

1 **Mitochondrial outer membrane integrity regulates a ubiquitin-dependent NF-κB**
2 **inflammatory response**

3

4 Esmee Vringer ^{1,2}, Joel S Riley ^{1,2,3}, Annabel Black ^{1,2}, Catherine Cloix ^{1,2}, Sergio Lilla
5 ², Henning Walczak ^{4,5,6}, Mads Gyrd-Hansen ⁷, Danny T Huang ^{1,2}, Sara Zanivan ^{1,2},
6 Stephen WG Tait ^{1,2 *}

7

8 ¹ School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61
9 1BD, UK.

10 ² Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.

11 ³ Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck,
12 Innsbruck, Austria.

13 ⁴ Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute,
14 University College London, London, UK.

15 ⁵ CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.

16 ⁶ Center for Biochemistry, Faculty of Medicine and University Hospital Cologne,
17 University of Cologne, Cologne, Germany.

18 ⁷ Department of Immunology and Microbiology, LEO Foundation Skin Immunology
19 Research Center, University of Copenhagen, Copenhagen, Denmark.

20

21 * Corresponding author: Stephen Tait, e-mail: stephen.tait@glasgow.ac.uk

22

23

24

25 **Abstract**

26 Mitochondria are often essential for apoptosis through mitochondrial outer
27 membrane permeabilization (MOMP). This central event enables cytochrome c
28 release leading to caspase activation and rapid cell death. Recently, MOMP has been
29 shown to be inherently pro-inflammatory, for instance, by enabling mitochondrial DNA-
30 dependent activation of cGAS-STING signalling. Alongside having emerging functions
31 in health and disease, MOMP associated inflammation can also elicit anti-tumour
32 immunity. Nonetheless, how MOMP triggers inflammation and how the cell
33 counteracts this remains poorly defined. We find that upon MOMP, mitochondria are
34 ubiquitylated in a promiscuous manner targeting proteins localised to both inner and
35 outer mitochondrial membranes. Mitochondrial ubiquitylation serves to recruit the
36 essential adaptor molecule, NEMO, leading to activation of pro-inflammatory NF- κ B
37 signalling. We find that disruption of mitochondrial outer membrane integrity through
38 different means leads to engagement of a similar pro-inflammatory signalling platform.
39 Thus, mitochondrial integrity directly controls inflammation, such that permeabilised
40 mitochondria initiate NF- κ B signalling. This event may be important for the various
41 pathophysiological functions of MOMP-associated inflammation.

42

43 **Introduction**

44 Apoptotic cell death is considered an immunosilent form of cell death, in line
45 with it being the major type of homeostatic cell death. Mitochondrial outer membrane
46 permeabilization (MOMP) is often essential to initiate apoptosis by enabling
47 cytochrome c release, leading to rapid caspase activation and cell death (Bock & Tait,
48 2020). Nonetheless, upon a lethal stress, MOMP commits a cell to die regardless of
49 caspase activation through so-called caspase-independent cell death (CICD). This is
50 due to widespread MOMP causing a catastrophic loss in mitochondrial function
51 (Lartigue *et al*, 2009).

52

53 Recent research has revealed that MOMP is inherently pro-inflammatory
54 (Giampazolias *et al*, 2017; Marchi *et al*, 2022). For instance, mitochondrial DNA
55 (mtDNA) is released from permeabilised mitochondria through BAX/BAK macropores,
56 leading to activation of cGAS-STING signalling and a type I interferon response
57 (McArthur *et al*, 2018; Riley *et al*, 2018). Importantly, while wholly dispensable for cell
58 death, caspase activity serves to inhibit inflammation during mitochondrial apoptosis.
59 Caspases inhibit inflammation in dying cells through multiple means, including direct
60 cleavage of pro-inflammatory signalling proteins such as cGAS, inhibition of protein
61 translation and promoting rapid removal of dying cells via the exposure of “eat-me”
62 signals (McIlwain *et al*, 2013; Ning *et al*, 2019; Ravichandran, 2011).

63

64 By enhancing MOMP-induced inflammation through caspase-inhibition, we and
65 others have shown that engaging CICD in tumour cells can lead to anti-tumour
66 immunity dependent on cGAS-STING and NF-κB signalling in the dying cell
67 (Giampazolias *et al*, 2017; Han *et al*, 2020). We also reported that MOMP can occur

68 in a limited cohort of mitochondria – a phenomemon we termed minority MOMP– in
69 the absence of cell death (Cao *et al*, 2022; Ichim *et al*, 2015). Minority MOMP can
70 promote caspase-dependent DNA-damage. Intriguingly others have discovered that
71 minority MOMP causes inflammation required for the restriction of bacteria. (Brokatzky
72 *et al*, 2019). More recently, we have found that minority MOMP contributes to the
73 inflammatory phenotype of senescent cells thereby directly bridging apoptotic
74 signalling with senescence (Chapman *et al*, Res Square).

75

76 Thus, MOMP induced inflammation - alongside having physiological functions
77 - represents a therapeutic target in cancer. Nonetheless, how MOMP elicits
78 inflammation and how this is restrained remain poorly defined. Specifically, how
79 permeabilised mitochondria are targeted for degradation – potentially limiting
80 inflammation following MOMP, is not known. We initially set out to address this
81 question, finding that upon MOMP, mitochondria are promiscuously ubiquitylated.
82 Mitochondrial ubiquitylation has been shown to serve as signal for mitophagy, best
83 evidenced in mitophagy promoted by the E3 ubiquitin ligase Parkin (Vargas *et al*,
84 2022). Surprisingly, upon MOMP, we find that autophagy is not essential for
85 mitochondrial degradation. Upon further investigation, we found that MOMP-induced
86 ubiquitylation of mitochondria serves as an inflammatory signal, recruiting the
87 essential NF- κ B signalling adaptor, NF- κ B essential modulator (NEMO). In this way,
88 mitochondrial outer membrane integrity dictates the initiation of an NF- κ B
89 inflammatory response, contributing to MOMP-induced inflammation.

90

91

92 **Results**

93

94 **Permeabilised mitochondria are ubiquitylated and degraded independent of**

95 **canonical autophagy**

96 Following MOMP, autophagy targets permeabilised mitochondria for
97 degradation and suppresses MOMP-induced inflammation (Colell *et al*, 2007;
98 Lindqvist *et al*, 2018). Given this, our initial goal was to understand how MOMP triggers
99 mitochondrial removal. To engage mitochondrial apoptosis, U2OS cells were treated
100 a combination of BH3-mimetics, ABT-737 (inhibits BCL-2, BCL-xL and BCL-w) and
101 S63845 (inhibits MCL-1) then analysed for cell viability by SYTOX Green exclusion
102 and Incucyte live-cell imaging. Combined BH3-mimetic treatment in wild-type U2OS
103 cells led to rapid cell death that was inhibited by co-treatment with pan-caspase
104 inhibitor Q-VD-OPh or CRISPR-Cas9 mediated deletion of BAX and BAK, two proteins
105 essential for MOMP, confirming engagement of mitochondrial apoptosis
106 (**Supplemental Figures 1A and B**). Using this approach, we next assessed
107 mitochondrial content in U2OS cells following MOMP under conditions of CICD by
108 using the combination treatment of ABT-737, S63845 and Q-VD-OPh. Mitochondrial
109 content was determined by western blot for mitochondrial proteins or via qPCR for
110 mitochondrial DNA (**Figure 1A and 1B**). Reduction in cellular mitochondrial content
111 was observed specifically following MOMP, as evidenced by a loss of mtDNA and
112 mitochondrial protein content in a BAX/BAK dependent manner (**Figure 1A and 1B**).
113 Mitochondrial ubiquitylation is a well-established signal for autophagic removal of
114 mitochondria, a process called mitophagy (Vargas *et al*, 2022). Therefore, we
115 investigated whether mitochondria are ubiquitylated upon MOMP. SVEC4-10 murine
116 endothelial cells were treated to undergo CICD and mitochondrial-enriched fractions
117 were probed for ubiquitylation by western blot using a pan-ubiquitin antibody.

118 Consistent with engagement of MOMP, SMAC (also called DIABLO) was depleted
119 from the mitochondrial-enriched fraction upon CICD. Importantly, an extensive
120 increase of protein ubiquitylation was detected in the mitochondria-enriched fraction
121 specifically following MOMP (**Figure 1C**). Increased ubiquitylation was dependent
122 upon MOMP since it was absent in BAX/BAK deficient cells (**Supplemental Figure**
123 **1C**). To corroborate these findings, U2OS EMPTY^{CRISPR} and BAX/BAK^{CRISPR} cells
124 were immunostained following induction of CICD using a combination of anti-ubiquitin
125 and mitochondrial COXIV antibodies. Upon CICD, ubiquitin localised with
126 mitochondria in U2OS EMPTY^{CRISPR} cells but not in U2OS BAX/BAK^{CRISPR} cells
127 (**Figure 1D and 1E**), in line with the earlier mitochondrial fractionation experiment
128 (**Supplemental Figure 1C**). To investigate whether inhibition of caspase activity was
129 required for the ubiquitylation of mitochondria following MOMP, SVEC4-10 cells were
130 treated with BH3-mimetics with or without the pan-caspase inhibitor Q-VD-OPh.
131 Western blot analysis of mitochondria-enriched fractions demonstrated increased
132 ubiquitylation irrespective of caspase inhibition (**Supplemental Figure 1D**).

133 Ubiquitylation can target organelles for autophagic degradation via recruitment
134 of specific autophagy adaptor molecules (Vargas *et al.*, 2022). Therefore, we
135 investigated whether autophagy was required for degradation of mitochondria
136 following MOMP by engaging CICD in U2OS cells deficient in ATG5 or ATG7, two
137 proteins essential for canonical macroautophagy (Komatsu *et al.*, 2005; Kuma *et al.*,
138 2004). ATG5 and ATG7 loss, as well as functional autophagy deficiency, evident by
139 an absence of lipidated LC3, was confirmed via western blot (**Figure 1F**). Surprisingly,
140 treatment of cells with BH3-mimetics and caspase inhibitor led to a reduction of
141 mitochondria (as determined by the loss of mitochondrial protein content) independent
142 of autophagy (**Figure 1F**). These data demonstrate that upon MOMP, mitochondria

143 are ubiquitylated and can be degraded in a manner that does not require canonical
144 autophagy.

145

146 **Widespread mitochondrial protein ubiquitylation occurs upon MOMP**

147 We next characterised mitochondrial protein ubiquitylation upon MOMP. Di-
148 glycine remnant proteomics can identify ubiquitylated proteins by the
149 immunoprecipitation of modification diGly-motifs left on ubiquitylated proteins after
150 trypsinisation (Xu *et al*, 2010). Using this method, we investigated the ubiquitylome of
151 SVEC4-10 cells treated to undergo CICD. Mass spectrometry proteomic analysis
152 revealed a significant change in the ubiquitylome of CICD treated SVEC4-10 cells
153 compared to untreated (**Figure 2A**). Gene-ontology (GO) term analysis and manual
154 curation of proteins using MitoCarta 3.0 (Rath *et al*, 2021) revealed that most peptides
155 (approx. 80%) that gained a ubiquitin modification after MOMP were mitochondrially
156 localised (**Figures 2B – D, Supplemental table 1**). Ubiquitylated mitochondrial
157 proteins were not confined to one mitochondrial compartment, with broadly similar
158 numbers of ubiquitylated proteins characterised as being localised to the mitochondrial
159 outer membrane or mitochondrial inner membrane (**Figure 2B** and **Supplemental**
160 **Table 1**). Notably, some proteins with increased ubiquitylation have been defined as
161 being localised to the mitochondrial matrix, possibly reflecting mitochondrial inner
162 membrane permeabilisation that we and others have reported previously (**Figure 2B**
163 and **Supplemental Table 1**) (McArthur *et al.*, 2018; Riley *et al.*, 2018). These data
164 demonstrate promiscuous ubiquitylation of mitochondrial proteins following MOMP.

165

166

167

168 **Mitochondrial protein ubiquitylation encompasses K63-ubiquitin linkages**

169 Protein ubiquitylation is highly complex with specific ubiquitin linkages
170 conferring distinct biological functions. For instance, K48 ubiquitin linkages are
171 typically associated with targeting proteins for proteasomal degradation, whereas K63
172 ubiquitylation has signalling functions (Komander & Rape, 2012). Given this, we
173 investigated the type of ubiquitin linkages that MOMP triggers. SVEC4-10 cells were
174 treated to undergo CICD, and the mitochondrial enriched fraction was blotted for K48-
175 and K63-ubiquitin linkages using linkage specific antibodies (**Figure 3A**). This
176 revealed an increase in K63-linked ubiquitin, but not K48-linked ubiquitin, in the
177 mitochondrial fraction specifically during CICD. K63-linked ubiquitylation of
178 mitochondria was also detected upon CICD by immunofluorescence (**Figure 3B** and
179 **3C**). Finally, we made use of GFP-fused ubiquitin binding domains (UBDs) developed
180 to specifically visualise K63 and linear M1 ubiquitin linkages (Hrdinka *et al*, 2016).
181 Consistent with our previous data, extensive K63-linked ubiquitin was detected on
182 mitochondria following CICD (**Figure 3D** and **3E**). In contrast, mitochondrial
183 localisation of M1-specific UBDs was observed in a smaller percentage of cells
184 analysed. These data reveal that upon MOMP, mitochondrial proteins are enriched in
185 K63-ubiquitin linkages.

186

187 **Mitochondrial ubiquitylation recruits the essential NF-κB adaptor NEMO**
188 **promoting NF-κB activation**

189 We next sought to understand potential biological functions of mitochondrial
190 ubiquitylation following MOMP. Our previous data demonstrated that NF-κB is
191 activated following MOMP, contributing to anti-tumorigenic effects of CICD
192 (Giampazolias *et al.*, 2017). This finding, coupled to the well-established connection

193 between K63-ubiquitylation and inflammatory signalling (Madiraju *et al*, 2022), led us
194 to investigate if mitochondrial ubiquitylation may be involved in NF- κ B activation during
195 CICD. NEMO, an essential adaptor protein in canonical NF- κ B signalling, initiates NF-
196 κ B activity through ubiquitin binding. Given this, we examined the localisation of NF-
197 κ B essential modulator (NEMO) under conditions of MOMP, by expressing GFP-
198 NEMO in U2OS cells (**Figures 4A and 4B**). Importantly, robust mitochondrial
199 translocation of GFP-NEMO occurred upon MOMP in a BAX/BAK-dependent manner.
200 To investigate if ubiquitylation was required for mitochondrial recruitment of NEMO we
201 used the E1 inhibitor TAK-243 to block ubiquitylation (Hyer *et al*, 2018). TAK-243
202 treatment effectively blocked mitochondrial ubiquitylation and mitochondrial
203 recruitment of GFP-NEMO, (**Figure 4C-D** and **Supplemental Figure 2A**). In contrast,
204 blocking the ubiquitin-like modification neddylation, using NAE1 inhibitor MLN4924
205 (Soucy *et al*, 2009), did not result in reduced ubiquitylation and GFP-NEMO
206 translocation in SVEC4-10 cells (**Supplemental Figure 2B - D**).
207

208 M1-ubiquitin linkages are often essential for NEMO activation, through binding
209 the UBAN domain on NEMO (Rahighi *et al*, 2009). Additionally, the C-terminal zinc
210 finger (ZF) domain of NEMO can enhance the binding of K63-ubiquitin chains to the
211 UBAN (Cordier *et al*, 2009; Laplantine *et al*, 2009). To determine which domain(s) are
212 required for ubiquitin-dependent recruitment after MOMP, mutant versions of NEMO
213 disrupting the ability of the UBAN (D311N) or C-terminus (Δ ZF) to bind ubiquitin were
214 generated. Both non-ubiquitin binding mutants of NEMO failed to be recruited to the
215 mitochondria after MOMP (**Figure 4E and 4F**) suggesting that binding to K63-ubiquitin
216 chains is required. To extend these findings, we made use of murine embryonic
217 fibroblasts (MEFs) deficient in HOIP, the catalytic subunit of LUBAC E3 ligase complex

218 required for M1-linked ubiquitylation (Peltzer *et al*, 2014). Importantly, mitochondrial
219 recruitment of GFP-NEMO was not impaired in HOIP-deficient MEFs (**Supplemental**
220 **Figures 3A and 3B**). These data demonstrate that K63-linked ubiquitylation, but not
221 M1-linked ubiquitylation, is required for NEMO recruitment to the mitochondria.

222

223 We next determined if mitochondrial recruitment of NEMO facilitates NF- κ B
224 activation. SVEC4-10 cells expressing wild-type and non-ubiquitin binding variants of
225 GFP-NEMO (D311N and Δ ZF) were treated to engage CICD and NF- κ B activation
226 was determined by nuclear NF- κ B p65 translocation. In contrast to wild-type NEMO,
227 both non-ubiquitin binding variants of NEMO significantly inhibited NF- κ B activation,
228 as determined by a reduction in nuclear p65 (**Figure 4G and 4H**). Similar experiments
229 were performed in SVEC4-10 cells treated with siRNA to deplete endogenous murine
230 NEMO (**Supplemental Figures 3C - E**). Depletion of NEMO in parental SVEC4-10
231 cells completely abolished nuclear p65 translocation. As expected, this was rescued
232 by ectopic expression of human GFP-NEMO. In contrast, expression of human GFP-
233 NEMOD311N failed to restore NF- κ B p65 nuclear translocation, agreeing with our
234 previous data. These data support a model whereby K63-ubiquitylation of
235 mitochondria following MOMP enables NEMO recruitment leading to NF- κ B activation.

