

1 **TITLE**

2 **A spatially mapped gene expression signature for intestinal stem-like cells identifies high-**
3 **risk precursors of gastric cancer**

4

5 **AUTHORS**

6 Robert J. Huang^{1*}, Ignacio A. Wichmann^{2,3,4*}, Andrew Su⁵, Anuja Sathe², Miranda V. Shum¹,
7 Susan M. Grimes², Rithika Meka², Alison Almeda², Xiangqi Bai², Jeanne Shen⁶, Quan Nguyen⁵,
8 Manuel R. Amieva^{7,8}, Joo Ha Hwang¹, Hanlee P. Ji²

9 ¹Division of Gastroenterology, Department of Medicine, Stanford School of Medicine, Stanford,
10 CA, 94305, USA

11 ²Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA,
12 94305, USA

13 ³Division of Obstetrics and Gynecology, Department of Obstetrics, Escuela de Medicina,
14 Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile

15 ⁴Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile,
16 Santiago, 8331150, Chile

17 ⁵Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia

18 ⁶Department of Pathology, Stanford School of Medicine, Stanford, CA, 94305, USA

19 ⁷Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA

20 ⁸Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA

21 *These authors contributed equally to this manuscript.

22 **To whom correspondence should be addressed.**

23 Hanlee P. Ji

24 Email: genomics_ji@stanford.edu

25 Joo Ha Hwang

26 Email: jooha@stanford.edu

1 ABSTRACT

2 **Objective:** Gastric intestinal metaplasia (**GIM**) is a precancerous lesion that increases gastric
3 cancer (**GC**) risk. The Operative Link on GIM (**OLGIM**) is a combined clinical-histopathologic
4 system to risk-stratify patients with GIM. The identification of molecular biomarkers that are
5 indicators for advanced OLGIM lesions may improve cancer prevention efforts. **Methods:** This
6 study was based on clinical and genomic data from four cohorts: 1) GAPS, a GIM cohort with
7 detailed OLGIM severity scoring (N=303 samples); 2) the Cancer Genome Atlas (N=198); 3) a
8 collation of in-house and publicly available scRNA-seq data (N=40), and 4) a spatial validation
9 cohort (N=5) consisting of annotated histology slides of patients with either GC or advanced GIM.
10 We used a multi-omics pipeline to identify, validate and sequentially parse a highly-refined
11 signature of 26 genes which characterize high-risk GIM. **Results:** Using standard RNA-seq, we
12 analyzed two separate, non-overlapping discovery (N=88) and validation (N=215) sets of GIM. In
13 the discovery phase, we identified 105 upregulated genes specific for high-risk GIM (defined as
14 OLGIM III-IV), of which 100 genes were independently confirmed in the validation set. Spatial
15 transcriptomic profiling revealed 36 of these 100 genes to be expressed in metaplastic foci in
16 GIM. Comparison with bulk GC sequencing data revealed 26 of these genes to be expressed in
17 intestinal-type GC. Single-cell profiling resolved the 26-gene signature to both mature intestinal
18 lineages (goblet cells, enterocytes) and immature intestinal lineages (stem-like cells). A subset
19 of these genes was further validated using single-molecule multiplex fluorescence *in situ*
20 hybridization. We found certain genes (*TFF3* and *ANPEP*) to mark differentiated intestinal
21 lineages, whereas others (*OLFM4* and *CPS1*) localized to immature cells in the isthmic/crypt
22 region of metaplastic glands, consistent with the findings from scRNAseq analysis.
23 **Conclusions:** using an integrated multi-omics approach, we identified a novel 26-gene
24 expression signature for high-OLGIM precursors at increased risk for GC. We found this signature

1 localizes to aberrant intestinal stem-like cells within the metaplastic microenvironment. These
2 findings hold important translational significance for future prevention and early detection efforts.

3

4 **Keywords:** Intestinal metaplasia, gastric cancer, OLGIM, stem cells

5

1 INTRODUCTION

2 Gastric cancer (**GC**) is a leading source of global cancer morbidity and mortality.¹ Survival from
3 GC both worldwide and in Western nations remains poor (under 35%),² largely due to advanced
4 stages at time of diagnosis. The intestinal subtype makes up a substantial majority of GCs and
5 follows a carcinogenic pathway termed Correa's cascade.³ This premalignant evolution involves
6 the gastric mucosa progressing through a series of histopathologic changes: non-atrophic gastritis
7 (**NAG**), chronic atrophic gastritis (**CAG**), gastric intestinal metaplasia (**GIM**), dysplasia and
8 ultimately GC.

