

¹ A paleogenomic investigation of ² overharvest implications in an endemic ³ wild reindeer subspecies

⁴ Running title: Paleogenomics of the Svalbard reindeer

⁵

⁶ **Authors**

⁷ Fabian L. Kellner^{1,2†*}, Mathilde Le Moullec^{2†}, Martin R. Ellegaard¹, Jørgen Rosvold³, Bart Peeters²,

⁸ Hamish A. Burnett^{1,2}, Åshild Ønvik Pedersen⁴, Jaelle C. Brealey¹, Nicolas Dussex¹, Vanessa C.

⁹ Bieker^{1‡}, Brage B. Hansen^{2,5‡}, Michael D. Martin^{1,2*‡}

¹⁰

¹¹ **Author affiliations**

¹² 1. Department of Natural History, NTNU University Museum, Norwegian University of Science and
¹³ Technology (NTNU); Trondheim, Norway

¹⁴ 2. Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and
¹⁵ Technology (NTNU); Trondheim, Norway

¹⁶ 3. Department of Terrestrial Biodiversity, Norwegian Institute for Nature Research (NINA);
¹⁷ Trondheim, Norway

¹⁸ 4. Norwegian Polar Institute, Fram Centre; Tromsø, Norway

¹⁹ 5. Department of Terrestrial Ecology, Norwegian Institute for Nature Research (NINA); Trondheim,
²⁰ Norway

²¹

²² †These authors contributed equally

²³ ‡These authors contributed to research supervision

²⁴ *Corresponding authors

²⁵

²⁶ **Corresponding author**

²⁷ Fabian L. Kellner

²⁸ fabian.l.kellner@ntnu.no

²⁹ [+47 46613790](tel:+4746613790)

³⁰ University Museum, Department of Natural History

³¹ Norwegian University of Science and Technology

³² Erling Skakkes Gate 47A

³³ 7012 Trondheim, Norway

34 Abstract

35 Overharvest can severely reduce the abundance and distribution of a species and thereby
36 impact its genetic diversity and threaten its future viability. Overharvest remains an ongoing
37 issue for Arctic mammals, which due to climate change now also confront one of the fastest
38 changing environments on Earth. The high-Arctic Svalbard reindeer (*Rangifer tarandus*
39 *platyrhynchus*), endemic to Svalbard, experienced a harvest-induced demographic
40 bottleneck that occurred during the 17-20th century. Here we investigate changes in genetic
41 diversity, population structure and gene-specific differentiation during and after this
42 overharvesting event. Using whole-genome shotgun sequencing, we generated the first
43 ancient nuclear ($n = 11$) and mitochondrial ($n = 18$) genomes from Svalbard reindeer (up to
44 4000 BP) and integrated these data with a large collection of modern genome sequences (n
45 = 90), to infer temporal changes. We show that hunting resulted in major genetic changes
46 and restructuring in reindeer populations. Near-extirpation and 400 years of genetic drift
47 have altered the allele frequencies of important genes contributing to diverse biological
48 functions. Median heterozygosity was reduced by 23%, while the mitochondrial genetic
49 diversity was reduced only to a limited extent, likely due to low pre-harvest diversity and a
50 complex post-harvest recolonization process. Such genomic erosion and genetic isolation of
51 populations due to past anthropogenic disturbance will likely play a major role in
52 metapopulation dynamics (i.e., extirpation, recolonization) under further climate change. Our
53 results from a high-arctic case study therefore emphasize the need to understand the long-
54 term interplay of past, current, and future stressors in wildlife conservation.

55 Keywords: conservation genomics, Svalbard reindeer, ancient DNA, bottleneck, genomic
56 erosion, population genomics

57 1. Introduction

58 Excessive harvest reduces population size and genetic diversity and can ultimately lead to
59 local extirpation or global (i.e., species) extinction (Frankham, 2005; Spielman et al., 2004).
60 Overharvesting, also called overexploitation, has for long impacted fish and large mammals
61 and occur today in combination with climate change and habitat loss (Bowyer et al., 2019;
62 IUCN, 2020; Lorenzen et al., 2011; Luypaert et al., 2020). Populations may recover
63 demographically after overharvest and near-extinction events, but their genetic diversity can
64 remain low (Lande et al., 2003). Harvest-induced bottlenecks will likely also reduce a
65 species' resilience and adaptive capabilities when facing future challenges such as global
66 climate change (Frankham et al., 2002). Nevertheless, despite that genetic diversity, along
67 with species and ecosystem diversity, is recognized as one of the three pillars of biodiversity,
68 it is not yet widely considered by conservation policymakers (Jensen et al., 2022; Laikre et
69 al., 2010). It is therefore important to quantify the loss of genetic variation and changes in
70 population genetic structure following such bottlenecks, in order to appropriately set
71 conservation measures and to better predict the trajectory of the potential recovery.

72

73 Contemporary genetic material can hold considerable information about past demographic
74 processes. For instance, methods employing coalescent theory can retrospectively detect
75 genetic bottlenecks, and inform on their magnitude and timing (Drummond et al., 2005).
76 However, information about lineages that went extinct during the bottleneck is lost.
77 Therefore, investigation of effects of past bottlenecks like overharvesting from only
78 contemporary material may overlook the severity of the event (Leonardi et al., 2017).
79 Advances in the fields of genomics and ancient DNA (aDNA) enable population level whole
80 genome sequencing of nuclear and mitochondrial genomes, for instance of specimens living
81 prior to harvest-induced bottlenecks (Leonardi et al., 2017; Mitchell & Rawlence, 2021).
82 Ancient DNA is therefore a powerful tool that allows for direct temporal comparisons, setting

83 a “baseline” for the state of the species before anthropogenic intrusions (Díez-Del-Molino et
84 al., 2018; Jensen et al., 2022). The respective measures of genetic change through time are
85 valuable in ecological, evolutionary and conservation contexts, with a potential to inform
86 future conservation efforts (Jensen et al., 2022), for example by studying genomic erosion
87 (Robin et al., 2022; Sánchez-Barreiro et al., 2021), the sum of genetic threats to small
88 populations, such as decreasing genome-wide diversity, increasing genetic load and
89 inbreeding, and reduced genome wide heterozygosity (Díez-Del-Molino et al., 2018;
90 Frankham, 2005; Kohn et al., 2006). By comparing the genomes of different temporal
91 populations, regions of high genomic divergence can be identified. Genes within these
92 regions likely experienced evolution due to selection or genetic drift (Allendorf & Hard, 2009;
93 Therkildsen et al., 2019)

94

95 Because wildlife extirpations (i.e., local population extinctions) are expected to accelerate in
96 the future (IUCN, 2020), knowledge of past genetic changes is crucial to predict the future
97 population genetics of populations that are currently in decline due to harvesting, climate
98 change, habitat loss, or competition with invasive species. Many Arctic mammals, such as
99 bowhead whale (*Balaena mysticetus* Linnaeus, 1758) and walrus (*Odobenus rosmarus*
100 (Linnaeus, 1758)), as well as some reindeer and caribou (*Rangifer tarandus* Linnaeus, 1758)
101 subspecies, experienced large-scale local extirpations about a century ago (CAFF, 2013).
102 Some of the species were even driven to extinction (Byun et al., 2002; Gravlund et al.,
103 1998).

104

105 The wild Svalbard reindeer (*Rangifer tarandus platyrhynchus*, Vrolik, 1829), a subspecies
106 endemic to the Svalbard archipelago with distinct morphological and behavioral
107 characteristics, was hunted down to approximately 1000 individuals and extirpated from
108 ~60% of its range before being protected by law in 1925 (Lønø, 1959). The reindeer
109 subspecies survived in four remote locations (populations), from which they then slowly
110 recolonised the archipelago, partially assisted by two translocation programs (Aanes et al.,

111 2000), to reach a current population size at ~22,000 individuals (Le Moullec et al., 2019).
112 Conveniently, the cold and dry Arctic environment physically preserves ancient skeletal
113 material and its genetic information to a relatively high degree. Ancient DNA from bones and
114 antlers from Svalbard reindeer that lived prior to the presence of humans (before the 17th
115 century) therefore represent a unique opportunity to quantify effects of harvest-induced
116 bottlenecks on the genetic composition of present-day metapopulations (Le Moullec et al.,
117 2019). Thus, by comparing contemporary DNA with ancient DNA from Svalbard reindeer this
118 'natural experiment' can provide valuable information on the genetic consequences of
119 harvest-induced bottlenecks and population recovery following successful conservation
120 efforts in large animals.

121
122 Reindeer most likely colonized Svalbard from Eurasia through intermediate colonization of
123 the Franz Josef Land archipelago as a stepping-stone (Kvie et al., 2016). The earliest
124 evidence of reindeer presence on Svalbard is from 5,000-3,800 BP (van der Knaap, 1989).
125 The locations of a sample of carbon-dated ancient bones suggest they subsequently spread
126 across the entire Svalbard archipelago (Le Moullec et al., 2019; van der Knaap, 1989).
127 Harvest was introduced when Svalbard was discovered in 1596, but the most intensive
128 hunting period of reindeer occurred in the early 1900s (Hoel, 1916; Lønø, 1959; Wollebaek,
129 1926), until protection in 1925. Lønø et al. (1959) documented that reindeer had then
130 survived at low abundance in Nordenskiöld Land (central Spitsbergen), Reinsdyrflya (North
131 Spitsbergen), Nordaustlandet (North East Svalbard) and Edgeøya (East Svalbard). Since
132 then, reindeer have recolonised most of its former range from these four remnant
133 populations (Peeters et al., 2020).

134
135 Six genetically distinct reindeer groups are now present on the Svalbard archipelago: four
136 populations that expanded from their respective 'hunting refugia', and two populations
137 founded by individuals from central Spitsbergen. Of the latter, one was founded along the
138 west coast of Spitsbergen following two translocations, and another was founded by natural

139 recolonization to south Spitsbergen, with strong genetic drift following gradual expansion
140 (Burnett et al., 2022; Peeters et al., 2020). Svalbard reindeer disperse slowly due to their
141 sedentary behavior and the fragmented landscape (Le Moullec et al., 2019). Habitat
142 connectivity is further reduced with climate warming and declining cover of coastal sea-ice,
143 which provides an important dispersal corridor (Peeters et al., 2020). Because hunting,
144 predation, insect harassment and intra-specific competition for resources play only minor
145 roles (Derocher et al., 2000; Reimers, 1984; Stempniewicz et al., 2021; Williamsen et al.,
146 2019), population growth is mainly determined by the density-dependent weather effects on
147 access to resources in winter (Albon et al., 2017; Hansen et al., 2019; Loe et al., 2020).

148

149 While some wild reindeer/caribou subspecies are undergoing strong declines due to
150 anthropogenic landscape fragmentation and climate change (Collard et al., 2020; Festa-
151 Bianchet et al., 2011), the Svalbard reindeer is increasing in abundance (Hansen et al.,
152 2019; Le Moullec et al., 2019). This increase is mainly driven by recovery from the past
153 overharvesting and by climate change improving and enhancing the length of snow-free
154 season (Hansen et al., 2019; Le Moullec et al., 2019; Loe et al., 2020). The Svalbard
155 reindeer genetic diversity is by far the lowest among the *Rangifer* subspecies (Kvie et al.,
156 2016; Yannic et al., 2013). Despite this, local variation in genetic diversity is strong, with
157 decreasing diversity from central Spitsbergen towards the peripheries of the archipelago
158 (Peeters et al., 2020), (Burnett et al., 2022; Kvie et al., 2016). Inbreeding (i.e. long runs of
159 homozygosity) is stronger in the non-admixed naturally recolonized populations than in the
160 two translocated populations, likely as a result of having experienced a series of bottlenecks
161 (Burnett et al., 2022). The translocated populations largely maintained the genetic diversity
162 level of their source populations, despite <15 founder individuals for each translocation,
163 likely because of rapid population growth and overlapping generations (Burnett et al., 2022).

164

165 Here, we investigate the genetic impacts of the population bottleneck caused by the past
166 overharvest of Svalbard reindeer. We hypothesize that the reindeer suffered genomic

167 erosion due to this overexploitation event. To infer changes in genetic structure, diversity
168 and allele frequencies, we integrated paleogenomic data with a large dataset of
169 contemporary genome sequences and estimated genetic diversity and genomic erosion
170 before (4,000-400 calibrated years Before Present [BP]), during (500–0 BP, equating to
171 1500–1950 Common era [CE], also corresponding to the period with uncertain carbon-
172 dating) and after the overharvesting period (> 1950 CE).

173

174 2. Materials and Methods

175 2.1 Study system and sample acquisition

176 The Svalbard archipelago (76°–81°N, 10°–35°E) is surrounded by the Greenland and
177 Barents Seas, south of the Arctic Ocean. The archipelago consists of over 500 islands, the
178 largest being Spitsbergen, Nordaustlandet, Edgeøya, Barentsøya and Prins Karl Forland.
179 Reindeer inhabit vegetated land patches, which make up only 16% of the land cover,
180 fragmented by fjords and tide-water glaciers (Johansen et al., 2012). Central Spitsbergen
181 and Edgeøya holds a network of unglaciated valleys with the highest density of reindeer (Le
182 Moullec et al., 2019).

183

184 At the time of the oldest Svalbard reindeer records (~5,000 BP), the Svalbard summer
185 climate was approximately 1.5-2°C warmer than the recent reference period of 1912-2012
186 CE (van der Bilt et al., 2019). The climate became progressively cooler over time until the
187 pre-industrial period at around 1500 CE (van der Bilt et al., 2019), with increasing sea-ice
188 cover in the Fram Strait (Werner et al., 2016). Currently, Svalbard is among the regions on
189 Earth experiencing the strongest temperature increase, with 0.5°C increase per decade in
190 summer and 1.3°C increase per decade for year-round measurements at Svalbard Airport,
191 2001-2020 CE, (Isaksen et al., 2022). Partly related to this, the sea-ice concentration around

192 Svalbard has decreased drastically in recent years at a rate of 10-15% per decade in winter
193 (2001-2020 CE, (Isaksen et al., 2022). The West side of Spitsbergen is now ice-free year-
194 round, except for some inner fjords or in front of some tide-water glaciers.

195

196 Subfossil bones and antlers ($n = 18$) were collected from various sites across the Svalbard
197 archipelago during 2014-2015 CE as described previously (Le Moullec et al., 2019).
198 Subfossil collection was approved by the Governor of Svalbard (RIS-ID: 10015 and 10128).
199 Sample ages were determined via ^{14}C dating (Table 1). All ^{14}C dates were calibrated with the
200 IntCal20 calibration curve (Reimer, 2020) using the *calibrate* function in the package *rcarbon*
201 (Crema & Bevan, 2021) in R v4.1.0 (R Core Team, 2021). The subfossil materials were
202 combined with a previously published genomic dataset from samples collected in 2014-2018
203 and consisting of 90 contemporary Svalbard reindeer from a recent population genomics
204 study (Burnett et al., 2022) PRJEB57293(Burnett et al., 2022). To put harvest-induced
205 changes within Svalbard reindeer populations into a temporal context, we subdivided the
206 samples into three time periods: Before (4,000-400 years before present, BP, hereafter
207 referred to as *pre-hunting*), during (400 years BP-1950 Common Era, CE, hereafter referred
208 to as *during-hunting*), and after (> 1950 CE, hereafter referred to as *post-hunting*) the major
209 harvest-induced bottleneck that occurred from the 17th to the early 20th century (Lønø
210 1959).