236

237 **Ubiquitin-dependent NF- κ B activation after MOMP is independent of canonical**
238 **mitochondrial E3 ligases**

239 Through MOMP, our findings directly link mitochondrial integrity to
240 mitochondrial ubiquitylation and pro-inflammatory signalling. We next sought to
241 identify which ubiquitin E3 ligase(s) may be responsible for mitochondrial
242 ubiquitylation. One candidate is the E3 ligase Parkin, since active Parkin causes

243 widespread ubiquitylation of mitochondrial proteins (Sarraf *et al*, 2013). Nonetheless,
244 both SVEC4-10 and U2OS cells used in our studies do not express detectable Parkin
245 (**Figure 5A**), arguing that mitochondrial ubiquitylation following MOMP does not
246 require Parkin. Parkin activity requires the kinase PINK1. Interestingly, PINK1 can also
247 activate alternative E3 ligases such as ARIH1 (Villa *et al*, 2017). To investigate a
248 potential role for PINK1, we generated PINK1^{CRISPR} SVEC4-10 cell lines
249 (**Supplemental Figure 4A**). Confirming functional deletion, cells lacking PINK1 failed
250 to recruit YFP-Parkin to mitochondria following CCCP treatment, in contrast to
251 EMPTY^{CRISPR} cells (**Supplemental Figure 4B**). YFP-Parkin was not recruited to
252 mitochondria after MOMP irrespective of PINK1 deletion (**Supplemental Figure 4B**).
253 Importantly, recruitment of GFP-NEMO was not impaired by the deletion of PINK1
254 (**Figure 5B and 5C**) indicating that PINK1 does not have a role in ubiquitin-dependent
255 recruitment of NEMO after MOMP. The mitochondrial resident E3 ligases MUL1 (also
256 called MAPL) and MARCH5 have roles in various cellular processes such as
257 mitochondrial dynamics, protein import, cell death and inflammation (Braschi *et al*,
258 2009; Haschka *et al*, 2020; Phu *et al*, 2020; Shiiba *et al*, 2020). Single and double
259 knockout MUL1^{CRISPR} and MARCH5^{CRISPR} SVEC4-10 cell lines were generated
260 (**Supplemental Figure 4C and 4D**), however no differences in I κ B α phosphorylation,
261 a marker for NF- κ B activation, were observed (**Figure 5D**). Moreover, no impact on
262 mitochondrial ubiquitylation following MOMP was observed in SVEC4-10
263 MUL1MARCH5^{CRISPR} cells (**Figures 5E-F**). Interestingly, MARCH5 is degraded upon
264 MOMP (**Figure 5D**) indicating that its ubiquitylation observed in the ubiquitin remnant
265 proteomics study might be linked to proteasomal degradation (**Supplemental Table**
266 **1**). The E3 ligase XIAP was previously described for its involvement in the recruitment
267 of endolysosomes through ubiquitylation of mitochondrial proteins after MOMP

268 (Hamacher-Brady *et al*, 2014). XIAP^{CRISPR} SVEC4-10 cell lines were generated to
269 validate the importance of XIAP in mitochondrial-driven inflammation (**Supplemental**
270 **Figure 4E**). No differences were observed in expression of pro-inflammatory cytokines
271 after MOMP (**Supplemental Figure 4F**), despite observing a small reduction in the
272 percentage of cells with mitochondrial ubiquitylation and GFP-NEMO recruitment
273 (**Figure 5G** and **5H**). Combined, these data demonstrate that established
274 mitochondrial E3 ligases are not required for mitochondrial ubiquitylation following
275 MOMP.

276

277 **Ubiquitin-dependent mitochondrial inflammation is regulated by mitochondrial**
278 **outer membrane integrity**

279 As discussed, mitochondrial apoptosis requires BAX and BAK activation
280 leading to MOMP. We next sought to define if pro-inflammatory mitochondrial
281 ubiquitylation was specific to mitochondrial apoptosis or initiated due to loss of
282 mitochondrial integrity. For this purpose, we used the compound raptinal that can
283 cause MOMP independent of BAX and BAK (Heimer *et al*, 2019; Palchaudhuri *et al*,
284 2015). In agreement, BAX/BAK deficient SVEC4-10 cells were protected against cell
285 death induced by BH3-mimetics but remained sensitive to raptinal-induced cell death
286 in a caspase-dependent manner (**Supplementary Figures 5A and B**). We next
287 investigated GFP-NEMO translocation and mitochondrial ubiquitylation following
288 raptinal treatment in BAX/BAK-deleted SVEC4-10 cells. Importantly, raptinal treatment
289 led to robust mitochondrial ubiquitylation and GFP-NEMO translocation independently
290 of BAX and BAK (**Figure 6A and 6B**). Consistent with this, nuclear translocation of
291 p65 was also observed in BAX/BAK deleted cells following raptinal treatment (**Figure**
292 **6C and 6D**). Finally, increased transcription of NF- κ B targets *Kc* and *Tnf* was detected

293 following raptinal treatment in BAX/BAK-deleted SVEC4-10 cells (**Figure 6E**).
294 Congruent with earlier findings, BH3-mimetic induced ubiquitylation, NEMO
295 translocation and NF- κ B activity required BAX and BAK (**Figure 6A-E**). These data
296 demonstrate that loss of mitochondrial outer membrane integrity is sufficient to induce
297 mitochondrial ubiquitylation leading to NEMO recruitment and an NF- κ B dependent
298 inflammatory response.

299 **Discussion**

300 We find that upon disruption of mitochondrial outer membrane integrity,
301 mitochondria are promiscuously ubiquitylated; numerous proteins localising to both
302 outer and inner mitochondrial membranes were found to be ubiquitylated.
303 Investigating the functions of mitochondrial ubiquitylation, unexpectedly, we found that
304 degradation of mitochondria could occur independently of canonical autophagy. We
305 found that mitochondrial ubiquitylation directly promotes inflammatory NF- κ B
306 activation through mitochondrial recruitment of the adaptor molecule NEMO. These
307 data connect mitochondrial outer membrane integrity to direct activation of NF- κ B
308 activity, contributing to the pro-inflammatory effects of MOMP.

309

310 Given the bacterial ancestry of mitochondria, our findings raise striking parallels
311 with cell intrinsic responses to bacterial infection. For instance, ubiquitylation of
312 intracellular *Salmonella* Typhimurium serves as a platform to initiate pro-inflammatory
313 NF- κ B signalling as an innate immune response (Noad *et al*, 2017; van Wijk *et al*,
314 2017)}. Notably, the mitochondrial inner membrane and bacterial membranes share
315 similarities, for instance enrichment in cardiolipin (Vringer & Tait, 2022). We speculate
316 that upon cytosolic exposure, the mitochondrial inner membrane may represent a
317 damage-associated molecular pattern (DAMP) eliciting ubiquitylation, NEMO
318 recruitment and inflammation. Nonetheless, distinct differences exist between NEMO
319 recruitment leading to NF- κ B activation on invading bacteria and permeabilised
320 mitochondria. The most striking distinction is that, unlike bacteria, M1-linked
321 ubiquitylation is not required for recruitment of NEMO to permeabilised mitochondria.
322 This is best evidenced by mitochondrial recruitment of NEMO in cells deficient in
323 HOIP, the catalytic subunit of LUBAC complex required for M1-linked ubiquitylation.

324 Instead, NEMO recruitment to mitochondria appears dependent on its ability to bind
325 K63-ubiquitylated proteins, indeed we observe extensive K63-linked (but not
326 degradative K48-linked) mitochondrial ubiquitylation upon MOMP. Interestingly, a
327 recent study has shown that mitochondria amplify TNF induced NF- κ B signalling (Wu
328 *et al*, 2022). In this paradigm, the mitochondrial outer membrane serves as a platform
329 for LUBAC activity enhancing linear M1-linked ubiquitylation of NEMO. Together with
330 our data, this positions mitochondria in different contexts as both initiators and
331 amplifiers of NF- κ B dependent signalling.

332

333 Mechanistic questions remain – not least the identity of the ubiquitin E3
334 ligase(s) required for MOMP induced ubiquitylation. Our data argues against key roles
335 for PINK1/Parkin, XIAP or resident mitochondrial ubiquitin ligases such as MARCH5
336 and MUL1. Secondly, what properties of permeabilised mitochondria that initiates
337 ubiquitylation remains unknown. Importantly, our data shows that mitochondrial
338 ubiquitylation occurs upon loss of mitochondrial outer membrane integrity,
339 independent of how this is achieved. This is best evidenced by MOMP engaged by
340 either BAX/BAK or using the drug raptinal (in BAX/BAK null cells) both cause
341 mitochondrial ubiquitylation, NEMO recruitment and NF- κ B activation. While
342 speculative, possibly proteins located on the inner mitochondrial membrane when
343 exposed to the cytosol recruit and activate cytosolic ubiquitin ligases.

344

345 Our initial premise for this study stemmed from the hypothesis that
346 mitochondrial ubiquitylation may serve as targeting signal for mitophagy, akin to
347 PINK1/Parkin mediated mitophagy. Surprisingly, we found that mitochondrial
348 degradation occurred in cells deficient in canonical autophagy. While this doesn't

349 negate a role for autophagy in promoting removal of permeabilised mitochondria, it
350 demonstrates that autophagy not essential. Along these lines, we and others have
351 previously found that upon MOMP, the mitochondrial outer membrane can be
352 completely lost leaving what we called mito-corpse (Ader *et al*, 2019; Riley *et al.*,
353 2018). Whether autophagy independent degradation of permeabilised mitochondria
354 occurs in a regulated manner remains an open question.

355

356 In summary, our data reveals a novel direct connection between mitochondrial
357 function and engagement of inflammation, where disruption of mitochondrial integrity
358 initiates pro-inflammatory NF- κ B signalling through extensive ubiquitylation and
359 NEMO recruitment. Given the numerous emerging functions of MOMP induced
360 inflammation, ranging from senescence to innate and anti-tumour immunity, basic
361 understanding of this process may reveal new therapeutic opportunities.

362

363

364 **Materials and Methods**

365 **Cell culture and chemicals**

366 HEK293FT, SVEC4-10, MEFs and U2OS cells were cultured in high glucose DMEM
367 supplemented with 10% FBS (Gibco #10438026), 2 mM glutamine (Gibco #25030081)
368 and 1 mM sodium pyruvate (Gibco #11360070). Cells were cultured in 21% O₂ and
369 5% CO₂ at 37 °C. MEF *Tnf*^{-/-} *Hoip*^{+/+} and MEF *Tnf*^{-/-} *Hoip*^{-/-} cell lines have been
370 described before (Peltzer *et al.*, 2014). SVEC4-10 cells were purchased from ATCC.
371 All cell lines were routinely tested for mycoplasma.

372 The following chemicals were used in this study: ABT-737 (APEXBIO #A8193),
373 S63845 (Chemgood #C-1370), Q-VD-OPh (AdooQ Bioscience #A14915-25),
374 Doxycycline hyclate (Sigma-Aldrich #D9891), TAK-243 (MedChemExpress #HY-
375 100487), MLN4924 (Selleck Chemical #S7109), MG-132 (Selleck Chemical #S2619),
376 and raptinal (Millipore Sigma #SML1745).

377

378 **Viral transfection**

379 Overexpression and CRISPR cells lines were generated using lenti- or retroviral
380 infection. For lentiviral transfections 1 µg VSVG (Addgene #8454) and 1.86 µg
381 psPAX2 (Addgene #12260) were used. For retroviral transfections 1 µg VSVG and
382 1.86 µg HIV gag-pol (Addgene #14887) were used. For both transfections 5 µg of
383 plasmid was used. HEK293FTs were transfected using lipofectamine 2000 or
384 lipofectamine 3000 according to manufacturer's instructions. After two days, virus-
385 containing media was removed from the HEK293FTs and supplemented with 10 µg/ml
386 polybrene before transferring to target cells. Two days after infection cells were
387 selected using 2 µg/mL puromycin, 10 µg/mL blasticidin or 800 µg/mL neomycin.

388 Some U2OS and SVEC4-10 lines expressing GFP were sorted for GFP expression
389 instead of antibiotic selection.

390 The M6PblastGFP-NEMO, PMD-OGP and PMD-VSVG plasmids were gifted by Felix
391 Rando. The pLenti-CMV-TetRepressor, pDestination-eGFP-NES, pDestination-
392 eGFP-SK63-NES and pDestination-eGFP-NCM1-NES plasmids were gifted by Mads
393 Gyrd-Hansen. CRISPR cell lines were generated using lentiCRISPRv1 or
394 lentiCRISPRv2 vector (Addgene #52961) containing puromycin, blasticidin and
395 neomycin resistance.

396

397 Human *BAK* 5'- GCCATGCTGGTAGACGTGTA -3'

398 Human *BAX* 5'- AGTAGAAAAGGGCGACAACC -3'

399 Human *ATG5* 5'- AAGAGTAAGTTATTTGACGT -3'

400 Human *ATG7* 5'- GAAGCTGAACGAGTATCGGC -3'

401 Mouse *Bak* 5'- GCGCTACGACACAGAGTTCC -3'

402 Mouse *Bax* 5'- CAACTTCAACTGGGCCGCG -3'

403 Mouse *March5* 5'- AAGTACTCGCGTTGCACTG -3'

404 Mouse *Mul1* 5'- TATATGGAGTACAGTACGG -3'

405 Mouse *Pink1* 5'- CTGATCGAGGAGAAGCAGG -3'

406 Mouse *Xiap* 5'- CATCAACATTGGCGCGAGCT -3'

407

408 **Generation of GFP-NEMOD311N and GFP-NEMO Δ ZF**

409 GFP-NEMOD311N and GFP-NEMO Δ ZF were cloned into a pBABE-puro vector using
410 EcoRI and BamHI restriction sites. GFP-NEMOD311N was cloned into the pBABE
411 vector using Gibson assembly. NEMOD311N was obtained by PCR of pGEX-
412 NEMOD311N (Addgene #11968). GFP was obtained by PCR of a GFP-containing

413 plasmid. GFP-NEMO Δ ZF was obtained by PCR of the M6P-GFP-NEMO plasmid
414 (gifted by Felix Rando), thereby removing the last 25 amino acids of wildtype NEMO.

415

416 GFP 5'- tctaggcgccggccggatccATGGTGAGCAAGGGCGAG -3'

417 GFP 3'- cagaaccaccaccaccCTTGTACAGCTCGTCCATGC -5'

418 NEMOD311N

419 5'-ctgtacaagggtggtggtggttctgggtgggtggttctAATAGGCACCTCTGGAAG -3'

420 NEMOD311N 3'- accactgtgctggcgaattcCTACTCAATGCACTCCATG -5'

421 GFP-NEMO Δ ZF 5'- TAAGCA GGATTCATGGTGAGCAAGGGCGAGGAG -3'

422 GFP-NEMO Δ ZF 3'- TGCTTA GAATTCTAGTCAGGTGGCTCCTCGGGGG -5'

423

424 **ICE analysis for CRISPR**

425 Genomic DNA was isolated from the empty vector and CRISPR cells. A PCR reaction
426 for the CRISPR'ed region was set-up using Phusion DNA polymerase according to
427 manufacturer's instructions. The reactions were run on 2% agarose gel and bands of
428 correct size were isolated and purified using the GeneJET Gel Extraction kit. Samples
429 were sequenced by Eurofins genomics and analysed using ICE software by Synthego.

430

431 Mouse *March5* 5'- TCCTGGCCTGAAGGGTAGGGGA -3'

432 Mouse *March5* 3'- CCTCTTCCTTCCCCACCCCAA -5'

433 Mouse *Mul1* 5'- GGGTCGCAGGTGATTCGAGGC -3'

434 Mouse *Mul1* 3'- CACGTTGGAATCACCCCTGCCT -5'

435 Mouse *Pink1* 5'- TGTTGTTGTCCCAGACGTTGT -3'

436 Mouse *Pink1* 3'- TAAATTGCCAATCACGGCTCA -5'

437

438 **Knockdown using siRNA**

439 SVEC4-10 cells were transfected with 20 nM siGENOME *Nemo* SMARTpool (Horizon
440 Discovery #M-040796-01-0005) or siGENOME non-targeting control (Dharmacon
441 #D0012061305) using lipofectamine RNAiMAX (Invitrogen #1377075). Experiments
442 were performed 48 hours after transfection.

443

444 **RT-qPCR**

445 RNA was isolated using the GeneJET RNA isolation kit (Thermo Fisher Scientific
446 #K0732) according to manufacturer's instructions. Genomic DNA was digested using
447 an on-column DNase step (Sigma-Aldrich #04716728001) for 15 minutes. RNA was
448 converted into cDNA using the High Capacity cDNA Reverse Transcriptase kit
449 (Thermo Fisher Scientific #43-688-13) according to manufacturer's instructions. cDNA
450 was synthesised according to the following steps: 25 °C for 10 minutes, 37 °C for 120
451 minutes and 85 °C for 5 minutes.

452 RT-qPCR was performed by using the Brilliant III SYBR® Green QPCR Master Mix
453 (Agilent #600882) or DyNAmo HS SYBR Green (Thermo Scientific #F410L) and the
454 QuantStudio 3. The following RT-qPCR cycling parameters were used: initial
455 denaturation on 95 °C for 10 minutes, 40 cycles of 95 °C for 20 seconds, 57 °C for 30
456 seconds and 72 °C for 30 seconds, finished by a dissociation step 65-95 °C (0.5
457 °C/second). Samples were run in technical triplicates. Fold change expression was
458 determined using the $2^{-\Delta\Delta CT}$ method.

459

460 cDNA

461 Mouse *Actin* 5'- CTAAGGCCAACCGTGAAAAG -3'

462 Mouse *Actin* 3'- ACCAGAGGCATACAGGGACA -5'

463 Mouse *Tnf-α* 5'- GTCCCCAAAGGGATGAGAAG -3'

464 Mouse *Tnf-α* 3'- CACTGGTGGTTGCTACGAC -5'

465 Mouse *Kc* 5'- GGCTGGGATTCACCTCAAGAA -3'

466 Mouse *Kc* 3'- GAGTGTGGCTATGACTTCGGTT -5'

467 Mouse *Ccl5* 5'- CTGCTGCTTGCTACCTCT -3'

468 Mouse *Ccl5* 3'- CGAGTGACAAACACGACTGC -5'

469

470 **DNA**

471 Human *CYTB* 5'- GCCTGCCTGATCCTCCAAAT -3'

472 Human *CYTB* 3'- AAGGTAGCGGATGATTAGCC -5'

473 Human *GAPDH* 5'- TGGGGACTGGCTTCCCATAA -3'

474 Human *GAPDH* 5'- CACATCACCCCTCTACCTCC -3'

475

476 **Western blotting**

477 Cells were lysed in RIPA buffer (10 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1.2 mM
478 EDTA, 1% Triton X-100 and 0.1% SDS supplemented with cOmplete protease
479 inhibitors) and proteins were isolated by maximal centrifugation (15,000 rpm) for 10
480 minutes. Lysates were loaded on 8, 10 or 12% gels and transferred onto nitrocellulose
481 membranes. The membranes were blocked with 5% milk or BSA in TBS for 1 hour
482 followed by overnight incubation of 1:1000 dilution of primary antibodies in 5% milk or
483 BSA in TBST. The next day membranes were incubated with a 1:10,000 dilution of
484 secondary antibodies for 1 hour and imaged on the Li-cor CLx. Primary antibodies
485 used are actin (Sigma #A4700), ATG5 (CST #8540), ATG7 (CST #8558), LC3 (CST
486 #2775), BAK (CST #12105), BAX (CST #2772), NEMO (Abcam #178872), FK2
487 (ENZO #BML-PW8810-0100), HSP60 (Santa Cruz #sc-13115), p-IκBα (CST #2859),

488 I κ B α (CST #4814), K48-ubiquitin (CST #8081), K63-ubiquitin (Merck #05-1308),
489 NEDD8 (Abcam #AB81264), Parkin (Santa Cruz #sc-32282), SMAC (Abcam
490 #AB32023), TOMM20 (Proteintech #11082-1-AP), UBCJ2 (ENZO #ENZ-ABS840-
491 0100), Membrane Integrity Antibody cocktail (Abcam #ab110414), COXIV (CST
492 #11967), MARCH5 (EMD Millipore #06-1036) and XIAP (BD #610716). Secondary
493 antibodies used are goat anti-rabbit IgG (H+L) Alexa Fluor Plus 800 (Invitrogen
494 #A32735), goat anti-mouse IgG (H+L) Alexa Fluor 680 (Invitrogen #A21057) and goat
495 anti-mouse IgG (H+L) Dylight 800 (Invitrogen #SA535521).

