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Abstract

Overharvest can severely reduce the abundance and distribution of a species and thereby

impact its genetic diversity and threaten its future viability. Overharvest remains an ongoing

issue for Arctic mammals, which due to climate change now also confront one of the fastest

changing  environments  on  Earth.  The  high-Arctic  Svalbard  reindeer  (Rangifer  tarandus

platyrhynchus),  endemic  to  Svalbard,  experienced  a  harvest-induced  demographic

bottleneck that occurred during the 17-20th century. Here we investigate changes in genetic

diversity,  population  structure  and  gene-specific  differentiation  during  and  after  this

overharvesting  event.  Using  whole-genome shotgun  sequencing,  we  generated  the  first

ancient nuclear (n = 11) and mitochondrial (n = 18) genomes from Svalbard reindeer (up to

4000 BP) and integrated these data with a large collection of modern genome sequences (n

= 90), to infer temporal changes. We show that hunting resulted in major genetic changes

and restructuring in reindeer  populations.  Near-extirpation and 400 years of  genetic  drift

have  altered  the allele  frequencies  of  important  genes  contributing  to  diverse  biological

functions.  Median  heterozygosity  was  reduced  by  23%,  while  the  mitochondrial  genetic

diversity was reduced only to a limited extent, likely due to low pre-harvest diversity and a

complex post-harvest recolonization process. Such genomic erosion and genetic isolation of

populations  due  to  past  anthropogenic  disturbance  will  likely  play  a  major  role  in

metapopulation dynamics (i.e., extirpation, recolonization) under further climate change. Our

results from a high-arctic case study therefore emphasize the need to understand the long-

term interplay of past, current, and future stressors in wildlife conservation.

Keywords:  conservation  genomics,  Svalbard  reindeer,  ancient  DNA,  bottleneck,  genomic

erosion, population genomics
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1.Introduction

Excessive harvest reduces population size and genetic diversity and can ultimately lead to

local extirpation or global (i.e., species) extinction (Frankham, 2005; Spielman et al., 2004).

Overharvesting, also called overexploitation, has for long impacted fish and large mammals

and occur today in combination with climate change and habitat loss (Bowyer et al., 2019;

IUCN,  2020;  Lorenzen  et  al.,  2011;  Luypaert  et  al.,  2020).  Populations  may  recover

demographically after overharvest and near-extinction events, but their genetic diversity can

remain  low  (Lande  et  al.,  2003).  Harvest-induced  bottlenecks  will  likely  also  reduce  a

species’ resilience and adaptive capabilities when facing future challenges such as global

climate change (Frankham et al., 2002). Nevertheless, despite that genetic diversity, along

with species and ecosystem diversity, is recognized as one of the three pillars of biodiversity,

it is not yet widely considered by conservation policymakers (Jensen et al., 2022; Laikre et

al., 2010). It is therefore important to quantify the loss of genetic variation and changes in

population  genetic  structure  following  such  bottlenecks,  in  order  to  appropriately  set

conservation measures and to better predict the trajectory of the potential recovery.

Contemporary genetic material can hold considerable information about past demographic

processes. For instance, methods employing coalescent theory can retrospectively detect

genetic bottlenecks,  and inform on their magnitude and timing  (Drummond et al.,  2005).

However,  information  about  lineages  that  went  extinct  during  the  bottleneck  is  lost.

Therefore,  investigation  of  effects  of  past  bottlenecks  like  overharvesting  from  only

contemporary  material  may  overlook  the  severity  of  the  event  (Leonardi  et  al.,  2017).

Advances in the fields of genomics and ancient DNA (aDNA) enable population level whole

genome sequencing of nuclear and mitochondrial genomes, for instance of specimens living

prior  to  harvest-induced  bottlenecks  (Leonardi  et  al.,  2017;  Mitchell  & Rawlence,  2021).

Ancient DNA is therefore a powerful tool that allows for direct temporal comparisons, setting
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a “baseline” for the state of the species before anthropogenic intrusions (Díez-Del-Molino et

al., 2018; Jensen et al., 2022). The respective measures of genetic change through time are

valuable in ecological,  evolutionary and conservation contexts,  with a potential  to inform

future conservation efforts  (Jensen et al., 2022), for example by studying genomic erosion

(Robin  et  al.,  2022;  Sánchez-Barreiro  et  al.,  2021),  the sum of  genetic  threats to small

populations,  such  as  decreasing  genome-wide  diversity,  increasing  genetic  load  and

inbreeding,  and  reduced  genome  wide  heterozygosity  (Díez-Del-Molino  et  al.,  2018;

Frankham,  2005;  Kohn  et  al.,  2006).  By  comparing  the  genomes  of  different  temporal

populations,  regions  of  high  genomic  divergence  can  be  identified.  Genes  within  these

regions likely experienced evolution due to selection or genetic drift (Allendorf & Hard, 2009;

Therkildsen et al., 2019) 

Because wildlife extirpations (i.e., local population extinctions) are expected to accelerate in

the future (IUCN, 2020), knowledge of past genetic changes is crucial to predict the future

population genetics of populations that are currently in decline due to harvesting, climate

change, habitat loss, or competition with invasive species. Many Arctic mammals, such as

bowhead  whale  (Balaena  mysticetus  Linnaeus,  1758)  and  walrus  (Odobenus  rosmarus

(Linnaeus, 1758)), as well as some reindeer and caribou (Rangifer tarandus Linnaeus, 1758)

subspecies, experienced large-scale local extirpations about a century ago  (CAFF, 2013).

Some of  the species were even driven to extinction  (Byun et  al.,  2002;  Gravlund et  al.,

1998). 

The wild Svalbard reindeer (Rangifer tarandus platyrhynchus,  Vrolik, 1829), a subspecies

endemic  to  the  Svalbard  archipelago  with  distinct  morphological  and  behavioral

characteristics,  was  hunted down to  approximately  1000 individuals  and extirpated from

~60%  of  its  range  before  being  protected  by  law  in  1925  (Lønø,  1959).  The  reindeer

subspecies  survived  in  four  remote locations  (populations),  from which they  then slowly

recolonised the archipelago, partially assisted by two translocation programs (Aanes et al.,
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2000), to reach a current population size at ~22,000 individuals  (Le Moullec et al., 2019).

Conveniently,  the  cold  and  dry  Arctic  environment  physically  preserves  ancient  skeletal

material and its genetic information to a relatively high degree. Ancient DNA from bones and

antlers from Svalbard reindeer that lived prior to the presence of humans (before the 17th

century)  therefore  represent  a  unique  opportunity  to  quantify  effects  of  harvest-induced

bottlenecks on the genetic composition of present-day metapopulations  (Le Moullec et al.,

2019). Thus, by comparing contemporary DNA with ancient DNA from Svalbard reindeer this

‘natural  experiment’  can  provide  valuable  information  on  the  genetic  consequences  of

harvest-induced  bottlenecks  and  population  recovery  following  successful  conservation

efforts in large animals.

Reindeer most likely colonized Svalbard from Eurasia through intermediate colonization of

the Franz Josef  Land  archipelago  as  a  stepping-stone  (Kvie  et  al.,  2016).  The  earliest

evidence of reindeer presence on Svalbard is from 5,000-3,800 BP (van der Knaap, 1989).

The locations of a sample of carbon-dated ancient bones suggest they subsequently spread

across the entire Svalbard  archipelago  (Le Moullec  et  al.,  2019;  van der  Knaap,  1989).

Harvest  was introduced when Svalbard  was discovered in  1596,  but  the most  intensive

hunting period of reindeer occurred in the early 1900s (Hoel, 1916; Lønø, 1959; Wollebaek,

1926),  until  protection  in  1925.  Lønø  et  al.  (1959)  documented  that  reindeer  had  then

survived at low abundance in Nordenskiöld Land (central Spitsbergen), Reinsdyrflya (North

Spitsbergen), Nordaustlandet (North East Svalbard) and Edgeøya (East Svalbard).  Since

then,  reindeer  have  recolonised  most  of  its  former  range  from  these  four  remnant

populations (Peeters et al., 2020).