211

212 2.2 DNA extraction, library building, and sequencing

213 All pre-PCR manipulations of sample genetic material were conducted in a dedicated,
214 positively pressurized ancient DNA laboratory facility at the NTNU University Museum. 48-
215 360 mg of bone material were collected using a Dremel disc drill and subsequently crushed
216 to fragments of maximum 1-mm diameter. DNA was extracted with a custom, silica-based
217 extraction protocol. For digestion, a custom digestion buffer consisting of 1.25% (v/v)
218 proteinase K (20 mg/mL), 90% (v/v) EDTA (0.5M) and 8.75% (v/v) molecular-grade water

219 was used. Samples were pre-digested in 1 mL digestion buffer for 10 minutes at 37°C on a
220 rotor. The samples were spun down, the pre-digest was removed, and 4 mL digestion buffer
221 was added to the samples. Samples were left for digestion on a rotor for 18 hours at 37°C.
222 The lysis buffer was mixed 1:10 with Qiagen PB buffer modified by adding 9 mL sodium
223 acetate (5 M) and 2 mL NaCl (5 M) to a 500 mL stock solution. pH was adjusted to 4.0 using
224 concentrated (37% / 12M) HCl. 50 µL in-solution silica beads were added, and samples
225 were left on a rotor for 1 hr at ambient temperature to allow binding of the DNA. Silica pellets
226 with bound DNA were purified using Qiagen MinElute purification kit following the
227 manufacturer's instructions and eluted in 65 µL Qiagen EB buffer. For every extraction
228 batch, an extraction blank was carried out alongside the samples.

229

230 For each sample and the extraction blanks, 32 µL of DNA extract were built into double-
231 stranded libraries. Libraries were prepared following the BEST 2.0 double-stranded library
232 protocol (Carøe et al., 2018). Three DNA extraction blanks were included, as well as a single
233 library blank (no-template control). 10 µL of each library were amplified in 50 µL reactions
234 with AmpliTaq Gold polymerase, using between 13 and 22 cycles and a dual indexing
235 approach (Kircher et al., 2012). The optimal number of PCR cycles for each library was
236 determined via qPCR on a QuantStudio3 instrument (ThermoFisher). The indexed libraries
237 were purified using SPRI beads (Rohland & Reich, 2012) and eluted in 30 µL EBT buffer.
238 The amplified libraries were quantified on 4200 TapeStation instrument (Agilent
239 Technologies) using High Sensitivity D1000 ScreenTapes. The libraries were then pooled in
240 equimolar concentrations and initially sequenced on the Illumina MiniSeq platform in order to
241 quantify their complexity and endogenous DNA content. The libraries were subsequently
242 subjected to several rounds of PE 150 bp sequencing on the Illumina NovaSeq 6000
243 platform (Norwegian National Sequencing Centre and Novogene UK).

244 2.3 Bioinformatic analysis and post-mortem DNA damage assessment

245 Sequence data from the pooled libraries were demultiplexed according to their unique P5/P7

246 index barcode combinations. Prior to mapping, residual adapter sequences were removed
247 and reads shorter than 25 bases were discarded with AdapterRemoval v2.2.4. Raw reads
248 were mapped initially against the caribou (*Rangifer tarandus caribou*) nuclear genome
249 (Taylor et al., 2019) and the reindeer (*Rangifer tarandus tarandus*) mitochondrial genome (Z.
250 Li et al., 2017) in the framework of the PALEOMIX pipeline v1.2.13.2 (Schubert et al., 2014)
251 using the 'mem' algorithm of the Burrows-Wheeler Aligner (BWA) v0.7.16a (H. Li, 2013) and
252 no mapping quality (MAPQ) score filtering. PCR duplicates were marked using picardtools
253 v2.20.2 ("Picard Toolkit," 2019) tool MarkDuplicates. Mapped reads were realigned with the
254 Genome Analysis Tool Kit (GATK v3.8-0) indel realigner (McKenna et al., 2010). Following
255 mapping, soft-clipped reads were removed with samtools v1.12 (H. Li et al., 2009). Then
256 mapDamage v2.0.9 (Jónsson et al., 2013) was used to assess and plot ancient DNA
257 damage patterns and to rescale base quality scores accordingly. Sequencing depth statistics
258 were estimated with samtools depths at a minimum phred-scaled mapping quality of 30
259 (Table S1). All samples were sequenced to a minimum of 0.2X sequencing depth of the
260 caribou nuclear genome assembly after read filtering.

261 2.4 Construction of a consensus Svalbard reindeer reference genome

262 In order to improve mapping rate and more accurately reflect the divergent genome of the
263 Svalbard reindeer, a reference Svalbard reindeer nuclear genome was generated from the
264 deepest sequenced contemporary individuals of each metapopulation (T-15, C7 and B2, see
265 Table S1). BAM files were downsampled to 26.9X, the lowest depth among the three
266 genomes, with the samtools v1.12 view command using the flags -b and -s. Individual bam
267 files were combined into a single bam file. The new reference sequence was determined
268 with angsd v0.931 (Korneliussen et al., 2014) using the -doFasta 2 tool with the options -
269 doCounts 1, -explode 1, -setMinDepthInd 2, -remove_bads 1, requiring a minimum read
270 mapping quality of 30 and a minimum base quality of 20. All samples were mapped against
271 this new reference genome using the same methods described above.

272 2.5 Determination of ancestral states

273 Ancestral states were inferred by mapping publicly available sequencing data from three
274 closely related (Heckeberg & Wörheide, 2019) species (moose, *Alces alces*, bioproject:
275 PRJEB40679 (Dussex et al., 2020); red deer, *Cervus elaphus*, bioproject: PRJNA324173 (Bana
276 et al., 2018); white-tailed deer, *Odocoileus virginianus*, NCBI PRJNA420098; Accession No.
277 JAAVWD000000000) against the caribou reference genome (Taylor et al., 2019). BAM files
278 were downsampled to 12.3X, the lowest depth among the three genomes, with samtools
279 v1.12 and merged into a single BAM file for all three species. The ancestral state was
280 inferred by choosing the most common base at each site with angsd v0.931 using the -
281 *doFasta* 2 tool with the options *-doCounts* 1, *-explode* 1, *-remove_bads* 1, and *-uniqueOnly*
282 1, requiring a minimum read mapping quality of 30 and a minimum base quality of 20.

283 2.6 Selection of nuclear genomic loci for further analysis

284 Genomic positions suitable for further downstream analysis were computed for ancient and
285 modern samples with the GATK v3.8-0 CallableLoci tool, requiring a minimum read mapping
286 quality of 30 and a minimum base quality of 20. The input BAM files for the ancient
287 individuals were generated by merging all of that group's BAM files with samtools merge and
288 replacing the read groups with the picard-tools v2.20.2 AddOrReplaceReadGroups tool. For
289 modern samples, only a single BAM file (sample T-15) was used. The average depth of
290 these merged BAM files was calculated with samtools depth at mapping quality 30 and base
291 quality 20 (ancient = 43.6, modern = 57.4) . The minimum depth was calculated as one third
292 of the mean depth (ancient = 15, modern = 20) and the maximum depth as twice the mean
293 depth (ancient = 87 , modern = 115). The files were then further processed with bedtools
294 v2.30.0 (Quinlan, 2014) in order to be used with the *-sites* and *-rf* options of angsd v0.931.
295 Sites that were marked with excessive coverage or poor mapping quality were excluded
296 from downstream analysis.

297 2.7 Mitogenome alignment and haplotype analysis

298 Variants in the mitogenome were identified with GATK v4.2.5.0 using a reindeer
299 mitochondrial genome sequence (Z. Li et al., 2017) as the reference. For this, haplotypes
300 were called with GATK HaplotypeCaller requiring a minimum read mapping quality of 30.
301 Variants were only called when they were above a minimum phred-scaled confidence
302 threshold of 30 (-stand-call-conf 30). We verified that all samples' mitochondrial genomes
303 were sequenced to a minimum depth of 30x after removing reads with mapping quality
304 below 30 (see Table 1). GVCF files were merged using the GATK GenomicsDBImport tool,
305 and a joined SNP call was performed with GATK GenotypeGVCFs with the setting -stand-
306 call-conf 30. Mitochondrial haplotypes in the output variant call format (VCF) file were used
307 to populate a FASTA multiple sequence alignment file using a custom python2 script. In this
308 alignment, insertions and deletions were ignored, and individual haplotypes were deemed
309 ambiguous ('N') if the sequencing depth was less than 10 reads or if the genotype quality
310 score was less than 20. Despite these measures, one sample (MB16 with 17% 'N') was
311 ambiguously assigned an haplotype and therefore removed from the analysis.

312

313 We used the *ape* package (Paradis & Schliep, 2019) in *R* to import the 16,362-bp
314 mitogenome sequence alignment and then extracted haplotypes with the *haplotype* function
315 from the *pegas* package (Paradis, 2010). We visualized haplotype diversity with a network
316 linking haplotypes based on a parsimony criterion minimizing the number of sites
317 segregating between haplotypes (i.e., TCS algorithm). Such an algorithm uses an infinite site
318 model to calculate a pairwise distance matrix of the haplotypes, with pairwise deletion of
319 missing data. With the *haploNet* function (Templeton et al., 1992) from *pegas*, we plotted
320 haplotype networks from individuals living before, during, and after the hunting period.
321 Across all mitogenome sequences and within each time period, we calculated genetic
322 diversity statistics in *pegas*, using the *haplo.div* function to calculate haplotype diversity (Nei
323 & Tajima, 1981) and the *nuc.div* function to calculate nucleotide diversity (Nei, 1987). The

324 number of segregating sites were summed from the `seg.sites` function in `ape`.

325 **2.8 Genotype likelihood estimation**

326 Genotype likelihoods for nuclear genome loci were estimated with `angsd` v0.931, excluding
327 reads with multiple matches to the reference genome (option `-uniqueOnly 1`). Allele
328 frequencies were estimated with the option `-doGlf 2` using the combined estimators for fixed
329 major and minor allele frequency as well as fixed major and unknown minor allele frequency
330 (`-doMaf 3`). Major and minor allele frequencies were inferred from genotype likelihood data (-
331 `doMajorMinor 1`). Variant sites were considered when they had a minimum minor allele
332 frequency of 5% and minimum number of informative individuals set to half the total number
333 of individuals (`-minInd 50`). Reads with a phred-scaled mapping quality score below 30 were
334 excluded, as were bases with a quality score below 20 as well as reads with a `samtools` flag
335 above 255 (not primary, failure and duplicate reads) with the option `-remove_bads 1`. The
336 first five bases were trimmed from both ends of reads (`-trim 5`), and the frequencies of the
337 bases were recorded with `-doCounts 1`. The depth of each individual (`-dumpCounts 2`) and
338 the distribution of sequencing depths (`-doDepth 1`) were recorded. Files to be used in
339 subsequent analyses with `Plink` were generated (`-doPlink 2`). Genotypes were encoded (-
340 `doGeno 2`) for downstream analysis. Posterior genotype probabilities were estimated based
341 on allele frequencies as prior (`-doPost 1`). Genotypes were only considered if their posterior
342 probability was above 95% (`-postCutoff 0.95`). Genotypes were considered missing in cases
343 when the individual depth was below 2 (`-geno_minDepth 2`). Before further analysis, sites in
344 strong linkage disequilibrium were pruned with `Plink` v1.90 beta 6.24 (Chang et al., 2015)
345 using a window size of 50 kbp, a step size of 3 kbp, and a pairwise r^2 threshold of 0.5 (–
346 `indep-pairwise 50 3 0.5`). Subsequently, regions with low mapping quality, excessive
347 coverage as identified with `CallableLoci` (see above), or associated with sex chromosomes
348 (for methods see (Burnett et al., 2022)) were removed via a custom python script. Also
349 excluded were sites that are not variant in both the ancient ancient and modern datasets.

350 2.9 Principal components and admixture analyses

351 We visually identified related clusters with covariance matrices for principal component
352 analysis (PCA) using PCAngsd v1.10 (Meisner & Albrechtsen, 2018), running 10,000
353 iterations to ensure convergence. Samples were grouped both spatially and by time period
354 (pre-, during-, and post-hunting). A spatial group was defined as all individuals from each
355 time period that were sampled within 80 km around centroid points calculated by hierarchical
356 clustering with the *Geosphere* package in R (see map in Figure 2 and Figures S7 - S15).
357 Genetic structure was estimated with NGSadmix (Skotte et al., 2013), including only variant
358 sites with a minimum minor allele frequency of 5% and minimum number of informative
359 individuals set to half the total number of individuals (*-minInd* 50). The number of estimated
360 ancestral populations K ranged from 2 to 10. For each value of K , each of ten replicates
361 were run with different random starting seeds, and the replicate with the highest likelihood
362 was used for plotting. An optimal value for K was estimated with the delta- K method (Evanno
363 et al., 2005). Admixture diversity scores were calculated based on $K = 5$ using the R
364 package *entropy*, as described in (Harismendy et al., 2019). In order to evaluate possible
365 sampling bias we repeated the analysis with a reduced dataset (see below).

366 2.10 Estimation of heterozygosity

367 Site allele frequency likelihoods were calculated for each sample individually with *angsd*
368 (command-line option *-doSaf* 1) with a minimum base quality of 20 and a minimum read
369 mapping quality of 30, using only selected sites and regions described previously and
370 removing transitions (command-line option *-noTrans* 1) as well as 5 bp from the ends of all
371 reads (*-trim* 5) to reduce artifacts of ancient DNA damage. Reads with multiple best hits and
372 non-primary, failed, and duplicate reads were removed from the analysis (command-line
373 options *-uniqueOnly* 1 and *-remove_bads* 1). To polarize the site allele frequency (SAF)
374 likelihoods, a FASTA format file with ancestral states (see above) was supplied (command-
375 line option *-anc*). The GATK model (command-line option *-GL* 2) was used to estimate

376 genotype likelihoods. Then, the site frequency spectrum (SFS) was estimated with *angsd*
377 *realSFS* based on the polarized SAF likelihoods. Heterozygosity was then calculated in R as
378 described in the *angsd* documentation. A pairwise Mann-Whitney U test with default settings
379 as implemented in R was performed to judge the significance of differences in
380 heterozygosity between groups. We obtained the delta estimator (Díez-Del-Molino et al.,
381 2018) of heterozygosity (ΔH) by calculating $\Delta H = (med(H_2) - med(H_1))/med(H_1)$, with H_2
382 being the set of individual genome-wide heterozygosity values in the younger sample set, H_1
383 being the set of individual genome-wide heterozygosity values in the older sample set, and
384 *med* being the median value.

385 2.11 Temporal genomic differentiation

386 To assess the potential phenotypic impacts of overharvest on Svalbard reindeer, we
387 identified genomic regions that were highly differentiated in a comparison of the three time
388 groups among each other. To reduce potential biases introduced by the large size of the
389 contemporary reindeer population sample, a smaller dataset of modern individuals
390 representing all geographic regions was chosen semi-randomly ($n=11$). The selected
391 samples were T-15, T-7 (Wijdefjorden), B1, B2, T-44 (Central-Spitsbergen), C6, C7 (East
392 Svalbard), T-20 (West-Spitsbergen), C28 (Nordaustlandet), B-132, C-84 (South-
393 Spitsbergen). Within-population site frequency spectra were calculated with *angsd* v0.931
394 using the options *-dosaf 1*, *-gl 1*, *-noTrans 1*, *-trim 5*, *-remove_bads 1*, *-minMapQ 30*, and *-*
395 *minQ 20*. As described above, the SAF was polarized with ancestral states, and only
396 selected sites and regions were used. The pairwise 2D-SFS was estimated with the *angsd*
397 *realSFS* tool (Nielsen et al., 2012) and between-population differentiation F_{ST} values were
398 estimated with *realSFS* commands *fst index* and *fst stats*.

