E. huxleyi is the activation of vitamin D. In vertebrates, vitamin D requires enzymatic
modifications to become hormonally active. These modifications include the hydroxylation of the
1st and 25" carbons, to produce 1,25-(OH)2-vitamin D*. Similar hydroxylated D2 and D3 species
were identified in the current research (Fig. S5) based on multiple reaction monitoring (MRM)
profiles published previously’’. Additional work is necessary to validate the detection of these
hydroxylated species and the corresponding biosynthetic pathways in algae.

Vitamin D synthesis likely has ancient origins, given its presence across various lineages of
eukaryotes®-', Sterols are a defining feature of eukaryotes, and the enzymatic pathways leading
to the production of ergosterol and 7-dehydrocholesterol, which are precursor molecules to D2
and D3 forms of vitamin D, may have existed in the last eukaryotic common ancestor (LECA)78.7°.
Consequently, it can be hypothesized that the earliest eukaryotes were already synthesizing
vitamin D when exposed to solar radiation. While previous studies had postulated the ancient
evolutionary origins of vitamin D2%8, the understanding of its role beyond the animal kingdom
had remained limited. Eukaryotes rely on oxygen (Oz), and their evolution is thought to have
necessitated proximity to oxygenic photoautotrophs inhabiting the sunlit ocean surface®'. This is
because during their proposed emergence in the late Archean to early Proterozoic eras®-8, the
deep ocean was likely devoid of O2 8486 Considering the antioxidant properties exhibited by
vitamin D in both animals and E. huxleyi algae, coupled with its evolutionary links to oxidative
agents such as UV-B and Oz, it prompts the question of whether vitamin D evolved in early
eukaryotes as a means of sensing oxidative environments. A similar evolutionary role has been
proposed to sterols, and chiefly to cholesterol that has been widely studied in the context of
environmental 02878, Like sterols, vitamin D possibly played a role in the early stages of life on
Earth.

Materials and methods

Algal strain and growth conditions

The axenic algal strain of E. huxleyi CCMP3266 was purchased from the National Center for
Marine Algae and Microbiota (Bigelow Laboratory for Ocean Sciences, Maine, USA). Algae were
grown in artificial sea water according to Goyet and Poisson® and supplemented with L1
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medium according to Guillard and Hargraves®, with the exception that Na2SiOs was omitted
following the cultivation recommendations for this strain. Algae were grown in standing cultures
in borosilicate Erlenmeyer flasks with an initial inoculum of 330 cells/ml, placed in a growth
chamber at 18°C under a light/dark cycle of 16/8 hr. PAR intensity during the light period was
130 umoles photons m™2s~'. Cultures volume was 50 ml except for cultures used to measure
growth under vitamin D treatment (Fig. S3) which were grown in 20 ml.

Continuous UV irradiation was achieved by placing a UV-emitting light source (Exo Terra Reptile
UVB150, Hagen, Montreal, Canada) inside the algal growth chamber. Algal cultures experienced
UV-A intensity of 0.5 w/m2, UV-B intensity of 0.07 w/m? and UV-C intensity of 0.026 w/m?,
measured using an ALMENO 2570 device (Ahlborn, Budapest, Hungary) placed within the
Erlenmeyer flask. The UV-B intensity used in this study was selected to replicate the average
UV-B radiation encountered at the ocean surface?®. The UV light-source was operating daily for
14 hours in parallel to the PAR light period, starting one hour after PAR illumination started, and
ending one hour before PAR illumination ended. This irradiation regime aimed to mimic a
simplified day cycle including dawn and dusk periods.

Algal growth was monitored by a CellStream CS-100496 flow cytometer (Merck, Darmstadt,
Germany) using a 561 nm laser and plotting the chlorophyll fluorescence at 702/87 nm against

side scatter.

Vitamin D treatment

Cultures were treated with 1 uM of vitamin D2 or D3 (Sigma-Aldrich, Burlington, Massachusetts,
USA) dissolved in DMSO, as this was the minimal vitamin D concentration in which an effect
was observed on algal growth (Fig. S3b). For combined D2 and D3 treatment, 0.5 uM of each
species was added. The final DMSO concentration in cultures was 0.1%. Control cultures were

treated with an equal amount of DMSO.