Six genetically distinct reindeer groups are now present on the Svalbard archipelago: four

populations  that  expanded  from  their  respective  ‘hunting  refugia’,  and  two  populations

founded by individuals from central Spitsbergen. Of the latter, one was founded along the

west coast of Spitsbergen following two translocations, and another was founded by natural
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recolonization to south Spitsbergen, with strong genetic drift  following gradual expansion

(Burnett et al., 2022; Peeters et al., 2020). Svalbard reindeer disperse slowly due to their

sedentary  behavior  and  the  fragmented  landscape  (Le  Moullec  et  al.,  2019).  Habitat

connectivity is further reduced with climate warming and declining cover of coastal sea-ice,

which  provides  an  important  dispersal  corridor  (Peeters  et  al.,  2020).  Because  hunting,

predation, insect harassment and intra-specific competition for resources play only minor

roles  (Derocher et al., 2000; Reimers, 1984; Stempniewicz et al., 2021; Williamsen et al.,

2019), population growth is mainly determined by the density-dependent weather effects on

access to resources in winter (Albon et al., 2017; Hansen et al., 2019; Loe et al., 2020). 

While  some  wild  reindeer/caribou  subspecies  are  undergoing  strong  declines  due  to

anthropogenic landscape fragmentation  and climate change  (Collard et  al.,  2020;  Festa-

Bianchet et al.,  2011), the Svalbard reindeer is increasing in abundance  (Hansen et al.,

2019; Le Moullec et al.,  2019). This increase is mainly driven by recovery from the past

overharvesting and by climate change improving and enhancing the length of  snow-free

season  (Hansen  et  al.,  2019;  Le Moullec  et  al.,  2019;  Loe  et  al.,  2020).  The  Svalbard

reindeer genetic diversity is by far the lowest among the Rangifer subspecies  (Kvie et al.,

2016; Yannic et al., 2013). Despite this, local variation in genetic diversity is strong, with

decreasing diversity  from central  Spitsbergen towards the peripheries of  the archipelago

(Peeters et al., 2020), (Burnett et al., 2022; Kvie et al., 2016). Inbreeding (i.e. long runs of

homozygosity) is stronger in the non-admixed naturally recolonized populations than in the

two translocated populations, likely as a result of having experienced a series of bottlenecks

(Burnett et al., 2022). The translocated populations largely maintained the genetic diversity

level  of  their  source populations,  despite  <15 founder  individuals  for  each translocation,

likely because of rapid population growth and overlapping generations (Burnett et al., 2022).

Here, we investigate the genetic impacts of the population bottleneck caused by the past

overharvest  of  Svalbard  reindeer.  We  hypothesize  that  the  reindeer  suffered  genomic
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erosion due to this overexploitation event. To infer changes in genetic structure, diversity

and  allele  frequencies,  we  integrated  paleogenomic  data  with  a  large  dataset  of

contemporary  genome sequences  and  estimated  genetic  diversity  and  genomic  erosion

before (4,000-400 calibrated years Before Present  [BP]),  during (500–0 BP,  equating to

1500–1950  Common era  [CE],  also  corresponding  to  the  period  with  uncertain  carbon-

dating) and after the overharvesting period (> 1950 CE). 

2.Materials and Methods

2.1 Study system and sample acquisition

The  Svalbard  archipelago  (76°–81°N,  10°–35°E)  is  surrounded  by  the  Greenland  and

Barents Seas, south of the Arctic Ocean. The archipelago consists of over 500 islands, the

largest being Spitsbergen, Nordaustlandet,  Edgeøya, Barentsøya and Prins Karl Forland.

Reindeer  inhabit  vegetated  land  patches,  which  make  up  only  16% of  the  land  cover,

fragmented by fjords and tide-water glaciers  (Johansen et al., 2012). Central Spitsbergen

and Edgeøya holds a network of unglaciated valleys with the highest density of reindeer (Le

Moullec et al., 2019). 

At  the time of  the  oldest  Svalbard  reindeer  records (~5,000 BP),  the  Svalbard  summer

climate was approximately 1.5-2°C warmer than the recent reference period of 1912-2012

CE (van der Bilt et al., 2019). The climate became progressively cooler over time until the

pre-industrial period at around 1500 CE (van der Bilt et al., 2019), with increasing sea-ice

cover in the Fram Strait (Werner et al., 2016). Currently, Svalbard is among the regions on

Earth experiencing the strongest temperature increase, with 0.5°C increase per decade in

summer and 1.3°C increase per decade for year-round measurements at Svalbard Airport,

2001-2020 CE, (Isaksen et al., 2022). Partly related to this, the sea-ice concentration around
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Svalbard has decreased drastically in recent years at a rate of 10-15% per decade in winter

(2001-2020 CE, (Isaksen et al., 2022). The West side of Spitsbergen is now ice-free year-

round, except for some inner fjords or in front of some tide-water glaciers. 

Subfossil bones and antlers (n = 18) were collected from various sites across the Svalbard

archipelago  during  2014-2015  CE  as  described  previously  (Le  Moullec  et  al.,  2019).

Subfossil collection was approved by the Governor of Svalbard (RIS-ID: 10015 and 10128).

Sample ages were determined via 14C dating (Table 1). All 14C dates were calibrated with the

IntCal20 calibration curve (Reimer, 2020) using the calibrate function in the package rcarbon

(Crema & Bevan, 2021) in R v4.1.0  (R Core Team, 2021). The subfossil  materials were

combined with a previously published genomic dataset from samples collected in 2014-2018

and consisting of 90 contemporary Svalbard reindeer from a recent population genomics

study  (Burnett  et  al.,  2022) PRJEB57293(Burnett  et  al.,  2022).  To  put  harvest-induced

changes within Svalbard reindeer populations into a temporal context, we subdivided the

samples  into  three  time periods:  Before  (4,000-400 years  before  present,  BP,  hereafter

referred to as pre-hunting), during (400 years BP-1950 Common Era, CE, hereafter referred

to as during-hunting), and after (> 1950 CE, hereafter referred to as post-hunting) the major

harvest-induced  bottleneck that  occurred from the 17th  to  the early  20th  century  (Lønø

1959).

2.2 DNA extraction, library building, and sequencing

All  pre-PCR  manipulations  of  sample  genetic  material  were  conducted  in  a  dedicated,

positively pressurized ancient DNA laboratory facility at the NTNU University Museum. 48-

360 mg of bone material were collected using a Dremel disc drill and subsequently crushed

to fragments of maximum 1-mm diameter. DNA was extracted with a custom, silica-based

extraction  protocol.  For  digestion,  a  custom  digestion  buffer  consisting  of  1.25%  (v/v)

proteinase K (20 mg/mL), 90% (v/v) EDTA (0.5M) and 8.75% (v/v) molecular-grade water

8

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2023. ; https://doi.org/10.1101/2023.09.21.558762doi: bioRxiv preprint 

https://paperpile.com/c/pWmZlX/6aXZ
https://paperpile.com/c/pWmZlX/6aXZ
https://paperpile.com/c/pWmZlX/qCKM
https://paperpile.com/c/pWmZlX/Yn6D
https://paperpile.com/c/pWmZlX/KKL4
https://paperpile.com/c/pWmZlX/vnHT
https://paperpile.com/c/pWmZlX/WnIK
https://doi.org/10.1101/2023.09.21.558762
http://creativecommons.org/licenses/by/4.0/


was used. Samples were pre-digested in 1 mL digestion buffer for 10 minutes at 37°C on a

rotor. The samples were spun down, the pre-digest was removed, and 4 mL digestion buffer

was added to the samples. Samples were left for digestion on a rotor for 18 hours at 37°C.

The lysis buffer was mixed 1:10 with Qiagen PB buffer modified by adding 9 mL sodium

acetate (5 M) and 2 mL NaCl (5 M) to a 500 mL stock solution. pH was adjusted to 4.0 using

concentrated (37% / 12M) HCl.  50 µL in-solution silica beads were added, and samples

were left on a rotor for 1 hr at ambient temperature to allow binding of the DNA. Silica pellets

with  bound  DNA  were  purified  using  Qiagen  MinElute  purification  kit  following  the

manufacturer's  instructions  and  eluted  in  65  µL  Qiagen  EB buffer.  For  every  extraction

batch, an extraction blank was carried out alongside the samples.

For each sample and the extraction blanks, 32 ۲L of DNA extract were built  into double-

stranded libraries. Libraries were prepared following the BEST 2.0 double-stranded library

protocol (Carøe et al., 2018). Three DNA extraction blanks were included, as well as a single

library blank (no-template control). 10 ۲L of each library were amplified in 50 ۲L reactions

with  AmpliTaq  Gold  polymerase,  using  between 13 and  22 cycles  and a  dual  indexing

approach  (Kircher et al.,  2012). The optimal number of PCR cycles for each library was

determined via qPCR on a QuantStudio3 instrument (ThermoFisher). The indexed libraries

were purified using SPRI beads (Rohland & Reich, 2012) and eluted in 30 µL EBT buffer.