399

400 Additionally, an F_{ST} sliding window analysis was performed as pairwise comparisons among
401 the time groups, using the *angsd* *realSFS* command *fst stats2* with non-overlapping 10-kbp

402 windows. F_{ST} values were z-transformed around their mean, and windows with $z \geq 6$ were
403 defined as outlier windows. The neutrality test statistics Watterson's theta (Watterson,
404 1975) and Fay and Wu's H (Fay & Wu, 2000) were calculated within the same windows by
405 using the angsd realSFS commands *saf2theta* and *thetaStat do_stat*. The mean per-site
406 Watterson's theta estimator was used to calculate effective population size (N_e) assuming
407 the average mammalian mutation rate of 2.2×10^{-9} per site per year (Kumar &
408 Subramanian, 2002) and a generation time of 6 years as previously estimated for Svalbard
409 reindeer (Flagstad et al., 2022). Mean nucleotide diversity was calculated by dividing
410 pairwise theta by the number of sites in each 10-kbp window.

411

412 We further investigated the roles and functions of genes within regions of high divergence
413 between the during-hunting and post-hunting periods, which we defined as regions with
414 mean $F_{ST} \geq 0.5$. We retrieved the amino acid sequences of known caribou genes from the
415 annotation provided by (Taylor et al., 2019). Amino acid sequences of all 20,014 *Bos taurus*
416 proteins were retrieved from UniProt (UniProt Consortium, 2021) and used to construct a
417 blast protein database with the *makeblastdb* tool within blast+ v2.6.0 (Altschul et al., 1990).
418 The sequences were identified via a *blastp* search against the *Bos taurus* protein database,
419 only considering results with an e-value < 0.001 . To select the best matching protein for
420 each query sequence, the result with the smallest e-value was chosen. Ties were resolved
421 by first considering highest bit-score, then percentage identity, and finally alignment length.
422 We then identified which protein coding genes intersect with regions of high divergence.

423

424 3. Results

425 3.1 Read mapping and post-mortem DNA damage assessment

426 The final dataset consists of 12 individuals with calibrated median age ranging between

427 3,973–500 BP (hereafter referred to as the "pre-hunting" population), six individuals with age
428 ranging between 447–0 BP (equating to 1503–1950 CE; hereafter referred to as the "during-
429 hunting" population), and 90 present-day individuals (hereafter referred to as the "post-
430 hunting" population). For genetic comparisons between DNA from subfossil bones/antlers
431 and contemporary samples, the 18 pre-hunting and during-hunting individuals are
432 collectively referred to as the "ancient" population, and the 90 post-hunting individuals are
433 referred to as the "modern" population. For the nuclear genome analysis, seven pre-hunting
434 samples were excluded due to their low sequencing depth, resulting in 11 ancient samples.

435

436 Nuclear genome raw mapping results are reported in Table S1. After filtering soft-clipped
437 reads and reads with low mapping quality, the mean sequencing depth across all samples
438 (including those that were only used for haplotype network analysis) mapped against the
439 caribou reference assembly was 5.2X (mean ancient DNA: 2.3X; mean modern DNA: 5.7X)
440 (see Table S2). The mean sequencing depth across all samples was slightly higher when
441 mapping against the Svalbard reference genome (mean across all samples: 5.2X; mean
442 ancient DNA: 2.4X; mean modern DNA: 8.8X). The mean sequencing depth of the
443 mitochondrial genome across all samples was 1287.0X (mean ancient DNA: 340.2X; mean
444 modern DNA: 1484.0X). The ancient genomes were confirmed to show characteristic
445 ancient DNA damage patterns (see Figure S5).

446 3.2 Population structure

447 In order to assess population structure before, during and after the period of intense hunting,
448 that resulted in local extirpation followed by recolonisation, we performed a PCA of nuclear
449 genome variation and an analysis of genetic admixture based on nuclear genome genotype
450 likelihoods, as well as constructed a haplotype network from mitogenome sequences. To
451 identify patterns in these results, we then analyzed them according to the division of
452 Svalbard reindeer metapopulation into 12 spatio-temporal groups.

453

454 After removing low-quality sites, 2,063,517,637 nuclear genomic positions were retained for
455 analysis. Except for a few outliers, the post-hunting genomes cluster based on their
456 geography in the PCA when considering the first two components PC1 and PC2 (Figure 1).
457 There was a clear separation of eastern (East-Svalbard), northern (Wijdefjorden and
458 Nordaustlandet) and southwestern (Central-, South- and West-Spitsbergen) individuals.
459 Post-hunting individuals from southern, western, southwestern, and central Spitsbergen form
460 a single tight cluster. The northern groups Nordaustlandet and Wijdefjorden are not as
461 clearly separated from each other, where the Wijdefjorden genomes form a particularly
462 diffuse cluster. The ancient genomes, irrespective of their geographic assignment, form a
463 loose cluster around the center of the PC2 axis and towards the left of the PC1 axis between
464 the Nordaustlandet, Wijdefjorden and East-Svalbard clusters of post-hunting genomes.

465

466 We performed an admixture analysis with a dataset including all individual nuclear genomes
467 (Figure 2, Figures S6 and S16). The highest ΔK value was found for $K=5$ (2769.4, Fig. S17).
468 The assignment of modern groups to ancestry clusters strongly correlates with geography.
469 These five major genetic clusters of Svalbard reindeer are: a pink cluster, composed
470 exclusively of post-hunting east Svalbard individuals (diversity score [DS] = 0); a blue
471 cluster, characteristic for south Spitsbergen (DS = 0.151); a green cluster which is the main
472 component of Wijdefjorden (DS = 0.402) individuals; an orange cluster characteristic of
473 Nordaustlandet (DS = 0); and a yellow cluster that is the main component of central and
474 west Spitsbergen (DS = 0.329). The genomes of individuals belonging to each geographic
475 group in the more isolated outer regions of the archipelago are almost fully assigned to their
476 own private ancestral population clusters (DS = 0 - 0.151), while the geographic group at the
477 center of the archipelago (Central-Spitsbergen. DS = 0.640) shows admixture of genetic
478 clusters dominant in southern, western, and northern populations (Figure 2). As expected,
479 there is shared ancestry between Central-Spitsbergen and West-Spitsbergen, a population
480 that was reintroduced from Central-Spitsbergen (Aanes et al., 2000). Only very little ancestry
481 is shared between East-Svalbard and the other groups, and the same is true for

482 Nordaustlandet. Overall, the ancestry assignments agree well with the groupings in the PCA.

483

484 In contrast, the spatio-temporal groups of ancient individuals are not strongly distinct from
485 one another in the admixture analysis (Figure 2). All groups but pre-hunting Nordaustlandet
486 (DS = 0) show ancestry from all five genetic clusters for $K=5$ (DS 0.593 - 0.890), irrespective
487 of their geographic distance from one another. Diversity was maintained throughout the
488 hunting period, apart from Wijdefjorden, which became less diverse (DS = 0.389). All ancient
489 individuals share high proportions of ancestry with post-hunting Nordaustlandet (orange).
490 This trend continues for higher values of K up until $K=7$. However, beginning with $K=8$, the
491 similarity between post-hunting Nordaustlandet and ancient individuals (except for pre-
492 hunting Nordaustlandet) largely disappears. Instead, we observed the emergence of a new
493 cluster (brown) that is shared among all ancient, but none of the post-hunting individuals are
494 assigned to it. Furthermore, all individuals from during-hunting Wijdefjorden are assigned
495 exclusively to this cluster. As admixture analysis can be biased when having unequal sample
496 sizes (Garcia-Erill & Albrechtsen, 2020; Puechmaille, 2016), we additionally performed an
497 analysis with a reduced sample set with more equal sample sizes by reducing the number of
498 contemporary samples. This analysis confirmed the results using the complete dataset (Fig.
499 S16).

500

501 We found 30 distinct haplotypes from the mitogenome alignment of 108 individuals, and
502 none of these haplotypes were shared between individuals in the pre- and post-hunting
503 period (Figure 3). However, haplotype relatedness does not group per time period. Instead,
504 post-hunting haplotypes were primarily at the periphery of the network, branching from
505 different ancient ancestors located at the center of the network (Figure 3). Half of these 30
506 haplotypes belonged to 18 individuals from the ancient populations, while the other half
507 belonged to the 90 individuals from the post-hunting populations. Each of the 12 individuals
508 from the pre-hunting period had distinct haplotypes with up to 32 segregating sites.
509 Individuals from the same region (i.e. East-Svalbard), had only 1-3 segregating sites despite

510 the thousands of years separating the sampled individuals (e.g., East-Svalbard, 2037 years
511 difference for only 1 segregation site difference). However, some individuals from the same
512 region, living at approximately the same time (e.g., Central-Spitsbergen, 597 and 703 BP),
513 have the most distant haplotypes for the given region. In the during-hunting period, four out
514 of six individuals (66%) shared the same haplotype, and those were from the same region,
515 Wijdefjorden. In the post-hunting period, we found up to 36 different segregation sites,
516 forming seven distinct haplogroups separated by fewer than three mutations, where several
517 individuals from the same region shared the same haplotype. However, within the same
518 region, we also found very distant haplotypes with individuals more closely related to their
519 common ancestral haplotype than to one another. For instance, in the Central-Spitsbergen
520 region, modern haplotypes were either closely related to the haplotypes previously found in
521 that same region, or previously found in Eastern-Svalbard. Therefore, haplotypes found
522 today within a same region are more distant than haplotypes currently found across regions.
523 Subsequently, although mitochondrial haplotype and nucleotide diversity were lower in the
524 post-hunting than in the pre-hunting period, they have not been drastically reduced by
525 hunting (Table 2).

526 3.3 Temporal genomic differentiation

527 Heterozygosity decreased stepwise through the hunting periods, from the highest in the pre-
528 hunting group to the lowest in the post-hunting group, although there was considerable
529 overlap between the heterozygosity ranges of the three groups (see Figure 4). The median
530 heterozygosities are 3.8×10^{-4} for the pre-hunting period, 3.1×10^{-4} for the during-
531 hunting period, and 2.8×10^{-4} for the post-hunting period. The differences in mean
532 heterozygosity between during-hunting and the other two groups is not significant (pre-
533 hunting: $p=0.66$, post-hunting: $p=0.10$, Mann-Whitney U test), while post-hunting
534 heterozygosity is significantly lower than pre-hunting ($p < 0.01$, Mann-Whitney U test). The
535 decrease in median heterozygosity from pre-hunting to during-hunting reindeer is 18.42%,

536 and post-hunting reindeer have a 9.68% lower median heterozygosity than during-hunting
537 reindeer. The median heterozygosity of post-hunting reindeer is 26.32% lower than that of
538 pre-hunting reindeer. Mean effective population size N_e was lower in the post-hunting
539 population (4.66×10^3) than in the pre-hunting population (5.21×10^3), and highest in
540 the during-hunting population (5.84×10^3). In the sliding window analysis, the
541 mean nucleotide diversity across all windows was 3.34×10^{-4} in the pre-hunting
542 population, slightly higher at 3.35×10^{-4} in the during-hunting population and reduced
543 to 3.23×10^{-4} in the post-hunting population.

544

545 There were a total of 217,247 windows identified by the sliding window analysis, of which
546 183 (0.1%) were F_{ST} outlier windows as defined by a Z-score ≥ 6 (Figure 5). The
547 mean value of weighted pairwise F_{ST} was 1.91×10^{-2} for the pre-hunting and during-hunting
548 populations, 3.27×10^{-2} for the pre-hunting and post-hunting populations, and 5.06×10^{-2}
549 for the during-hunting and post-hunting populations. The mean number of sites across all
550 windows was 8,649, and the mean number of sites within outlier windows was 8,843. To
551 assess whether windows were under positive selection, we performed neutrality tests to
552 compare Fay & Wu's H between during-hunting outlier and non-outlier windows, as well as
553 between post-hunting outlier and non-outlier windows. Comparison shows that H is much
554 lower and more broadly distributed in ancient outlier windows compared to all the other
555 groups (Figure 5 and Figure S18).

556

557 To explore any functional genetic changes that may have resulted from overhunting and
558 near-extirpation of Svalbard reindeer, we further investigated those outlier genomic regions
559 with extraordinarily high F_{ST} ($F_{ST} \geq 0.5$) as measured between the during-hunting and post-
560 hunting populations, as well as the identity and functions of the genes therein (Table S4).
561 We identified 50 high-divergence outlier windows which intersect with genes, of which 34 are
562 unique annotated genes (Taylor et al., 2019). A blastp search against the *Bos taurus*

563 proteome (see Materials and Methods) matched 30 of these 34 genes to 29 unique *Bos*
564 *taurus* proteins (Table S4). Of these 29, 17 are predicted proteins, nine are further inferred
565 from homology, and four have evidence at transcriptome level. For 17 of these proteins, the
566 associated coding gene is known in the UniProt database. The known coding genes are
567 *PLCH1*, *TRIM72* (*MG53*), *TIMM17B*, *ANP32B*, *APBA1*, *BLNK*, *CCNA1*, *DAB2IP*,
568 *EBF2/COE2*, *HS3ST2*, *LOC529488*, *NRXN1*, *RABGAP1*, *SF3B1*, *SFMBT1*, *STRBP*, and
569 *TTC39B*.

570

571 4.Discussion

572 Here, by combining modern and the first ancient genomes (up to 4000 BP), we have
573 described and compared the population structure and genetic changes of Svalbard reindeer
574 before, during and after an intense period of anthropogenic harvest . We have shown that
575 the population collapse due to overharvest decreased nuclear genomic diversity as well as
576 effective population size (Figure 4, Table 2). The overhunting event also resulted in a shift of
577 genetic diversity across the entire archipelago (Figure 1 and 2), suggesting weaker
578 population substructure before human presence and harvest. Mitogenome analysis also
579 revealed a significant loss , with none of the pre-hunting haplotypes occurring today (Figure
580 3, Table 2). Hence, post-hunting haplotypes formed their own haplogroups, which were more
581 closely linked to ancient haplotypes from different regions of Svalbard than to the ancient
582 haplotypes from their respective sampling locations. Gene selection analyses indicate
583 pronounced genetic drift during and post-hunting periods rather than natural selection
584 (Figure 5).

585 4.1 Major changes in population structure and differentiation

586 Our analysis of population structure based on whole nuclear genomes revealed substantial
587 differences between historical/ancient samples and present-day Svalbard reindeer (Burnett

588 et al., 2022; Peeters et al., 2020). We identified $K = 5$ as the optimal value of K with the
589 delta- K method, but in light of potential sampling bias and strong population structure both in
590 space and time, we elect to discuss higher values of K as well. In contrast to the high degree
591 of nuclear genetic differentiation in the post-hunting populations, which show a near-perfect
592 correspondence of geographical and genetic grouping, Svalbard reindeer did not form
593 distinct genetic clusters based on location prior to and during hunting. Instead, all genomes
594 but one (from the most distant individual from the isolated island of Nordaustlandet, $n = 1$)
595 had higher nuclear genetic diversity in the pre-hunting period. These indicate a scenario
596 where ancient Svalbard reindeer formed a single genetically diverse, continuous and
597 panmictic population in the past, a similar situation as for the Iberian lynx (*Lynx pardinus*
598 (Temminck, 1827)), another species with severe history of overharvest (Casas-Marce et al.,
599 2017). Pre-hunting Svalbard reindeer individuals showed affinity to all post-hunting
600 metapopulations for $K=2$ to $K=7$ which suggests high levels of gene-flow between different
601 geographic regions in ancient Svalbard or even a single panmictic population . However, the
602 level of gene-flow was likely not uniform across Svalbard. Individuals from modern
603 Nordaustlandet were most similar to their ancient counterpart for $K<8$, the reason for which
604 could be that the size of this remnant population remained low, while other remnant
605 populations underwent rapid population growth and geographic expansion (Le Moullec et al.
606 2019). This interpretation is supported by the PCA, which places modern Nordaustlandet
607 closer than other modern samples to the ancient samples. Ancient Wijdefjorden has high
608 affinity to ancient and modern Nordaustlandet for $K<8$, however, at $K=8$ they lose all affinity
609 with modern samples and become assigned to an ancient-only cluster, with high, but
610 reduced affinity to ancient Nordaustlandet. The other ancient samples are partly assigned to
611 this ancient-only cluster, but retain relatively high ancestry to genetic clusters also found in
612 modern samples at higher values of K . These populations differentiated from each other
613 through time. This change happened between the during-hunting and post-hunting groups
614 rather than between the pre-hunting and during-hunting groups, which cover a much longer
615 time-span, suggesting that the change was related to overharvest.