496

497 **Mitochondrial isolation using digitonin**

498 Cells were lysed in digitonin lysis buffer (0.25 M sucrose, 700 mM Tris-HCl pH 8 and
499 100 μ g/mL digitonin) for 10 minutes on ice. The mitochondrial fraction was pelleted at
500 3000g for 5 minutes. Supernatant was stored as the non-mitochondrial fraction, the
501 pellet was resuspended in RIPA lysis buffer and stored on ice for 20 minutes followed
502 by centrifugation for 10 minutes at maximum speed (15,000 rpm). Supernatant was
503 taken as mitochondrial fraction.

504

505 **Mitochondrial isolation using douce homogeniser**

506 Cells were resuspended in mitochondrial isolation buffer (200 mM mannitol, 70 mM
507 sucrose, 10 mM HEPES, 1 mM EGTA, pH 7.0, cOmplete protease inhibitor). After
508 resuspension cells were homogenised using the dounce tissue grinder by performing
509 50 strokes up/down manually and centrifuged at 2000 rpm for 5 minutes. Supernatant
510 was collected and pellet was resuspended in mitochondrial isolation buffer and spun
511 down as previously described. Supernatant from both spins were combined and spun
512 down at 9000 rpm for 5 minutes. The supernatant was kept as non-mitochondrial

513 fraction. The pellet was resuspended in RIPA buffer and placed on ice for 20 minutes
514 followed by centrifugation at maximum speed (15,000 rpm) for 10 minutes.
515 Supernatant was kept as mitochondrial fraction.

516

517 **Immunofluorescent staining**

518 Cells were fixed using 4% PFA for 15 minutes, followed by a 15 minutes
519 permeabilization step using 0.2% Triton X-100. Samples were blocked using 2% BSA
520 in PBS for 1 hour and incubated with primary antibody in 2% BSA overnight. The
521 following day samples were incubated with secondary antibody in 2% BSA. Primary
522 antibodies used are COXIV (CST #11967 and #4850), cytochrome c (BD #556432),
523 FK2 (ENZO #BML-PW8810-0100), HSP60 (Santa Cruz #sc-13115), K63-ubiquitin
524 (Merck #05-1308), p65 (CST #8242), TOMM20 (CST #42406 and Proteintech
525 #11082-1-AP) and UBCJ2 (ENZO #ENZ-ABS840-0100). Secondary antibodies used
526 are Alexa Fluor 488 goat anti-rabbit IgG (H+L) (Invitrogen #A11034), Alexa Fluor 488
527 goat anti-mouse IgG (H+L) (Invitrogen #A11029), Alexa Fluor 568 goat anti-rabbit IgG
528 (H+L) (Invitrogen #A11011), Alexa Fluor 568 goat anti-mouse IgG (H+L) (Invitrogen
529 #A11004), Alexa Fluor 647 goat anti-rabbit IgG (H+L) (Invitrogen #A21245) and Alexa
530 Fluor 647 goat anti-mouse IgG (H+L) (Invitrogen #A21236). Coverslips were mounted
531 using Vectashield with or without DAPI.

532

533 **Confocal microscopy**

534 Cells were imaged using the Nikon A1R confocal microscope using all four lasers (405
535 nm, 488 nm, 561 nm and 638 nm) and images are acquired using sequential scanning.
536 For p65 staining the 40x NA 1.30 oil-immersion objective was used, while the 60x 1.40
537 NA oil-immersion objective was used to determine ubiquitin, GFP-NEMO and YFP-

538 Parkin puncta. Images were analysed using ImageJ version 2.1.0/1.53c and cells were
539 counted using the cell counter plugin. Images may be displayed using pseudocolours.

540

541 **Cell death assays using Incucyte**

542 Cell death assays were performed using Incucyte ZOOM from Sartorius. Cell death
543 was measured by Sytox Green inclusion (Thermo Fisher Scientific #S7020). Images
544 were taken every hour with a 10x objective. Starting confluency was used to
545 normalisation.

546

547 **Isolation of peptides containing ubiquitin remnants**

548 Peptides containing ubiquitin remnant motifs were isolated using the PTMScan®
549 Ubiquitin Remnant Motif (K--GG) Kit (CST #5562) according to manufacturers'
550 instructions. Isolation of ubiquitin remnants was performed on 4 independent repeats
551 for both conditions (4.4 mg protein per sample). Cellular localisation of proteins was
552 determined using Uniprot and Proteinatlas. Mitochondrial localisation was determined
553 using MitoCarta 3.0. GO enrichment analysis was performed using PANTHER
554 classification system.

555

556 **Mass spectrometry**

557 Peptides were separated by nanoscale C18 reverse-phase liquid chromatography
558 using an EASY-nLC II 1200 (Thermo Scientific) coupled to an Orbitrap Fusion Lumos
559 mass spectrometer (Thermo Scientific). Elution was performed at a flow rate of 300
560 nL/min using a binary gradient, into a 50 cm fused silica emitter (New Objective)
561 packed in-house with ReproSil-Pur C18-AQ, 1.9 µm resin (Dr Maisch GmbH), for a
562 total duration of 135 minutes. Packed emitter was kept at 50 °C by column oven

563 (Sonation) integration into the nanoelectrospray ion source (Thermo Scientific).
564 Eluting peptides were electrosprayed into the mass spectrometer using a
565 nanoelectrospray ion source. To decrease air contaminants signal level an Active
566 Background Ion Reduction Device (EDI Source Solutions) was used. Data acquisition
567 was performed using Xcalibur software (Thermo Scientific). A full scan over mass
568 range of 350-1400 m/z was acquired at 120,000 resolution at 200 m/z. Higher energy
569 collision dissociation fragmentation was performed on the 15 most intense ions, and
570 peptide fragments generated were analysed in the Orbitrap at 15,000 resolution.
571
572 The MS Raw data were processed using MaxQuant software version 1.6.3.3 and
573 searched with Andromeda search engine (Cox *et al*, 2011) querying SwissProt
574 (Consortium 2019) *Mus musculus* (20/06/2016; 57,258 entries). First and main
575 searched were performed with precursor mass tolerances of 20 ppm and 4.5 ppm,
576 respectively, and MS/MS tolerance of 20 ppm. The minimum peptide length was set
577 to six amino acids and specificity for trypsin cleavage was required. Methionine
578 oxidation, N-terminal acetylation and di-Gly-lysine were specified as variable
579 modifications, whereas cysteine carbamidomethylation was set as fixed modification.
580 The peptide, protein, and site false discovery rate (FDR) was set to 1%. All MaxQuant
581 outputs were analysed with Perseus software version 1.6.2.3 (Tyanova *et al*, 2016).
582 The MaxQuant output GlyGly (K)sites.txt file was use for quantification of Ubiquitylated
583 peptides. From the GlyGly (KSites.txt file, Reverse and Potential Contaminant flagged
584 peptides (defined as MaxQuant output) were removed. To determine significantly
585 changing ubiquitylated peptides a Student t-test with a 1% FDR (permutation-based)
586 was applied using the peptide intensities included in the GlyGly (KSites table. Missing
587 values were imputed separately for each column (width 0.3, down shift 1.4). Only

588 ubiquitylated peptides having: “score diff” greater than 5, a localisation probability
589 higher than 0.75, and are robustly quantified in three out of four replicate experiments
590 were included in the analysis.

591

592 **Data availability**

593 The raw files and the MaxQuant search results files have been deposited to the
594 ProteomeXchange Consortium (Deutsch *et al*, 2020) via the PRIDE partner
595 repository (Perez-Riverol *et al*, 2022) with the dataset identifier PXD040192. Data are
596 available via ProteomeXchange with identifier PXD040192.

597 For reviewer access: **Username:** reviewer_pxd040192@ebi.ac.uk

598 **Password:** YDEFnxY5

599

600 **Statistics**

601 Statistics was performed using Prism 9. All data represent mean \pm standard error of
602 the mean (SEM) unless indicated differently.

603 * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$

604

605 **Acknowledgements**

606 This research was supported by funding from the Cancer Research UK (A20145;
607 S.W.G.T.)(A29256; D.T.H.). Stand Up to Cancer campaign for CRUK A29800 to S.Z.;
608 A31287 to CRUK Beatson Institute, A18076 to CRUK Glasgow Centre, A17196 to
609 CRUK Beatson Institute Advanced Technology Facilities. H.W. is supported by an
610 Alexander von Humboldt Foundation Professorship Award, a Cancer Research UK
611 Programme Grant (A27323), a Wellcome Trust Investigator Award (214342/Z/18/Z), a
612 Medical Research Council Grant (MR/S00811X/1) and three collaborative research

613 centre grants funded by Deutsche Forschungsgemeinschaft (DFG, German Research
614 Foundation): SFB1399, Project C06; SFB1530-455784452, Project A03; and
615 SFB1403-414786233. M.G-H. is supported by the LEO foundation and The Novo Nordisk
616 Foundation (NNF20OC0059392). We thank Rosalie Heilig, Asma Ahmed and Catherine
617 Winchester for critical reading of the manuscript. The authors declare that they have
618 no conflict of interest

619 **References**

620

621 Ader NR, Hoffmann PC, Ganeva I, Borgeaud AC, Wang C, Youle RJ, Kukulski W
622 (2019) Molecular and topological reorganizations in mitochondrial architecture
623 interplay during Bax-mediated steps of apoptosis. *Elife* 8

624 Bock FJ, Tait SWG (2020) Mitochondria as multifaceted regulators of cell death. *Nat Rev Mol Cell Biol* 21: 85-100

626 Braschi E, Zunino R, McBride HM (2009) MAPL is a new mitochondrial SUMO E3
627 ligase that regulates mitochondrial fission. *EMBO Rep* 10: 748-754

628 Brokatzky D, Dorflinger B, Haimovici A, Weber A, Kirschnek S, Vier J, Metz A,
629 Henschel J, Steinfeldt T, Gentle IE *et al* (2019) A non-death function of the
630 mitochondrial apoptosis apparatus in immunity. *EMBO J* 38

631 Cao K, Riley JS, Heilig R, Montes-Gomez AE, Vringer E, Berthenet K, Cloix C,
632 Elmasry Y, Spiller DG, Ichim G *et al* (2022) Mitochondrial dynamics regulate genome
633 stability via control of caspase-dependent DNA damage. *Dev Cell* 57: 1211-1225
634 e1216

635 Chapman JS HS, Stella Victorelli , Helene Martini , Joel Riley , Catherine Cloix ,
636 Gerald Shadel , Jair Machado Espindola Netto , Diana Jurk , Anthony Lagnado , Lilian
637 Sales Gomez , Joshua Farr , Dominik Saul , Rebecca Reed , Laura Greaves , Derek
638 Mann , Claudio Akio Masuda , Sundeep Khosla , Haiming Dai , Nathan LeBrasseur ,
639 Viktor Korolchuk , Xue Shae , Peter Adams , Stephen Tait , Maria Grazia Vizioli , Alva

640 Sainz Castillo , Scott Kaufmann , Zhixun Dou , George Kelly , Ella Hall-Younger ,
641 Karolina Szczepanowska , Nicholas Pirius Sub-lethal apoptotic stress enables mtDNA
642 release during senescence and drives the SASP. *Research Square*
643 <https://doi.org/10.21203/rs.3.rs-1247316/v1>

644 Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-
645 Carrion A, Waterhouse NJ, Li CW *et al* (2007) GAPDH and autophagy preserve
646 survival after apoptotic cytochrome c release in the absence of caspase activation.
647 *Cell* 129: 983-997

648 Cordier F, Grubisha O, Traincard F, Veron M, Delepierre M, Agou F (2009) The zinc
649 finger of NEMO is a functional ubiquitin-binding domain. *J Biol Chem* 284: 2902-2907

650 Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011)
651 Andromeda: a peptide search engine integrated into the MaxQuant environment. *J*
652 *Proteome Res* 10: 1794-1805

653 Deutsch EW, Bandeira N, Sharma V, Perez-Riverol Y, Carver JJ, Kundu DJ, Garcia-
654 Seisdedos D, Jarnuczak AF, Hewapathirana S, Pullman BS *et al* (2020) The
655 ProteomeXchange consortium in 2020: enabling 'big data' approaches in proteomics.
656 *Nucleic Acids Res* 48: D1145-D1152

657 Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, Roca A, Lopez J,
658 Ichim G, Proics E *et al* (2017) Mitochondrial permeabilization engages NF-kappaB-
659 dependent anti-tumour activity under caspase deficiency. *Nat Cell Biol* 19: 1116-1129

660 Hamacher-Brady A, Choe SC, Krijnse-Locker J, Brady NR (2014) Intramitochondrial
661 recruitment of endolysosomes mediates Smac degradation and constitutes a novel
662 intrinsic apoptosis antagonizing function of XIAP E3 ligase. *Cell Death Differ* 21: 1862-
663 1876

664 Han C, Liu Z, Zhang Y, Shen A, Dong C, Zhang A, Moore C, Ren Z, Lu C, Cao X *et al*
665 (2020) Tumor cells suppress radiation-induced immunity by hijacking caspase 9
666 signaling. *Nat Immunol* 21: 546-554

667 Haschka MD, Karbon G, Soratroi C, O'Neill KL, Luo X, Villunger A (2020) MARCH5-
668 dependent degradation of MCL1/NOXA complexes defines susceptibility to antimitotic
669 drug treatment. *Cell Death Differ* 27: 2297-2312

670 Heimer S, Knoll G, Schulze-Osthoff K, Ehrenschwender M (2019) Raptinal bypasses
671 BAX, BAK, and BOK for mitochondrial outer membrane permeabilization and intrinsic
672 apoptosis. *Cell Death Dis* 10: 556

673 Hrdinka M, Fiil BK, Zucca M, Leske D, Bagola K, Yabal M, Elliott PR, Damgaard RB,
674 Komander D, Jost PJ *et al* (2016) CYLD Limits Lys63- and Met1-Linked Ubiquitin at
675 Receptor Complexes to Regulate Innate Immune Signaling. *Cell Rep* 14: 2846-2858

676 Hyer ML, Milhollen MA, Ciavarri J, Fleming P, Traore T, Sappal D, Huck J, Shi J, Gavin
677 J, Brownell J *et al* (2018) A small-molecule inhibitor of the ubiquitin activating enzyme
678 for cancer treatment. *Nat Med* 24: 186-193

679 Ichim G, Lopez J, Ahmed SU, Muthalagu N, Giampazolias E, Delgado ME, Haller M,
680 Riley JS, Mason SM, Athineos D *et al* (2015) Limited mitochondrial permeabilization
681 causes DNA damage and genomic instability in the absence of cell death. *Mol Cell* 57:
682 860-872

683 Komander D, Rape M (2012) The ubiquitin code. *Annu Rev Biochem* 81: 203-229

684 Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N,
685 Ohsumi Y, Uchiyama Y *et al* (2005) Impairment of starvation-induced and constitutive
686 autophagy in Atg7-deficient mice. *J Cell Biol* 169: 425-434

687 Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y,
688 Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal
689 starvation period. *Nature* 432: 1032-1036

690 Laplantine E, Fontan E, Chiaravalli J, Lopez T, Lakisic G, Veron M, Agou F, Israel A
691 (2009) NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new
692 bipartite ubiquitin-binding domain. *EMBO J* 28: 2885-2895

693 Lartigue L, Kushnareva Y, Seong Y, Lin H, Faustin B, Newmeyer DD (2009) Caspase-
694 independent mitochondrial cell death results from loss of respiration, not cytotoxic
695 protein release. *Mol Biol Cell* 20: 4871-4884

696 Lindqvist LM, Frank D, McArthur K, Dite TA, Lazarou M, Oakhill JS, Kile BT, Vaux DL
697 (2018) Autophagy induced during apoptosis degrades mitochondria and inhibits type
698 I interferon secretion. *Cell Death Differ* 25: 784-796

699 Madiraju C, Novack JP, Reed JC, Matsuzawa SI (2022) K63 ubiquitination in immune
700 signaling. *Trends Immunol* 43: 148-162

701 Marchi S, Guilbaud E, Tait SWG, Yamazaki T, Galluzzi L (2022) Mitochondrial control
702 of inflammation. *Nat Rev Immunol*: 1-15

703 McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V,
704 Geoghegan ND, Chappaz S, Davidson S, San Chin H *et al* (2018) BAK/BAX
705 macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis.
706 *Science* 359

707 McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease.
708 *Cold Spring Harb Perspect Biol* 5: a008656

709 Ning X, Wang Y, Jing M, Sha M, Lv M, Gao P, Zhang R, Huang X, Feng JM, Jiang Z
710 (2019) Apoptotic Caspases Suppress Type I Interferon Production via the Cleavage
711 of cGAS, MAVS, and IRF3. *Mol Cell* 74: 19-31 e17

712 Noad J, von der Malsburg A, Pathe C, Michel MA, Komander D, Rando F (2017)
713 LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by
714 activating autophagy and NF-kappaB. *Nat Microbiol* 2: 17063

715 Palchaudhuri R, Lambrecht MJ, Botham RC, Partlow KC, van Ham TJ, Putt KS,
716 Nguyen LT, Kim SH, Peterson RT, Fan TM *et al* (2015) A Small Molecule that Induces
717 Intrinsic Pathway Apoptosis with Unparalleled Speed. *Cell Rep* 13: 2027-2036

718 Peltzer N, Rieser E, Taraborrelli L, Draber P, Darding M, Pernaute B, Shimizu Y, Sarr
719 A, Draberova H, Montinaro A *et al* (2014) HOIP deficiency causes embryonic lethality
720 by aberrant TNFR1-mediated endothelial cell death. *Cell Rep* 9: 153-165

721 Perez-Riverol Y, Bai J, Bandla C, Garcia-Seisdedos D, Hewapathirana S,
722 Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M *et al*
723 (2022) The PRIDE database resources in 2022: a hub for mass spectrometry-based
724 proteomics evidences. *Nucleic Acids Res* 50: D543-D552

725 Phu L, Rose CM, Tea JS, Wall CE, Verschueren E, Cheung TK, Kirkpatrick DS, Bingol
726 B (2020) Dynamic Regulation of Mitochondrial Import by the Ubiquitin System. *Mol*
727 *Cell* 77: 1107-1123 e1110

728 Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T,
729 Bloor S, Komander D *et al* (2009) Specific recognition of linear ubiquitin chains by
730 NEMO is important for NF- κ B activation. *Cell* 136: 1098-1109

731 Rath S, Sharma R, Gupta R, Ast T, Chan C, Durham TJ, Goodman RP, Grabarek Z,
732 Haas ME, Hung WHW *et al* (2021) MitoCarta3.0: an updated mitochondrial proteome
733 now with sub-organelle localization and pathway annotations. *Nucleic Acids Res* 49:
734 D1541-D1547

735 Ravichandran KS (2011) Beginnings of a good apoptotic meal: the find-me and eat-
736 me signaling pathways. *Immunity* 35: 445-455

737 Riley JS, Quarato G, Cloix C, Lopez J, O'Prey J, Pearson M, Chapman J, Sesaki H,
738 Carlin LM, Passos JF *et al* (2018) Mitochondrial inner membrane permeabilisation
739 enables mtDNA release during apoptosis. *EMBO J* 37

740 Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW
741 (2013) Landscape of the PARKIN-dependent ubiquitylome in response to
742 mitochondrial depolarization. *Nature* 496: 372-376