Vitamin D analysis

Metabolic analysis was conducted following Oberson’”. Standards for D2, D3, ergosterol and 7-
dehydrocholesterol were purchased in dry (Sigma-Aldrich) and dissolved in CHCIs. Standard
solutions of the different metabolites were combined into a single solution and diluted to create
a standard curve. All final standards and samples were spiked with 50 ng of vitamin D2-ds
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(IsoSciences, Ambler, Pennsylvania, USA) serving as an internal standard. Algal samples were
centrifuged, lyophilized and stored in -80°C until analysis. Saponification was achieved by
resuspending samples in 108 pl 55% KOH, 192 pl ethanol, and 60 pl of 9% NaCl and 7.4%
ascorbic acid, followed by homogenization and stirring at room temperature for 18 hours.
Samples were then supplemented with 40 pl 10% NaCl and 300 pl of 20% ethyl acetate in
heptane, vortexed extensively and centrifuged for 30 minutes. The upper phase was collected,
and the process was repeated twice. Samples were evaporated, dissolved in 200 ul of 0.5%
isopropanol in hexane and sonicated. Strata Sl-silica 55 ym 70 A columns (Phenomenex,
Torrance, California, USA) were used for solid phase extraction and were pre-conditioned with
1 ml of 50% CHCls in isopropanol, followed by two washes with 1 ml of hexane. Samples were
then loaded onto the columns and washed with 0.5 ml of 0.5% isopropanol in hexane which
were discarded, and washed again with 2.5 ml of 2.5% isopropanol in hexane which were
collected. Samples were evaporated and dissolved in 200 ul of PTAD in acetonitrile, sonicated,
stirred at room temperature for 2 hours, centrifuged for 10 minutes and transferred into LC-MS
vials. Samples were protected from light as much as possible during the extraction process.

Due to the inconsistency in identification of Ds in algal samples, several technical adaptations
regarding algal growth and sample collection were implemented and evaluated. To examine
whether inconsistencies arise due to rapid D3 enzymatic degradation, algal cultures were
immediately placed on ice, centrifuged in a cooled, 4°C centrifuge, and the supernatant quickly
discarded and replaced with 50% methanol in DDW. The samples were then plunged into liquid
nitrogen and stored in -80°C. Later, samples were thawed, evaporated in vacuum to remove the
methanol, lyophilized and proceeded to vitamin D extraction. Additional modifications included
increasing the intensity of UV-B radiation during algal growth, increasing sample size by
combining separate cultures, and using F/2 trace metals instead of L1 trace metals. These
attempts did not improve the reproducibility of D3 detection.

Vitamin D was measured by UPC2-ESI-MS/MS equipped with Acquity UPC2 system (Waters,
Milford, Massachusetts, USA). The MS detector (Waters TQ-XS) was equipped with an ESI
source. The measurements were performed in the positive ionization mode using MRM. The
source and de-solvation temperatures were maintained at 150°C and 500°C, respectively. The
capillary voltage was set to 1.5 kV. Nitrogen was used as the de-solvation gas and cone gas at
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a flow rate of 700 L h'' and 150 L h', respectively. lonization parameters of ergosterol, 7-
dehydrocholesterol, D2 and Ds were adjusted by direct infusion of standards. lonization

parameters for other compounds were taken from Oberson’”.

UPC2 system: mobile phase A consisted of CO2, and mobile phase B consisted of 98% MeOH,
2% DDW and 10mM ammonium formate. Make up solvent was 1% formic acid in 90% MeOH
and 10% DDW at a flow rate of 0.4 ml min-'. The column (WATERS Acquity CSH FluoroPhenyl
1.7 um, 3.0x100 mm, cat. 186006573) was maintained at 45°C, injection volume was 3 pl. At the
first 0.5 min of injection, 99.5% of mobile phase B, and 0.5% of mobile phase A were run at flow
rate of 2.0 ml min-'. Then, mobile phase A was gradually reduced to 92% at 6 min, and further
decreased to 70% at a flow rate of 1.75 ml min'' at 6.5 min. This composition of mobile phase
and flow rate were kept until 7 min, followed by increase in mobile phase A to 99.5% at 7.8 min,
and then increase in flow rate to 2 ml min" at 8.5 min, and running at those conditions until 9

min.

RNA extraction

Algal cultures were harvested for RNA extraction by centrifugation at 4000 rpm for 5 min at 18°C.
RNA was extracted using the lIsolate || RNA mini kit (Meridian Bioscience, London, UK)
according to manufacturer instructions. Cells were ruptured in RLT buffer containing 1% B-
mercapto-ethanol by bead beating for 5 min at 30 mHz. RNA was then treated with 3 ul Turbo
DNAse (ThermoFisher, Waltham, MA, USA) in a 50 pl reaction volume, followed by a cleaning
step using RNA Clean & Concentrator™-5 kit (Zymo Research, Irvine, CA, USA) according to
manufacturer instructions. RNA was used for generating transcriptomic data and gRT-PCR

analysis.