616

617 We observed a gradual decrease in Svalbard reindeer genome heterozygosity over the three
618 time periods. Median heterozygosity was reduced by 26% over the time spanning the pre-
619 hunting and the post-hunting periods. This decrease is congruent with results obtained from
620 previous studies comparing modern to historic/ancient vertebrates that underwent large-
621 scale population declines due to anthropogenic near-extirpation events, for example the
622 white rhinoceros (*Ceratotherium simum* (Burchell, 1817))((Sánchez-Barreiro et al., 2021)),
623 alpine ibex (*Capra ibex*, Linnaeus, 1758) ((Robin et al., 2022)), eastern gorilla (*Gorilla*
624 *beringei* Matschie, 1903)(van der Valk et al., 2019) and iberian lynx (Casas-Marce et al.,
625 2017). The Svalbard reindeer's decrease of heterozygosity over time is of similar severity to
626 that measured following drastic population declines in the Iberian lynx (heterozygosity
627 reduction of 10% based on microsatellite data, (Casas-Marce et al., 2017) and in two over-
628 harvested populations of white rhinoceros (heterozygosity reductions of 10% and 37%
629 respectively, (Sánchez-Barreiro et al., 2021). A study by (van der Valk et al., 2019) reported
630 a 20% decrease of heterozygosity in Grauer's gorillas but only a 3% decrease in mountain
631 gorillas. It is important to note that prior to overharvesting, the Svalbard reindeer population
632 genome-wide heterozygosity was already low, perhaps because of a strong bottleneck when
633 colonizing Svalbard.

634

635 Our measurements of temporal change in mitogenome diversity did not suggest a strong
636 decrease in genetic diversity. The relatively high diversity of modern haplogroups ($n = 7$)
637 contrasts with other ungulate species heavily hunted in the past, like the Alpine ibex, where
638 only two modern haplogroups are now widespread across their range (Robin et al., 2022).
639 Contrary to the Alpine ibex, in which mitogenome nucleotide diversity was
640 reduced by $\sim 79\%$ (6.38×10^{-4}) from the pre-hunting to the post-hunting period,
641 Svalbard reindeer experienced a reduction of only $\sim 8\%$ (0.38×10^{-4}). However, this
642 difference could be explained by the fact that after near-extirpation, the Svalbard reindeer
643 survived in four remnant populations, as opposed to the Alpine ibex, which survived in only a

644 single remnant population. During the intermediate hunting-period, the mitogenome
645 nucleotide diversity surprisingly dropped, yet this is likely due to the low sample size. In this
646 period, large individual variation existed, where two of the six individuals had the highest
647 genome-wide heterozygosity observed in our dataset, while the other four were among the
648 lowest values. The uncertainty related to the carbon-dating calibration scale prior to the
649 industrial era, which coincides with our during-intermediate hunting period (1500-1950 CE),
650 restricts the temporal resolution of this period. However, previous reports documented a
651 harvest peak in the early 1900s CE (Hoel, 1916; Lønø, 1959), just prior to the legal
652 protection of Svalbard reindeer in 1925. Thus, individuals with high genetic diversity are
653 likely to have lived prior to this harvesting peak.

654

655 Potential climate change impacts during recovery

656 Accounting for the fact that current summer temperature has already increased by 1.5-2°C
657 since the reference period of 1912-2012 CE (Isaksen et al., 2022; van der Bilt et al., 2019),
658 the older reindeer specimens from our collection (ages of 3000-4000 BP) experienced
659 summer temperatures that were similar to the present-day climate. From this period and until
660 harvesting started ~1500 CE, the relatively stable climate became gradually cooler with sea-
661 ice cover persisting year-round (Werner et al., 2016), likely acting as dispersal corridors for
662 reindeer. These conditions likely favored a higher degree of admixture between populations.

663

664 The current population structuring is a consequence of overharvesting and recovery
665 occurring during a period of pronounced climate warming. Our results are congruent with
666 earlier findings based on microsatellite data and nuclear whole genome sequencing where
667 present-day population structuring reflects the recolonization patterns originating from the
668 four locations that escaped extirpation (Burnett et al., 2022; Peeters et al., 2020). In addition
669 to the sedentary behavior of the Svalbard reindeer, the effect of natural barriers for dispersal
670 and gene flow has increased during the recovery period, as sea-ice cover decreased

671 (Peeters et al., 2020). Despite this, Svalbard reindeer were capable to disperse naturally and
672 through reintroduction events to all suitable habitats on Svalbard within a century after
673 protection (Le Moullec et al., 2019). The increased isolation due to sea-ice cover decline
674 may have been partly counteracted by recent increases in frequency of rain-on-snow events
675 resulting in winters with poor feeding conditions (Peeters et al., 2019). That is, such extreme
676 events can sometimes aid recolonization by 'pushing' reindeer to disperse to neighboring
677 islands or peninsulas where they were previously extirpated (Hansen et al., 2011). This may
678 have accelerated the natural recolonization process, likely through a stepping-stone process
679 that conserve geographic genetic structuring, but also likely further decreased genetic
680 diversity in the peripheral recolonized populations. Still, the rapid increase in temperatures in
681 Svalbard (Isaksen et al., 2022) and associated sea-ice decline likely restrict dispersal more
682 nowadays than over the millennia prior to anthropogenic disturbance.

683

684 Stochastic changes within diverse gene families

685 For the pre-hunting and during-hunting populations, we observed strongly negative values of
686 Fay & Wu's H within F_{ST} outlier windows, whereas these F_{ST} outlier windows had generally
687 positive H values in the post-hunting population. This indicates that these genomic regions
688 were experiencing positive selection in the pre-hunting and during-hunting periods, but now
689 evolve mainly under genetic drift in the extant post-hunting population, rather than by natural
690 selection (Fay & Wu, 2000). Conceivably, selection pressures from the extreme Arctic
691 environment were the major force acting on Svalbard reindeer under natural conditions prior
692 to anthropogenic disturbance. However, genetic drift can rapidly and stochastically alter
693 allele frequencies, including at loci that were previously conserved under strong selective
694 pressures, especially in small populations (Bortoluzzi et al., 2020). Future research would be
695 needed to confirm whether there are functional consequences, e.g. affecting fecundity,
696 survival, or behavior.

697

698 In that context it is relevant to explore which genes were most affected by genetic drift
699 following overhunting, since they may have functional relevance for the health and
700 conservation of the present-day Svalbard reindeer population. Owing to the stochastic
701 nature of genetic drift, the affected genes and their coded proteins are involved in a great
702 variety of biological functions. However, among the candidate genes we identified are some
703 that play key roles in circadian rhythm regulation, fat storage, the immune system, the
704 nervous system, and basic neurological functions. One of those genes in a region highly
705 affected by genetic drift is an ortholog of *PLCH1* (phospholipase-C eta1) that encodes the
706 protein *Phosphoinositide phospholipase C (PLC)*. *PLC* is involved in cAMP-responsive
707 element-binding protein (CREB) mediated gene transcription, which activates the
708 transcription of the genes *PER1* and *PER2* (among others) in response to light (Colwell,
709 2011). *PER2* has reindeer-specific mutations and has been linked to the lack of circadian
710 rhythmicity in reindeer (Lin et al., 2019). The loss of a day/night controlled internal biological
711 clock is considered an important adaptation of reindeer to high Arctic environments, where
712 daylight conditions do not change for extended periods of the year (Lin et al., 2019; van Oort
713 et al., 2005).

714

715 We also identified genes that relate to lipid metabolism. *TRIM72 / MG53* is a multifunctional
716 gene primarily involved in cell membrane repair and tissue regeneration, but it also has been
717 linked to insulin resistance and related metabolic abnormalities, including obesity (Z. Li et al.,
718 2021; Song et al., 2013; Y. Zhang et al., 2017). *APBA1* is involved in insulin secretion (K.
719 Zhang et al., 2021). *TIMM17B* is a protein that mediates inner mitochondrial membrane
720 transport, and it may be related to insulin resistance and obesity in human populations
721 (Dubé et al., 2020). *TTC39B* has been found to be involved in lipid metabolism and coronary
722 artery diseases (Teslovich et al., 2010). *EBF2/COE2* encodes *Early B-Cell factor 2 (Ebf2)*
723 which is highly involved in the formation of brown adipose tissue (Wang et al., 2014). The
724 Svalbard reindeer's overwinter survival is dependent on its ability to build up high ratios of
725 body fat relative to total body mass over the very short snow-free season (Trondrud et al.,

726 2021), normally lasting for about three to four months. It is not unlikely that genes linked to
727 excessive fat accumulation (i.e. obesity) in other species are the underlying genes that
728 support rapid fattening in Svalbard reindeer. The outlier window containing *EBF2/COE2* was
729 the sole window with a negative *H* value in the post-hunting population, suggesting it may be
730 under strong purifying selection. This could indicate that this gene is of importance for
731 survival and therefore influenced by comparatively stronger purifying selection and
732 weaker genetic drift than other genes.

733

734 Furthermore, some of these genes we found are involved in spermatogenesis and therefore
735 might play a role in Svalbard reindeer fertility. *CCNA1* encodes the protein *Cyclin A1*, which
736 plays a vital role in male mammalian meiosis and spermatogenesis, and loss of *CCNA1*
737 causes infertility in males, as demonstrated in mice (Liu et al., 1998). *SFBT1* and *STRBP* are
738 genes involved in spermatogenesis as well (Pires-daSilva et al., 2001; J. Zhang et al., 2013).
739 We also identified *Testis-specific Y-encoded-like protein 6*, which in humans is encoded by
740 the gene *TSPYL6*, and is expressed only in the testes and involved in spermatogenesis as
741 well (Uhlén et al., 2015). *BLNK* is the coding gene for the B-cell receptor that is related to B-
742 cell function and development and therefore likely plays a role in the Svalbard reindeer
743 immune system (Fu et al., 1998).

744

745 The genes we found that are related to neuronal development are *NRXN1* and *LOC529488*.
746 *LOC529488* encodes *Glutamate decarboxylase 1* (*GAD1*), which is responsible for
747 production of the inhibitory neurotransmitter GABA (Fenalti et al., 2007). *Neurexin-1*
748 (*NRXN1*) from the Neurexin protein family of synaptic adhesion molecules is involved in
749 GABA release, and mutations in it have been linked to developmental and neuropsychiatric
750 disorders (Hu et al., 2019; Missler et al., 2003).

751

752 4.2 Implications for conservation

753 Our study supplements a growing body of research utilizing temporal datasets to assess
754 genomic health of threatened and endemic species. Our analyses indicate that historical
755 overharvest has, in addition to the previously reported population size reduction (Lønø,
756 1959), decreased overall genomic diversity in Svalbard reindeer. While subsequent
757 protection of the Svalbard reindeer and its habitat has rapidly (i.e., rapidly in an evolutionary
758 context) facilitated the recolonization of the archipelago (Le Moullec et al., 2019), the current
759 level of genome erosion could make this subspecies particularly vulnerable to future climate
760 and environmental changes and associated demographic stochasticity, especially if
761 inbreeding levels remain high (Burnett et al., 2022; Peeters et al., 2020). Our findings
762 support the view that census data on population abundances alone is not robust enough to
763 assess the conservation status of populations recovering from overharvest or other
764 anthropogenic stressors. Genomic monitoring, especially when incorporating a temporal
765 component derived from ancient DNA, can help capture a more complete understanding
766 (Jensen et al., 2022).

767

768 In combination with such genomic monitoring, translocations have been suggested as an
769 effective conservation measure (Bertola et al., 2022; Bubac et al., 2019). In contrast to other
770 species (e.g., Iberian and Alpine ibex; (Grossen et al., 2018, 2020)), translocation events
771 have strongly contributed to limit the genetic diversity loss in Svalbard reindeer caused by
772 overharvesting, likely because the translocated individuals came from the population with the
773 highest genetic diversity levels (Burnett et al., 2022). Nevertheless, a population's adaptive
774 potential relies not only on their overall level of genetic diversity, but also on functional
775 diversity. When the genetic diversity of a species is low and there has been significant
776 genetic turnover due to genetic drift rather than natural selection — as in Svalbard
777 reindeer — the species' capacity to evolve with climate change has possibly been
778 reduced.

779

780 Acknowledgements

781 This study was primarily financed by the Research Council of Norway FRIMEDBIO awards
782 325589 to MDM and 276080 to BBH, the Svalbard Environmental Protection Fund awards
783 14/137 and 15/105 to BBH, and internal NTNU funding to MDM. We also thank M. Thomas
784 P. Gilbert for his valuable financial support of the computational analyses. We are grateful to
785 Marie-Josée Nadeau and Martin Seiler at the National Laboratory of Age Determination,
786 NTNU and to Love Dalén for support and advice early in the project period. We acknowledge
787 the following sequencing centers and associates for their invaluable services: Novogene
788 (Cambridge, UK), the Norwegian National Sequencing Centre (Oslo, Norway), and the
789 NTNU Genomics Core Facility (Trondheim, Norway). Some computational analyses were
790 performed on resources provided by the Danish National Life Science Supercomputing
791 Center (Computerome) and the National Infrastructure for High Performance Computing and
792 Data Storage in Norway (UNINETT Sigma2) under projects NN8052K and NS8052K.

793 Data Accessibility Statement

794 Raw sequence data generated for this study has been archived at the European Nucleotide
795 Archive under accession code PRJEB60484. Sample metadata can be accessed in the
796 supplementary material (Table S3).