9

10 GIM provides an opportunity for cancer interception, as it often persists and poses a
11 continued risk for GC.⁴⁻⁶ The prevalence of GIM is estimated to be 5-10% of the general
12 population in Western nations.^{7,8} However, only a subset of patients with GIM will progress to GC
13 over long-term follow-up.⁹⁻¹³ Identifying this subset of "high-risk" GIM has become a high clinical
14 priority and may lead to strategies of early detection and mortality reduction. One promising risk
15 stratification tool is the Operative Link on Gastric Intestinal Metaplasia (**OLGIM**) staging
16 framework. This validated scoring system incorporates both histologic severity and anatomic
17 extent of GIM, with higher scores associated with higher subsequent cancer risk in both case-
18 control^{14,15} and cohort studies.¹⁶⁻¹⁸ Citing an example, it was determined that advanced OLGIM
19 lesions (Stages III or IV) are 25-fold more likely to progress to GC compared to early OLGIM
20 lesions (Stage I).¹⁸ Understanding the biological underpinnings of high-risk GIM provides insights
21 into the cellular mechanisms underlying the progression of GC and will yield high-value
22 translational biomarkers for risk assessment.

23

24 *Helicobacter pylori* (**Hp**) is the etiologic agent most closely associated with intestinal-type
25 GC,^{19,20} and most prior studies of gastric precursors have either focused on Hp-infected

1 individuals or have drawn from populations with high Hp prevalence.²¹⁻²⁴ However, Hp infection
2 has been rapidly declining in Western nations, and most patients diagnosed with GIM have
3 undergo bacterial eradication per clinical guidelines.²⁵ Moreover, patients with GIM remain at
4 significantly elevated risk even following Hp eradication.^{5,6} In this study, we developed a gene
5 signature in patients without active Hp infection reflecting what is observed in western nations.
6 This removed potential confounding variable in the relationship between advanced histology and
7 transcriptomic profiling.

8

9 Using an OLGIM-staged cohort, we identified a gene expression signature which
10 characterizes advanced, high-risk GIM lesions (defined as OLGIM III or IV) originating from Hp-
11 negative individuals. This analysis used an integrated multi-omics approach that included
12 conventional RNA sequencing (**RNA-seq**), spatial transcriptomics analysis, single-cell RNA
13 sequencing (**scRNA-seq**), and single-molecule fluorescent *in situ* hybridization (**smFISH**). We
14 orthogonally validated the RNAseq expression profiles of high-risk GIM to generate a highly-
15 refined and spatially-resolved gene expression signature. Using scRNA-seq, these genes were
16 mapped to specific cell populations in GIM lesions, including mature and stem-like intestinal
17 lineages. A subset of these genes was further validated by smFISH. Overall, we discovered a
18 spatially mapped high-risk gene expression signature which characterizes advanced, high-risk
19 GIM lesions, is shared by intestinal-type GCs, and localizes to aberrant intestinal stem-like cells
20 within the metaplastic microenvironment.

21

22 MATERIALS AND METHODS

23 We provide an overview of both the experimental methods and the clinical cohorts used in this
24 study in **Figure 1**. Complete methodologic details are provided in the **Supplementary Methods**.

25

1 The Gastric Precancerous Conditions Study (**GAPS**) is a prospective cohort of individuals
2 undergoing endoscopy who are at increased risk for GC due to presence of symptoms (e.g.,
3 dyspepsia, anemia), personal history (e.g., GIM), or family history of GC. Enrolled subjects
4 undergo biopsies according to the updated Sydney System, with standardized histologic
5 assessment allowing for calculation of OLGIM stage²⁶ and determination of Hp colonization.
6 Sample-level phenotypic data and RNA sequencing metrics can be found in **Supplementary**
7 **Table 1.**

8

9 The Cancer Genome Atlas Stomach Adenocarcinoma (**TCGA-STAD**) genomic dataset is
10 comprised of GC samples which had not been previously treated by chemotherapy or radiation
11 prior to genomic analysis.²⁷ From these samples, we analyzed gene expression data from 180
12 intestinal-type GC primary tumors and 18 patient-matched tumor-adjacent controls. We obtained
13 the de-identified patient clinical phenotype and RNA-seq results from Genomic Data Commons
14 through TCGABiolinks²⁸ R package. Tumor-level phenotypic data (e.g., tumor location) is
15 available in **Supplementary Table 2.**