743 Shiiba I, Takeda K, Nagashima S, Yanagi S (2020) Overview of Mitochondrial E3
744 Ubiquitin Ligase MITOL/MARCH5 from Molecular Mechanisms to Diseases. *Int J Mol
745 Sci* 21

746 Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE,
747 Burke KE, Cardin DP, Critchley S *et al* (2009) An inhibitor of NEDD8-activating
748 enzyme as a new approach to treat cancer. *Nature* 458: 732-736

749 Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016)
750 The Perseus computational platform for comprehensive analysis of (prote)omics data.
751 *Nat Methods* 13: 731-740

752 van Wijk SJL, Fricke F, Herhaus L, Gupta J, Hotte K, Pampaloni F, Grumati P, Kaulich
753 M, Sou YS, Komatsu M *et al* (2017) Linear ubiquitination of cytosolic *Salmonella*
754 Typhimurium activates NF-kappaB and restricts bacterial proliferation. *Nat Microbiol*
755 2: 17066

756 Vargas JNS, Hamasaki M, Kawabata T, Youle RJ, Yoshimori T (2022) The
757 mechanisms and roles of selective autophagy in mammals. *Nat Rev Mol Cell Biol*

758 Villa E, Proics E, Rubio-Patino C, Obba S, Zunino B, Bossowski JP, Rozier RM,
759 Chiche J, Mondragon L, Riley JS *et al* (2017) Parkin-Independent Mitophagy Controls
760 Chemotherapeutic Response in Cancer Cells. *Cell Rep* 20: 2846-2859

761 Vringer E, Tait SWG (2022) Mitochondria and cell death-associated inflammation. *Cell*
762 *Death Differ*

763 Wu Z, Berlemann LA, Bader V, Sehr DA, Dawin E, Covallero A, Meschede J,
764 Angersbach L, Showkat C, Michaelis JB *et al* (2022) LUBAC assembles a ubiquitin
765 signaling platform at mitochondria for signal amplification and transport of NF-kappaB
766 to the nucleus. *EMBO J* 41: e112006

767 Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin
768 remnant immunoaffinity profiling. *Nat Biotechnol* 28: 868-873
769

770 **Figure 1 Mitochondrial depletion after MOMP does not require autophagy**

771 A) U2OS EMPTY^{CRISPR} and BAX/BAK^{CRISPR} cells treated with 10 μ M ABT-737, 2 μ M
772 S63845 and 20 μ M Q-VD-OPh for 8 or 24 hours. Mitochondrial depletion was
773 assessed by blotting for several mitochondrial proteins. Blot is representative of 3
774 independent experiments. B) U2OS EMPTY^{CRISPR} and BAX/BAK^{CRISPR} cells were
775 treated with 10 μ M ABT-737, 2 μ M S62845 and 20 μ M Q-VD-OPh for 24 hours. Graphs
776 shows presence of mtDNA relative to gDNA in 3 independent experiments. C) SVEC4-
777 10 cells treated for 1 hour with 10 μ M ABT-737, 10 μ M S63845 and 30 μ M Q-VD-OPh.
778 Mitochondria were isolated using dounce homogeniser. Lysates for blotted for
779 ubiquitin (UBCJ2), SMAC, TOM20, HSP60 and actin. Blots are representative of 2
780 independent experiments. D) U2OS EMPTY^{CRISPR} and BAX/BAK^{CRISPR} cells treated
781 for 3 hours with 10 μ M ABT-737, 2 μ M S63845 and 20 μ M Q-VD-OPh. Cells were
782 stained for ubiquitin (FK2) and mitochondrial COXIV. Images are representative of 3
783 independent experiments. Images are maximum projections of Z-stacks with a scale
784 of 20 μ m. E) Quantification of panel C showing the percentage of cells with
785 mitochondrial localised ubiquitin puncti. F) U2OS EMPTY^{CRISPR}, ATG5^{CRISPR} and
786 ATG7^{CRISPR} expressing YFP-Parkin were treated with 10 μ M ABT-737, 2 μ M S63845
787 and 20 μ M Q-VD-OPh for 24 hours. Mitochondrial depletion was assessed by blotting
788 for several mitochondrial proteins. Blot is representative of 3 independent
789 experiments. Statistics for all experiments were performed using two-way ANOVA with
790 Tukey correction. * p < 0.05, ** p < 0.01, **** p < 0.0001.

791

792 **Figure 2 Widespread ubiquitylation of mitochondrial proteins after MOMP**

793 A) Volcano plot of ubiquitylated proteins in SVEC4-10 cells treated for 3 hours with 10
794 μ M ABT-737, 10 μ M S63845 and 30 μ M Q-VD-OPh. Experiment performed with 4

795 independent repeats. Significance (coloured dots) determined using Students T Test.
796 Plot generated in R studio. B) Pie chart of ubiquitylated peptides categorised into
797 mitochondrial compartments. Categorisation of peptides was performed using
798 MitoCarta 3.0, UniProt and ProteinAtlas. C) Cellular distribution of all hits from the
799 isolated ubiquitin remnant-containing peptides. Categorisation using MitoCarta3.0,
800 UniProt and ProteinAtlas. D) GO-term cellular compartment analysis of proteins with
801 increased ubiquitylation after MOMP. Graphs shows the top 10 most significant hits.

802

803 **Figure 3 K63-linked ubiquitylation on mitochondria after MOMP**

804 A) SVEC4-10 cells treated with for 1 or 3 hours with 10 μ M ABT-737, 10 μ M S63845
805 and 30 μ M Q-VD-OPh. Mitochondria were isolated using digitonin fractionation buffer
806 and antibodies against pan-ubiquitin (UBCJ2), K63- and K48-specific ubiquitin were
807 used. Blots representative for 3 independent experiments. B) U2OS EMPTY^{CRISPR}
808 and. BAX/BAK^{CRISPR} cells treated with 10 μ M ABT-737, 2 μ M S63845 and 20 μ M Q-
809 VD-OPh for 3 hours. Stained for K63-ubiquitin and COXIV. Images are maximum
810 projections of Z-stacks with a scale of 20 μ m and are representative of 3 independent
811 experiments. C) Quantification of D showing the percentage of cells with mitochondrial
812 localised K63-ubiquitin puncti. Statistics performed using two-way ANOVA with Tukey
813 correction. D) SVEC4-10 cells expressing doxycycline-inducible K63 or M1-UBDs.
814 Cells were treated for 1 hour with 10 μ M ABT-737, 10 μ M S63845 and 30 μ M Q-VD-
815 OPh. Images are representative of 3 independent experiments with a scale bar of 50
816 μ m. E) Quantification of D showing the percentage of SVEC 4-10 cells with
817 mitochondrial localised GFP-UBDs. Also includes the quantification of U2OS cells
818 expressing doxycycline-inducible K63- or M1-UBDs treated for 3 hours with 10 μ M

819 ABT-737, 2 μ M S63845 and 20 μ M Q-VD-OPh. Statistics were performed using
820 multiple unpaired t-tests. ** p < 0.01, *** p < 0.001. **** p < 0.0001.

821

822 **Figure 4 Ubiquitin-dependent recruitment of NEMO to mitochondria is essential**
823 **for NF- κ B activation after MOMP**

824 A) U2OS EMPTY^{CRISPR} and BAX/BAK^{CRISPR} cells expressing GFP-NEMO were treated
825 for 3 hours with 10 μ M ABT-737, 2 μ M S63845 and 20 μ M Q-VD-OPh. Cells were
826 immunostained for COXIV. Scale bar is 20 μ m. Images are maximum projections of
827 Z-stacks and are representative for 3 independent experiments. B) Quantification of A
828 showing the percentage of cells with mitochondrial localised GFP-NEMO puncti. C)
829 SVEC4-10 cells expressing GFP-NEMO were pre-treated for 1 hour with 2 μ M TAK-
830 243 followed by 1 hour treatment of 10 μ M ABT-737, 10 μ M S63845, 30 μ M Q-VD-
831 OPh with or without 2 μ M TAK-243. Cells were immunostained for TOM20 and
832 ubiquitin (FK2). Scale bar is 50 μ m and images are representative for 3 independent
833 experiments. D) Quantification of C showing the percentage of cells with mitochondrial
834 localised GFP-NEMO and ubiquitin puncti. E) U2OS cells expressing GFP-NEMO,
835 GFP-NEMOD311N or GFP-NEMO Δ ZF were treated for 3 hours with 10 μ M ABT-737,
836 2 μ M S63845 and 20 μ M Q-VD-OPh. Cells were immunostained for TOM20 and DAPI.
837 Scale bar is 20 μ m and images are representative for 3 independent experiments. F)
838 Quantification of E showing the percentage of cells with mitochondrial translocation of
839 GFP-NEMO. G) Parental SVEC4-10 cells and SVEC4-10 cells expressing GFP-
840 NEMO, GFP-NEMOD311N or GFP-NEMO Δ ZF were treated for 1 hour with 10 μ M
841 ABT-737, 10 μ M S63845 and 30 μ M Q-VD-OPh. Cells were immunostained for p65
842 and DAPI. Scale bar is 50 μ m and images are representative for 3 independent
843 experiments. H) Quantification of G showing the GFP+ cells with nuclear translocation

844 of p65. Statistics are performed using two-way ANOVA with Tukey correction. ** p <
845 0.01, *** p < 0.001. **** p < 0.0001.

846

847 **Figure 5 Ubiquitylation-induced inflammation after MOMP is independent of**
848 **established mitochondrial E3 ligases**

849 A) Lysates of U2OS, SVEC4-10 and SHSHY-5Y cells were blotted for Parkin and
850 actin. B) SVEC4-10 EMPTY^{CRISPR} and PINK1^{CRISPR} cells expressing GFP-NEMO were
851 treated for 1 hour with 10 μ M ABT-737, 10 μ M S63845 and 30 μ M Q-VD-OPh. Cells
852 were immunostained for TOM20. Images are representative for 3 independent
853 experiments with a scale bar of 50 μ m. C) Quantification of B showing the percentage
854 of cells with mitochondrial translocation of GFP-NEMO. D) SVEC4-10 EMPTY^{CRISPR},
855 MUL1^{CRISPR}, MARCH5^{CRISPR} and MUL1/MARCH5^{CRISPR} treated for 3 hours with 10 μ M
856 ABT-737, 10 μ M S63845 and 30 μ M Q-VD-OPh. Lysates were blotted for p-I κ B α , I κ B α ,
857 MARCH5 and actin. Blots are representative of 3 independent experiments. KO-
858 scores of MUL1 and MARCH5 are calculated via ICE analysis. E) SVEC4-10
859 EMPTY^{CRISPR} and MUL1/MARCH5^{CRISPR} cells expressing GFP-NEMO treated for 1
860 hour with 10 μ M ABT-737, 10 μ M S63845 and 30 μ M Q-VD-OPh. Cells were
861 immunostained for ubiquitin (UBCJ2) and TOM20. Images are representative for 3
862 independent experiments with a scale bar of 50 μ m. F) Quantification of E showing
863 the percentage of cells with mitochondrial localisation of GFP-NEMO and ubiquitin. G)
864 SVEC4-10 EMPTY^{CRISPR} and XIAP^{CRISPR} cells expressing GFP-NEMO were treated
865 with 10 μ M ABT-737, 10 μ M S63845 and 30 μ M Q-VD-OPh for 1 hour. Cells were
866 immunostained for ubiquitin (FK2) and TOM20 Images are representative for 3
867 independent experiments with a scale bar of 50 μ m. H) Quantification of G showing
868 the percentage of cells with mitochondrial localisation of GFP-NEMO and ubiquitin.

869 Statistics were performed using two-way ANOVA with Tukey correction. **** p <
870 0.0001.

871

872 **Figure 6 Mitochondrial ubiquitylation and inflammation occurs upon loss of**
873 **mitochondrial outer membrane integrity**

874 A) SVEC4-10 cells expressing GFP-NEMO were treated for 3 hours with 10 μ M ABT-
875 737, 10 μ M S63845 and 30 μ M Q-VD-OPh or 2.5 μ M raptinal and 30 μ M Q-VD-OPh.
876 Cells were immunostained for ubiquitin (FK2) and TOM20. Images are representative
877 of 2 independent experiments displayed with a 50 μ m scale bar. B) Quantification of
878 A showing the percentage of cells with mitochondrial localisation of GFP-NEMO and
879 ubiquitin. Percentages of cells with mitochondrial localisation of GFP-NEMO was
880 determined in 3 independent experiments, while mitochondrial localisation of ubiquitin
881 was determined in 2 independent experiments. C) SVEC4-10 EMPTY^{CRISPR} and
882 BAX/BAK^{CRISPR} cells were treated for 3 hours with 10 μ M ABT-737, 10 μ M S63845
883 and 30 μ M Q-VD-OPh or 2.5 μ M raptinal and 30 μ M Q-VD-OPh. Cells were
884 immunostained stained for p65 and DAPI. Images are representative of 3 independent
885 experiments and are shown with a 50 μ m scale bar. D) Quantification of B showing
886 the percentage of cells with nuclear translocation of p65. E) SVEC4-10 cells treated
887 for 3 hours with 10 μ M ABT-737, 10 μ M S63856 and 30 μ M Q-VD-OPh or 2.5 μ M
888 raptinal and 30 μ M Q-VD-OPh. Expression of *Kc*, *Tnf* and *Actin* were validated using
889 RT-qPCR. Graphs are representative for 3 independent experiments. Statistics were
890 performed using Dunnett correction. **** p < 0.0001.

891 **Supplemental Figure 1 Ubiquitylation of mitochondria is dependent on MOMP**
892 **by BAX/BAK pores, but independent of caspase activity**

893 A) Lysates from U2OS EMPTY^{CRISPR} and BAX/BAK^{CRISPR} cells were blotted for BAX,
894 BAK and Actin. B) U2OS EMPTY^{CRISPR} and BAX/BAK^{CRISPR} cells were treated with 10
895 μ M ABT-737, 2 μ M S63845 with or without 20 μ M Q-VD-OPh. Cell death was
896 monitored using Sytox Green inclusion normalised to starting confluence. Graph is
897 representative for 3 independent experiments. C) SVEC4-10 EMPTY^{CRISPR} and
898 BAX/BAK^{CRISPR} cells were treated for 1 hour with 10 μ M ABT-737, 10 μ M S63845 and
899 30 μ M Q-VD-OPh. Mitochondria were isolated using digitonin fractionation buffer and
900 blotted for ubiquitin (UBCJ2), BAX, BAK, HSP60 and actin. Blots are representative
901 for 3 independent experiments. D) SVEC4-10 cells were treated for 1 hour with 10 μ M
902 ABT-737, 10 μ M S63845 with or without 30 μ M Q-VD-OPh. Mitochondria were isolated
903 using digitonin fractionation buffer and lysates were blotted for ubiquitin (UBCJ2),
904 HSP60 and actin. Blots are representative for 3 independent experiments.

905

906 **Supplemental Figure 2 Mitochondrial ubiquitylation and GFP-NEMO**
907 **translocation can be blocked by E1 inhibition and is independent of neddylation**

908 A) SVEC4-10 cells pre-treated with 2 μ M TAK-243 for 1 hour followed by additional 1
909 hour treatment with 10 μ M ABT-737, 10 μ M S63845 and 30 μ M Q-VD-OPh with or
910 without the additional of 2 μ M TAK-243. Blots are representative for 4 independent
911 experiments. B) SVEC4-10 cells pre-treated with 1 μ M MLN4924 (NAE inhibitor) for 1
912 hour followed by additional 1 hour treatment with 10 μ M ABT-737, 10 μ M S63845 and
913 30 μ M Q-VD-OPh with or without 1 μ M MLN4924. Blots are representative for 2
914 independent experiments. C) SVEC4-10 cells expressing GFP-NEMO pre-treated with
915 1 μ M MLN4924 for 1 hour followed by additional 1 hour treatment with 10 μ M ABT-

916 737, 10 μ M S63845 and 30 μ M Q-VD-OPh with or without 1 μ M MLN4924. Cells were
917 immunostained for TOM20 and DAPI. Images are representative for 3 independent
918 experiments and are shown with a 50 μ m scale bar. D) Quantification of C showing
919 the percentage of cells with mitochondrial translocation of GFP-NEMO. Statistics were
920 performed using two-way ANOVA with Tukey correction. **** p < 0.0001.

921

922 **Supplemental Figure 3 Loss of NEMO cannot be rescued during CICD by
923 expressing non-ubiquitin binding mutants of NEMO**

924 A) MEF *Tnf^{-/-}* *Hoip^{+/+}* and *Tnf^{-/-}* *Hoip^{+/+}* expressing GFP-NEMO were treated for 3 hours
925 with 10 μ M ABT-737, 5 μ M S63845 and 30 μ M Q-VD-OPh. Cells were immunostained
926 for TOM20 and DAPI. Images are representative of 3 independent experiments. B)
927 Quantification of A showing the percentage of cells with mitochondrial translocation of
928 GFP-NEMO. Statistics were performed using two-way ANOVA with Tukey correction.
929 C) Validation of SVEC4-10, SVEC4-10 GFP-NEMO and SVEC4-10 GFP-D311N cells
930 transfected with NTC or siNEMO. Lysates were blotted for NEMO and α -tubulin. D)
931 SVEC4-10, SVEC4-10 GFP-NEMO and SVEC4-10 GFP-D311N cells transfected with
932 NTC or siNEMO were treated for 1 hour with 10 μ M ABT-737, 10 μ M S63845 and 30
933 μ M Q-VD-OPh. Cells were immunostained for p65 and DAPI. Images are
934 representative of 2 independent experiments. E) Quantification of D showing the
935 percentage of cells with nuclear translocation of p65. **** p < 0.0001.