797 Author Contributions

798 FLK, MLM wrote the paper with input from all authors
799 FLK, MLM analyzed data with input from MDM, VCB, JCB, HB
800 FLK, MLM, MDM, VCB, ND, BP contributed to interpreting the results

801 MRE, VCB, MDM, BP did ancient DNA lab work

802 MLM, BBH, JR performed ancient sample acquisition and preparation

803 BBH, MLM, MDM had the original idea for the study

804 FLK, MLM, MDM, BBH, JR, BP, VCB designed the study

805 MDM, VCB supervised the paleogenomic work

806 MDM, BBH funded the study

807

808 References

809 Aanes, R., Saether, B.-E., & Øritsland, N. A. (2000). Fluctuations of an introduced population
810 of Svalbard reindeer: the effects of density dependence and climatic variation.
811 *Ecography*, 23(4), 437–443. <https://doi.org/10.1111/j.1600-0587.2000.tb00300.x>

812 Albon, S. D., Irvine, R. J., Halvorsen, O., Langvatn, R., Loe, L. E., Ropstad, E., Veiberg, V.,
813 van der Wal, R., Bjørkvoll, E. M., Duff, E. I., Hansen, B. B., Lee, A. M., Tveraa, T., &
814 Stien, A. (2017). Contrasting effects of summer and winter warming on body mass
815 explain population dynamics in a food-limited Arctic herbivore. *Global Change Biology*,
816 23(4), 1374–1389. <https://doi.org/10.1111/gcb.13435>

817 Allendorf, F. W., & Hard, J. J. (2009). Human-induced evolution caused by unnatural
818 selection through harvest of wild animals. *Proceedings of the National Academy of
819 Sciences of the United States of America*, 106 Suppl 1(Suppl 1), 9987–9994.
820 <https://doi.org/10.1073/pnas.0901069106>

821 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local
822 alignment search tool. *Journal of Molecular Biology*, 215(3), 403–410.
823 [https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2)

824 Bana, N. Á., Nyiri, A., Nagy, J., Frank, K., Nagy, T., Stéger, V., Schiller, M., Lakatos, P.,
825 Sugár, L., Horn, P., Barta, E., & Orosz, L. (2018). The red deer *Cervus elaphus* genome
826 CerEla1.0: sequencing, annotating, genes, and chromosomes. *Molecular Genetics and
827 Genomics: MGG*, 293(3), 665–684. <https://doi.org/10.1007/s00438-017-1412-3>

828 Bertola, L. D., Miller, S. M., Williams, V. L., Naude, V. N., Coals, P., Dures, S. G., Henschel,
829 P., Chege, M., Sogbohossou, E. A., Ndiaye, A., Kiki, M., Gaylard, A., Ikanda, D. K.,
830 Becker, M. S., & Lindsey, P. (2022). Genetic guidelines for translocations: Maintaining
831 intraspecific diversity in the lion (*Panthera leo*). *Evolutionary Applications*, 15(1), 22–39.
832 <https://doi.org/10.1111/eva.13318>

833 Bortoluzzi, C., Bosse, M., Derkx, M. F. L., Crooijmans, R. P. M. A., Groenen, M. A. M., &
834 Megens, H.-J. (2020). The type of bottleneck matters: Insights into the deleterious
835 variation landscape of small managed populations. *Evolutionary Applications*, 13(2),
836 330–341. <https://doi.org/10.1111/eva.12872>

837 Bowyer, R. T., Boyce, M. S., & Goheen, J. R. (2019). Conservation of the world's mammals:
838 status, protected areas, community efforts, and hunting. *Journal of*
839 <https://academic.oup.com/jmammal/article-abstract/100/3/923/5498008>

840 Bubac, C. M., Johnson, A. C., Fox, J. A., & Cullingham, C. I. (2019). Conservation
841 translocations and post-release monitoring: Identifying trends in failures, biases, and
842 challenges from around the world. *Biological Conservation*, 238, 108239. <https://doi.org/10.1016/j.biocon.2019.108239>

844 Burnett, H. A., Bieker, V. C., Le Moullec, M., Peeters, B., Rosvold, J., Pedersen, Å. Ø.,
845 Dalén, L., Loe, L. E., Jensen, H., Hansen, B. B., & Martin, M. D. (2022). Contrasting
846 genomic consequences of anthropogenic reintroduction and natural recolonisation in
847 high-arctic wild reindeer. In *bioRxiv* (p. 2022.11.25.517957).
848 <https://doi.org/10.1101/2022.11.25.517957>

849 Byun, S. A., Koop, B. F., & Reimchen, T. E. (2002). Evolution of the Dawson caribou
850 (*Rangifer tarandus dawsoni*). *Canadian Journal of Zoology*, 80(5), 956–960.
851 <https://doi.org/10.1139/z02-062>

852 CAFF. (2013). *Arctic Biodiversity Assessment: Status and trends in Arctic biodiversity.*
853 *Conservation of Arctic Flora and Fauna* (H. Meltofte (ed.)). CAFF International
854 Secretariat. https://play.google.com/store/books/details?id=-P_FngEACAAJ

855 Carøe, C., Gopalakrishnan, S., Vinner, L., Mak, S. S. T., Sinding, M. H. S., Samaniego, J.
856 A., Wales, N., Sicheritz-Pontén, T., & Gilbert, M. T. P. (2018). Single-tube library
857 preparation for degraded DNA. *Methods in Ecology and Evolution / British Ecological
858 Society*, 9(2), 410–419. <https://doi.org/10.1111/2041-210X.12871>

859 Casas-Marce, M., Marmesat, E., Soriano, L., Martínez-Cruz, B., Lucena-Perez, M., Nocete,
860 F., Rodríguez-Hidalgo, A., Canals, A., Nadal, J., Detry, C., Bernáldez-Sánchez, E.,
861 Fernández-Rodríguez, C., Pérez-Ripoll, M., Stiller, M., Hofreiter, M., Rodríguez, A.,
862 Revilla, E., Delibes, M., & Godoy, J. A. (2017). Spatiotemporal Dynamics of Genetic
863 Variation in the Iberian Lynx along Its Path to Extinction Reconstructed with Ancient
864 DNA. *Molecular Biology and Evolution*, 34(11), 2893–2907.
865 <https://doi.org/10.1093/molbev/msx222>

866 Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015).
867 Second-generation PLINK: rising to the challenge of larger and richer datasets.
868 *GigaScience*, 4, 7. <https://doi.org/10.1186/s13742-015-0047-8>

869 Collard, R.-C., Dempsey, J., & Holmberg, M. (2020). Extirpation despite regulation?
870 Environmental assessment and caribou. *Conservation Science and Practice*, 2(4).
871 <https://doi.org/10.1111/csp2.166>

872 Colwell, C. S. (2011). Linking neural activity and molecular oscillations in the SCN. *Nature
873 Reviews Neuroscience*, 12(10), 553–569. <https://doi.org/10.1038/nrn3086>

874 Crema, E. R., & Bevan, A. (2021). INFERENCE FROM LARGE SETS OF RADIOCARBON
875 DATES: SOFTWARE AND METHODS. *Radiocarbon*, 63(1), 23–39.
876 <https://doi.org/10.1017/RDC.2020.95>

877 Derocher, A. E., Wiig, Ø., & Bangjord, G. (2000). Predation of Svalbard reindeer by polar
878 bears. *Polar Biology*, 23(10), 675–678. <https://doi.org/10.1007/s003000000138>

879 Díez-Del-Molino, D., Sánchez-Barreiro, F., Barnes, I., Gilbert, M. T. P., & Dalén, L. (2018).
880 Quantifying Temporal Genomic Erosion in Endangered Species. *Trends in Ecology &
881 Evolution*, 33(3), 176–185. <https://doi.org/10.1016/j.tree.2017.12.002>

882 Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. (2005). Bayesian coalescent
883 inference of past population dynamics from molecular sequences. *Molecular Biology
884 and Evolution*, 22(5), 1185–1192. <https://doi.org/10.1093/molbev/msi103>

885 Dubé, J. J., Collyer, M. L., Trant, S., Toledo, F. G. S., Goodpaster, B. H., Kershaw, E. E., &
886 DeLany, J. P. (2020). Decreased Mitochondrial Dynamics Is Associated with Insulin
887 Resistance, Metabolic Rate, and Fitness in African Americans. *The Journal of Clinical
888 Endocrinology and Metabolism*, 105(4), 1210–1220.
889 <https://doi.org/10.1210/clinem/dgz272>

890 Dussex, N., Alberti, F., Heino, M. T., Olsen, R.-A., van der Valk, T., Ryman, N., Laikre, L.,
891 Ahlgren, H., Askeyev, I. V., Askeyev, O. V., Shaymuratova, D. N., Askeyev, A. O.,
892 Döppes, D., Friedrich, R., Lindauer, S., Rosendahl, W., Aspi, J., Hofreiter, M., Lidén, K.,
893 ... Díez-Del-Molino, D. (2020). Moose genomes reveal past glacial demography and the
894 origin of modern lineages. *BMC Genomics*, 21(1), 854. [020-07208-3](https://doi.org/10.1186/s12864-
895 020-07208-3)

896 Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of
897 individuals using the software STRUCTURE: a simulation study. *Molecular Ecology*,
898 14(8), 2611–2620. <https://doi.org/10.1111/j.1365-294X.2005.02553.x>

899 Fay, J. C., & Wu, C. I. (2000). Hitchhiking under positive Darwinian selection. *Genetics*,
900 155(3), 1405–1413. <https://doi.org/10.1093/genetics/155.3.1405>

901 Fenalti, G., Law, R. H. P., Buckle, A. M., Langendorf, C., Tuck, K., Rosado, C. J., Faux, N.
902 G., Mahmood, K., Hampe, C. S., Banga, J. P., Wilce, M., Schmidberger, J., Rossjohn,
903 J., El-Kabbani, O., Pike, R. N., Smith, A. I., Mackay, I. R., Rowley, M. J., & Whisstock, J.
904 C. (2007). GABA production by glutamic acid decarboxylase is regulated by a dynamic
905 catalytic loop. *Nature Structural & Molecular Biology*, 14(4), 280–286.
906 <https://doi.org/10.1038/nsmb1228>

907 Festa-Bianchet, M., Ray, J. C., Boutin, S., Côté, S. D., & Gunn, A. (2011). Conservation of
908 caribou (*Rangifer tarandus*) in Canada: an uncertain future. *Canadian Journal of
909 Zoology*, 89(5), 419–434. <https://doi.org/10.1139/z11-025>

910 Flagstad, Ø., Kvalnes, T., Røed, K. H., Våge, J., Strand, O., & Sæther, B.-E. (2022).
911 *Genetisk levedyktig villreinbestand på Hardangervidda* (No. 2176). Norsk institutt for
912 naturforskning. <https://brage.nina.no/nina-xmlui/handle/11250/3020843>

913 Frankham, R. (2005). Genetics and extinction. *Biological Conservation*, 126(2), 131–140.

914 <https://doi.org/10.1016/j.biocon.2005.05.002>

915 Frankham, R., Ballou, S. E. J., Briscoe, D. A., & Ballou, J. D. (2002). *Introduction to*
916 *Conservation Genetics*. Cambridge University Press.

917 <https://play.google.com/store/books/details?id=F-XB8hqZ4s8C>

918 Fu, C., Turck, C. W., Kurosaki, T., & Chan, A. C. (1998). BLNK: a central linker protein in B
919 cell activation. *Immunity*, 9(1), 93–103. [https://doi.org/10.1016/s1074-7613\(00\)80591-9](https://doi.org/10.1016/s1074-7613(00)80591-9)

920 Garcia-Erill, G., & Albrechtzen, A. (2020). Evaluation of model fit of inferred admixture
921 proportions. *Molecular Ecology Resources*, 20(4), 936–949.
922 <https://doi.org/10.1111/1755-0998.13171>

923 Gravlund, P., Meldgaard, M., Pääbo, S., & Arctander, P. (1998). Polyphyletic origin of the
924 small-bodied, high-arctic subspecies of tundra reindeer (*Rangifer tarandus*). *Molecular*
925 *Phylogenetics and Evolution*, 10(2), 151–159. <https://doi.org/10.1006/mpev.1998.0525>

926 Grossen, C., Biebach, I., Angelone-Alasaad, S., Keller, L. F., & Croll, D. (2018). Population
927 genomics analyses of European ibex species show lower diversity and higher
928 inbreeding in reintroduced populations. *Evolutionary Applications*, 11(2), 123–139.
929 <https://doi.org/10.1111/eva.12490>

930 Grossen, C., Guillaume, F., Keller, L. F., & Croll, D. (2020). Purging of highly deleterious
931 mutations through severe bottlenecks in Alpine ibex. *Nature Communications*, 11(1),
932 1001. <https://doi.org/10.1038/s41467-020-14803-1>

933 Hansen, B. B., Aanes, R., Herfindal, I., Kohler, J., & Sæther, B.-E. (2011). Climate, icing,
934 and wild arctic reindeer: past relationships and future prospects. *Ecology*, 92(10), 1917–
935 1923. <https://doi.org/10.1890/11-0095.1>

936 Hansen, B. B., Pedersen, Å. Ø., Peeters, B., Le Moullec, M., Albon, S. D., Herfindal, I.,
937 Sæther, B., Grøtan, V., & Aanes, R. (2019). Spatial heterogeneity in climate change
938 effects decouples the long-term dynamics of wild reindeer populations in the high
939 Arctic. *Global Change Biology*, March, 3656–3668. <https://doi.org/10.1111/gcb.14761>

940 Harismendy, O., Kim, J., Xu, X., & Ohno-Machado, L. (2019). Evaluating and sharing global
941 genetic ancestry in biomedical datasets. *Journal of the American Medical Informatics*
942 *Association: JAMIA*, 26(5), 457–461. <https://doi.org/10.1093/jamia/ocy194>

943 Heckeberg, N., & Wörheide, G. (2019). A comprehensive approach towards the systematics
944 of Cervidae. <https://doi.org/10.7287/peerj.preprints.27618>

945 Hoel, A. (1916). Hvorfra er Spitsbergrenen kommet? *Naturen*.

946 Hu, Z., Xiao, X., Zhang, Z., & Li, M. (2019). Genetic insights and neurobiological implications
947 from NRXN1 in neuropsychiatric disorders. *Molecular Psychiatry*, 24(10), 1400–1414.
948 <https://doi.org/10.1038/s41380-019-0438-9>

949 Isaksen, K., Nordli, Ø., Ivanov, B., Køltzow, M. A. Ø., Aaboe, S., Gjelten, H. M., Mezghani,
950 A., Eastwood, S., Førland, E., Benestad, R. E., Hanssen-Bauer, I., Brækkan, R.,
951 Sviashchennikov, P., Demin, V., Revina, A., & Karandasheva, T. (2022). Exceptional
952 warming over the Barents area. *Scientific Reports*, 12(1), 9371.
953 <https://doi.org/10.1038/s41598-022-13568-5>

954 IUCN. (2020). The IUCN red list of threatened species. Version 2020-1. *IUCN Red List of*
955 *Threatened Species* (2020).