16

17 We analyzed a scRNA-seq dataset for gastric pathology across Correa's cascade (normal,
18 NAG, CAG, GIM, and GC). This sample set constituted both *de novo* scRNA-seq data from
19 prospectively collected samples along with public data sets. In total, the integrated scRNA-seq
20 dataset comprised 40 biopsy samples from 26 patients: two normal controls, three NAG, three
21 CAG, thirteen GIM, nine tumor-adjacent controls, and ten primary gastric tumors. Clinical
22 phenotypic information (specimen location and histology), cell counts, and sequencing metrics
23 are available in **Supplementary Table 3.**

24

25 For the spatial mapping and localization, we used formalin-fixed paraffin-embedded
26 (**FFPE**) tissue specimens from five patients (three OLGIM II, one OLGIM III and one GC). The

1 hematoxylin and eosin (**H&E**)-stained sections were manually annotated by an expert pathologist
2 at the glandular level for regions of normal base, normal pit, metaplasia, dysplasia, and
3 carcinoma. For spatial transcriptomics, unstained sections were placed on the Visium assay slide
4 (10X Genomics) and stained with H&E followed by probe-based sequencing. For the single-
5 molecule multiplex fluorescence *in situ* hybridization (**smFISH**) assays, we utilized unstained
6 sections immediately adjacent (within 10 μ m) to the Visium sections. Phenotypic description of
7 the specimens used for spatial validation are available in **Supplementary Table 4**.

8

9 **RESULTS**

10 **Overview of the multi-omics approach**

11 An overview of the multi-omics pipeline is provided in **Figure 1A**, and a high-level description of
12 the samples used for each step of the pipeline is provided in **Figure 1B**. In brief, this analysis
13 included the following: i) discovery of a high-risk gene expression signature using RNA-seq data
14 (N = 88 samples); ii) validation of the high-risk genes in a held-out cohort using RNA-seq data (N
15 = 215 samples); iii) mapping of the high-risk genes to metaplastic foci using a spatial
16 transcriptomics assay (N = 5 samples); iv) determining of the overlap of the high-risk GIM spatial
17 signature with differentially expressed genes in intestinal-type GC samples with RNA-seq data (N
18 = 198 samples); v) assigning the high-risk, spatially mapped genes to specific cell subpopulations
19 using single cell RNA-seq (scRNA-seq) (N = 40 samples); and vi) validation of a subset of these
20 genes at single cell resolution using smFISH (N = 5 samples).

21

22 **Gene expression analysis of high- versus low-risk GIM**

23 For the GAPS-based marker discovery phase, a detailed summary of the cohort's demographic,
24 clinical and histologic characteristics are provided in **Table 1**. The cohort was highly diverse with
25 multi-ethnic representation. Samples originated from a high proportion of Hispanic (23.9%), Asian

1 (42.9%), and foreign-born (62.6%) subjects. When assessing OLGIM stages, 56.4% were OLGIM
2 stage 0 (no GIM), 16.6% OLGIM I, 13.5% OLGIM II, 9.2% OLGIM III, and 4.2% OLGIM IV.

3

4 We used conventional RNA-seq to analyze 303 gastric specimens (153 antrum, 150 body)
5 originating from 163 unique individuals from GAPS (specimen-level data on histopathology and
6 sequencing metrics are provided in **Supplementary Table 1**). The cohort was separated into a
7 discovery set of 88 GIM samples (22 high-risk, 66 low-risk) from 46 patients and a held-out
8 validation set of 215 GIM samples (22 high-risk, 193 low-risk) from 115 patients. Prior to
9 differential expression analysis, we performed unsupervised clustering through i) hierarchical
10 clustering with Pearson correlation distance, as well as ii) principal components analysis
11 (**Supplementary Figure 1**) to confirm preferential grouping of high-risk and low-risk samples.
12 Subsequently, we conducted differential expression analysis with limma-voom,²⁹ utilizing a
13 factorial design strategy (**Supplementary Figure 2**).

14

15 **Discovery of genes associated with high-risk GIM**

16 From the discovery data set of 88 GIM samples, we identified a preliminary set of 399 genes that
17 were differentially expressed in the high-risk patients in both the body and antrum of the stomach
18 (**Supplementary Figures 3A – C; Supplementary Table 5**). Expression differences were based
19 on a fold-change cutoff ≥ 1.25 in the linear scale at a false discovery rate-adjusted p-value < 0.05 .
20 Likewise, we excluded any genes which differential expression profile differed significantly
21 (significant interaction term) between antrum and body (**Supplementary Figures 3D**). These
22 genes included established markers of intestinal metaplasia (i.e., *CDX1*, *CDX2*, *OLFM4*, *ACE2*)
23 and gastric epithelial cells (i.e., *PGC*, *CCKBR*).