The  amplified  libraries  were  quantified  on  4200  TapeStation  instrument  (Agilent

Technologies) using High Sensitivity D1000 ScreenTapes. The libraries were then pooled in

equimolar concentrations and initially sequenced on the Illumina MiniSeq platform in order to

quantify their  complexity and endogenous DNA content.  The libraries were subsequently

subjected  to  several  rounds  of  PE  150  bp  sequencing  on  the  Illumina  NovaSeq  6000

platform (Norwegian National Sequencing Centre and Novogene UK).

2.3 Bioinformatic analysis and post-mortem DNA damage assessment

Sequence data from the pooled libraries were demultiplexed according to their unique P5/P7
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index barcode combinations. Prior to mapping, residual adapter sequences were removed

and reads shorter than 25 bases were discarded with AdapterRemoval v2.2.4. Raw reads

were  mapped  initially  against  the  caribou  (Rangifer  tarandus  caribou)  nuclear  genome

(Taylor et al., 2019) and the reindeer (Rangifer tarandus tarandus) mitochondrial genome (Z.

Li et al., 2017) in the framework of the PALEOMIX pipeline v1.2.13.2 (Schubert et al., 2014)

using the ‘mem’ algorithm of the Burrows-Wheeler Aligner (BWA) v0.7.16a (H. Li, 2013) and

no mapping quality (MAPQ) score filtering. PCR duplicates were marked using picardtools

v2.20.2 (“Picard Toolkit,” 2019) tool MarkDuplicates. Mapped reads were realigned with the

Genome Analysis Tool Kit (GATK v3.8-0) indel realigner (McKenna et al., 2010). Following

mapping, soft-clipped reads were removed with samtools v1.12  (H. Li et al., 2009). Then

mapDamage  v2.0.9  (Jónsson  et  al.,  2013) was  used  to  assess  and  plot  ancient  DNA

damage patterns and to rescale base quality scores accordingly. Sequencing depth statistics

were estimated with samtools  depths at  a minimum phred-scaled mapping quality  of  30

(Table S1). All  samples were sequenced to a minimum of 0.2X sequencing depth of the

caribou nuclear genome assembly after read filtering. 

2.4 Construction of a consensus Svalbard reindeer reference genome

In order to improve mapping rate and more accurately reflect the divergent genome of the

Svalbard reindeer, a reference Svalbard reindeer nuclear genome was generated from the

deepest sequenced contemporary individuals of each metapopulation (T-15, C7 and B2, see

Table  S1).  BAM  files  were  downsampled  to  26.9X,  the  lowest  depth  among  the  three

genomes, with the samtools v1.12 view command using the flags -b and -s. Individual bam

files were combined into a single bam file. The new reference sequence was determined

with angsd v0.931 (Korneliussen et al., 2014) using the -doFasta 2 tool with the options  -

doCounts 1,  -explode 1,  -setMinDepthInd 2,  -remove_bads 1,  requiring a minimum read

mapping quality of 30 and a minimum base quality of 20. All samples were mapped against

this new reference genome using the same methods described above.
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2.5 Determination of ancestral states 

Ancestral states were inferred by mapping publicly  available sequencing data from three

closely  related  (Heckeberg  &  Wörheide,  2019) species  (moose,  Alces  alces,  bioproj:

PRJEB40679 (Dussex et al., 2020); red deer, Cervus elaphus, bioproj: PRJNA324173 (Bana

et al., 2018); white-tailed deer, Odocoileus virginianus, NCBI PRJNA420098; Accession No.

JAAVWD000000000) against the caribou reference genome (Taylor et al., 2019). BAM files

were downsampled to 12.3X, the lowest depth among the three genomes, with samtools

v1.12 and merged into a single  BAM file  for  all  three species.  The ancestral  state was

inferred by choosing the most common base at each site with angsd v0.931 using the  -

doFasta 2 tool with the options -doCounts 1, -explode 1, -remove_bads 1, and -uniqueOnly

1, requiring a minimum read mapping quality of 30 and a minimum base quality of 20.

2.6 Selection of nuclear genomic loci for further analysis

Genomic positions suitable for further downstream analysis were computed for ancient and

modern samples with the GATK v3.8-0 CallableLoci tool, requiring a minimum read mapping

quality  of  30  and  a  minimum  base  quality  of  20.  The  input  BAM  files  for  the  ancient

individuals were generated by merging all of that group’s BAM files with samtools merge and

replacing the read groups with the picard-tools v2.20.2 AddOrReplaceReadGroups tool. For

modern samples, only a single BAM file (sample T-15) was used. The average depth of

these merged BAM files was calculated with samtools depth at mapping quality 30 and base

quality 20 (ancient = 43.6, modern = 57.4) . The minimum depth was calculated as one third

of the mean depth (ancient = 15, modern = 20) and the maximum depth as twice the mean

depth (ancient = 87 , modern = 115). The files were then further processed with bedtools

v2.30.0 (Quinlan, 2014) in order to be used with the -sites and -rf options of angsd v0.931.

Sites that were marked with excessive coverage or poor mapping quality were excluded

from downstream analysis. 
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2.7 Mitogenome alignment and haplotype analysis

Variants  in  the  mitogenome  were  identified  with  GATK  v4.2.5.0  using  a  reindeer

mitochondrial genome sequence  (Z. Li et al., 2017) as the reference. For this, haplotypes

were called with GATK HaplotypeCaller requiring a minimum read mapping quality of 30.

Variants  were  only  called  when  they  were  above  a  minimum  phred-scaled  confidence

threshold of 30 (-stand-call-conf 30). We verified that all samples’ mitochondrial genomes

were sequenced to a minimum depth  of  30x after  removing reads with  mapping quality

below 30 (see Table 1). GVCF files were merged using the GATK GenomicsDBImport tool,

and a joined SNP call was performed with GATK GenotypeGVCFs with the setting -stand-

call-conf 30. Mitochondrial haplotypes in the output variant call format (VCF) file were used

to populate a FASTA multiple sequence alignment file using a custom python2 script. In this

alignment, insertions and deletions were ignored, and individual haplotypes were deemed

ambiguous (‘N’) if the sequencing depth was less than 10 reads or if the genotype quality

score was less than 20. Despite these measures, one sample (MB16 with 17% ‘N’) was

ambiguously assigned an haplotype and therefore removed from the analysis. 

We  used  the  ape package  (Paradis  &  Schliep,  2019) in  R to  import  the  16,362-bp

mitogenome sequence alignment and then extracted haplotypes with the haplotype function

from the pegas package (Paradis, 2010). We visualized haplotype diversity with a network

linking  haplotypes  based  on  a  parsimony  criterion  minimizing  the  number  of  sites

segregating between haplotypes (i.e., TCS algorithm). Such an algorithm uses an infinite site

model to calculate a pairwise distance matrix of the haplotypes, with pairwise deletion of

missing data. With the haploNet function  (Templeton et al., 1992) from  pegas, we plotted

haplotype  networks  from  individuals  living  before,  during,  and  after  the  hunting  period.

Across  all  mitogenome  sequences  and  within  each  time  period,  we  calculated  genetic

diversity statistics in pegas, using the haplo.div function to calculate haplotype diversity (Nei

& Tajima, 1981) and the nuc.div function to calculate nucleotide diversity  (Nei, 1987). The
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number of segregating sites were summed from the seg.sites function in ape.