Transcriptomic analysis

Transcriptomic data was generated using the MARS-seq library preparation protocol®!, and
analyzed with the UTAP pipeline®2. As part of the pipeline, read counts for each gene were
normalized using the DESeq2’s median of ratios method®. Differential expression (DE) between
treatments was calculated using the following thresholds: mean number of normalized reads
across all samples = 5, adjusted p-value < 0.05, Log2 fold change < -0.7 or 2 0.7. The previously
generated E. huxleyi CCMP3226 synthetic genome (sGenome) and annotation file was used as
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reference for the UTAP pipeline®. Briefly, the E. huxleyi CCMP3226 sGenome was generated
by de novo transcriptome assembly of short-reads and long-reads. The assembled E. huxleyi
CCMP3226 transcripts were then mapped to the E. huxleyi CCMP1516 reference genome® to
define gene loci. For the current work, functional gene annotations were manually curated by
identifying open reading frames in assembled transcripts using the ORF finder tool
(www.ncbi.nlm.nih.gov/orffinder; transcript accessions are given in Table S1) and analyzing
protein domains in the translated sequences using InterProScan 5%. Additionally, transcript
sequences were searched against the swissprot database using NCBI blastx®?, and the hit with
the highest E-value taken. Specifically, the gene loci analyzed using blastx were G18590,
sharing highest similarity to Chlamydomonas reinhardtii LHCSR (NCBI accession P93664.1)
with E-value of 1e-26 and nucleotide identity of 57%; G25467, sharing highest similarity to rat
cyp1a2 (NCBI accession P04799.2) with E-value of 1e-31 and nucleotide identity of 27%;
G14502, sharing highest similarity to Arabidopsis thaliana Calmodulin-like protein 12 (NCBI
accession P25071.3) with E-value of 6-e5 and nucleotide identity of 22.6%. The putative Ca-
binding activity of G26534 was assessed by identifying bona fide Ca-binding domains using
InterProScan 5. Specifically, we performed blastx®” and focused on the highest hit that contained
an identifiable protein domain using InterProScan 5%, resulting in the identification of an EF-
hand family protein in Chrysochromulina tobinii that harbors three EF-hand domain pairs (NCBI
accession KO0O34173.1, with E-value of 8e-13 and nucleotide identity of 32%).

Quantitative real time PCR (qRT-PCR)

Algal cultures were treated with vitamin D as described earlier. UV-treated cultures were
exposed to the same UV intensities as described above and treated with equal amounts of
DMSO. All treatments lasted 1 hour. Equal concentrations of RNA taken from 10 days old
cultures were utilized for cDNA synthesis using Superscript IV (ThermoFisher), according to
manufacturer instructions. gQPCR was conducted in 384 well plates using SensiFAST SYBR Lo-
ROX Kit (Meridian Bioscience, Cincinnati, OH, USA) in a QuantStudio 5 gPCR cycler (Applied
Biosystems, Foster City, CA, USA). The gPCR program ran according to enzyme requirements
for 40 cycles. Samples were normalized using three housekeeping genes: alpha-tubulin, beta-
tubulin and ribosomal protein 113 (rp/13). DNA contamination was assessed by applying the
same program on RNA samples that were not reverse transcribed (omitting the Superscript IV
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enzyme in the reverse transcription reaction mix). Gene expression ratios were analyzed
according to Vandesompele® by geometric averaging of housekeeping genes. Relative gene
expression levels were compared to control samples. Primer efficiencies were determined using
the QuantStudio 5 software, by gPCR amplification of serially diluted cDNA. All primers had a

measured efficiency between 80-120%. Primer sequences are given in Table S2.

Chlorophyll fluorescence

Algal cultures were divided into four subcultures that were subjected to one of four treatments:
1000 PAR with or without vitamin D (as described earlier) and 130 PAR with or without vitamin
D. Chlorophyll A fluorescence parameters were estimated following 2 hours of treatment.
Parameters were estimated by pulse amplitude-modulated fluorometry using WATER-PAM I
(Heinz Walz GmbH, Effeltrich, Germany). Maximum photosystem Il quantum yield (Fv/Fm) was
calculated as Fv/Fm = (Fm- Fo) / Fm®4, where Fo is the baseline fluorescence under a measuring
light of 160 PAR and Fm is the maximum fluorescence measured with a 0.9 s saturating light
pulse of 6000 umol photons m=2s~'. Non-photochemical quenching (NPQ) was calculated as
NPQ = (Fm —F’'m) / F'm®3, where Fm was the maximum fluorescence yield after dark adaptation
and F'm the maximum fluorescence yield under actinic light of 1150 PAR. Prior to analysis, algal
samples were dark-adapted for 5 minutes. No major difference in Fv/Fm was observed between
algae that were dark-adapted for 5 or 30 minutes following exposure to regular light (Fig. S6),

suggesting that a darkness period of 5 minutes sufficiently relaxed PSII reaction centers.