24

1 Next, we conducted weighted gene co-expression network analysis (**WGCNA**)³⁰ to
2 determine groups of co-expressed genes, otherwise referred to as gene modules. Gene modules
3 were summarized using the module eigengene (the first principal component of the gene
4 expression levels within a module). We leveraged this information to determine whether the
5 expression levels of the genes from each module were directly or inversely correlated with high-
6 risk GIM (i.e., module-trait relationships) in an independent approach, separate from the
7 differential expression analysis. We selected two modules associated with high- and low-risk
8 samples (**Supplementary Figure 4A**). Using hierarchical clustering with Pearson correlation
9 distance, we demonstrated that genes from these modules are informative of high-risk gastric
10 cancer precursors (**Supplementary Figure 4B**), whereas five other modules were not informative
11 (**Supplementary Figure 4C**). We intersected genes from the two informative WGCNA modules
12 and the differential expression analysis, resulting in a refined set of 314 genes that were: i)
13 differentially expressed in high-risk samples from both anatomic regions, and ii) co-expressed in
14 gene modules associated with high-risk stages (**Figure 2A, Supplementary Figure 4D**,
15 **Supplementary Table 5**). Using these 314 genes, most of the high-risk samples clustered
16 distinctly and separately from the low-risk group, regardless of the anatomic origin of the biopsy
17 (antrum or body). By contrast, among the low-risk samples (OLGIM 0, I or II), gene expression
18 showed clustering for either the antrum or body (*top dendrogram*). This result indicates that the
19 antrum and body are transcriptionally distinct entities. However, once advanced GIM develops,
20 a specific expression profile emerges regardless of anatomic origin.

21

22 From this subset of 314 genes, we identified five discrete expression clusters that were
23 labeled C-1 through C-5 (**Figure 2A, side dendrogram**). Cluster C-5 represented a subset of 105
24 genes which were overexpressed in high- compared to low-risk samples, with the highest Z-
25 scores. Importantly, the C-5 cluster was independent of the anatomic location. This gene set

1 included established GIM markers such as *CDX1*, *FABP1* and *ACE2* (**Supplementary Table 5**).
2 In addition to markers of mature enterocytes (*ANPEP*, *CDH17*),^{31,32} we also found markers of
3 intestinal stem cells (such as *OLFM4*),³³ and markers of transit amplifying cells (*DMBT1*) in this
4 cluster.³⁴

5

6 **Validating the genes associated with high-risk GIM**

7 Next, we validated the results from the discovery analysis, performing differential expression
8 analysis on the held-out, independent validation set of 215 GIM samples. We focused on the C-
9 5 cluster, given that overexpressed genes provide an opportunity for additional experimental
10 validation. For the 105 genes identified from the C-5 cluster in the discovery set, we found a
11 striking 100 out of 105 genes (95.2%) consistently overexpressed (linear fold-change ≥ 1.25 and
12 FDR-adjusted $p < 0.05$) among the validation set's high-risk samples (**Figure 2B**). The full gene
13 list is provided in **Supplementary Table 6**. To characterize the functional pathways and cellular
14 associations of these 100 genes, we conducted over-representation analyses with
15 clusterProfiler.^{35,36} We selected gene sets relative to gene ontology and cell types from the
16 MSigDB database.³⁷⁻³⁹ Enriched gene ontology terms (**Figure 2C**) included intestinal absorption
17 (*SLC2A5*, *ABCG8*, *ABCG5*, *MOGAT2*, *PRAP1*, *FABP1*) and presence of a brush border (*ACE2*,
18 *SLC28A1*, *SLC2A2*, *MME*, *SLC6A19*, *SLC7A9*, *MTTP*, *MYO7B*) among other intestinal-related
19 processes. Consistent with these findings, we found enrichment of certain cell lineage gene sets
20 (**Figure 2D**) including mature (*SLC2A5*, *APOC3*, *ACE2*) and fetal enterocytes (*LRRC19*, *CELP*,
21 *RBP2*), as well as immature enterocytes (*DMBT1*, *CPS1*). A comprehensive listing of enriched
22 gene ontology terms and cell lineage gene sets are available in **Supplementary Tables 9 and**
23 **10**.

24

25 **Spatial transcriptomics maps the high-risk expression signature to metaplastic gastric foci**

1 Next, we used a spatial expression assay (Visium, 10X Genomics) to map the genes of the high-
2 risk expression signature to GIM regions. Spatial transcriptomics were applied to five GIM
3 samples with extensive histopathology annotation and all of them included regions of i) normal
4 base, ii) normal pit or iii) metaplastic foci. An example of one GIM sample (**P09788**) is shown in
5 **Figure 3**. The aggregated spots per area for each sample were used to conduct a differential
6 expression analysis comparing separate regions of different histologic annotation, similar to an
7 *in-silico* tissue microdissection. Among all five GIM, we determined that 458 genes were
8 significantly upregulated in regions of metaplastic foci compared to both normal gland base and
9 pit ('pseudo-bulk' analysis, **Supplementary Table 7**).