2.8 Genotype likelihood estimation 

Genotype likelihoods for nuclear genome loci were estimated with angsd v0.931, excluding

reads  with  multiple  matches  to  the  reference  genome  (option  -uniqueOnly  1).  Allele

frequencies were estimated with the option -doGlf 2 using the combined estimators for fixed

major and minor allele frequency as well as fixed major and unknown minor allele frequency

(-doMaf 3). Major and minor allele frequencies were inferred from genotype likelihood data (-

doMajorMinor  1).  Variant  sites  were considered  when they  had a minimum minor  allele

frequency of 5% and minimum number of informative individuals set to half the total number

of individuals (-minInd 50). Reads with a phred-scaled mapping quality score below 30 were

excluded, as were bases with a quality score below 20 as well as reads with a samtools flag

above 255 (not primary, failure and duplicate reads) with the option  -remove_bads 1.  The

first five bases were trimmed from both ends of reads (-trim 5),  and the frequencies of the

bases were recorded with -doCounts 1. The depth of each individual (-dumpCounts 2) and

the  distribution  of  sequencing  depths  (-doDepth  1)  were  recorded. Files  to  be  used  in

subsequent analyses with Plink were generated (-doPlink 2). Genotypes were encoded (-

doGeno 2) for downstream analysis. Posterior genotype probabilities were estimated based

on allele frequencies as prior (-doPost 1). Genotypes were only considered if their posterior

probability was above 95% (-postCutoff 0.95). Genotypes were considered missing in cases

when the individual depth was below 2 (-geno_minDepth 2). Before further analysis, sites in

strong linkage disequilibrium were pruned with Plink v1.90 beta 6.24  (Chang et al., 2015)

using a window size of 50 kbp, a step size of 3 kbp, and a pairwise r2 threshold of 0.5 (--

indep-pairwise  50  3  0.5).  Subsequently,  regions  with  low  mapping  quality,  excessive

coverage as identified with CallableLoci (see above), or associated with sex chromosomes

(for  methods see  (Burnett  et  al.,  2022)) were removed via a custom python script.  Also

excluded were sites that are not variant in both the ancient ancient and modern datasets.
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2.9 Principal components and admixture analyses

We visually  identified  related  clusters  with  covariance  matrices  for  principal  component

analysis  (PCA)  using  PCAngsd  v1.10  (Meisner  &  Albrechtsen,  2018),  running  10,000

iterations to ensure convergence. Samples were grouped both spatially and by time period

(pre-, during-, and post-hunting). A spatial group was defined as all individuals from each

time period that were sampled within 80 km around centroid points calculated by hierarchical

clustering with the Geosphere package in R (see map in Figure 2 and Figures S7 - S15).

Genetic structure was estimated with NGSadmix (Skotte et al., 2013), including only variant

sites with a minimum minor allele  frequency of  5% and minimum number of  informative

individuals set to half the total number of individuals (-minInd 50). The number of estimated

ancestral populations  K ranged from 2 to 10. For each value of  K, each of ten replicates

were run with different random starting seeds, and the replicate with the highest likelihood

was used for plotting. An optimal value for K was estimated with the delta-K method (Evanno

et  al.,  2005).  Admixture  diversity  scores where calculated based on  K =  5 using the R

package  entropy,  as described in  (Harismendy et al., 2019). In order to evaluate possible

sampling bias we repeated the analysis with a reduced dataset (see below).

2.10 Estimation of heterozygosity

Site allele  frequency likelihoods were calculated for  each sample individually  with angsd

(command-line option  -doSaf 1) with a minimum base quality of 20 and a minimum read

mapping  quality  of  30,  using  only  selected  sites  and  regions  described  previously  and

removing transitions (command-line option -noTrans 1) as well as 5 bp from the ends of all

reads (-trim 5) to reduce artifacts of ancient DNA damage. Reads with multiple best hits and

non-primary,  failed,  and duplicate  reads were removed from the analysis  (command-line

options  -uniqueOnly 1 and  -remove_bads 1).  To polarize the site allele frequency (SAF)

likelihoods, a FASTA format file with ancestral states (see above) was supplied (command-

line  option  -anc).  The GATK model  (command-line  option  -GL 2)  was used to estimate
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genotype likelihoods. Then, the site frequency spectrum (SFS) was estimated with angsd

realSFS based on the polarized SAF likelihoods. Heterozygosity was then calculated in R as

described in the angsd documentation. A pairwise Mann-Whitney U test with default settings

as  implemented  in  R  was  performed  to  judge  the  significance  of  differences  in

heterozygosity between groups.  We obtained the delta estimator  (Díez-Del-Molino et  al.,

2018) of heterozygosity (Δ鑈H) by calculating  Δ鑈H=(med (H 2 )−med (H 1 ) )/med (H 1 ), with H2

being the set of individual genome-wide heterozygosity values in the younger sample set, H1

being the set of individual genome-wide heterozygosity values in the older sample set, and

med being the median value.

2.11 Temporal genomic differentiation

To  assess  the  potential  phenotypic  impacts  of  overharvest  on  Svalbard  reindeer,  we

identified genomic regions that were highly differentiated in a comparison of the three time

groups among each other. To reduce potential biases introduced by the large size of the

contemporary  reindeer  population  sample,  a  smaller  dataset  of  modern  individuals

representing  all  geographic  regions  was  chosen  semi-randomly  (n=11).  The  selected

samples were T-15, T-7 (Wijdefjorden), B1, B2, T-44 (Central-Spitsbergen), C6, C7 (East

Svalbard),  T-20  (West-Spitsbergen),  C28  (Nordaustlandet),  B-132,  C-84  (South-

Spitsbergen). Within-population site frequency spectra were calculated with angsd v0.931

using the options -dosaf 1, -gl 1, -noTrans 1, -trim 5, -remove_bads 1, -minMapQ 30, and -

minQ  20.  As  described  above,  the  SAF  was  polarized  with  ancestral  states,  and  only

selected sites and regions were used. The pairwise 2D-SFS was estimated with the angsd

realSFS tool  (Nielsen et al., 2012) and between-population differentiation  FST values were

estimated with realSFS commands fst index and fst stats.

Additionally, an FST sliding window analysis was performed as pairwise comparisons among

the time groups, using the angsd realSFS command fst stats2 with non-overlapping 10-kbp
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windows. FST values were z-transformed around their mean, and windows with z ≥ 6 were

de昀椀ned as outlier windows. The neutrality test statistics Watterson’s theta  (Watterson,

1975) and Fay and Wu’s H (Fay & Wu, 2000) were calculated within the same windows by

using the angsd realSFS commands  saf2theta and  thetaStat do_stat.  The mean per-site

Watterson’s theta estimator was used to calculate effective population size (Ne) assuming

the average mammalian mutation rate of 2.2 ✕ 10-9 per  site  per  year  (Kumar &

Subramanian, 2002) and a generation time of 6 years as previously estimated for Svalbard

reindeer  (Flagstad  et  al.,  2022).  Mean  nucleotide  diversity  was  calculated  by  dividing

pairwise theta by the number of sites in each 10-kbp window.

We further investigated the roles and functions of genes within regions of high divergence

between the during-hunting and post-hunting  periods,  which we defined as  regions with

mean FST ≥ 0.5. We retrieved the amino acid sequences of known caribou genes from the

annotation provided by (Taylor et al., 2019). Amino acid sequences of all 20,014 Bos taurus

proteins were retrieved from UniProt  (UniProt Consortium, 2021) and used to construct a

blast protein database with the makeblastdb tool within blast+ v2.6.0 (Altschul et al., 1990).

The sequences were identified via a blastp search against the Bos taurus protein database,

only considering results with an e-value < 0.001. To select the best matching protein for

each query sequence, the result with the smallest e-value was chosen. Ties were resolved

by first considering highest bit-score, then percentage identity, and finally alignment length.

We then identified which protein coding genes intersect with regions of high divergence.

3.Results

3.1 Read mapping and post-mortem DNA damage assessment

The final  dataset  consists of  12 individuals  with calibrated median age ranging between
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3,973–500 BP (hereafter referred to as the "pre-hunting” population), six individuals with age

ranging between 447–0 BP (equating to 1503–1950 CE; hereafter referred to as the "during-

hunting"  population),  and 90  present-day  individuals  (hereafter  referred  to  as  the "post-

hunting" population).  For genetic comparisons between DNA from subfossil  bones/antlers

and  contemporary  samples,  the  18  pre-hunting  and  during-hunting  individuals  are

collectively referred to as the "ancient" population, and the 90 post-hunting individuals are

referred to as the “modern” population. For the nuclear genome analysis, seven pre-hunting

samples were excluded due to their low sequencing depth, resulting in 11 ancient samples.

Nuclear genome raw mapping results are reported in Table S1. After filtering soft-clipped

reads and reads with low mapping quality, the mean sequencing depth across all samples

(including those that were only used for haplotype network analysis) mapped against the

caribou reference assembly was 5.2X (mean ancient DNA: 2.3X; mean modern DNA: 5.7X)

(see Table S2). The mean sequencing depth across all samples was slightly higher when

mapping against  the Svalbard reference genome (mean across all  samples: 5.2X; mean

ancient  DNA:  2.4X;  mean  modern  DNA:  8.8X).  The  mean  sequencing  depth  of  the

mitochondrial genome across all samples was 1287.0X (mean ancient DNA: 340.2X; mean

modern  DNA:  1484.0X).  The  ancient  genomes  were  confirmed  to  show  characteristic

ancient DNA damage patterns (see Figure S5).