936

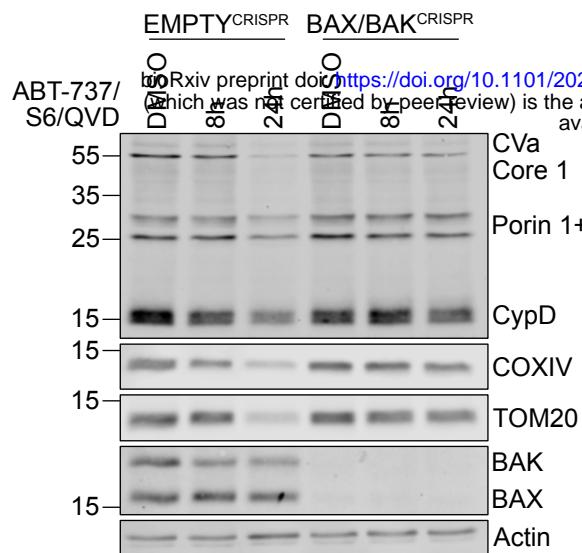
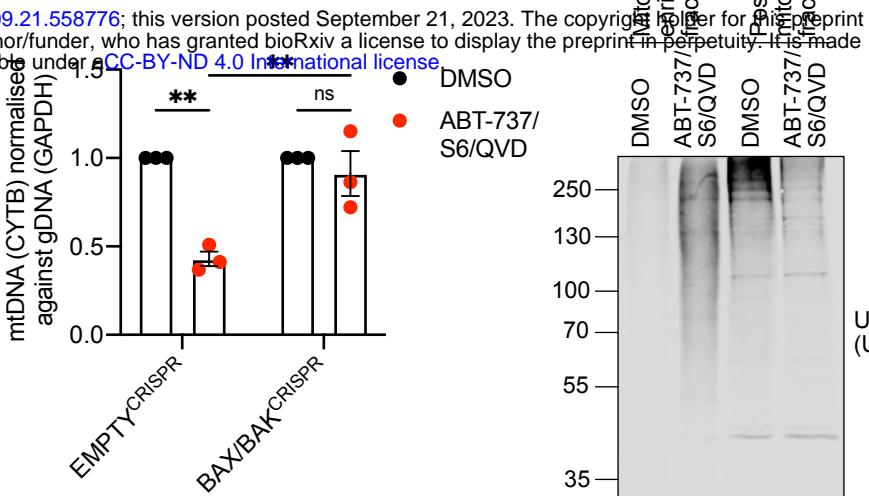
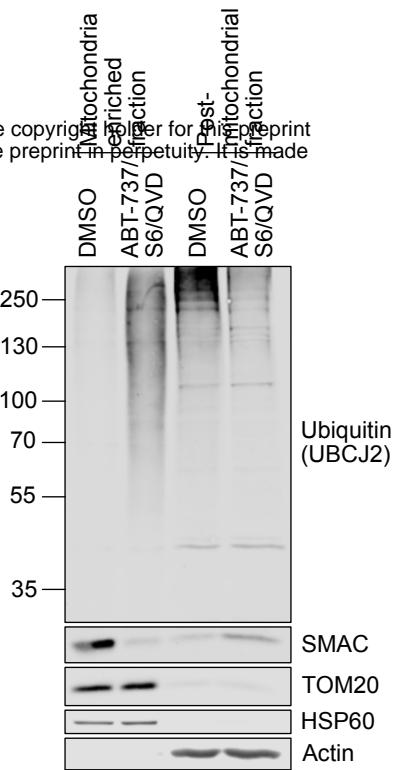
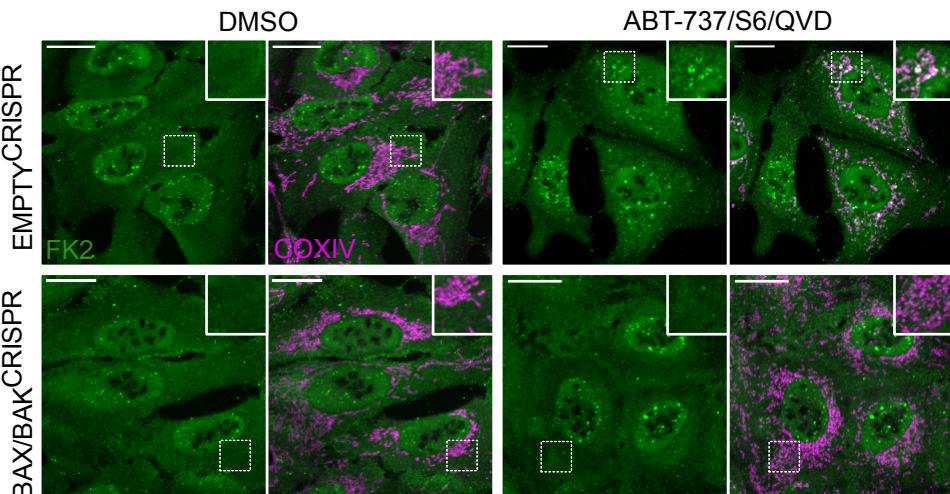
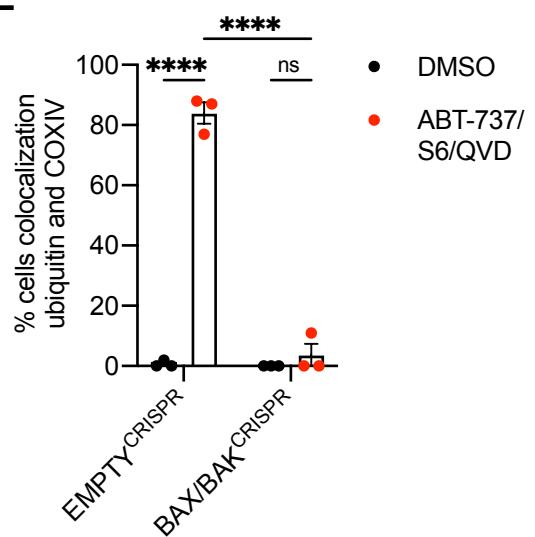
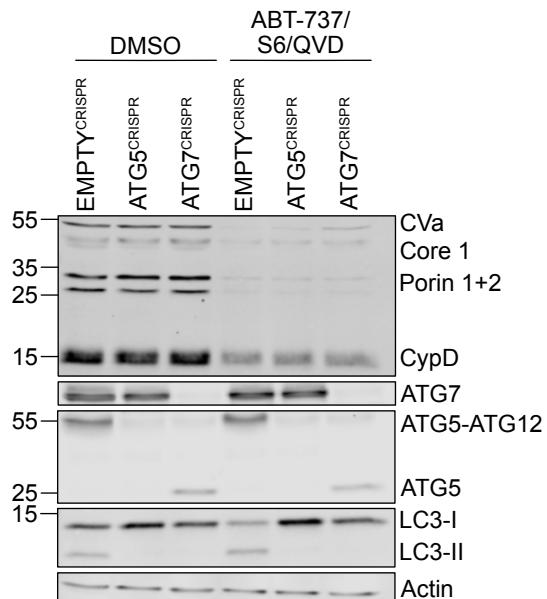
937 **Supplemental Figure 4 Validation of PINK1^{CRISPR}, NIK^{CRISPR}, MUL1MARCH5^{CRISPR}
938 and XIAP^{CRISPR} knock-out cell lines**

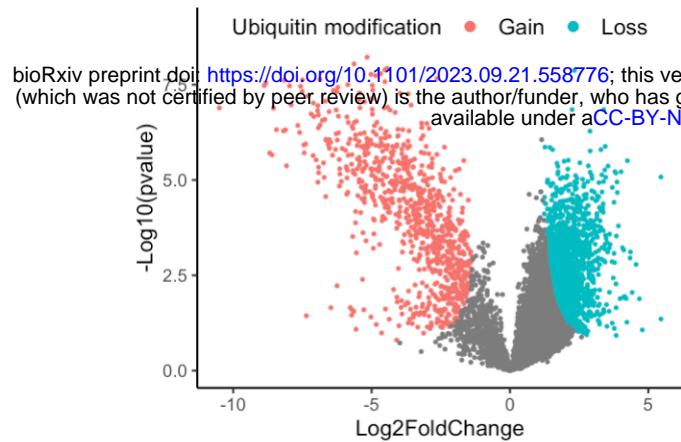
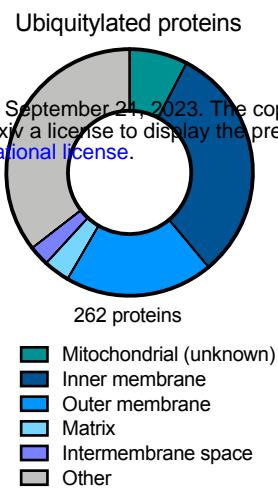
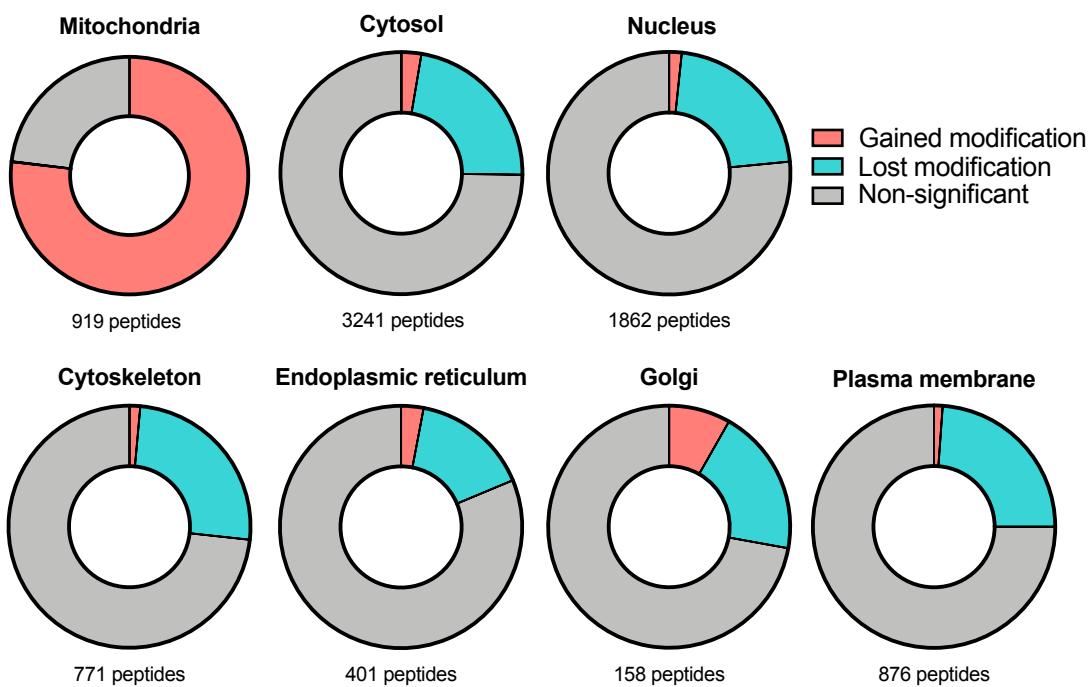
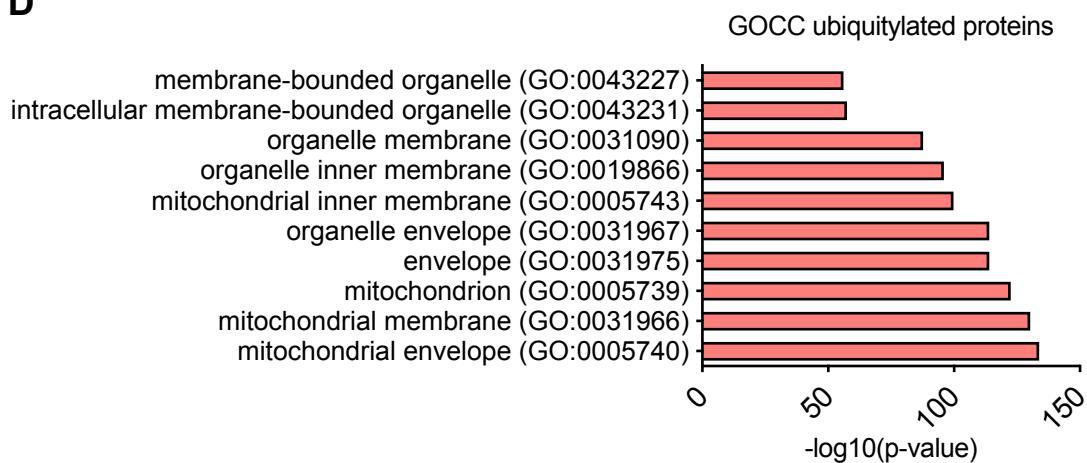
939 A) Validation of PINK1 knock-out in SVEC4-10 cells with or without GFP-NEMO
940 expression using genomic PCR and ICE (interference of CRISPR edits) analysis. B)

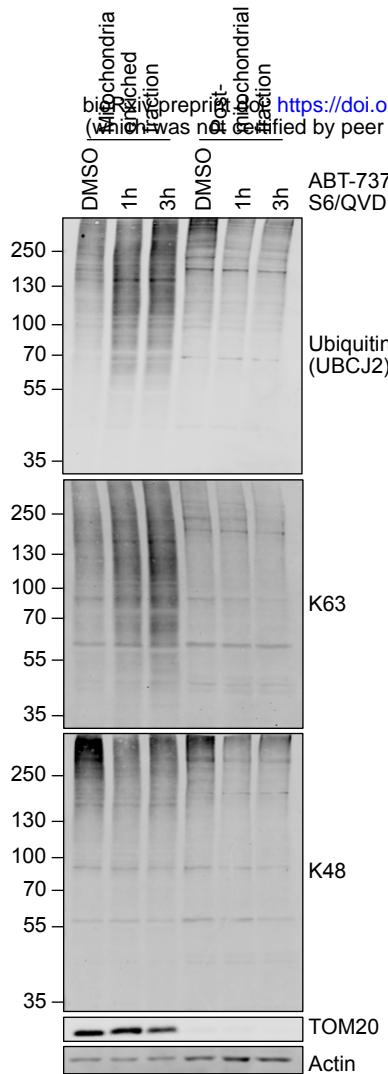
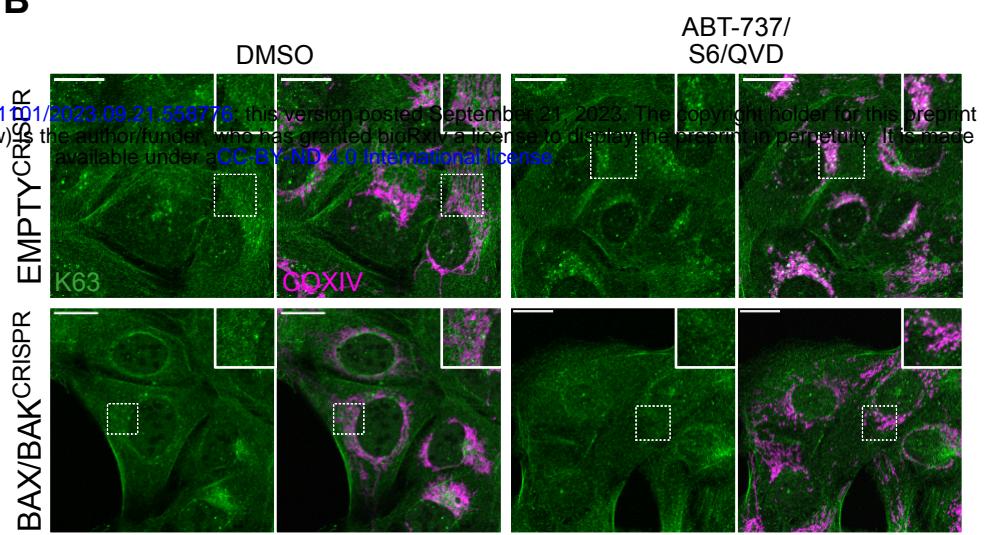
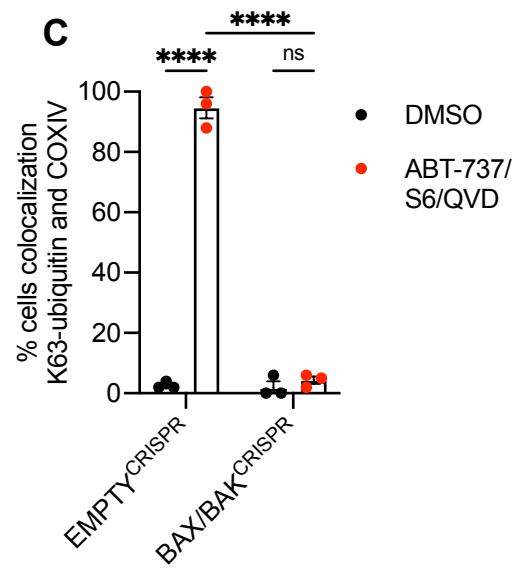
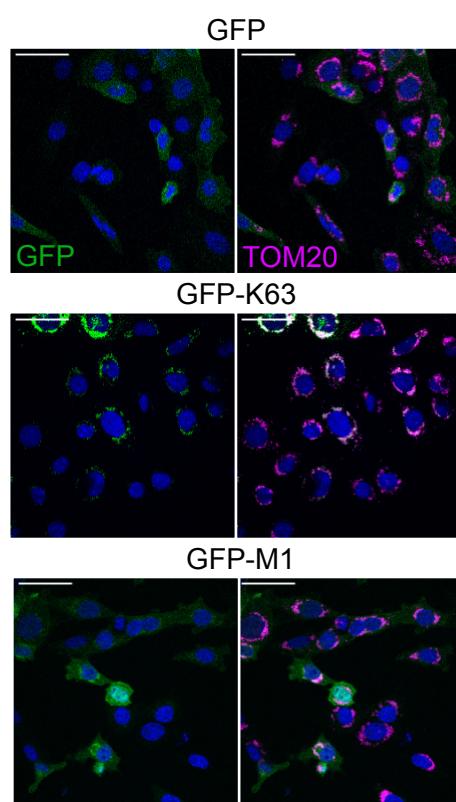
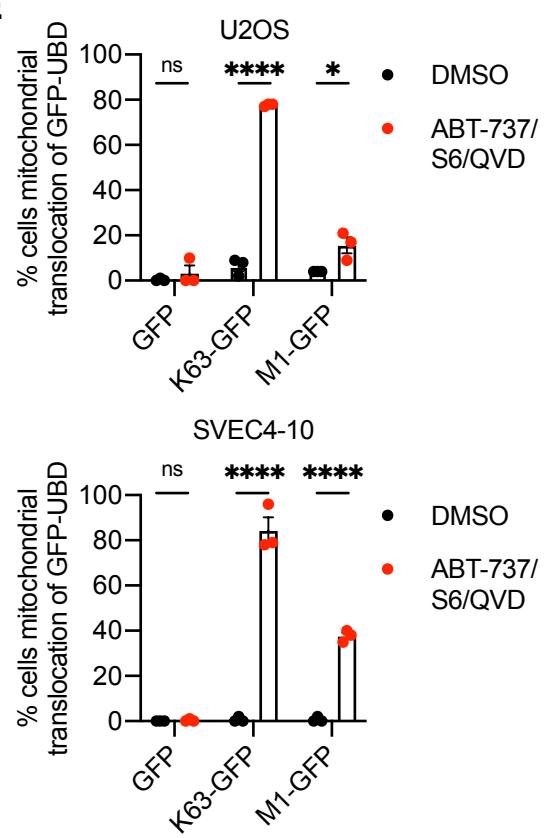
941 SVEC4-10 EMPTY^{CRISPR} and PINK1^{CRISPR} cells expressing YFP-Parkin were treated
942 for 1 hour with 10 μ M ABT-737, 10 μ M S63845 and 30 μ M QVD for 3 hours with 10
943 μ M CCCP. Mitochondria were immunostained with HSP60 and DAPI. Images are
944 representative of 2 independent experiments and displayed with 50 μ m scale bar. C)
945 Validation of MUL1 knock-out in SVEC4-10 MUL1MARCH5^{CRISPR} cells using genomic
946 PCR and ICE analysis. D) Validation of MARCH5 knock-out in SVEC4-10
947 MUL1MARCH5^{CRISPR} cells using genomic PCR and ICE analysis. E) Validation of
948 SVEC4-10 XIAP^{CRISPR} cells with and without GFP-NEMO expression using western
949 blot. Lysates were blotted for XIAP and actin. F) *Tnf*, *Kc*, and *Ccl5* expression of
950 SVEC4-10 EMPTY^{CRISPR} and XIAP^{CRISPR} cells treated with 10 μ M ABT-737, 10 μ M
951 S63845 and 30 μ M QVD for 3 hours. Graph is representative for 3 independent
952 experiments.