10

11 Next, we intersected the 100 genes from the validated expression signature as previously
12 described with the 458 genes that were mapped using the spatial transcriptomic assay. Notably,
13 from the validated expression signature, 36 out of 100 (36%) genes were expressed specifically
14 in regions of the metaplastic glands (e.g., *DMBT1*, **Figure 3A**; other spatially resolved genes in
15 **Figure 3B**). Genes from the signature that did not map to metaplasia were discarded (e.g.,
16 *SLC30A10*, **Figure 3A**). Overall, this result identified a subset of 36 high-risk differentially
17 expressed genes that mapped to pathologist-annotated regions of metaplasia.

18

19 **The high-risk expression, spatially mapped signature's association with gastric cancer**
20 We determined how many of the 36 spatially mapped high-risk genes were also differentially
21 expressed in the intestinal subtype of GC. This step of the analysis used RNA-seq data from the
22 TCGA-STAD cohort. We conducted differential gene expression analysis between 180 gastric
23 cancers, all being of the intestinal subtype, and 18 matched tumor-adjacent gastric tissues. We
24 compared the fold-change from the TCGA analysis vs the fold-change from the spatial gene
25 expression analysis for the 36 genes (**Supplementary Table 8**). Twenty-six genes overlapped

1 between those which were significantly overexpressed in high-risk GIM (relative to low-risk GIM),
2 localized to metaplastic foci, and were consistently upregulated in GC (**Figure 3C**).
3

4 We quantified the expression of these 26 genes in gastric metaplastic foci using a
5 composite signature score using Seurat's AddModuleScore function.^{40,41} This algorithm
6 calculates the average expression levels of a gene set cluster when compared to the aggregated
7 expression of a control gene set. We used this method to compare expression among regions of
8 normal gland base, pit, and metaplasia. The 26-gene score was significantly higher among the
9 Visium spots mapping to metaplastic foci for each of the five spatial samples compared to areas
10 with normal stomach base or pit (Kruskal-Wallis and Dunn test FDR-adjusted $p < 0.001$) (**Figure**
11 **3D and Supplementary Figure 5**). Overall, this set was highly specific for metaplasia and did
12 not map to any other normal gastric regions, as well as tumor regions (moderate signal) in one
13 GC sample. The gene signature included established markers for immature intestinal lineages
14 (*OLFM4*, *DMBT1*)^{33,34} and markers for mature enterocytes (*ANPEP*, *CDH17*)^{31,32}
15 (**Supplementary Table 8**).
16

17 **The 26 gene high-risk spatial signature is expressed in goblet cells, enterocytes, and**
18 **intestinal stem-like cells**

19 For the next step, we used scRNA-seq results to determine which cell types expressed the 26
20 gene high-risk signature. This analysis used a set of 40 specimens of both GC and precancerous
21 lesions. The results provided the assignment of the high-risk expression signature to specific
22 single cells and lineages. The joint data set contained a total of 116,643 single cells. From this
23 data set we identified seven major cell lineages: epithelial, T cells, B cells, stromal cells,
24 endothelial, myeloid and mast cells. Using the Seurat AddModuleScore function, we determined
25 that the 26 gene signature across all cells was significantly higher among epithelial cells
26 (**Supplementary Figure 6**).

1
2 We characterized the expression features of the epithelial subset (**Figure 4A**). Cell identity
3 of this subset was determined using reference mapping on a cell atlas encompassing normal
4 stomach and duodenum. Cell types included i) normal gastric lineages (chief, parietal, endocrine
5 cells), ii) mature intestinal cells (goblet cells, enterocytes), and iii) a broad class of immature
6 intestinal cells (duodenum stem cells, duodenum differentiating stem cells, and duodenum transit
7 amplifying cells). We call these immature cells collectively “intestinal stem-like cells”. We found
8 the 26-gene signature to be significantly enriched in enterocytes and intestinal stem-like cells
9 (**Figure 4B and 4C**). Conversely, this 26-gene signature was nearly absent among all normal
10 gastric lineages (Dunn test FDR-adjusted $P \leq 0.001$, **Supplementary Table 11**).
11