3.2 Population structure

In order to assess population structure before, during and after the period of intense hunting,

that resulted in local extirpation followed by recolonisation, we performed a PCA of nuclear

genome variation and an analysis of genetic admixture based on nuclear genome genotype

likelihoods, as well  as constructed a haplotype network from mitogenome sequences. To

identify  patterns  in  these  results,  we  then  analyzed  them  according  to  the  division  of

Svalbard reindeer metapopulation into 12 spatio-temporal groups.
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After removing low-quality sites, 2,063,517,637 nuclear genomic positions were retained for

analysis.  Except  for  a  few  outliers,  the  post-hunting  genomes  cluster  based  on  their

geography in the PCA when considering the first two components PC1 and PC2 (Figure 1).

There  was  a  clear  separation  of  eastern  (East-Svalbard),  northern  (Wijdefjorden  and

Nordaustlandet)  and  southwestern  (Central-,  South-  and  West-Spitsbergen)  individuals.

Post-hunting individuals from southern, western, southwestern, and central Spitsbergen form

a single  tight  cluster.  The northern  groups Nordaustlandet  and Wiljdefjorden  are  not  as

clearly  separated  from each  other,  where  the Wijdefjorden  genomes  form a  particularly

diffuse cluster. The ancient genomes, irrespective of their geographic assignment, form a

loose cluster around the center of the PC2 axis and towards the left of the PC1 axis between

the Nordaustlandet, Wijdefjorden and East-Svalbard clusters of post-hunting genomes. 

We performed an admixture analysis with a dataset including all individual nuclear genomes

(Figure 2, Figures S6 and S16). The highest ΔK value was found for K=5 (2769.4, Fig. S17).

The assignment of modern groups to ancestry clusters strongly correlates with geography.

These  five  major  genetic  clusters  of  Svalbard  reindeer  are:  a  pink  cluster,  composed

exclusively  of  post-hunting  east  Svalbard  individuals  (diversity  score  [DS]  =  0);  a  blue

cluster, characteristic for south Spitsbergen (DS = 0.151); a green cluster which is the main

component  of  Wijdefjorden  (DS = 0.402)  individuals;  an  orange cluster  characteristic  of

Nordaustlandet (DS = 0); and a yellow cluster that is the main component of central and

west Spitsbergen (DS = 0.329). The genomes of individuals belonging to each geographic

group in the more isolated outer regions of the archipelago are almost fully assigned to their

own private ancestral population clusters (DS = 0 - 0.151), while the geographic group at the

center of  the archipelago (Central-Spitsbergen.  DS = 0.640) shows admixture of  genetic

clusters dominant in southern, western, and northern populations (Figure 2). As expected,

there is shared ancestry between Central-Spitsbergen and West-Spitsbergen, a population

that was reintroduced from Central-Spitsbergen (Aanes et al., 2000). Only very little ancestry

is  shared  between  East-Svalbard  and  the  other  groups,  and  the  same  is  true  for
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Nordaustlandet. Overall, the ancestry assignments agree well with the groupings in the PCA.

In contrast, the spatio-temporal groups of ancient individuals are not strongly distinct from

one another in the admixture analysis (Figure 2). All groups but pre-hunting Nordaustlandet

(DS = 0) show ancestry from all five genetic clusters for K=5 (DS 0.593 - 0.890), irrespective

of  their  geographic  distance from one another.  Diversity  was maintained  throughout  the

hunting period, apart from Wijdefjorden, which became less diverse (DS = 0.389). All ancient

individuals  share high proportions of ancestry with post-hunting Nordaustlandet (orange).

This trend continues for higher values of K up until K=7. However, beginning with K=8, the

similarity  between  post-hunting  Nordaustlandet  and  ancient  individuals  (except  for  pre-

hunting Nordaustlandet) largely disappears. Instead, we observed the emergence of a new

cluster (brown) that is shared among all ancient, but none of the post-hunting individuals are

assigned to it.  Furthermore, all  individuals from during-hunting Wijdefjorden are assigned

exclusively to this cluster. As admixture analysis can be biased when having unequal sample

sizes  (Garcia-Erill & Albrechtsen, 2020; Puechmaille, 2016), we additionally performed an

analysis with a reduced sample set with more equal sample sizes by reducing the number of

contemporary samples. This analysis confirmed the results using the complete dataset (Fig.

S16).

We found 30 distinct haplotypes from the mitogenome alignment of 108 individuals,  and

none of  these haplotypes were shared between individuals  in  the pre-  and post-hunting

period (Figure 3). However, haplotype relatedness does not group per time period. Instead,

post-hunting  haplotypes  were  primarily  at  the  periphery  of  the  network,  branching  from

different ancient ancestors located at the center of the network (Figure 3). Half of these 30

haplotypes belonged to 18 individuals  from the ancient  populations,  while  the other half

belonged to the 90 individuals from the post-hunting populations. Each of the 12 individuals

from  the  pre-hunting  period  had  distinct  haplotypes  with  up  to  32  segregating  sites.

Individuals from the same region (i.e. East-Svalbard), had only 1-3 segregating sites despite
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the thousands of years separating the sampled individuals (e.g., East-Svalbard, 2037 years

difference for only 1 segregation site difference). However, some individuals from the same

region, living at approximately the same time (e.g., Central-Spitsbergen, 597 and 703 BP),

have the most distant haplotypes for the given region. In the during-hunting period, four out

of six individuals (66%) shared the same haplotype, and those were from the same region,

Wijdefjorden.  In  the  post-hunting  period,  we  found  up  to  36  different  segregation  sites,

forming seven distinct haplogroups separated by fewer than three mutations, where several

individuals from the same region shared the same haplotype.  However, within the same

region, we also found very distant haplotypes with individuals more closely related to their

common ancestral haplotype than to one another. For instance, in the Central-Spitsbergen

region, modern haplotypes were either closely related to the haplotypes previously found in

that  same region,  or  previously  found  in  Eastern-Svalbard.  Therefore,  haplotypes  found

today within a same region are more distant than haplotypes currently found across regions.

Subsequently, although mitochondrial haplotype and nucleotide diversity were lower in the

post-hunting  than  in  the  pre-hunting  period,  they  have  not  been  drastically  reduced  by

hunting (Table 2). 

3.3 Temporal genomic differentiation

Heterozygosity decreased stepwise through the hunting periods, from the highest in the pre-

hunting group to the lowest  in  the  post-hunting  group,  although  there was considerable

overlap between the heterozygosity ranges of the three groups (see Figure 4). The median

heterozygosities are 3.8 ✕ 10-4 for the pre-hunting period, 3.1 ✕ 10-4 for the during-

hunting  period,  and  2.8  ✕  10-4 for  the  post-hunting  period.  The  differences  in  mean

heterozygosity  between during-hunting  and  the other  two groups  is  not  significant  (pre-

hunting:  p=0.66,  post-hunting:  p=0.10,  Mann-Whitney  U  test),  while  post-hunting

heterozygosity is significantly lower than pre-hunting (p < 0.01, Mann-Whitney U test). The

decrease in median heterozygosity from pre-hunting to during-hunting reindeer is 18.42%,
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and post-hunting reindeer have a 9.68% lower median heterozygosity than during-hunting

reindeer. The median heterozygosity of post-hunting reindeer is 26.32% lower than that of

pre-hunting  reindeer.  Mean  effective  population  size  Ne  was  lower  in  the  post-hunting

population (4.66 ✕ 103) than in the pre-hunting population (5.21 ✕ 103), and highest in

the during-hunting population (5.84 ✕  103). In the sliding window analysis, the

mean nucleotide diversity across all windows was 3.34 ✕ 10-4  in the pre-hunting

population, slightly higher at 3.35 ✕ 10-4 in the during-hunting population and reduced

to 3.23 ✕ 10-4 n the post-hunting population. 