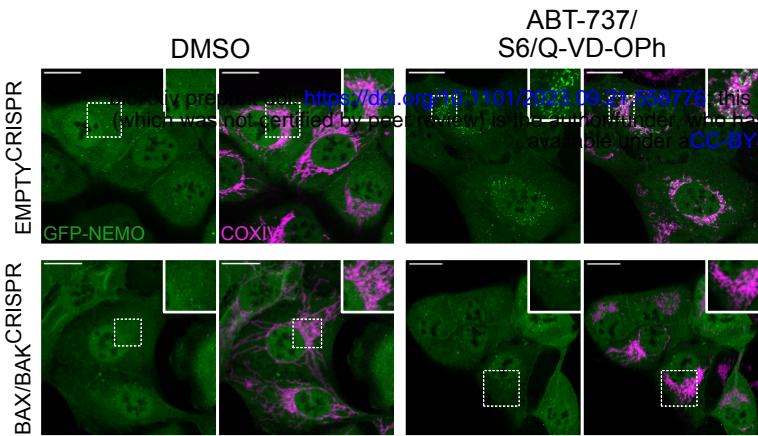
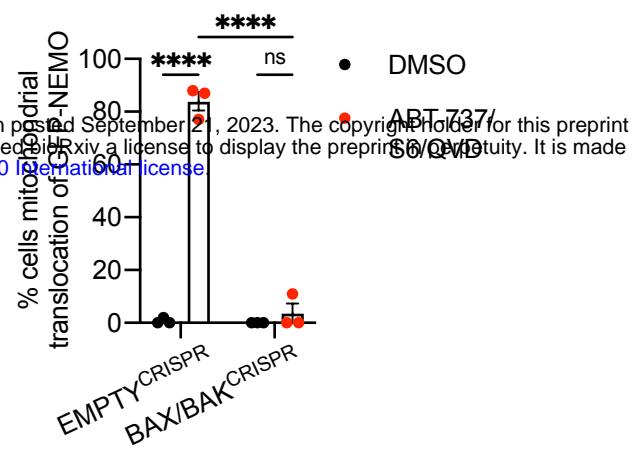
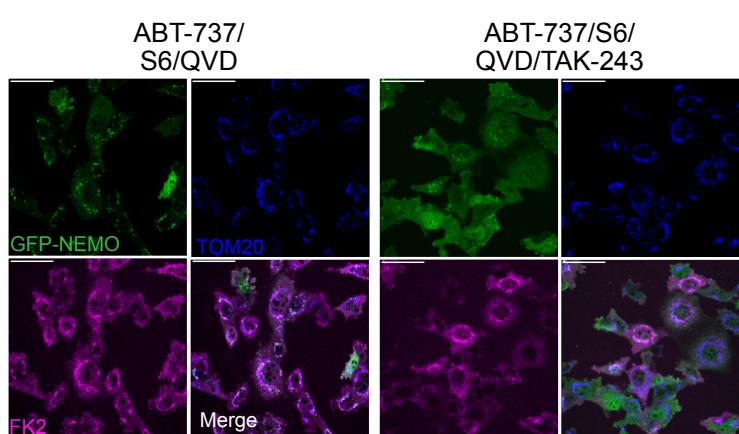
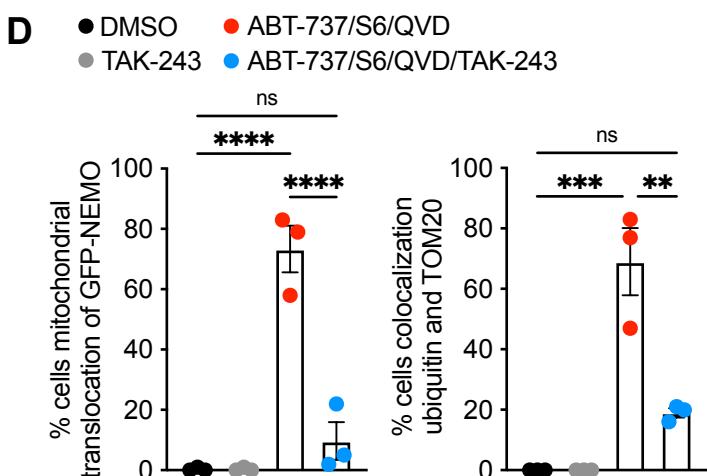
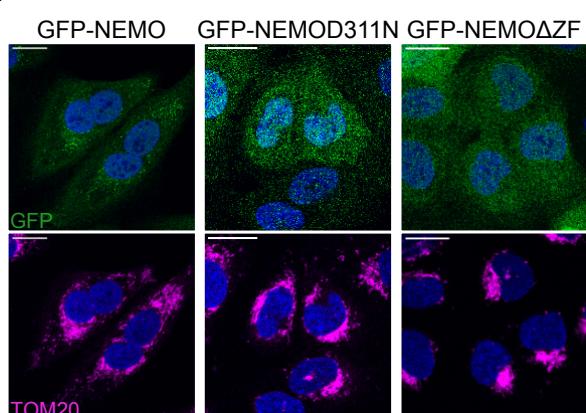
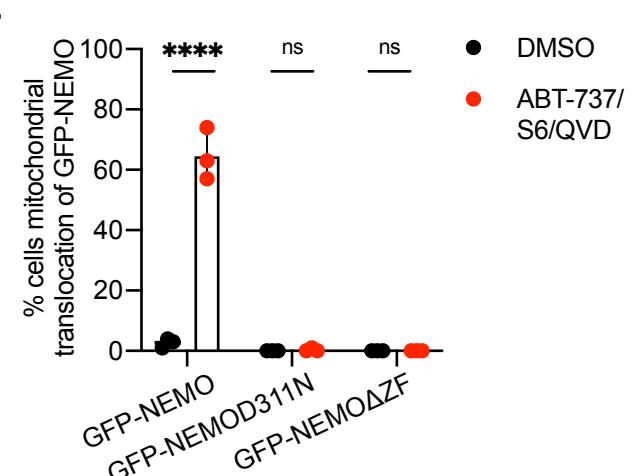
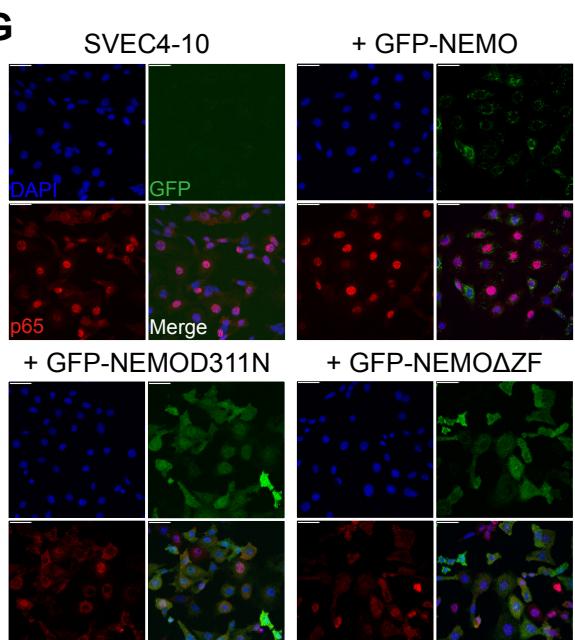
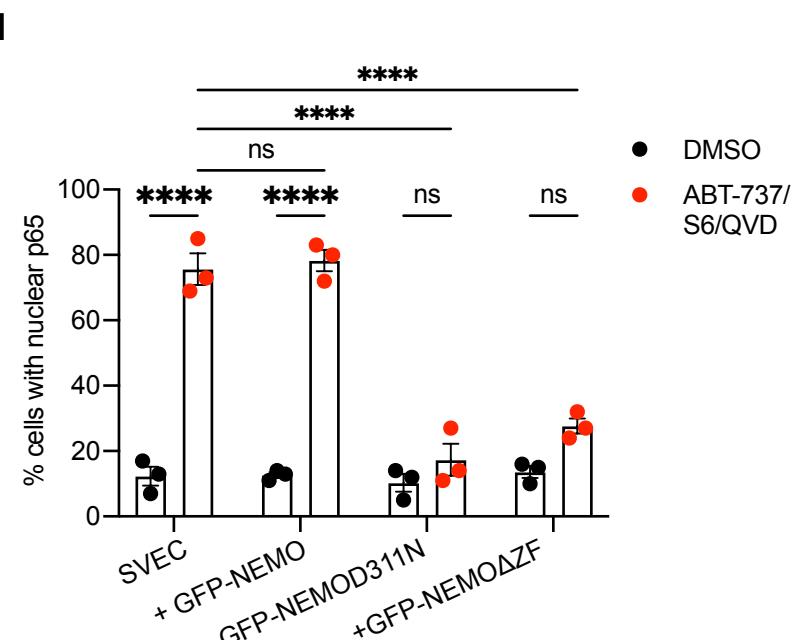
953

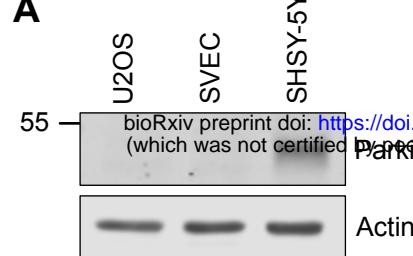
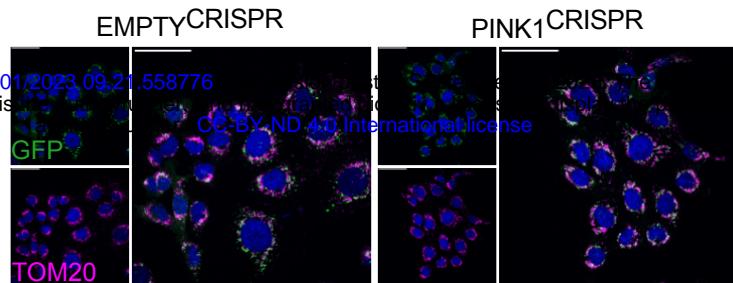
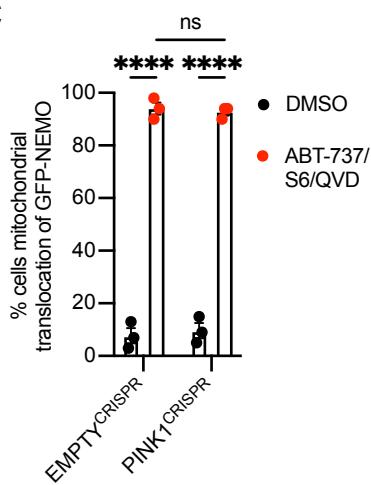
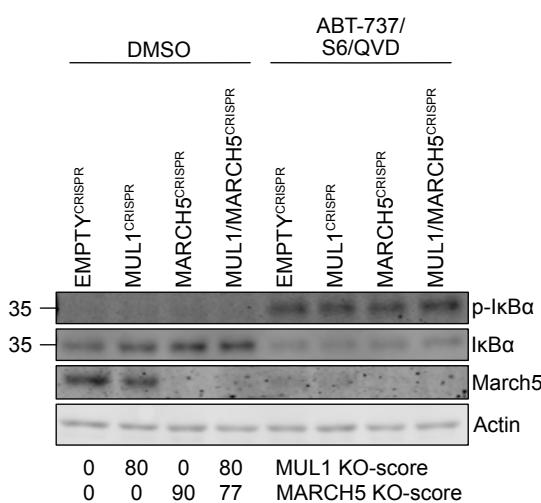
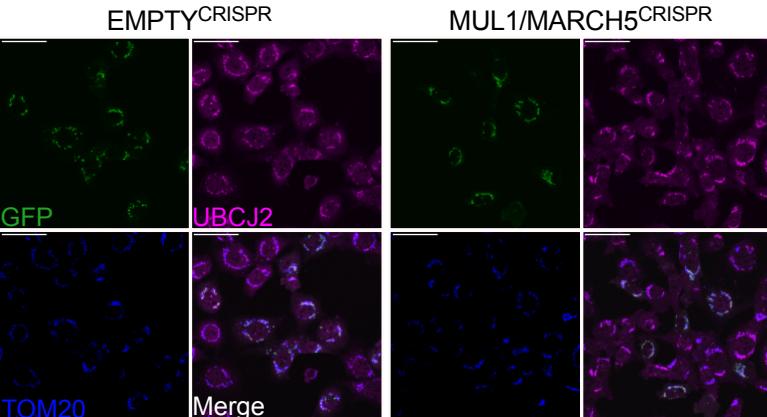
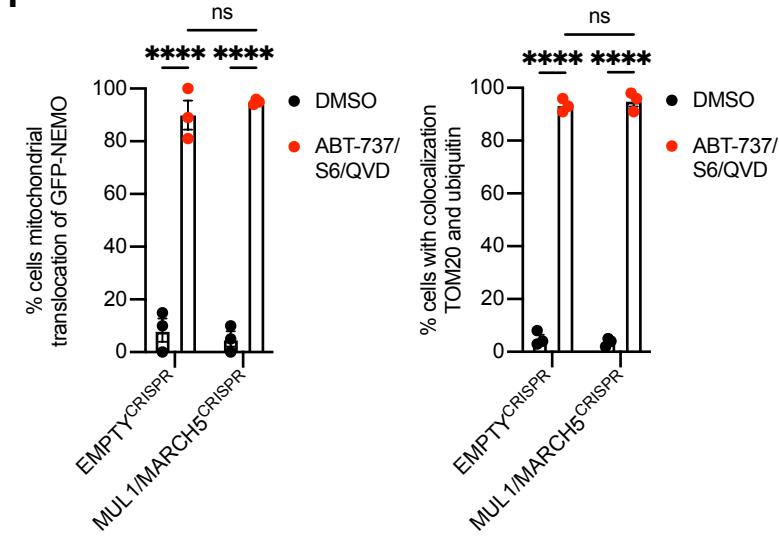
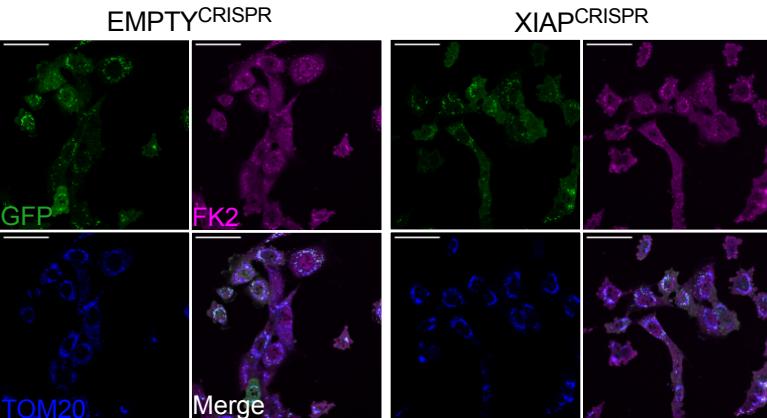
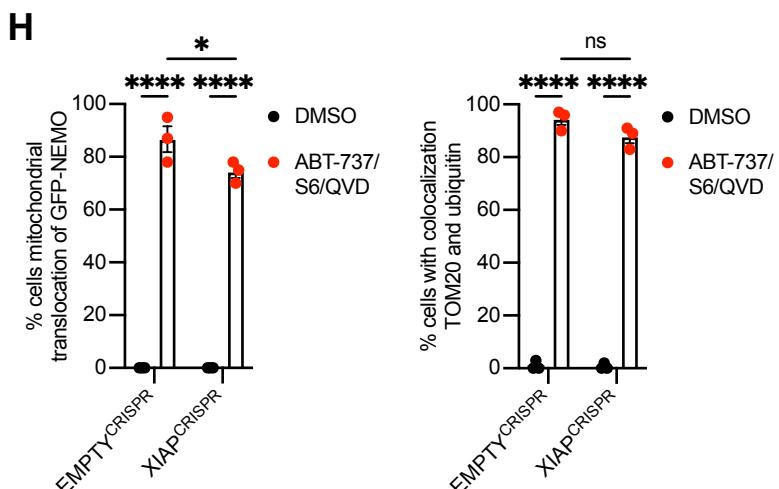
954 **Supplemental Figure 5 Raptinal induces cell death independent of**
955 **mitochondrial permeabilization by BAX and BAK**