12 Next, we examined the expression of each gene scaled across the epithelial cell types to
13 highlight which cells displayed the highest levels of expression. As a specific marker for goblet
14 cells, we also included the gene *TFF3*.^{42,43} We performed hierarchical clustering of the 26 genes
15 and *TFF3* from the signature. The gene dendrogram revealed two distinct groups of genes, one
16 that is expressed primarily by differentiated “gastric” enterocytes, and one expressed by “gastric”
17 intestinal stem-like cells, given their gastric localization (**Figure 4D**). The duodenum stem cells
18 were characterized by high expression of *OLFM4*, a known intestinal stem cell marker,³² as well
19 as *ADGRG7*, *CPS1*, *ADH6*, *SLC39A5*, *GUCY2C*, *CLDN3*, AND *ONECUT2*. Duodenum
20 differentiating stem cells mostly expressed *OLFM4* and *CPS1* but also expressed *ADGRG7*,
21 *DMBT1*, *ADH6*, *CDX1*, *SLC39A5*, *GUCY2C*, *CLDN3*, AND *ONECUT2*. Duodenum transit-
22 amplifying cells, an undifferentiated population transitioning between stem cells and differentiated
23 intestinal cells, showed reduced expression of *OLFM4*, reduced expression *CPS1*, and
24 expression of *DMBT1*, an established marker that has been noted in other reports.^{34,44}
25

1 We observed that many of the genes comprising the intestinal stem-like cell markers group
2 were carried over to differentiated enterocytes. Further, some of these genes (*ADGRG7*, *ADH6*,
3 *SLC39A5*, *GUCY2C* and *CLDN3*) showed increased expression among enterocytes, suggesting
4 that these genes are expressed at progressively increasing levels throughout the differentiation
5 process. We determined that *TFF3* was predominantly expressed among goblet cells.

6

7 Next, we analyzed the proportion of different cell lineages throughout Correa's cascade
8 (**Figure 4E**). Importantly, normal, NAG, and CAG gastric tissue samples did not have mature or
9 immature intestinal cell lineages. In contrast, GIM was characterized by both the presence of
10 mature (goblet cells and enterocytes) and immature intestinal cells. Moreover, GC was
11 characterized by a significant enrichment of immature intestinal lineages and substantial loss of
12 differentiated goblet cells and enterocytes. These results suggest that GIM is characterized by
13 the onset and expansion of both mature and immature intestinal cell types. The continued
14 expansion of this immature population may be an important indicator of progression to intestinal
15 GC. Our results support this interpretation of the results. Namely, we observed that the 26-gene
16 signature score increased with the progressive stages of Correa's cascade (Dunn's test FDR-
17 adjusted $P \leq 0.001$ for all comparisons; **Supplementary Table 12** and **Figure 4F**). In a separate
18 analysis, we analyzed the signature score between GCs and patient-matched tumor adjacent
19 control tissues from a previous publication⁴⁵ (**Figure 4G**). As expected, we found the 26-gene
20 signature to be highly-enriched in tumor cells relative to adjacent non-tumor, normal gastric tissue
21 (Welch's T test $P < 0.0001$).

22

23 **Single-molecule fluorescent *in situ* hybridization reveals intestinal stem-like cells in the**
24 **isthmic/crypt region of metaplastic glands**

25 We conducted a higher resolution spatial analysis to identify single cells expressing components
26 of the high-risk signature. The smFISH assay uses *in situ* RNA hybridization to visualize the

1 spatial location of specific expressed genes at single-cell resolution and enables comparisons to
2 standard histopathology. This technique allows one to assess multiple genes' spatial relationship
3 and expression among the individual cells from a given tissue section. Based on the scRNA-seq
4 results that defined the aberrant intestinal stem cell populations, we selected eleven of the
5 signature genes for smFISH: *ANXA13*, *HKDC1*, *OLFM4*, *DMBT1*, *CPS1*, *SLC39A5*, *ANPEP*,
6 *ONECUT2*, *CDH17*, *CLDN3* and *CDX1*. These genes included markers for intestinal stem-like
7 cells (*OLFM4*, *CPS1*, *DMBT1*), enterocytes (*HKDC1*, *ANPEP*, *CDH17*, *CLDN3*, *ANXA13*), or
8 were expressed across all intestinal lineages (*CDX1*, *SLC39A5*, *ONECUT2*). We also included
9 *TFF3* as a specific goblet cell marker. After imaging, the results were compared to the matching
10 H&E images with pathology interpretation.