There were a total of 217,247 windows identified by the sliding window analysis, of which

183 (0.1%) were  FST outlier windows as de昀椀ned by a Z-score ≥ 6 (Figure 5). The

mean value of weighted pairwise FST was 1.91 ✕ 10-2 for the pre-hunting and during-hunting

populations, 3.27 ✕ 10-2 for the pre-hunting and post-hunting populations, and 5.06 ✕ 10-2

for the during-hunting and post-hunting populations. The mean number of sites across all

windows was 8,649, and the mean number of sites within outlier windows was 8,843. To

assess whether  windows were under positive selection,  we performed neutrality  tests to

compare Fay & Wu’s H between during-hunting outlier and non-outlier windows, as well as

between post-hunting outlier and non-outlier windows. Comparison shows that  H is much

lower  and more broadly  distributed in  ancient  outlier  windows compared to all  the other

groups (Figure 5 and Figure S18). 

To explore any functional genetic changes that may have resulted from overhunting and

near-extirpation of Svalbard reindeer, we further investigated those outlier genomic regions

with extraordinarily high FST (FST ≥ 0.5) as measured between the during-hunting and post-

hunting populations, as well as the identity and functions of the genes therein (Table S4).

We identified 50 high-divergence outlier windows which intersect with genes, of which 34 are

unique  annotated  genes  (Taylor  et  al.,  2019).  A  blastp  search  against  the  Bos  taurus
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proteome (see Materials and Methods) matched 30 of these 34 genes to 29 unique  Bos

taurus proteins (Table S4). Of these 29, 17 are predicted proteins, nine are further inferred

from homology, and four have evidence at transcriptome level. For 17 of these proteins, the

associated coding gene is known in the UniProt database. The known coding genes are

PLCH1,  TRIM72 (MG53),  TIMM17B,  ANP32B, APBA1, BLNK, CCNA1,  DAB2IP,

EBF2/COE2, HS3ST2, LOC529488, NRXN1, RABGAP1, SF3B1, SFMBT1, STRBP,  and

TTC39B.

4.Discussion

Here,  by  combining  modern  and  the  first  ancient  genomes  (up  to  4000  BP),  we  have

described and compared the population structure and genetic changes of Svalbard reindeer

before, during and after an intense period of anthropogenic harvest . We have shown that

the population collapse due to overharvest decreased nuclear genomic diversity as well as

effective population size (Figure 4, Table 2). The overhunting event also resulted in a shift of

genetic  diversity  across  the  entire  archipelago  (Figure  1  and  2),  suggesting  weaker

population  substructure  before  human presence  and  harvest.  Mitogenome analysis  also

revealed a significant loss , with none of the pre-hunting haplotypes occurring today (Figure

3, Table 2). Hence, post-hunting haplotypes formed their own haplogroups, which were more

closely linked to ancient haplotypes from different regions of Svalbard than to the ancient

haplotypes  from  their  respective  sampling  locations.  Gene  selection  analyses  indicate

pronounced  genetic  drift  during  and  post-hunting  periods  rather  than  natural  selection

(Figure 5). 

4.1 Major changes in population structure and differentiation

Our analysis of population structure based on whole nuclear genomes revealed substantial

differences between historical/ancient samples and present-day Svalbard reindeer  (Burnett
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et al., 2022; Peeters et al., 2020). We identified  K = 5 as the optimal value of  K with the

delta-K method, but in light of potential sampling bias and strong population structure both in

space and time, we elect to discuss higher values of K as well. In contrast to the high degree

of nuclear genetic differentiation in the post-hunting populations, which show a near-perfect

correspondence  of  geographical  and  genetic  grouping,  Svalbard  reindeer  did  not  form

distinct genetic clusters based on location prior to and during hunting. Instead, all genomes

but one (from the most distant individual from the isolated island of Nordaustlandet,  n = 1)

had higher nuclear genetic diversity in the pre-hunting period. These indicate a scenario

where  ancient  Svalbard  reindeer  formed  a  single  genetically  diverse,  continuous  and

panmictic population in the past, a similar situation as for the Iberian lynx (Lynx pardinus

(Temminck, 1827)), another species with severe history of overharvest (Casas-Marce et al.,

2017).  Pre-hunting  Svalbard  reindeer  individuals  showed  affinity  to  all  post-hunting

metapopulations for  K=2 to K=7 which suggests high levels of gene-flow between different

geographic regions in ancient Svalbard or even a single panmictic population . However, the

level  of  gene-flow  was  likely  not  uniform  across  Svalbard.  Individuals  from  modern

Nordaustlandet were most similar to their ancient counterpart for K<8, the reason for which

could  be  that  the  size  of  this  remnant  population  remained  low,  while  other  remnant

populations underwent rapid population growth and geographic expansion (Le Moullec et al.

2019). This interpretation is supported by the PCA, which places modern Nordaustlandet

closer than other modern samples to the ancient samples. Ancient Wijdefjorden has high

affinity to ancient and modern Nordaustlandet for K<8, however, at K=8 they lose all affinity

with  modern  samples  and  become  assigned  to  an  ancient-only  cluster,  with  high,  but

reduced affinity to ancient Nordaustlandet. The other ancient samples are partly assigned to

this ancient-only cluster, but retain relatively high ancestry to genetic clusters also found in

modern samples at higher values of  K.  These populations differentiated from each other

through time. This change happened between the during-hunting and post-hunting groups

rather than between the pre-hunting and during-hunting groups, which cover a much longer

time-span, suggesting that the change was related to overharvest.
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We observed a gradual decrease in Svalbard reindeer genome heterozygosity over the three

time periods. Median heterozygosity was reduced by 26% over the time spanning the pre-

hunting and the post-hunting periods. This decrease is congruent with results obtained from

previous studies  comparing modern to historic/ancient  vertebrates that  underwent  large-

scale  population  declines  due to  anthropogenic  near-extirpation  events,  for  example  the

white rhinoceros (Ceratotherium simum (Burchell, 1817))((Sánchez-Barreiro et al., 2021)),

alpine  ibex  (Capra  ibex,  Linnaeus,  1758)  ((Robin  et  al.,  2022)),  eastern  gorilla  (Gorilla

beringei  Matschie, 1903)(van der Valk et al., 2019) and iberian lynx  (Casas-Marce et al.,

2017). The Svalbard reindeer’s decrease of heterozygosity over time is of similar severity to

that  measured  following  drastic  population  declines  in  the  Iberian  lynx  (heterozygosity

reduction of 10% based on microsatellite data, (Casas-Marce et al., 2017) and in two over-

harvested  populations  of  white  rhinoceros  (heterozygosity  reductions  of  10%  and  37%

respectively, (Sánchez-Barreiro et al., 2021). A study by (van der Valk et al., 2019) reported

a 20% decrease of heterozygosity in Grauer’s gorillas but only a 3% decrease in mountain

gorillas. It is important to note that prior to overharvesting, the Svalbard reindeer population

genome-wide heterozygosity was already low, perhaps because of a strong bottleneck when

colonizing Svalbard.

Our measurements of temporal change in mitogenome diversity did not suggest a strong

decrease in genetic diversity. The relatively high diversity of modern haplogroups (n = 7)

contrasts with other ungulate species heavily hunted in the past, like the Alpine ibex, where

only two modern haplogroups are now widespread across their range (Robin et al., 2022).

Contrary  to  the  Alpine  ibex,  in  which  mitogenome  nucleotide  diversity  was

reduced  by  ~79  % (6.38  ✕  10-4)  from  the  pre-hunting  to  the  post-hunting  period,

Svalbard reindeer experienced a reduction of only ~8% (0.38 ✕ 10-4). However, this

difference could be explained by the fact that after near-extirpation, the Svalbard reindeer

survived in four remnant populations, as opposed to the Alpine ibex, which survived in only a
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single  remnant  population.  During  the  intermediate  hunting-period,  the  mitogenome

nucleotide diversity surprisingly dropped, yet this is likely due to the low sample size. In this

period, large individual variation existed, where two of the six individuals had the highest

genome-wide heterozygosity observed in our dataset, while the other four were among the

lowest  values.  The uncertainty related to the carbon-dating calibration  scale  prior  to  the

industrial era, which coincides with our during-intermediate hunting period (1500-1950 CE),

restricts the temporal  resolution of  this  period.  However,  previous reports documented a

harvest  peak  in  the  early  1900s  CE  (Hoel,  1916;  Lønø,  1959),  just  prior  to  the  legal

protection of  Svalbard reindeer  in 1925. Thus,  individuals  with high genetic  diversity  are

likely to have lived prior to this harvesting peak. 