956 Jensen, E. L., Díez-Del-Molino, D., Gilbert, M. T. P., Bertola, L. D., Borges, F., Cubric-Curik,
957 V., de Navascués, M., Frandsen, P., Heuertz, M., Hvilsom, C., Jiménez-Mena, B.,
958 Miettinen, A., Moest, M., Pečnerová, P., Barnes, I., & Vernesi, C. (2022). Ancient and
959 historical DNA in conservation policy. *Trends in Ecology & Evolution*, 37(5), 420–429.
960 <https://doi.org/10.1016/j.tree.2021.12.010>

961 Johansen, B. E., Karlsen, S. R., & Tømmervik, H. (2012). Vegetation mapping of Svalbard
962 utilising Landsat TM/ETM+ data. *The Polar Record*, 48(1), 47–63.
963 <https://doi.org/10.1017/s0032247411000647>

964 Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F., & Orlando, L. (2013).
965 mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage
966 parameters. *Bioinformatics*, 29(13), 1682–1684.
967 <https://doi.org/10.1093/bioinformatics/btt193>

968 Kircher, M., Sawyer, S., & Meyer, M. (2012). Double indexing overcomes inaccuracies in

969 multiplex sequencing on the Illumina platform. *Nucleic Acids Research*, 40(1), e3.
970 <https://doi.org/10.1093/nar/gkr771>

971 Kohn, M. H., Murphy, W. J., Ostrander, E. A., & Wayne, R. K. (2006). Genomics and
972 conservation genetics. *Trends in Ecology & Evolution*, 21(11), 629–637.
973 <https://doi.org/10.1016/j.tree.2006.08.001>

974 Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014). ANGSD: Analysis of Next
975 Generation Sequencing Data. *BMC Bioinformatics*, 15, 356.
976 <https://doi.org/10.1186/s12859-014-0356-4>

977 Kumar, S., & Subramanian, S. (2002). Mutation rates in mammalian genomes. *Proceedings
978 of the National Academy of Sciences of the United States of America*, 99(2), 803–808.
979 <https://doi.org/10.1073/pnas.022629899>

980 Kvie, K. S., Heggenes, J., Anderson, D. G., Kholodova, M. V., Sipko, T., Mizin, I., & Røed, K.
981 H. (2016). Colonizing the high arctic: Mitochondrial DNA reveals common origin of
982 Eurasian archipelagic reindeer (*Rangifer tarandus*). *PLoS One*, 11(11), 1–15.
983 <https://doi.org/10.1371/journal.pone.0165237>

984 Laikre, L., Allendorf, F. W., Aroner, L. C., Baker, C. S., Gregovich, D. P., Hansen, M. M.,
985 Jackson, J. A., Kendall, K. C., McKelvey, K., Neel, M. C., Olivier, I., Ryman, N.,
986 Schwartz, M. K., Bull, R. S., Stetz, J. B., Tallmon, D. A., Taylor, B. L., Vojta, C. D.,
987 Waller, D. M., & Waples, R. S. (2010). Neglect of Genetic Diversity in Implementation of
988 the Convention of Biological Diversity. *Conservation Biology: The Journal of the Society
989 for Conservation Biology*, 24(1), 86–88. <http://www.jstor.org/stable/40419633>

990 Lande, R., Engen, S., & Sæther, B.-E. (2003). *Stochastic Population Dynamics in Ecology
991 and Conservation*. Oxford University Press. <https://play.google.com/store/books/details?id=6KClauq8OekC>

993 Le Moullec, M., Pedersen, Å. Ø., Stien, A., Rosvold, J., & Hansen, B. B. (2019). A century of
994 conservation: The ongoing recovery of Svalbard reindeer. In *The Journal of Wildlife
995 Management* (Vol. 83, Issue 8, pp. 1676–1686). <https://doi.org/10.1002/jwmg.21761>

996 Leonardi, M., Librado, P., Der Sarkissian, C., Schubert, M., Alfarhan, A. H., Alquraishi, S. A.,
997 Al-Rasheid, K. A. S., Gamba, C., Willerslev, E., & Orlando, L. (2017). Evolutionary
998 Patterns and Processes: Lessons from Ancient DNA. *Systematic Biology*, 66(1), e1–
999 e29. <https://doi.org/10.1093/sysbio/syw059>

1000 Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-
1001 MEM. In *arXiv [q-bio.GN]*. arXiv. <http://arxiv.org/abs/1303.3997>

1002 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis,
1003 G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The
1004 Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078–2079.
1005 <https://doi.org/10.1093/bioinformatics/btp352>

1006 Lin, Z., Chen, L., Chen, X., Zhong, Y., Yang, Y., Xia, W., Liu, C., Zhu, W., Wang, H., Yan, B.,
1007 Yang, Y., Liu, X., Kvie, K. S., Røed, K. H., Wang, K., Xiao, W., Wei, H., Li, G., Heller, R.,
1008 ... Li, Z. (2019). Biological adaptations in the Arctic cervid, the reindeer (*Rangifer
1009 tarandus*). *Science*, 364(6446). <https://doi.org/10.1126/science.aav6312>

1010 Liu, D., Matzuk, M. M., Sung, W. K., Guo, Q., Wang, P., & Wolgemuth, D. J. (1998). Cyclin
1011 A1 is required for meiosis in the male mouse. *Nature Genetics*, 20(4), 377–380.
1012 <https://doi.org/10.1038/3855>

1013 Li, Z., Lin, Z., Ba, H., Chen, L., Yang, Y., Wang, K., Qiu, Q., Wang, W., & Li, G. (2017). Draft
1014 genome of the reindeer (*Rangifer tarandus*). *GigaScience*, 6(12), 1–5.
1015 <https://doi.org/10.1093/gigascience/gix102>

1016 Li, Z., Wang, L., Yue, H., Whitson, B. A., Haggard, E., Xu, X., & Ma, J. (2021). MG53, A
1017 Tissue Repair Protein with Broad Applications in Regenerative Medicine. *Cells*, 10(1).
1018 <https://doi.org/10.3390/cells10010122>

1019 Loe, L. E., Liston, G. E., Pigeon, G., Barker, K., Horvitz, N., Stien, A., Forchhammer, M.,
1020 Getz, W. M., Irvine, R. J., Lee, A., Movik, L. K., Mysterud, A., Pedersen, Å. Ø., Reinking,
1021 A. K., Ropstad, E., Trondrud, L. M., Tveraa, T., Veiberg, V., Hansen, B. B., & Albon, S.
1022 D. (2020). The neglected season: Warmer autumns counteract harsher winters and
1023 promote population growth in Arctic reindeer. *Global Change Biology*.

1024 <https://doi.org/10.1111/gcb.15458>

1025 Lønø, O. (1959). REINEN PÅ SVALBARD. *Norsk Polarinstitutt, Oslo, Norway*.

1026 <https://brage.npolar.no/npolar-xmlui/bitstream/handle/11250/2395010/>

1027 Meddelelser083.pdf?sequence=1

1028 Lorenzen, E. D., Nogués-Bravo, D., Orlando, L., Weinstock, J., Binladen, J., Marske, K. A.,

1029 Ugan, A., Borregaard, M. K., Gilbert, M. T. P., Nielsen, R., Ho, S. Y. W., Goebel, T.,

1030 Graf, K. E., Byers, D., Stenderup, J. T., Rasmussen, M., Campos, P. F., Leonard, J. A.,

1031 Koepfli, K.-P., ... Willerslev, E. (2011). Species-specific responses of Late Quaternary

1032 megafauna to climate and humans. *Nature*, 479(7373), 359–364.

1033 <https://doi.org/10.1038/nature10574>

1034 Luypaert, T., Hagan, J. G., McCarthy, M. L., & Poti, M. (2020). Status of marine biodiversity

1035 in the Anthropocene. In *YOUNMARES 9-The Oceans: Our research, our future* (pp. 57–

1036 82). Springer, Cham.

1037 [https://library.oapen.org/bitstream/handle/20.500.12657/22870/1007291.pdf?](https://library.oapen.org/bitstream/handle/20.500.12657/22870/1007291.pdf?sequence=1#page=72)

1038 sequence=1#page=72

1039 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella,

1040 K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The Genome Analysis

1041 Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.

1042 *Genome Research*, 20(9), 1297–1303. <https://doi.org/10.1101/gr.107524.110>

1043 Meisner, J., & Albrechtsen, A. (2018). Inferring Population Structure and Admixture

1044 Proportions in Low-Depth NGS Data. *Genetics*, 210(2), 719–731.

1045 <https://doi.org/10.1534/genetics.118.301336>

1046 Missler, M., Zhang, W., Rohlmann, A., Kattenstroth, G., Hammer, R. E., Gottmann, K., &

1047 Südhof, T. C. (2003). Alpha-neurexins couple Ca²⁺ channels to synaptic vesicle

1048 exocytosis. *Nature*, 423(6943), 939–948. <https://doi.org/10.1038/nature01755>

1049 Mitchell, K. J., & Rawlence, N. J. (2021). Examining Natural History through the Lens of

1050 Palaeogenomics. *Trends in Ecology & Evolution*, 36(3), 258–267.

1051 <https://doi.org/10.1016/j.tree.2020.10.005>

1052 Nei, M. (1987). *Molecular Evolutionary Genetics*. Columbia University Press.

1053 <https://doi.org/10.7312/nei-92038>

1054 Nei, M., & Tajima, F. (1981). DNA polymorphism detectable by restriction endonucleases.

1055 *Genetics*, 97(1), 145–163. <https://doi.org/10.1093/genetics/97.1.145>

1056 Nielsen, R., Korneliussen, T., Albrechtsen, A., Li, Y., & Wang, J. (2012). SNP calling,

1057 genotype calling, and sample allele frequency estimation from New-Generation

1058 Sequencing data. *PLoS One*, 7(7), e37558.

1059 <https://doi.org/10.1371/journal.pone.0037558>

1060 Paradis, E. (2010). pegas: an R package for population genetics with an integrated–modular

1061 approach. *Bioinformatics*, 26(3), 419–420. <https://doi.org/10.1093/bioinformatics/btp696>

1062 Paradis, E., & Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics and

1063 evolutionary analyses in R. *Bioinformatics*, 35(3), 526–528.

1064 <https://doi.org/10.1093/bioinformatics/bty633>

1065 Peeters, B., Le Moullec, M., Raeymaekers, J. A. M., Marquez, J. F., Røed, K. H., Pedersen,

1066 Å. Ø., Veiberg, V., Loe, L. E., & Hansen, B. B. (2020). Sea ice loss increases genetic

1067 isolation in a high Arctic ungulate metapopulation. *Global Change Biology*, 26(4), 2028–

1068 2041. <https://doi.org/10.1111/gcb.14965>

1069 Peeters, B., Pedersen, Å. Ø., Loe, L. E., Isaksen, K., Veiberg, V., Stien, A., Kohler, J., Gallet,

1070 J.-C., Aanes, R., & Hansen, B. B. (2019). Spatiotemporal patterns of rain-on-snow and

1071 basal ice in high Arctic Svalbard: detection of a climate-cryosphere regime shift.

1072 *Environmental Research Letters: ERL [Web Site]*, 14(1), 015002.

1073 <https://doi.org/10.1088/1748-9326/aaefb3>

1074 Picard toolkit. (2019). In *Broad Institute, GitHub repository*. Broad Institute.

1075 <http://broadinstitute.github.io/picard/>

1076 Pires-daSilva, A., Nayernia, K., Engel, W., Torres, M., Stoykova, A., Chowdhury, K., &

1077 Gruss, P. (2001). Mice deficient for spermatid perinuclear RNA-binding protein show

1078 neurologic, spermatogenic, and sperm morphological abnormalities. *Developmental*

1079 *Biology*, 233(2), 319–328. <https://doi.org/10.1006/dbio.2001.0169>

1080 Puechmaille, S. J. (2016). The program structure does not reliably recover the correct
1081 population structure when sampling is uneven: subsampling and new estimators
1082 alleviate the problem. *Molecular Ecology Resources*, 16(3), 608–627.
1083 <https://doi.org/10.1111/1755-0998.12512>

1084 Quinlan, A. R. (2014). BEDTools: The Swiss-Army Tool for Genome Feature Analysis.
1085 *Current Protocols in Bioinformatics / Editorial Board, Andreas D. Baxevanis ... [et Al.]*,
1086 47, 11.12.1–34. <https://doi.org/10.1002/0471250953.bi1112s47>

1087 R Core Team. (2021). *R: A Language and Environment for Statistical Computing*. R
1088 Foundation for Statistical Computing. <https://www.R-project.org/>

1089 Reimer, P. J. (2020). Composition and consequences of the IntCal20 radiocarbon calibration
1090 curve. *Quaternary Research*, 96, 22–27. <https://doi.org/10.1017/qua.2020.42>

1091 Reimers, E. (1984). Body composition and population regulation of Svalbard reindeer.
1092 *Rangelands*, 4(2), 16–21. <https://doi.org/10.7557/2.4.2.499>

1093 Robin, M., Ferrari, G., Akgül, G., Münger, X., von Seth, J., Schuenemann, V. J., Dalén, L., &
1094 Grossen, C. (2022). Ancient mitochondrial and modern whole genomes unravel massive
1095 genetic diversity loss during near extinction of Alpine ibex. *Molecular Ecology*, 31(13),
1096 3548–3565. <https://doi.org/10.1111/mec.16503>

1097 Rohland, N., & Reich, D. (2012). Cost-effective, high-throughput DNA sequencing libraries
1098 for multiplexed target capture. *Genome Research*, 22(5), 939–946.
1099 <https://doi.org/10.1101/gr.128124.111>

1100 Sánchez-Barreiro, F., Gopalakrishnan, S., Ramos-Madrigal, J., Westbury, M. V., de Manuel,
1101 M., Margaryan, A., Ciucani, M. M., Vieira, F. G., Patramanis, Y., Kalthoff, D. C.,
1102 Timmons, Z., Sicheritz-Pontén, T., Dalén, L., Ryder, O. A., Zhang, G., Marquès-Bonet,
1103 T., Moodley, Y., & Gilbert, M. T. P. (2021). Historical population declines prompted
1104 significant genomic erosion in the northern and southern white rhinoceros
1105 (*Ceratotherium simum*). *Molecular Ecology*, 30(23), 6355–6369. <https://doi.org/10.1111/mec.16043>

1106 Schubert, M., Ermini, L., Der Sarkissian, C., Jónsson, H., Ginolhac, A., Schaefer, R., Martin,
1107 M. D., Fernández, R., Kircher, M., McCue, M., Willerslev, E., & Orlando, L. (2014).
1108 Characterization of ancient and modern genomes by SNP detection and phylogenomic
1109 and metagenomic analysis using PALEOMIX. *Nature Protocols*, 9(5), 1056–1082.
1110 <https://doi.org/10.1038/nprot.2014.063>

1111 Skotte, L., Korneliussen, T. S., & Albrechtsen, A. (2013). Estimating individual admixture
1112 proportions from next generation sequencing data. *Genetics*, 195(3), 693–702.
1113 <https://doi.org/10.1534/genetics.113.154138>

1114 Song, R., Peng, W., Zhang, Y., Lv, F., Wu, H.-K., Guo, J., Cao, Y., Pi, Y., Zhang, X., Jin, L.,
1115 Zhang, M., Jiang, P., Liu, F., Meng, S., Zhang, X., Jiang, P., Cao, C.-M., & Xiao, R.-P.
1116 (2013). Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic
1117 disorders. *Nature*, 494(7437), 375–379. <https://doi.org/10.1038/nature11834>

1118 Spielman, D., Brook, B. W., & Frankham, R. (2004). Most species are not driven to extinction
1119 before genetic factors impact them. *Proceedings of the National Academy of Sciences
1120 of the United States of America*, 101(42), 15261–15264.
1121 <https://doi.org/10.1073/pnas.0403809101>

1122 Stempniewicz, L., Kulaszewicz, I., & Aars, J. (2021). Yes, they can: polar bears Ursus
1123 maritimus successfully hunt Svalbard reindeer Rangifer tarandus platyrhynchus. *Polar
1124 Biology*, 44(11), 2199–2206. <https://doi.org/10.1007/s00300-021-02954-w>

1125 Taylor, R. S., Horn, R. L., Zhang, X., Golding, G. B., Manseau, M., & Wilson, P. J. (2019).
1126 The Caribou (Rangifer tarandus) Genome. *Genes*, 10(7), 540.
1127 <https://doi.org/10.3390/genes10070540>

1128 Templeton, A. R., Crandall, K. A., & Sing, C. F. (1992). A cladistic analysis of phenotypic
1129 associations with haplotypes inferred from restriction endonuclease mapping and DNA
1130 sequence data. III. Cladogram estimation. *Genetics*, 132(2), 619–633.
1131 <https://doi.org/10.1093/genetics/132.2.619>

1132 Teslovich, T. M., Musunuru, K., Smith, A. V., Edmondson, A. C., Stylianou, I. M., Koseki, M.,

1134 Pirruccello, J. P., Ripatti, S., Chasman, D. I., Willer, C. J., Johansen, C. T., Fouchier, S.
1135 W., Isaacs, A., Peloso, G. M., Barbalic, M., Ricketts, S. L., Bis, J. C., Aulchenko, Y. S.,
1136 Thorleifsson, G., ... Kathiresan, S. (2010). Biological, clinical and population relevance
1137 of 95 loci for blood lipids. *Nature*, 466(7307), 707–713.
1138 <https://doi.org/10.1038/nature09270>

1139 Therkildsen, N. O., Wilder, A. P., Conover, D. O., Munch, S. B., Baumann, H., & Palumbi, S.
1140 R. (2019). Contrasting genomic shifts underlie parallel phenotypic evolution in response
1141 to fishing. *Science*, 365(6452), 487–490. <https://doi.org/10.1126/science.aaw7271>