11

12 We performed smFISH (RNAscope HiPlex) on tissue sections adjacent to those analyzed
13 in the prior spatial transcriptomics assay. We identified several distinct cellular compartments
14 which occurred within metaplastic tissue (**Figure 5, Supplementary Figures 7-11**). The first
15 compartment consisted of mature or differentiated intestinal cells and were characterized by
16 strong expression of *TFF3* (goblet cells) and moderate signal of *ANPEP* (enterocytes). A second
17 compartment consisted of cells which strongly expressed stem-like markers (*OLFM4*, *DMBT1*
18 and *CPS1*); these columnar cells were characterized by high nuclear-to-cytoplasm ratio, were
19 located near crypt regions of metaplastic glands, and were mutually exclusive in space to the
20 mature markers. These results provide additional evidence confirming the presence of intestinal
21 stem-like cells as previously identified in the scRNA-seq results. There were some genes
22 (*ONECUT2* and *HKDC1*) which were ubiquitously expressed in both mature and stem-like cells,
23 although expression of these genes was higher among stem-like cells. Notably, none of the
24 selected genes were expressed in the normal gastric glands across any of the samples. The
25 results from smFISH provided single cell spatial resolution and confirmed the presence of distinct
26 cellular compartments within metaplastic glands consisting of either mature or immature intestinal

1 lineages. Also, this analysis revealed the spatial relationship between these two distinct cellular
2 populations relative to glandular architecture.

3

4 In the tumor sample, we also identified distinct compartments of well-differentiated cells
5 that expressed *TFF3*. Notably, poorly differentiated regions of the tumor showed high expression
6 of *HKDC1* and *OLFM4*. In addition, defined cell clusters within the poorly differentiated regions
7 of the tumor co-expressed *CDX1*, *OLFM4*, *CPS1*, *DMBT1* and *HKDC1* (**Supplementary Figure**
8 **11**).

9

10 DISCUSSION

11 In this study, we analyzed a Hp-negative cohort of individuals with pathology across the gastric
12 precancerous spectrum. Using integrated bulk gene expression, spatial transcriptomics, scRNA-
13 seq, and smFISH, we identified a highly refined signature of 26 genes which characterized high-
14 risk gastric precursors. Notably, this set of genes was i) associated with advanced OLGIM stages,
15 ii) localized to metaplastic glands on histopathology, iii) expressed by aberrant epithelial cells not
16 typically found in healthy gastric tissue, iv) differentially expressed from metaplasia to intestinal-
17 type GC, and v) distinguished between mature cells (goblet cells and enterocytes) and stem-like
18 cells in metaplastic foci.

19

20 While this high-risk gene expression signature is characterized by both markers of mature
21 enterocytes and stem-like cells, we found that the more advanced lesions had greater expression
22 of immature intestinal markers. This progression was characterized by increased expression of
23 intestinal stem cell markers such as *OLFM4*,³³ as well as markers of transit amplifying cells
24 (*DMBT1*)³⁴. These markers were absent from both normal differentiated gastric tissues, as well
25 as gastric stem cells. Collectively, these results point to intestinal stem-like cells playing an

1 important, constitutive role in the biology of advanced preneoplasia. A recent longitudinal study
2 from a Singaporean consortium also found changes in the intestinal stem-like cell compartment
3 to be associated with risk for GC.⁴⁶ In addition, another recent report demonstrated phenotypic
4 mosaicism in GIM, by which individual GIM cells co-express both intestinal and gastric markers.⁴⁷
5 This interesting finding strongly suggests that the intestinal cells identified by our studies also
6 possess gastric transcriptional properties, substantiating the terminology of “gastric enterocytes”
7 or “gastric intestinal stem-like cells”. Future efforts should be made to fully characterize these cell
8 populations. Our data lend further credence to the hypothesis that terminally-differentiated
9 epithelial cells (such as enterocytes and goblet cells) may simply be passive bystanders harboring
10 genetic alterations already present in genetically unstable stem-like cells, the latter of which have
11 the potential to become the true carcinogenic precursors.⁴⁸

12
13 Among the genes from the high-risk signature, some correspond to known markers for
14 intestinal stem-like cells, including *OLFM4* and *DMBT1*. Other genes in the signature are
15 established markers for mature enterocytes. For example, *ANPEP* encodes aminopeptidase N,
16 an enzyme found in the apical membrane of mature enterocytes. An early report suggested that
17 leucine aminopeptidase activity was highly specific to metaplastic zones within the human
18 stomach examined microscopically.³¹ *CDH17* is a membrane-associated enterocyte marker that
19 has been found expressed in >60% of GCs, with greater expression specifically in intestinal-type
20 GCs.³²

21
22 In our study, we found that *CPS1* to localize selectively to intestinal stem-like cells.
23 Interestingly, *CPS1* is an enzyme of the urea cycle and has previously been associated with
24 GIM.⁴⁹ Thus far, *CPS1* has not been associated with stem cell biology. However, a recent report
25 in lung cancer suggests that *CPS1* may be crucial for pyrimidine maintenance and DNA synthesis
26 in *KRAS* mutant cells.⁵⁰ Notably, *KRAS* was one of the driver oncogenes previously identified,⁴⁶

1 suggesting that there may be a relevant and novel role for *CPS1* as a source supply of pyrimidines
2 in the context of DNA synthesis among replicating precancerous cells.