Potential climate change impacts during recovery 

Accounting for the fact that current summer temperature has already increased by 1.5-2°C

since the reference period of 1912-2012 CE (Isaksen et al., 2022; van der Bilt et al., 2019),

the  older  reindeer  specimens  from  our  collection  (ages  of  3000-4000  BP)  experienced

summer temperatures that were similar to the present-day climate. From this period and until

harvesting started ~1500 CE, the relatively stable climate became gradually cooler with sea-

ice cover persisting year-round (Werner et al., 2016), likely acting as dispersal corridors for

reindeer. These conditions likely favored a higher degree of admixture between populations.

The  current  population  structuring  is  a  consequence  of  overharvesting  and  recovery

occurring during a period of pronounced climate warming. Our results are congruent with

earlier findings based on microsatellite data and nuclear whole genome sequencing where

present-day population structuring reflects the recolonization patterns originating from the

four locations that escaped extirpation (Burnett et al., 2022; Peeters et al., 2020). In addition

to the sedentary behavior of the Svalbard reindeer, the effect of natural barriers for dispersal

and  gene  flow  has  increased  during  the  recovery  period,  as  sea-ice  cover  decreased
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(Peeters et al., 2020). Despite this, Svalbard reindeer were capable to disperse naturally and

through  reintroduction  events  to  all  suitable  habitats  on  Svalbard  within  a  century  after

protection  (Le Moullec et al., 2019). The increased isolation due to sea-ice cover decline

may have been partly counteracted by recent increases in frequency of rain-on-snow events

resulting in winters with poor feeding conditions (Peeters et al., 2019). That is, such extreme

events can sometimes aid recolonization by ‘pushing’ reindeer to disperse to neighboring

islands or peninsulas where they were previously extirpated (Hansen et al., 2011). This may

have accelerated the natural recolonization process, likely through a stepping-stone process

that  conserve  geographic  genetic  structuring,  but  also  likely  further  decreased  genetic

diversity in the peripheral recolonized populations. Still, the rapid increase in temperatures in

Svalbard (Isaksen et al., 2022) and associated sea-ice decline likely restrict dispersal more

nowadays than over the millennia prior to anthropogenic disturbance.

Stochastic changes within diverse gene families

For the pre-hunting and during-hunting populations, we observed strongly negative values of

Fay & Wu’s H within FST outlier windows, whereas these FST outlier windows had generally

positive H values in the post-hunting population . This indicates that these genomic regions

were experiencing positive selection in the pre-hunting and during-hunting periods, but now

evolve mainly under genetic drift in the extant post-hunting population, rather than by natural

selection  (Fay  &  Wu,  2000).  Conceivably,  selection  pressures  from  the  extreme  Arctic

environment were the major force acting on Svalbard reindeer under natural conditions prior

to  anthropogenic  disturbance.  However,  genetic  drift  can rapidly  and stochastically  alter

allele frequencies, including at loci that were previously conserved under strong selective

pressures, especially in small populations (Bortoluzzi et al., 2020). Future research would be

needed  to  confirm  whether  there  are  functional  consequences,  e.g.  affecting  fecundity,

survival, or behavior. 
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In that  context  it  is  relevant  to explore which genes were most affected by genetic  drift

following  overhunting,  since  they  may  have  functional  relevance  for  the  health  and

conservation  of  the  present-day  Svalbard  reindeer  population.  Owing  to  the  stochastic

nature of genetic drift, the affected genes and their coded proteins are involved in a great

variety of biological functions. However, among the candidate genes we identified are some

that  play  key  roles  in  circadian  rhythm regulation,  fat  storage,  the  immune system,  the

nervous system, and basic neurological functions. One of those genes in a region highly

affected by genetic drift is an ortholog of  PLCH1 (phospholipase-C eta1) that encodes the

protein  Phosphoinositide  phospholipase  C  (PLC).  PLC is  involved  in  cAMP-responsive

element-binding  protein  (CREB)  mediated  gene  transcription,  which  activates  the

transcription of the genes  PER1 and  PER2 (among others) in response to light  (Colwell,

2011).  PER2 has reindeer-specific mutations and has been linked to the lack of circadian

rhythmicity in reindeer (Lin et al., 2019). The loss of a day/night controlled internal biological

clock is considered an important adaptation of reindeer to high Arctic environments, where

daylight conditions do not change for extended periods of the year (Lin et al., 2019; van Oort

et al., 2005). 

We also identified genes that relate to lipid metabolism. TRIM72 / MG53 is a multifunctional

gene primarily involved in cell membrane repair and tissue regeneration, but it also has been

linked to insulin resistance and related metabolic abnormalities, including obesity (Z. Li et al.,

2021; Song et al., 2013; Y. Zhang et al., 2017).  APBA1 is involved in insulin secretion  (K.

Zhang et  al.,  2021).  TIMM17B is  a protein that  mediates inner  mitochondrial  membrane

transport,  and it  may be related to insulin  resistance and obesity  in  human populations

(Dubé et al., 2020). TTC39B has been found to be involved in lipid metabolism and coronary

artery diseases  (Teslovich et al., 2010).  EBF2/COE2  encodes  Early B-Cell factor 2 (Ebf2)

which is highly involved in the formation of brown adipose tissue (Wang et al., 2014). The

Svalbard reindeer’s overwinter survival is dependent on its ability to build up high ratios of

body fat relative to total body mass over the very short snow-free season (Trondrud et al.,
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2021), normally lasting for about three to four months. It is not unlikely that genes linked to

excessive  fat  accumulation  (i.e.  obesity)  in  other  species  are  the underlying  genes that

support rapid fattening in Svalbard reindeer. The outlier window containing EBF2/COE2 was

the sole window with a negative H value in the post-hunting population, suggesting it may be

under strong purifying selection. This could indicate that this gene is of importance for

survival and therefore in昀氀uenced by comparatively stronger purifying selection and

weaker genetic drift than other genes.

Furthermore, some of these genes we found are involved in spermatogenesis and therefore

might play a role in Svalbard reindeer fertility. CCNA1 encodes the protein Cyclin A1, which

plays a vital role in male mammalian meiosis and spermatogenesis, and loss of  CCNA1

causes infertility in males, as demonstrated in mice (Liu et al., 1998). SFBT1 and STRBP are

genes involved in spermatogenesis as well (Pires-daSilva et al., 2001; J. Zhang et al., 2013).

We also identified Testis-specific Y-encoded-like protein 6, which in humans is encoded by

the gene TSPYL6, and is expressed only in the testes and involved in spermatogenesis as

well (Uhlén et al., 2015). BLNK is the coding gene for the B-cell receptor that is related to B-

cell  function  and development  and therefore likely  plays a role in  the Svalbard  reindeer

immune system (Fu et al., 1998). 

The genes we found that are related to neuronal development are NRXN1 and LOC529488.

LOC529488  encodes Glutamate  decarboxylase  1 (GAD1),  which  is  responsible  for

production  of  the  inhibitory  neurotransmitter  GABA  (Fenalti  et  al.,  2007).  Neurexin-1

(NRXN1)  from the Neurexin protein family of synaptic adhesion molecules is involved in

GABA release, and mutations in it have been linked to developmental and neuropsychiatric

disorders (Hu et al., 2019; Missler et al., 2003). 
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4.2 Implications for conservation

Our study supplements a growing body of research utilizing temporal datasets to assess

genomic health of threatened and endemic species. Our analyses indicate that historical

overharvest  has,  in  addition  to  the previously  reported population  size  reduction  (Lønø,

1959),  decreased  overall  genomic  diversity  in  Svalbard  reindeer.  While  subsequent

protection of the Svalbard reindeer and its habitat has rapidly (i.e., rapidly in an evolutionary

context) facilitated the recolonization of the archipelago (Le Moullec et al., 2019), the current

level of genome erosion could make this subspecies particularly vulnerable to future climate

and  environmental  changes  and  associated  demographic  stochasticity,  especially  if

inbreeding  levels  remain  high  (Burnett  et  al.,  2022;  Peeters  et  al.,  2020).  Our  findings

support the view that census data on population abundances alone is not robust enough to

assess  the  conservation  status  of  populations  recovering  from  overharvest  or  other

anthropogenic  stressors.  Genomic  monitoring,  especially  when  incorporating  a  temporal

component derived from ancient  DNA, can help capture a more complete understanding

(Jensen et al., 2022). 