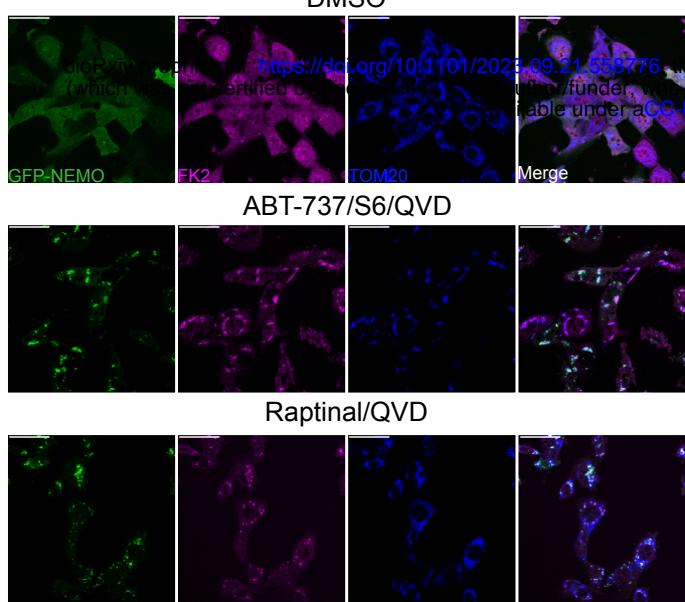
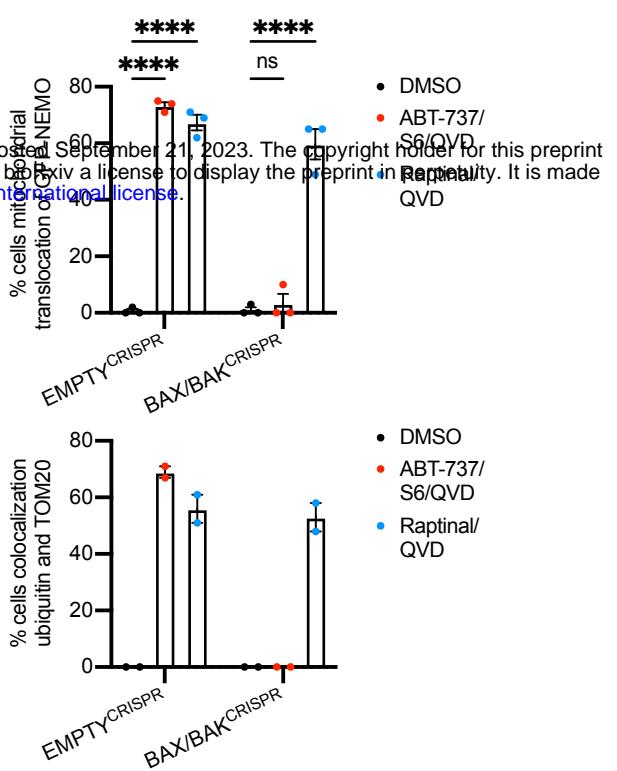
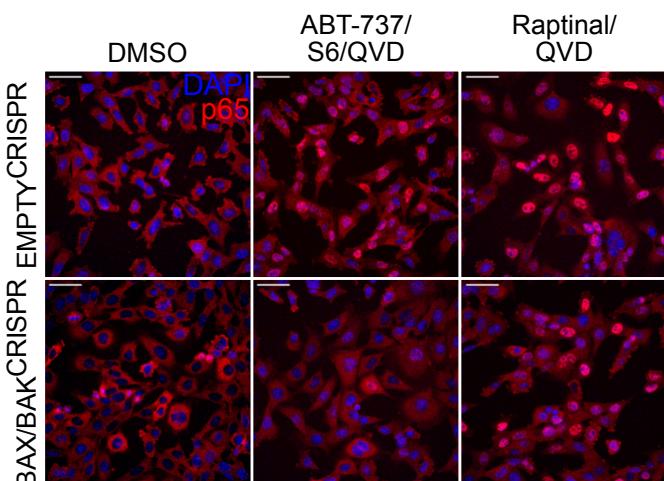
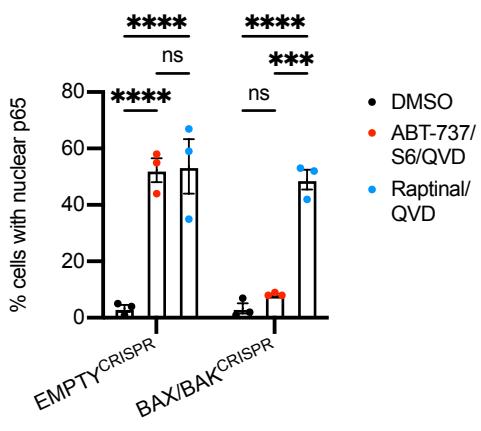
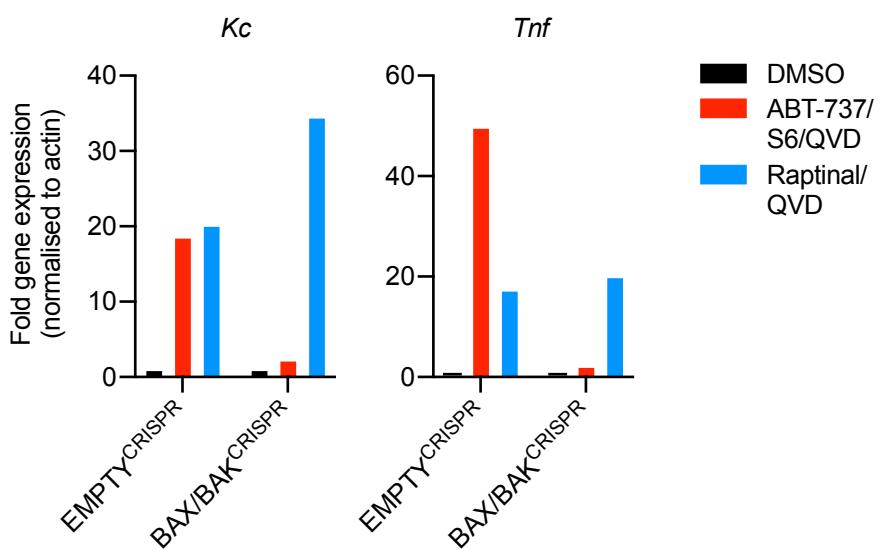






956 A) EMPTY^{CRISPR} and BAX/BAK^{CRISPR} validation of SVEC4-10 cells and SVEC4-10
957 cells expressing GFP-NEMO. Lysates for blotted for BAX, BAK and α -tubulin. B)
958 SVEC4-10 EMPTY^{CRISPR} and SVEC4-10 BAX/BAK^{CRISPR} cells treated with 10 μ M
959 ABT-737 and 10 μ M S63845 or treated with 2.5 or 10 μ M raptinal. Caspase-
960 dependency of death was assessed using 30 μ M Q-VD-OPh. Cell viability was
961 measured using Sytox Green exclusion. Graphs are representative of 2 independent
962 experiments and display the mean and SEM of 2 replicates. Statistics performed using
963 two-way ANOVA with Tukey correction. *** p < 0.001, **** p < 0.0001.

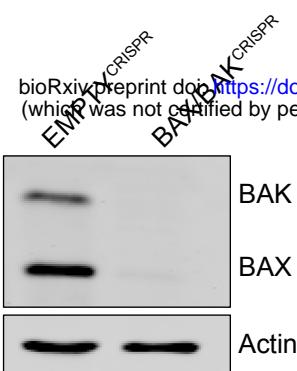
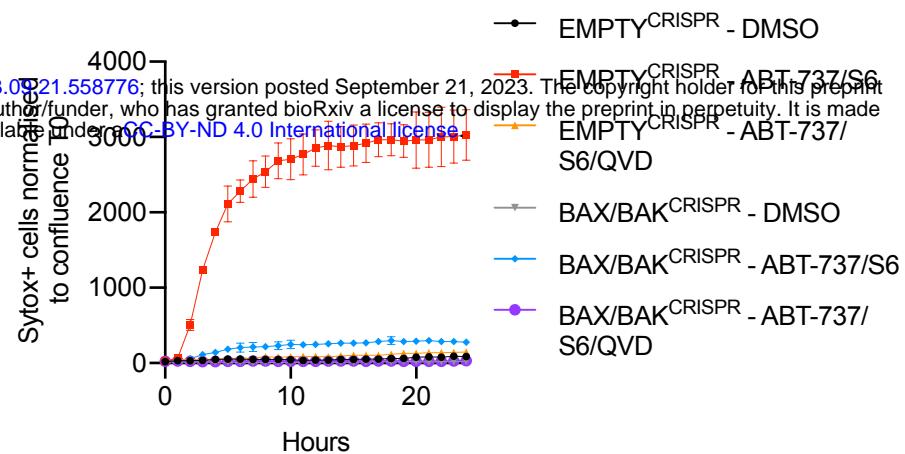
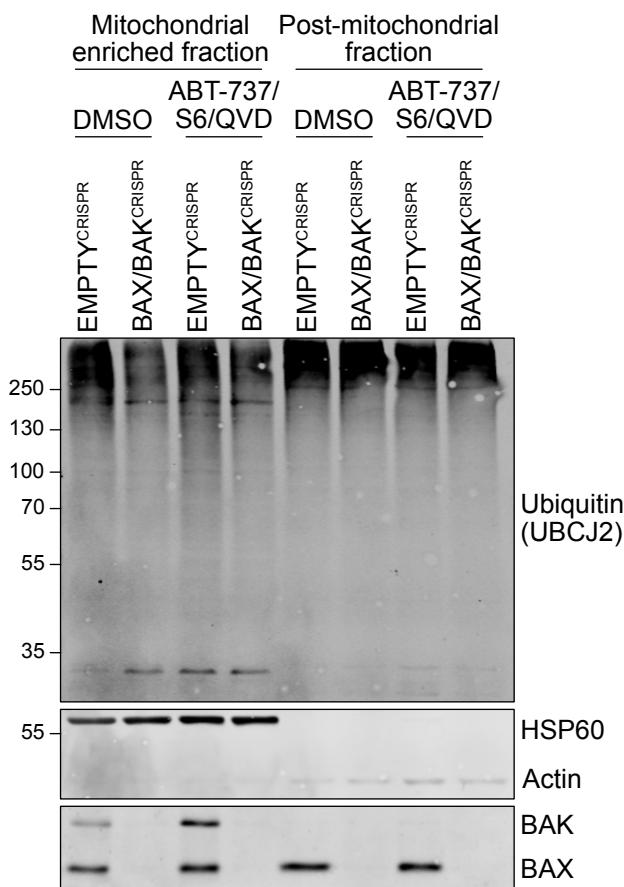
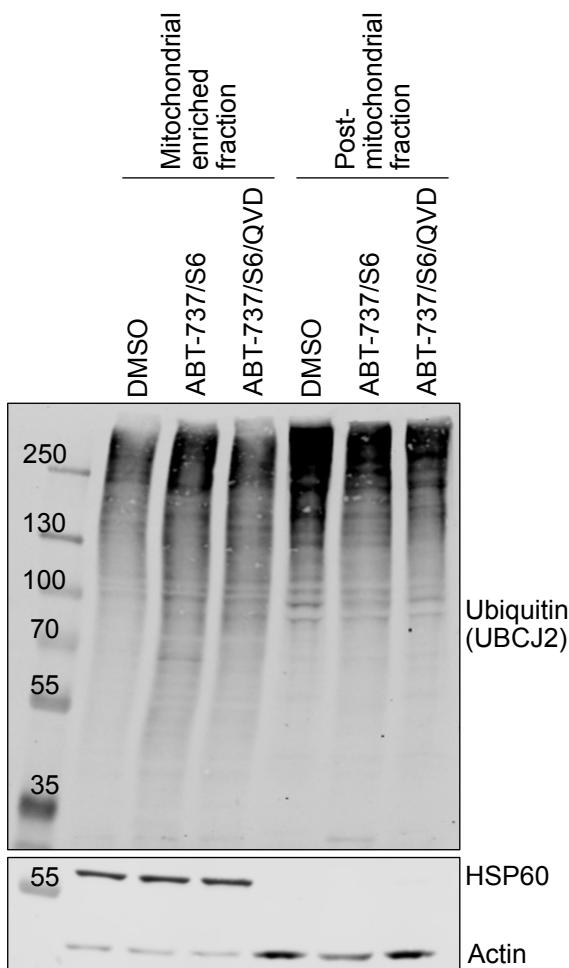




964 **Supplemental Table 1**

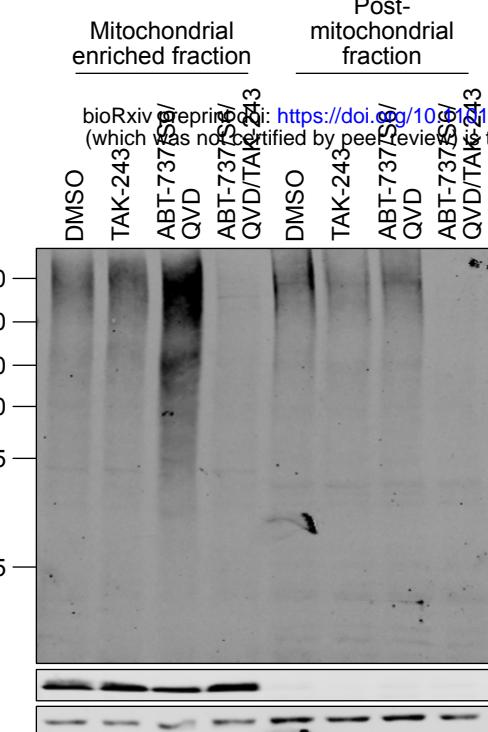
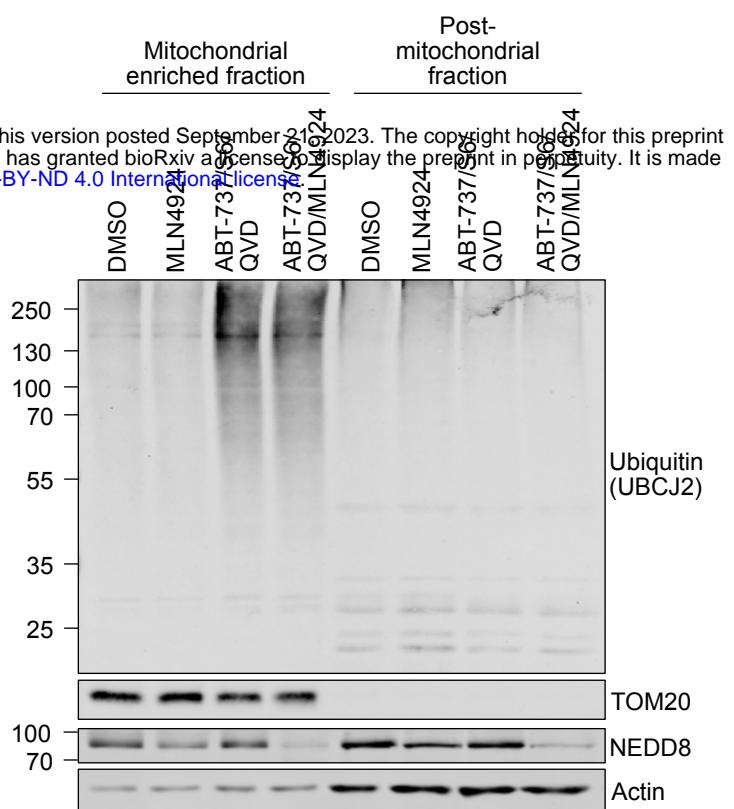
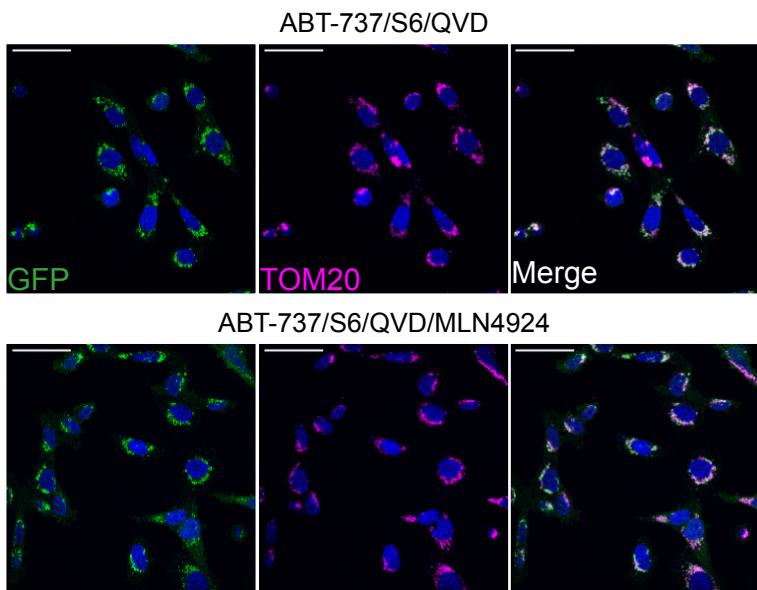
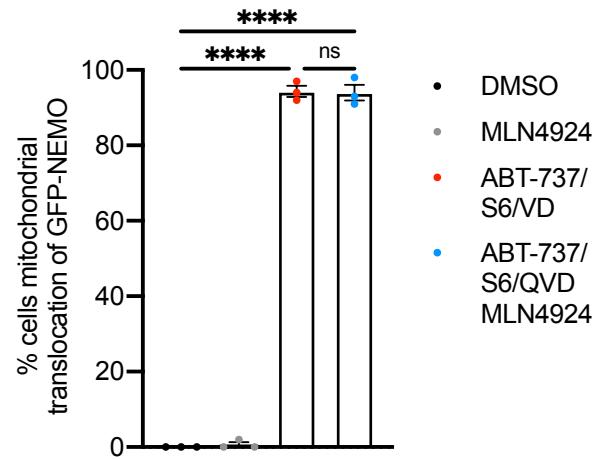