1142 Trondrud, L. M., Pigeon, G., Król, E., Albon, S., Evans, A. L., Arnold, W., Hambly, C., Irvine,
1143 R. J., Ropstad, E., Stien, A., Veiberg, V., Speakman, J. R., & Loe, L. E. (2021). Fat
1144 storage influences fasting endurance more than body size in an ungulate. *Functional
1145 Ecology*, 35(7), 1470–1480. <https://doi.org/10.1111/1365-2435.13816>

1146 Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A.,
1147 Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I., Edlund, K., Lundberg, E.,
1148 Navani, S., Szigyarto, C. A.-K., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S.,
1149 ... Pontén, F. (2015). Proteomics. Tissue-based map of the human proteome. *Science*,
1150 347(6220), 1260419. <https://doi.org/10.1126/science.1260419>

1151 UniProt Consortium. (2021). UniProt: the universal protein knowledgebase in 2021. *Nucleic
1152 Acids Research*, 49(D1), D480–D489. <https://doi.org/10.1093/nar/gkaa1100>

1153 van der Bilt, W. G. M., D'Andrea, W. J., Werner, J. P., & Bakke, J. (2019). Early Holocene
1154 temperature oscillations exceed amplitude of observed and projected warming in
1155 Svalbard lakes. *Geophysical Research Letters*, 46(24), 14732–14741.
1156 <https://doi.org/10.1029/2019gl084384>

1157 van der Knaap, W. O. (1989). Past Vegetation and Reindeer on Edgeoya (Spitsbergen)
1158 Between c. 7900 and c. 3800 BP, Studied by Means of Peat Layers and Reindeer
1159 Faecal Pellets. *Journal of Biogeography*, 16(4), 379–394.
1160 <https://doi.org/10.2307/2845229>

1161 van der Valk, T., Díez-Del-Molino, D., Marques-Bonet, T., Guschanski, K., & Dalén, L.
1162 (2019). Historical Genomes Reveal the Genomic Consequences of Recent Population
1163 Decline in Eastern Gorillas. *Current Biology: CB*, 29(1), 165–170.e6.
1164 <https://doi.org/10.1016/j.cub.2018.11.055>

1165 van Oort, B. E. H., Tyler, N. J. C., Gerkema, M. P., Folkow, L., Blix, A. S., & Stokkan, K.-A.
1166 (2005). Circadian organization in reindeer. *Nature*, 438(7071), 1095–1096.
1167 <https://doi.org/10.1038/4381095a>

1168 Wang, W., Kissig, M., Rajakumari, S., Huang, L., Lim, H.-W., Won, K.-J., & Seale, P. (2014).
1169 Ebf2 is a selective marker of brown and beige adipogenic precursor cells. *Proceedings
1170 of the National Academy of Sciences of the United States of America*, 111(40), 14466–
1171 14471. <https://doi.org/10.1073/pnas.1412685111>

1172 Watterson, G. A. (1975). On the number of segregating sites in genetical models without
1173 recombination. *Theoretical Population Biology*, 7(2), 256–276.
1174 [https://doi.org/10.1016/0040-5809\(75\)90020-9](https://doi.org/10.1016/0040-5809(75)90020-9)

1175 Werner, K., Müller, J., Husum, K., Spielhagen, R. F., Kandiano, E. S., & Polyak, L. (2016).
1176 Holocene sea subsurface and surface water masses in the Fram Strait – Comparisons
1177 of temperature and sea-ice reconstructions. *Quaternary Science Reviews*, 147, 194–
1178 209. <https://doi.org/10.1016/j.quascirev.2015.09.007>

1179 Williamsen, L., Pigeon, G., Mysterud, A., Stien, A., Forchhammer, M., & Loe, L. E. (2019).
1180 Keeping cool in the warming Arctic: thermoregulatory behaviour by Svalbard reindeer
1181 (*Rangifer tarandus platyrhynchus*). *Canadian Journal of Zoology*, 97(12), 1177–1185.
1182 <https://doi.org/10.1139/cjz-2019-0090>

1183 Wollebaek, A. (1926). *The Spitsbergen Reindeer:(rangifer Tarandus Spetsbergensis)*.
1184 Dybwad.

1185 Yannic, G., Pellissier, L., Ortego, J., Lecomte, N., Couturier, S., Cuyler, C., Dussault, C.,
1186 Hundertmark, K. J., Irvine, R. J., Jenkins, D. A., Kolpashikov, L., Mager, K., Musiani, M.,
1187 Parker, K. L., Røed, K. H., Sipko, T., Þórisson, S. G., Weckworth, B. V., Guisan, A., ...
1188 Côté, S. D. (2013). Genetic diversity in caribou linked to past and future climate change.

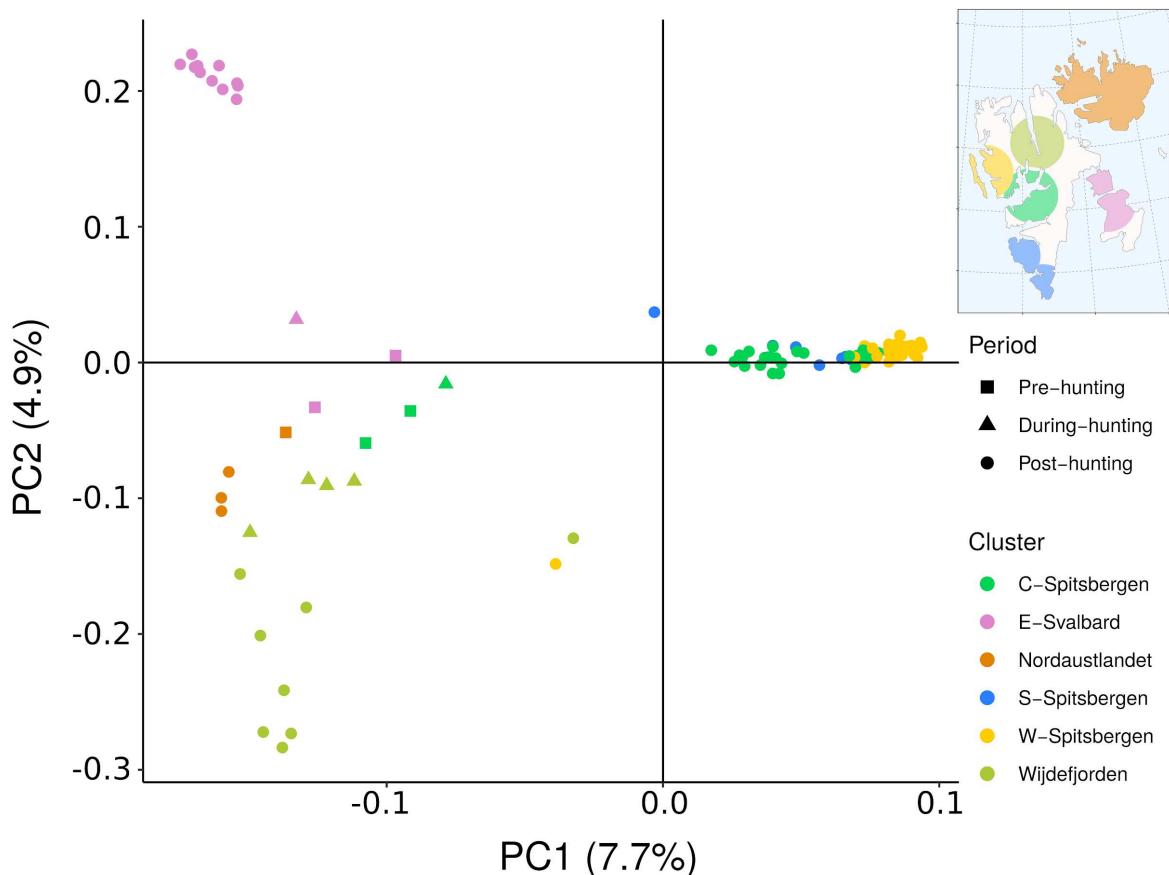
1189 *Nature Climate Change*, 4(2), 132–137. <https://doi.org/10.1038/nclimate2074>
1190 Zhang, J., Bonasio, R., Strino, F., Kluger, Y., Holloway, J. K., Modzelewski, A. J., Cohen, P.
1191 E., & Reinberg, D. (2013). SFMBT1 functions with LSD1 to regulate expression of
1192 canonical histone genes and chromatin-related factors. *Genes & Development*, 27(7),
1193 749–766. <https://doi.org/10.1101/gad.210963.112>
1194 Zhang, K., Wang, T., Liu, X., Yuan, Q., Xiao, T., Yuan, X., Zhang, Y., Yuan, L., & Wang, Y.
1195 (2021). CASK, APBA1, and STXBP1 collaborate during insulin secretion. *Molecular and*
1196 *Cellular Endocrinology*, 520, 111076. <https://doi.org/10.1016/j.mce.2020.111076>
1197 Zhang, Y., Wu, H.-K., Lv, F., & Xiao, R.-P. (2017). MG53: Biological Function and Potential
1198 as a Therapeutic Target. *Molecular Pharmacology*, 92(3), 211–218.
1199 <https://doi.org/10.1124/mol.117.108241>

1200 **Tables**

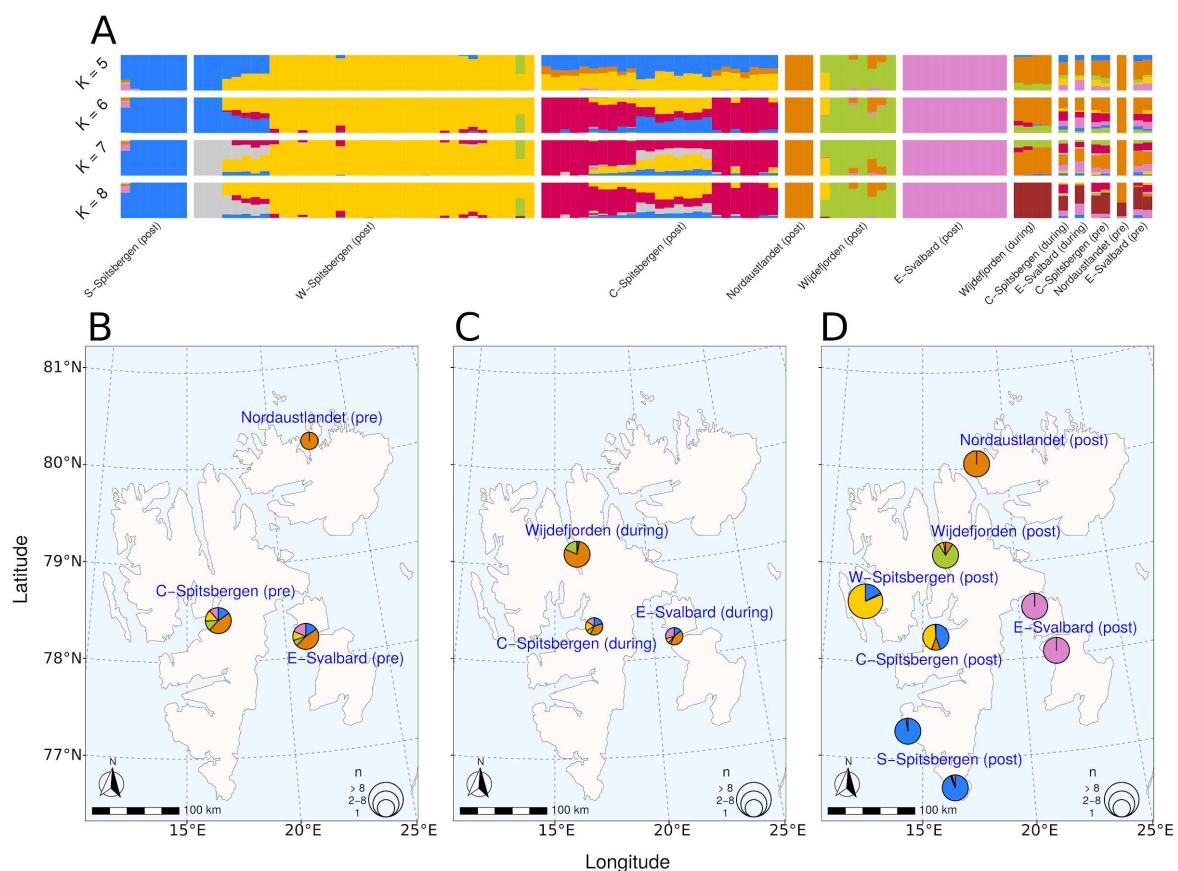
1201 **Table 1.** Ancient Svalbard reindeer sample overview. Sample provenance ('E' = East, 'C' = central) indicated with their UTM East and UTM
 1202 North coordinates. Reported ages are calibrated radiocarbon-dated ages (IntCal20) in calendar years before present (BP, before 1950 CE).
 1203 Summary of sample and mean mapping depths of ancient nuclear genomes (nDNA) against the Svalbard reindeer and caribou reference
 1204 genome, as well as the reindeer mitochondrial (mtDNA) reference genome. Sample provenance, sequencing, and mapping statistics of ancient
 1205 samples against the Svalbard reindeer reference genome. Reported ages are calibrated carbon-dated ages (IntCal20) in calendar years before
 1206 present (BP, before 1950 CE). * = Radiocarbon date from previous study (Le Moullec et al., 2019). ^a = dated at the Uppsala Angström
 1207 Laboratory. ^b = dated at the Norwegian University of Science and Technology, The National Laboratory of Age Determination.
 1208

ID	Area	UTM-E	UTM-N	Median age (BP)	Age range (BP, 2 sigma)	Hunting period	Svalbard reference nDNA	Caribou reference nDNA	Reindeer reference mtDNA	Analyses included
B20	E-Svalbard	651368	8661900	2351	2329-2460 ^b	Pre	0.02	0.02	956	mtDNA
BBH7	Nordaustlandet	641458	8915138	511	500-521 ^{b*}	Pre	3.72	3.66	386	nDNA mtDNA
M44	C-Spitsbergen	536291	8707272	597	525-644 ^a	Pre	6.78	6.67	534	nDNA mtDNA
M46	C-Spitsbergen	536023	8706959	703	668-768 ^a	Pre	2.65	2.60	442	nDNA mtDNA
M68	C-Spitsbergen	545390	8700500	NA	0-447 ^a	During	3.99	3.93	211	nDNA mtDNA
M72	C-Spitsbergen	546200	8701580	958	916-1057 ^a	Pre	0.03	0.03	90	mtDNA