In combination with such genomic monitoring, translocations have been suggested as an 

effective conservation measure (Bertola et al., 2022; Bubac et al., 2019). In contrast to other 

species (e.g., Iberian and Alpine ibex; (Grossen et al., 2018, 2020)), translocation events 

have strongly contributed to limit the genetic diversity loss in Svalbard reindeer caused by 

overharvesting, likely because the translocated individuals came from the population with the

highest genetic diversity levels (Burnett et al., 2022). Nevertheless, a population’s adaptive 

potential relies not only on their overall level of genetic diversity, but also on functional 

diversity. When the genetic diversity of a species is low and there has been significant 

genetic turnover due to genetic drift rather than natural selection一 as in Svalbard 

reindeer一 the species’ capacity to evolve with climate change has possibly been 

reduced. 
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Table 1. Ancient Svalbard reindeer sample overview. Sample provenance (‘E’ = East, ‘C’ = central) indicated with their UTM East and UTM
North coordinates. Reported ages are calibrated radiocarbon-dated ages (IntCal20) in calendar years before present (BP, before 1950 CE).
Summary of sample and mean mapping depths of ancient nuclear genomes (nDNA) against the Svalbard reindeer and caribou reference
genome, as well as the reindeer mitochondrial (mtDNA) reference genome. Sample provenance, sequencing, and mapping statistics of ancient
samples against the Svalbard reindeer reference genome. Reported ages are calibrated carbon-dated ages (IntCal20) in calendar years before
present (BP, before 1950 CE). * = Radiocarbon date from previous study  (Le Moullec et al.,  2019).  a = dated at the Uppsala Angström
Laboratory. b

 = dated at the Norwegian University of Science and Technology, The National Laboratory of Ange Determination. 

ID Area UTM-E UTM-N Median
age (BP)

Age range (BP,
2 sigma)

Hunting
period

Svalbard
reference
nDNA

Caribou
reference
nDNA

Reindeer
referenc
e mtDNA

Analyses
included

B20 E-Svalbard 651368 8661900 2351 2329-2460b Pre 0.02 0.02 956 mtDNA

BBH7 Nordaustlandet 641458 8915138 511 500-521b* Pre 3.72 3.66 386 nDNA 
mtDNA

M44 C-Spitsbergen 536291 8707272 597 525-644a Pre 6.78 6.67 534 nDNA
mtDNA

M46 C-Spitsbergen 536023 8706959 703 668-768a Pre 2.65 2.60 442 nDNA
mtDNA

M68 C-Spitsbergen 545390 8700500 NA 0-447a During 3.99 3.93 211 nDNA
mtDNA

M72 C-Spitsbergen 546200 8701580 958 916-1057a Pre 0.03 0.03 90 mtDNA
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MB60 E-Svalbard 637956 8689040 NA 27-260b During 1.52 1.50 284 nDNA
mtDNA

MDV11 E-Svalbard 636986 8688774 605 549-647b Pre 4.55 4.49 1870 nDNA
mtDNA

MLM12 E-Svalbard 651249 8661821 1326 1298-1349b Pre 0.02 0.02 30 mtDNA

MLM16 E-Svalbard 651084 8661716 1762 1716-1821b Pre 0.04 0.04 118 mtDNA

MLM51 E-Svalbard 658011 8650398 1968 1894-2046b Pre 0.07 0.07 243 mtDNA

MLM61 E-Svalbard 637640 8688976 1875 1825-1935b Pre 0.57 0.20 33 nDNA
mtDNA

MLM80 E-Svalbard 658480 8700183 3912 3846-3973b Pre 0.02 0.02 205 mtDNA

MLM82 E-Svalbard 658632 8700166 3127 3063-3212b Pre 0.03 0.02 192 mtDNA

R20 Wijdfjorden 525246 8785449 NA 0-450b During 12.22 12.14 214 nDNA
mtDNA

R25a Wijdfjorden 525722 8783391 NA 8-277b During 4.19 4.13 411 nDNA
mtDNA
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R29a Wijdfjorden 525722 8783391 NA 12-267b During 0.73 0.72 57 nDNA
mtDNA

R36 Wijdfjorden 525768 8783368 NA 1-282b During 3.96 3.91 135 nDNA
mtDNA
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Table 2.  Measures of diversity statistics from the mitogenome analysis  and genomic diversity.  N = number of individuals;  Num. haplo.  =
Number of haplotypes, Num. seg. sites. = Number of segregation sites, Hap. div = haplotype diversity and its standard deviation, Nuc. div =
nuclear diversity, Med. het. = median heterozygosity, Nuc. div. = nucleotide diversity, Ne = effective population size.

Mitochondrial genome Nuclear genome

Time period N

Num.
haplo.

Num.
seg.
sites Hap. div. Nuc. div. N Med. het. Nuc. div. Ne

Pre-hunting 12 12 32 1.00±5.79E-04 4.88E-04 5 0.00038 3.34E-04 5.21E+03

During-hunting 6 3 13 0.60±4.54E-02 3.03E-04 6 0.00031 3.35E-04 5.84E+03

Ancient (Pre- and
During-hunting) 18 15 40 0.96±11.01E-04 4.84E-04 11

Post-hunting 90 15 36 0.85±2.42E-04 4.50E-04 90 0.00028 3.23E-04 4.66E+03

All genomes 108 30 56 0.90±1.80E-04 5.16E-04 101
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Figures

Figure 1: Principal component analysis (PCA) of the genomic variation of Svalbard
reindeer. The first two principal components (PCs) are shown. Color denotes affiliation with
a geographic cluster. Shape denotes affiliation with a time period. C-Spitsbergen = Central
Spitsbergen; S-Spitsbergen = South Spitsbergen; W-Spitsbergen = West Spitsbergen; E-
Svalbard = East Svalbard.
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Figure 2: Admixture analysis of Svalbard reindeer in relation to sampling location . A:
Bar plot of admixture proportions for  K = 2 to  K =  8. Each bar represents one individual
Svalbard reindeer and the color represents affiliation to a proposed ancestral population.
Individuals  are  grouped  by  spatiotemporal  groups  as  defined  by  cluster  analysis.  B-D:
Admixture proportions by sampling location for  K = 5. Individuals sampled within 80 km of
each other are clustered together into the same pie. Pie size is scaled with the number of
individuals. Individual ancestry proportions B before the hunting period, C during the hunting
period, and D after the hunting period. C-Spitsbergen = Central Spitsbergen; S-Spitsbergen
= South Spitsbergen; W-Spitsbergen = West Spitsbergen; E-Svalbard = East Svalbard.
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Figure 3. Haplotype network of Svalbard reindeer mitogenomes during three temporal
hunting periods. A: Pre-hunting. B: During-hunting. C: Post-hunting. The number of
individuals sharing the same haplotype is indicated in the center of the circle. Gray circles
indicate the positioning of haplotypes that do not belong to the time period in focus. The
diameter of the circles indicates the number of  individuals  sharing that  haplotype and is
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scaled from 1 (i.e., min. haplotype number of 1) to 2 (i.e., max. haplotype number of 21). In
the  pre-hunting  period,  calibrated  carbon-dated  ages  are  reported  as  the  median  age
probability in years Before Present (before 1950 AD). Calibrated age ranges are reported in
Table  1.  C-Spitsbergen  =  Central  Spitsbergen;  S-Spitsbergen  =  South  Spitsbergen;  W-
Spitsbergen = West Spitsbergen; E-Svalbard = East Svalbard.

48

1237
1238
1239
1240
1241

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2023. ; https://doi.org/10.1101/2023.09.21.558762doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.21.558762
http://creativecommons.org/licenses/by/4.0/


Figure  4.  Individual  genome-wide  heterozygosity  by  time  period. The  points  are
horizontally scattered to increase visibility. Thick horizontal line in the boxplot represents the
median, the lower and upper box bound represent the 25 and 75 percentile, respectively. C-
Spitsbergen = Central Spitsbergen; S-Spitsbergen = South Spitsbergen; W-Spitsbergen =
West Spitsbergen; E-Svalbard = East Svalbard.
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Figure 5: Outlier genomic windows and their genes
A: Comparison of Fay & Wu’s H in genomic windows as measure of neutrality. Here, H was
measured in genomic regions (windows) in genomes of individuals living during- (left) and
post-hunting (right). Regions that strongly diverged (z-FST  ≥ 6) between the during-hunting
and post-hunting time periods are called ‘outliers’ (green), those that are not ‘non-outliers’
(blue).  Each  violin  shows  the distribution  of  H in  each  type/period  pair  respectively.  B:
Manhattan plot of genomic windows, highlighting windows that cross the threshold of Z-FST

greater than or equal to 6 (blue) and FST  of greater than or equal to 0.5 (red).  High FST

windows that intersect with described genes are labeled with the gene name.
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