965 Intramitochondrial localisation of proteins found to be ubiquitylated upon MOMP

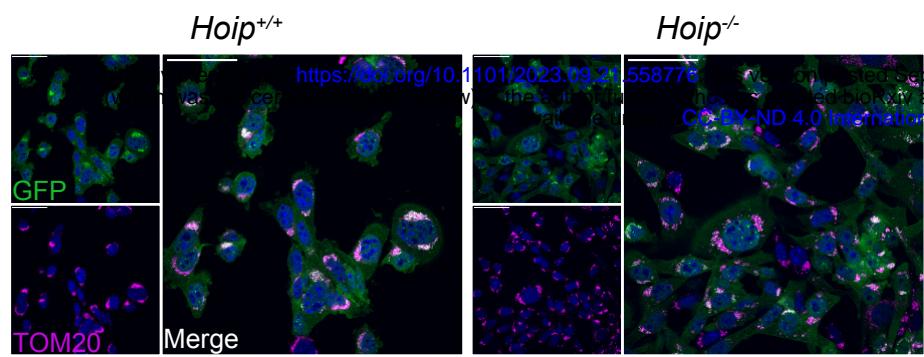
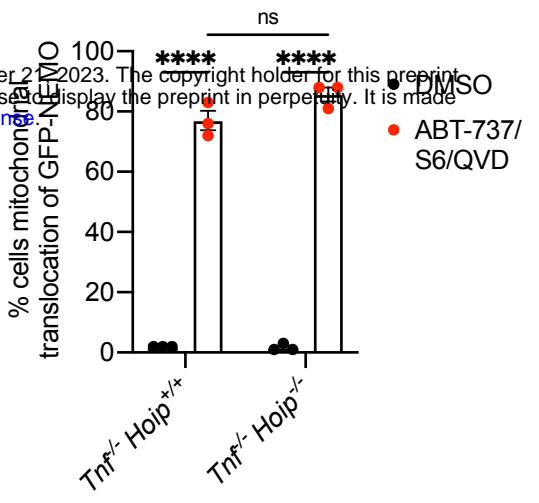
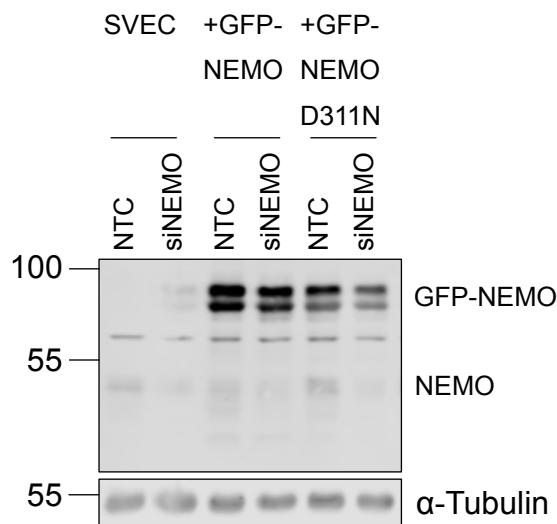
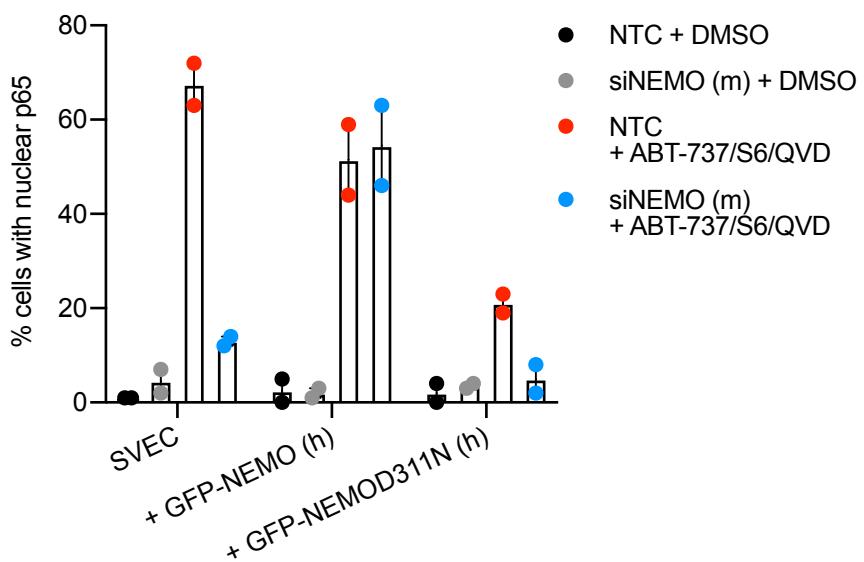
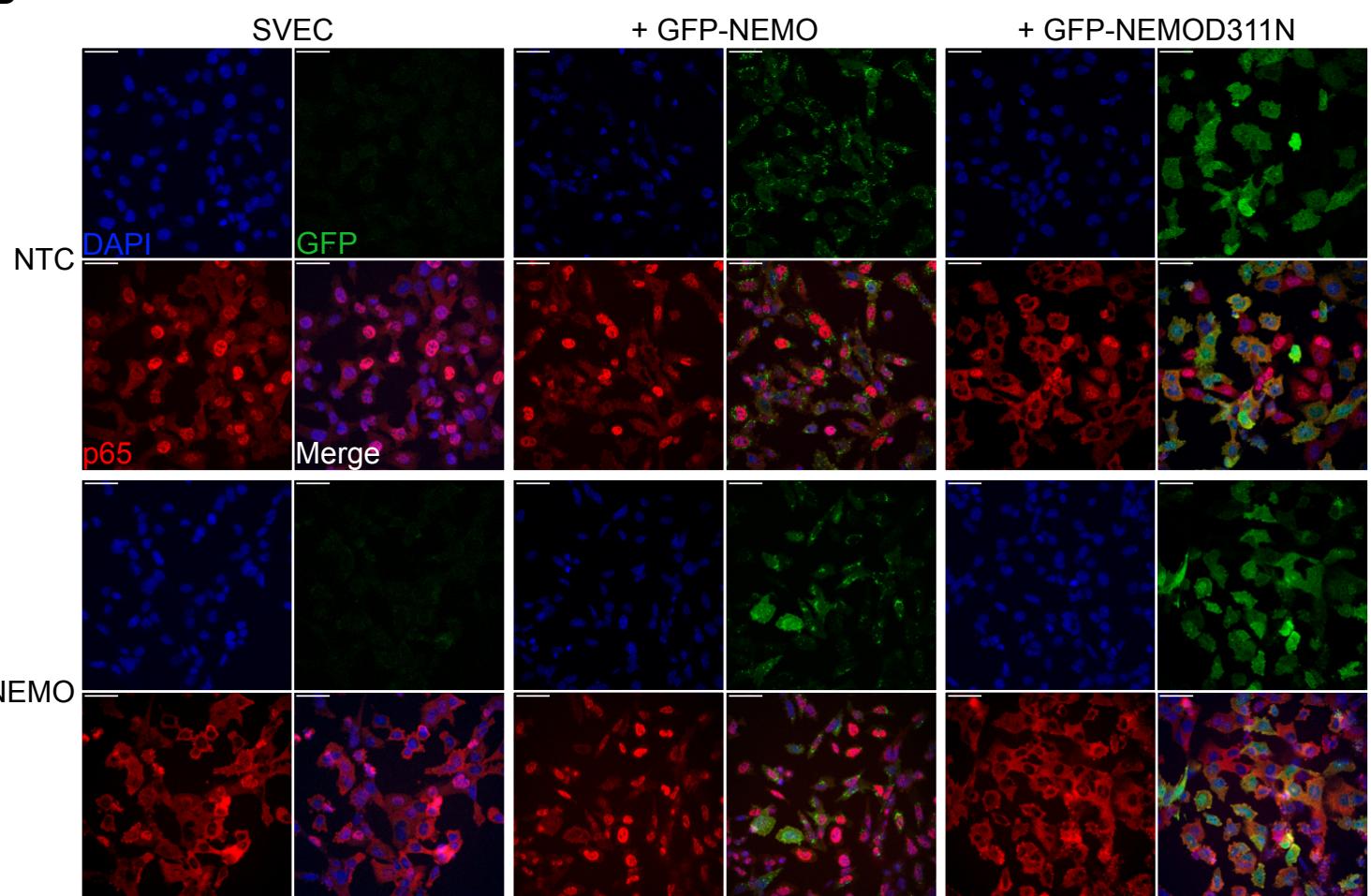








966

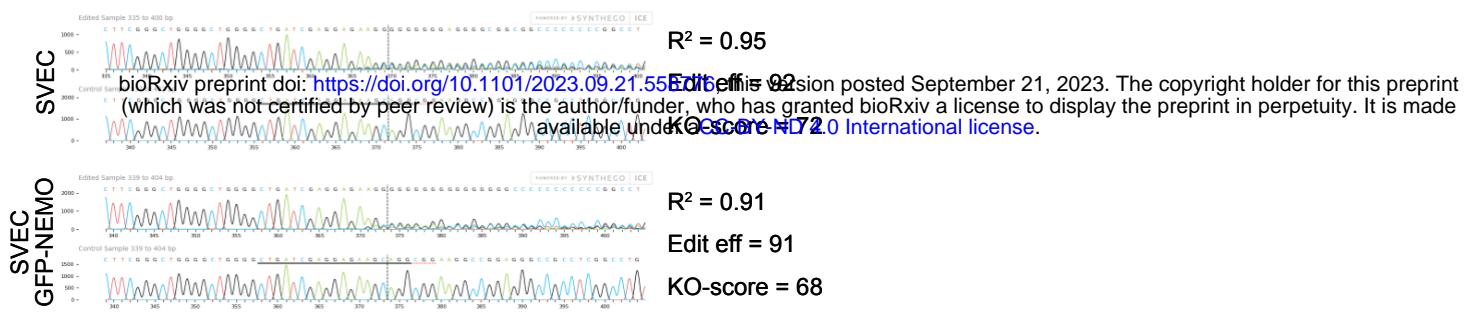
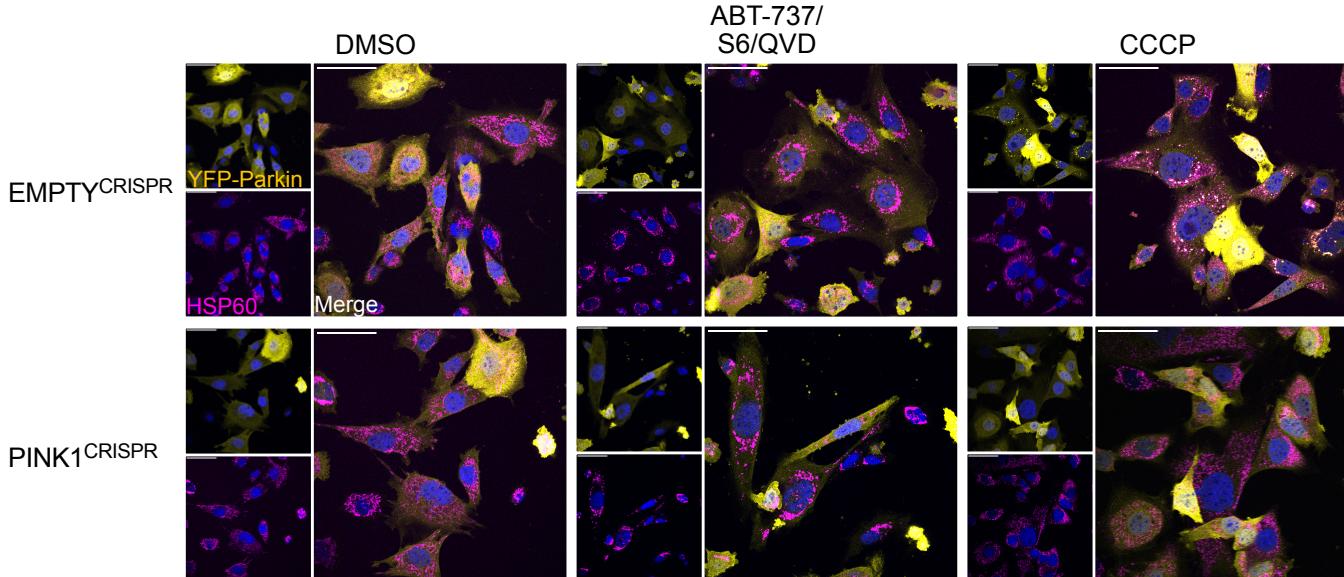
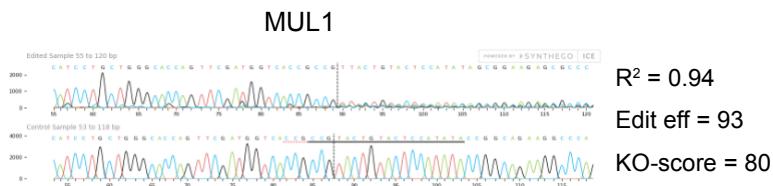
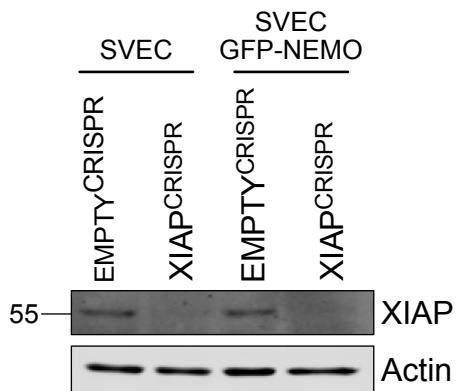
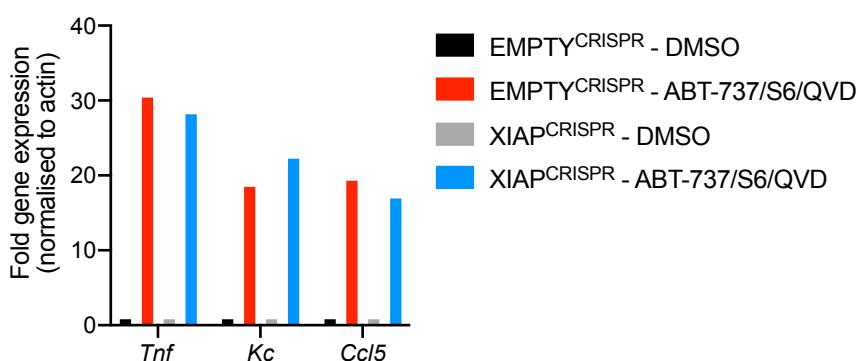








967






A**B****C****D****E****F**





A**B****C****D**

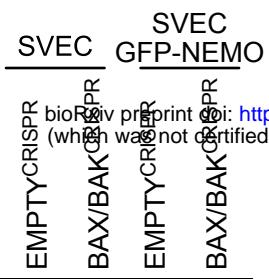




A**B****C****D****E****Figure 3**






A**B****C****D****E****F****G****H****Figure 4**

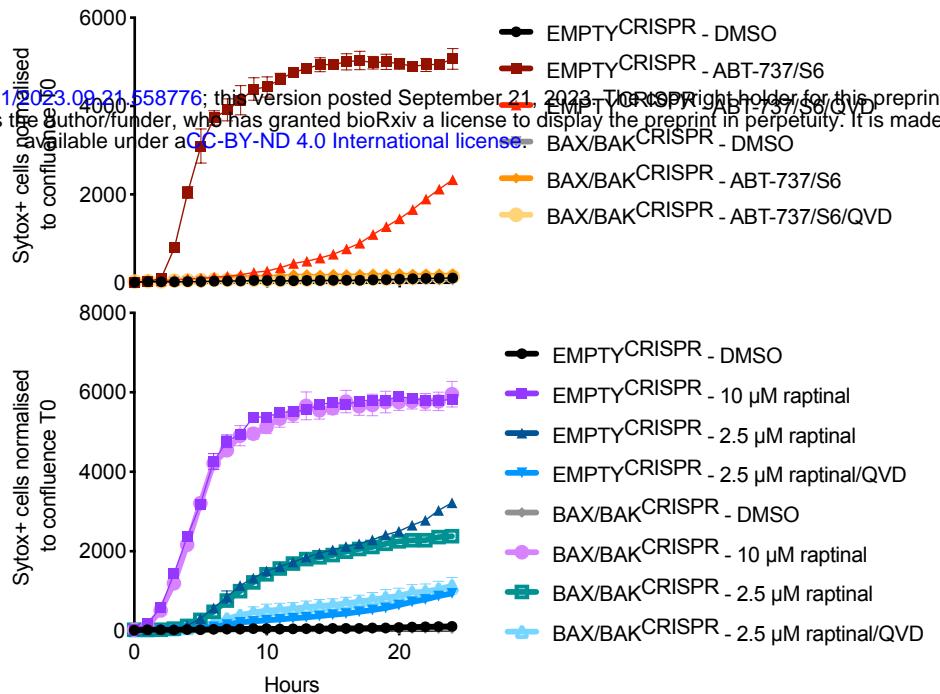





A**B****C****D****E****F****G****H****Figure 5**

A**B****C****D****E****Figure 6**

A**B****C****D**


A**B****C****D**

A**B****C****E****D**


A**B****C****D****E****F**

A

B

bioRxiv preprint doi: <https://doi.org/10.1101/2023.09.21.558776>; this version posted September 21, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Gene names	Student's T-test Significant	Localization	Source
Acad11	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Acot9;Acot10	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Agk	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Agpat5	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Aifm1	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Ak2	Ubiquitylated upon MOMP	Mitochondrial Intermembrane Space	Mitocarta3.0
Akap1	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Apol	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Armc10	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Armcx3	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Atad1	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Atad3	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Atp5b	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Atp5i	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Bak1	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Bax	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Bcl2l1	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Bcl2l13	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Bnip3l	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Card19	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Uniprot
Ccdc127	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Mitocarta3.0
Ccdc51	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Ccdc58	Ubiquitylated upon MOMP	Mitochondrial Intermembrane Space	Mitocarta3.0
Chchd3	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Chchd4	Ubiquitylated upon MOMP	Mitochondrial Intermembrane Space	Mitocarta3.0
Chchd6	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Cisd1	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Coa3	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Comtd1	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Mitocarta3.0
Cox11	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Cox14	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Cox15	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Cox17	Ubiquitylated upon MOMP	Mitochondrial Intermembrane Space	Mitocarta3.0
Cox20	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Cox4i1	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Cox6b1	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Cox6c	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Cox7a2	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Cox7b	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Cpt1a	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Cs	Ubiquitylated upon MOMP	Mitochondrial matrix	Mitocarta3.0
Cyb5b	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Cyb5r1	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Uniprot
Cyb5r3	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Cyc1	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0

Dhfr	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Uniprot
Dhodh	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Diablo	Ubiquitylated upon MOMP	Mitochondrial Intermembrane Space	Mitocarta3.0
Dlat	Ubiquitylated upon MOMP	Mitochondrial matrix	Mitocarta3.0
Dnajc11	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Exog	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Fam162a	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Fam73b	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Fis1	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Fkbp8	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Fundc2	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Ghitm	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Glrx5	Ubiquitylated upon MOMP	Mitochondrial matrix	Mitocarta3.0
Glud1	Ubiquitylated upon MOMP	Mitochondrial matrix	Mitocarta3.0
Gpam	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Mitocarta3.0
Gpd2	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Gramd4	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Uniprot
Gsr	Ubiquitylated upon MOMP	Mitochondrial matrix	Mitocarta3.0
Hccs	Ubiquitylated upon MOMP	Mitochondrial Intermembrane Space	Mitocarta3.0
Hk1	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Uniprot
Hk2	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Uniprot
Hsdl1	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Mitocarta3.0
Hspd1	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Mitocarta3.0
Htra2	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Immt	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Letm1	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Maoa	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Marc2	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
March5	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Mavs	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Mcl1	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Mdh2	Ubiquitylated upon MOMP	Mitochondrial matrix	Mitocarta3.0
Mff	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Mfn1	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Mfn2	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Mgst1	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Mitocarta3.0
Micu1	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Micu2	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Mp68	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Mpc1	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Mtch1	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Mtch2	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Mtco2	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Uniprot
Mtfr1l	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Mitocarta3.0
Mtx1	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Mtx2	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Mul1	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0

Protein	Ubiquitylated upon MOMP	Location	Source
Ndufa4	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Ndufa8	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Ndufb1	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Ndufb10	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Ndufb5	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Ndufc2	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Ndufs5	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Ociad1	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Parl	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Pet117	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Pgam5	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Phb	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Phb2	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Plgrkt	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Mitocarta3.0
Ppif	Ubiquitylated upon MOMP	Mitochondrial matrix	Mitocarta3.0
Prdx3	Ubiquitylated upon MOMP	Mitochondrial matrix	Mitocarta3.0
Ptges2	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Ptrh2	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Rdh13	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Rhot1	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Rhot2	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Samm50	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Sco1	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Scp2	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Sdha	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Sfxn1	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Sfxn2	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Shmt2	Ubiquitylated upon MOMP	Mitochondrial matrix	Mitocarta3.0
Slc25a10	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Slc25a12	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Slc25a13	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Slc25a20	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Slc25a22	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Slc25a24	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Slc25a25	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Slc25a3	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Slc25a4	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Slc25a40	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Slc25a46	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Slc25a5	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Smim37	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Uniprot
Stmp1	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Uniprot
Surf1	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
Synj2bp	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane	Mitocarta3.0
Tdrkh	Ubiquitylated upon MOMP	Unknown mitochondrial localisation	Mitocarta3.0
TIMM10	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0
TIMM13	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane	Mitocarta3.0

bioRxiv preprint doi: <https://doi.org/10.1101/2023.09.21.559776>; this version posted September 21, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

			UniProt ID	Mitocarta
	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane		Mitocarta3.0
TIMM22	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane		Mitocarta3.0
TIMM23	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane		Mitocarta3.0
TIMM50	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane		Mitocarta3.0
TIMM8a1	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane		Mitocarta3.0
TIMM8b	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane		Mitocarta3.0
TIMM9	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane		Mitocarta3.0
Tmem126a	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane		Mitocarta3.0
Tmem14c	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane		Mitocarta3.0
TOMM20	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane		Mitocarta3.0
TOMM22	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane		Mitocarta3.0
TOMM40	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane		Mitocarta3.0
TOMM5	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane		Mitocarta3.0
TOMM7	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane		Mitocarta3.0
TOMM70a	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane		Mitocarta3.0
Trabd	Ubiquitylated upon MOMP	Unknown mitochondrial localisation		Proteinatlas
Tspo	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane		Mitocarta3.0
Uqcc3	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane		Mitocarta3.0
Uqcrc2	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane		Mitocarta3.0
Uqcrfs1	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane		Mitocarta3.0
Uqcrh	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane		Mitocarta3.0
Uqcrrq	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane		Mitocarta3.0
Usp30	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane		Mitocarta3.0
Vdac1	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane		Mitocarta3.0
Vdac2	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane		Mitocarta3.0
Vdac3	Ubiquitylated upon MOMP	Outer Mitochondrial Membrane		Mitocarta3.0
Xrcc6bp1	Ubiquitylated upon MOMP	Mitochondrial Intermembrane Space		Mitocarta3.0
Yme1l1	Ubiquitylated upon MOMP	Inner Mitochondrial Membrane		Mitocarta3.0