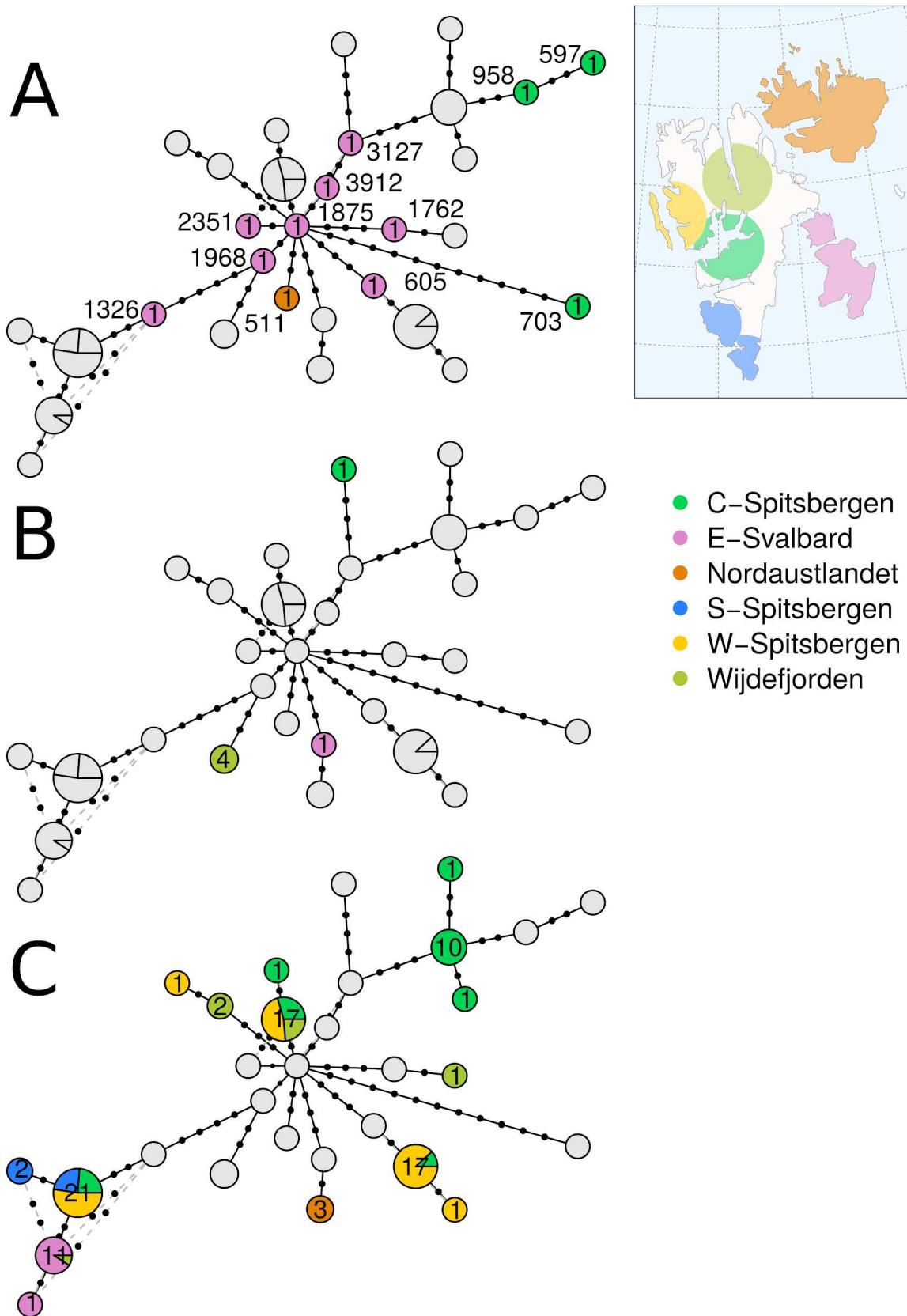
MB60	E-Svalbard	637956	8689040	NA	27-260 ^b	During	1.52	1.50	284	nDNA mtDNA
MDV11	E-Svalbard	636986	8688774	605	549-647 ^b	Pre	4.55	4.49	1870	nDNA mtDNA
MLM12	E-Svalbard	651249	8661821	1326	1298-1349 ^b	Pre	0.02	0.02	30	mtDNA
MLM16	E-Svalbard	651084	8661716	1762	1716-1821 ^b	Pre	0.04	0.04	118	mtDNA
MLM51	E-Svalbard	658011	8650398	1968	1894-2046 ^b	Pre	0.07	0.07	243	mtDNA
MLM61	E-Svalbard	637640	8688976	1875	1825-1935 ^b	Pre	0.57	0.20	33	nDNA mtDNA
MLM80	E-Svalbard	658480	8700183	3912	3846-3973 ^b	Pre	0.02	0.02	205	mtDNA
MLM82	E-Svalbard	658632	8700166	3127	3063-3212 ^b	Pre	0.03	0.02	192	mtDNA
R20	Wijdfjorden	525246	8785449	NA	0-450 ^b	During	12.22	12.14	214	nDNA mtDNA
R25a	Wijdfjorden	525722	8783391	NA	8-277 ^b	During	4.19	4.13	411	nDNA mtDNA


R29a	Wijdfjorden	525722	8783391	NA	12-267 ^b	During	0.73	0.72	57	nDNA mtDNA
R36	Wijdfjorden	525768	8783368	NA	1-282 ^b	During	3.96	3.91	135	nDNA mtDNA

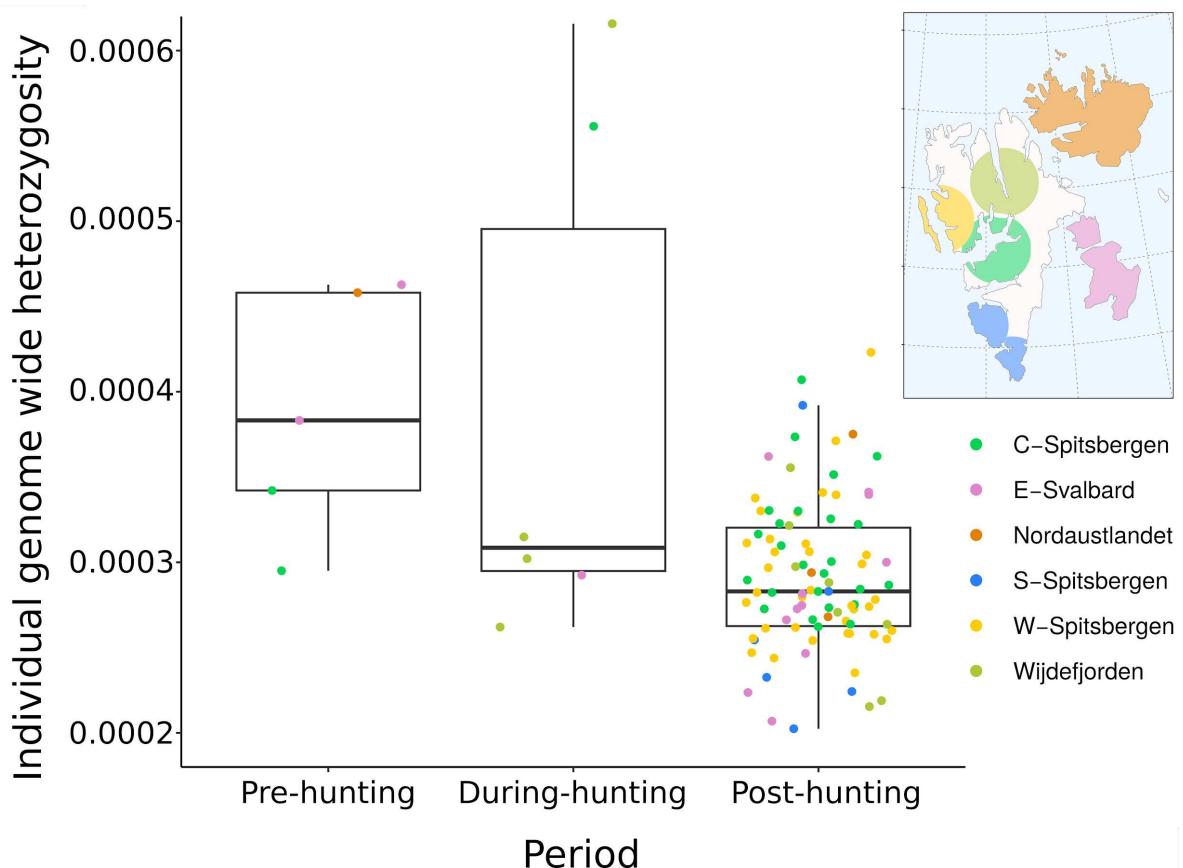
1209 **Table 2.** Measures of diversity statistics from the mitogenome analysis and genomic diversity. N = number of individuals; Num. haplo. =
 1210 Number of haplotypes, Num. seg. sites. = Number of segregation sites, Hap. div = haplotype diversity and its standard deviation, Nuc. div =
 1211 nuclear diversity, Med. het. = median heterozygosity, Nuc. div. = nucleotide diversity, N_e = effective population size.


1212
1213

Time period	Mitochondrial genome					Nuclear genome				
	N	Num. haplo.	Num. seg. sites	Hap. div.	Nuc. div.	N	Med. het.	Nuc. div.	N_e	
Pre-hunting	12	12	32	1.00±5.79E-04	4.88E-04	5	0.00038	3.34E-04	5.21E+03	
During-hunting	6	3	13	0.60±4.54E-02	3.03E-04	6	0.00031	3.35E-04	5.84E+03	
Ancient (Pre- and During-hunting)	18	15	40	0.96±11.01E-04	4.84E-04	11				
Post-hunting	90	15	36	0.85±2.42E-04	4.50E-04	90	0.00028	3.23E-04	4.66E+03	
All genomes	108	30	56	0.90±1.80E-04	5.16E-04	101				

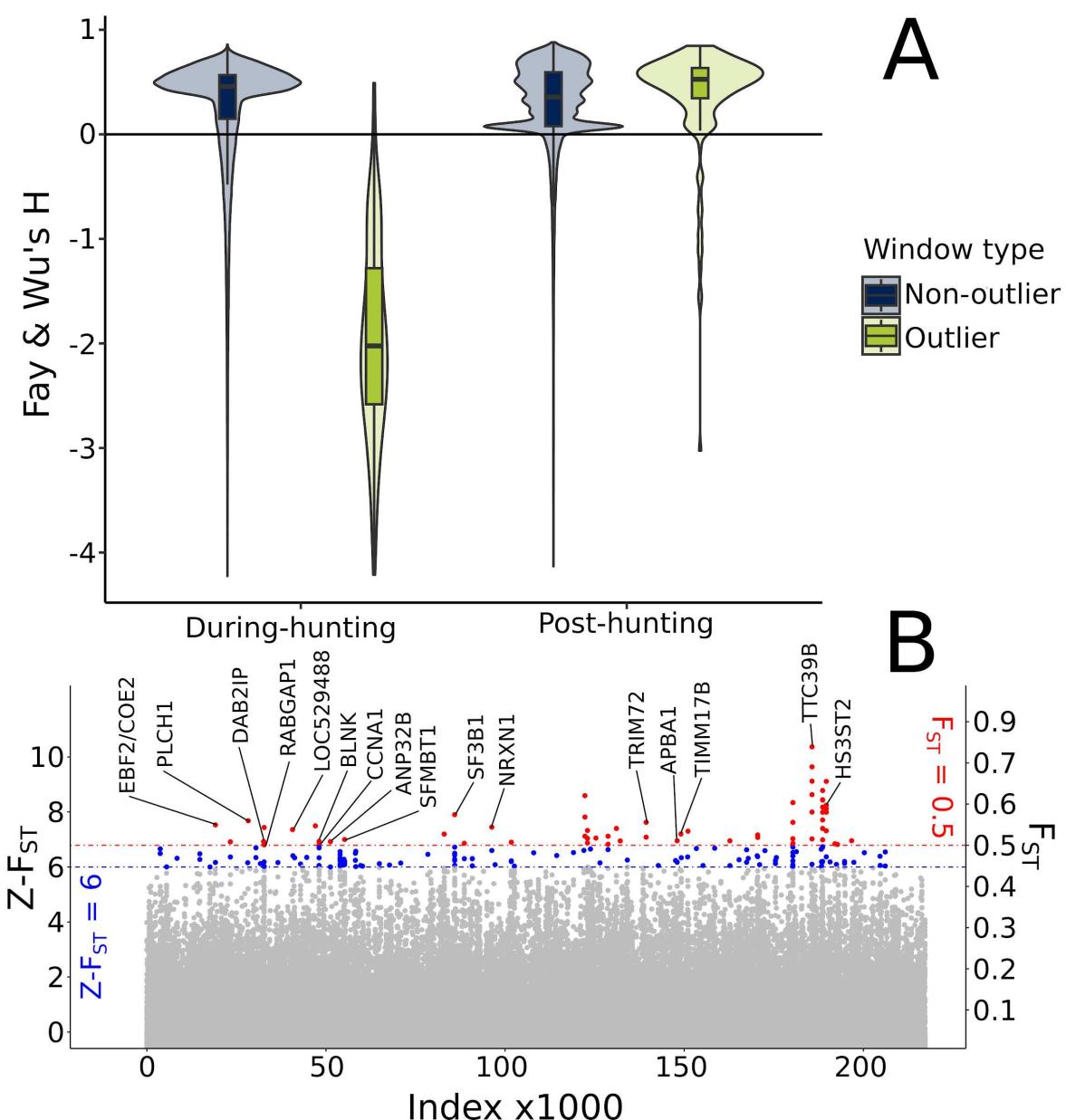

1214 **Figures**

1215
1216 **Figure 1: Principal component analysis (PCA) of the genomic variation of Svalbard**
1217 **reindeer.** The first two principal components (PCs) are shown. Color denotes affiliation with
1218 a geographic cluster. Shape denotes affiliation with a time period. C-Spitsbergen = Central
1219 Spitsbergen; S-Spitsbergen = South Spitsbergen; W-Spitsbergen = West Spitsbergen; E-
1220 Svalbard = East Svalbard.


1221
1222 **Figure 2: Admixture analysis of Svalbard reindeer in relation to sampling location.** **A:**
1223 Bar plot of admixture proportions for $K = 2$ to $K = 8$. Each bar represents one individual
1224 Svalbard reindeer and the color represents affiliation to a proposed ancestral population.
1225 Individuals are grouped by spatiotemporal groups as defined by cluster analysis. **B-D:**
1226 Admixture proportions by sampling location for $K = 5$. Individuals sampled within 80 km of
1227 each other are clustered together into the same pie. Pie size is scaled with the number of
1228 individuals. Individual ancestry proportions **B** before the hunting period, **C** during the hunting
1229 period, and **D** after the hunting period. C-Spitsbergen = Central Spitsbergen; S-Spitsbergen
1230 = South Spitsbergen; W-Spitsbergen = West Spitsbergen; E-Svalbard = East Svalbard.

1231
 1232 **Figure 3. Haplotype network of Svalbard reindeer mitogenomes during three temporal**
 1233 **hunting periods. A: Pre-hunting. B: During-hunting. C: Post-hunting.** The number of
 1234 individuals sharing the same haplotype is indicated in the center of the circle. Gray circles
 1235 indicate the positioning of haplotypes that do not belong to the time period in focus. The
 1236 diameter of the circles indicates the number of individuals sharing that haplotype and is

1237 scaled from 1 (i.e., min. haplotype number of 1) to 2 (i.e., max. haplotype number of 21). In
1238 the pre-hunting period, calibrated carbon-dated ages are reported as the median age
1239 probability in years Before Present (before 1950 AD). Calibrated age ranges are reported in
1240 Table 1. C-Spitsbergen = Central Spitsbergen; S-Spitsbergen = South Spitsbergen; W-
1241 Spitsbergen = West Spitsbergen; E-Svalbard = East Svalbard.


1242

1243

1244

Figure 4. Individual genome-wide heterozygosity by time period. The points are horizontally scattered to increase visibility. Thick horizontal line in the boxplot represents the median, the lower and upper box bound represent the 25 and 75 percentile, respectively. C-Spitsbergen = Central Spitsbergen; S-Spitsbergen = South Spitsbergen; W-Spitsbergen = East Svalbard.

1249
1250 **Figure 5: Outlier genomic windows and their genes**

1251 **A:** Comparison of Fay & Wu's H in genomic windows as measure of neutrality. Here, H was
1252 measured in genomic regions (windows) in genomes of individuals living during- (left) and
1253 post-hunting (right). Regions that strongly diverged ($z-F_{ST} \geq 6$) between the during-hunting
1254 and post-hunting time periods are called 'outliers' (green), those that are not 'non-outliers'
1255 (blue). Each violin shows the distribution of H in each type/period pair respectively. **B:**
1256 Manhattan plot of genomic windows, highlighting windows that cross the threshold of $Z-F_{ST}$
1257 greater than or equal to 6 (blue) and F_{ST} of greater than or equal to 0.5 (red). High F_{ST}
1258 windows that intersect with described genes are labeled with the gene name.