Intracellular reactive oxygen species (ROS) measurements

Algal cultures were divided into subcultures and treated as described under ‘chlorophyll
fluorescence’. Vitamin D-treated and control cultures were placed in a growth chamber and
exposed to either regular light conditions (130 PAR) or to high-light conditions (1000 PAR) for 5
hours. For intracellular ROS assessment, cultures were stained with 0.5 uM of H2DCFDA
(ThermoFisher) in DMSO. Staining was performed 2 hours after the start of the treatment, and
cultures were left in the dark for 20 minutes before they were introduced back into the growth
chamber for the remaining 3 hours. Samples were measured using CellStream CS-100496,
excited at 488 nm and the signal was collected at 528/46 nm. The algal population was gated
by plotting chlorophyll fluorescence (excitation-emission 561-702/87 nm) against side scatter.
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Figure S1. Continuous UV irradiation during the light period did not affect algal growth.
Growth curves of the algal cultures that were grown under control and UV regime and were used for

generating the transcriptomic data. Cell density was measured from day 7. Error bars indicate
standard deviation based on 3 biological replicates.
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Figure S2. UV radiation causes upregulation of various signaling and stress-response
mechanisms. gRT-PCR analysis of genes under 1 hour of UV exposure or vitamin D treatments.
Top title denotes gene products. In brackets: gene identifier in E. huxleyi; matching gene in E. huxleyi
CCMP1516 reference genome®. Statistical significance compared to control was calculated using
two-tailed t-test assuming equal variances. One, two or three asterisks indicate P < 0.05, P < 0.01

and P <0.001, respectively.
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Figure S3. The combined treatment of vitamin D, and D; has a synergistic effect on algal
growth, outperforming individual D2 or Ds; application. (a) Growth dynamics of algal cultures
treated with 1uM of vitamin D species. (b) Variation in algal cell densities after 4 days of treatment
with different concentrations of vitamin D2, D3, and both (indicated by the green shades in the figure
legend). Error bars indicate standard deviation from 3 biological replicates.
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Figure S4. Temporal dynamics in NPQ and Fm’ values of vitamin D-treated algae, exposed to
regular or excess light. Temporal dynamics in Fm’ and NPQ of both control and vitamin D-treated algae
exposed to regular light levels (130 PAR) or excess light levels (1000 PAR) for 2 hours prior to analysis.
The timing of saturating pulses is represented by dots. NPQ values were measurable from t=60s onwards.
Each line represents a single biological replicate.
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Figure S5. E. huxleyi algae produce putative hydroxylated vitamin D species. Representative
chromatograms of hydroxylated vitamin D species detected in UV-treated and control cultures. The range of
the Y axis in chromatograms of the same vitamin D species are identical and therefore comparable. The
identification of metabolites is putative according to MRMs taken from Oberson et al.”’. Further analysis against
standards is needed in order to verify the identification of the hydroxylated species.
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Figure S6. Dark adaptation of 5 minutes sufficiently relaxes PSII reaction centers. Comparison
of maximum PSII quantum yields (F./Fn) between algae that were dark-adapted for 5 or 30 minutes,
calculated based on three biological replicates.
Gene Forward Reverse
G6284 GCCCTACCGGGTGTTTATCC CTCGACTTGGTTGAGAACTTGC
G18115 CACCGAGCCGACCCAAAAT TTCATCTCGGTCGTTGACAGG
G18590 CTCCTCGCGATGCAGAACAA CCCTTTCTGCCAACGTGATCT
G25467 TACGAGAATCGGCTGCTACG CCCGTCGGACCTTAAGACAG
G12503 TCTCGGTGGAAATGGCGAC ATTGTCATCGAGGCCGCAAA
G93 GTCACGCCGGCGACAAA GCGATGTGCGGGTGTATCT
G12340 AACCTGCTTGCCGACATGAT GGTTGAATCAGCATTGACCCC
G14992 GCGGGCTCTACTGAATCCG GGGTCCTCGTAGAAGGTGTG
G16746 TCGAAGATCCGGACGACGAT AGCGCGAGACGAAAATAACG
G2511 TTGTCGCGTCGCTCTACTTT GCCGAAGTAGTACGCCATGT
G2758 ATGGACCTAGACTCGGACGG ACAGCCCTCAAGCTCACATC
G8907 CTCTCGTGCTCGTGCTTCTT TCGTAGATGTACTTTGCCGGG
G26534 CTGGAAGATCGAGGCAACGG TATGGCGTCGCCGTCAAAG
G26797 alpha-tubulin CGAGAAGGCGTACCACGAG CTTCGTCTTGATGGTGGCGA
G28192 beta-tubulin CAACATGAAGTGCGCCATCT CCTCGGTGAACTCCATCTCG
G1895 rpl13 ACCAGCACTTCCACAAGACG TGCCGCAGCTTGTAGTTGTA

Table S2. Primers used in this study. Gene identifiers in E. huxleyi CCMP3266%. Primers were used to

generate gRT-PCR data using E. huxleyi CCMP3266 cDNA.
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