3

4 *HKDC1* is a hexokinase and has not been previously described in gastric preneoplasia.
5 Two independent *in vitro* studies have evaluated the role of *HKDC1* in gastric cells. The first
6 recently found that *HKDC1* can promote chemoresistance, proliferation and invasion, and
7 epithelial-to-mesenchymal transition through induction of NF- κ B.⁵¹ The second study suggests
8 *HKDC1* may be pivotal for glycolysis and proliferation in AGS and MKN-45 GC cells.⁵² Supporting
9 a relevant role for *HKDC1* in carcinogenesis, this gene has been found to promote lung,⁵³ breast,⁵⁴
10 and biliary⁵⁵ cancers. Moreover, deletion of *HKDC1* inhibits proliferation and tumorigenesis in
11 mice.⁵⁶ Our findings suggest *HKDC1* may be a novel marker for advanced gastric preneoplasia.

12

13 Spatial co-expression of *HKDC1* and *CPS1* with *CDX1*, *OLFM4* and *DMBT1* in GIM
14 samples, as well as GC, provide strong evidence of the potential role of these cells in metabolic
15 reprogramming of GC precursor lesions. This is highly consistent with the single-cell expression
16 profiles. Further studies are warranted to establish their role in gastric preneoplasia.

17

18 Most prior molecular and genomic studies of the GIM microenvironment have focused on
19 populations with moderate-to-high Hp prevalence and high GC incidence.^{22,46,57} Our study
20 addresses a gap in the literature by providing needed mechanistic data on advanced GIM in a
21 relatively low-risk population common to many regions of North America and Europe. An
22 additional motivation for developing an Hp-negative biomarker is that almost all patients
23 diagnosed with GIM have already undergone Hp eradication therapy — that is to say, by the time
24 such patients come to clinical attention they are functionally Hp negative. The ongoing
25 carcinogenic potential of Hp-negative GIM may in part be explained to the establishment of clonal
26 stem-like cell lineages, as suggested by this and other studies.^{46,57}

1
2 Our findings have public health significance. As only a small fraction (<5%) of patients
3 with GIM will progress to GC over long-term follow-up,⁹⁻¹³ indefinite endoscopic surveillance of
4 these patients may lead to unnecessary cost, medical risk, and anxiety. It has been suggested
5 that combined clinical-genomic models may outperform clinical-only models in predicting
6 individuals most at risk for GC progression.^{22,46} This new high-risk signature may thus serve an
7 important risk-stratification purpose in individuals diagnosed with GIM.

8
9 Our study benefited from the prospectively collected specimens from the GAPS study
10 which have the most extensive clinical annotation of all the data sets. As a result, we had
11 histopathologic scoring by OLGIM. In contrast, public data sets of GIM were available only in
12 broader classes of Correa's cascade (e.g., NAG vs CAG vs GIM). Additional steps with the
13 cohorts that did not have as extensive clinical annotation (i.e., GIM from public scRNA-seq results)
14 were used for marker refinement, and to demonstrate that a consistent trend toward enhanced
15 expression was evidenced throughout Correa's cascade.

16
17 Spatial validation assays (both Visium and smFISH) are newly-emerging approaches.
18 These results provided the high resolution cellular imaging of the GIM spatial microenvironment.
19 Moreover, each sample in the validation steps required detailed annotation by an expert
20 pathologist; as such, each slide represents hundreds of independent, phenotyped data points on
21 which analysis was performed.

22
23 Our study was cross-sectional in nature and did not contain longitudinal data on GIM
24 progression. Our future studies will be focused on establishing causal inference through
25 prospective longitudinal cohorts. From these type of samples, we will conduct future studies in

1 which we predict histologic progression toward neoplasia in a cohort of patients with preneoplastic
2 lesions.

3

4 **CONCLUSION**

5 Leveraging multiple independent cohorts, we utilized integrated transcriptomic approaches
6 incorporating both spatial and single-cell methods to further characterize the molecular and
7 cellular origins of high-risk GIM. We identified a discrete set of 26 genes which are associated
8 with higher OLGIM stages, localize spatially to metaplastic foci, are expressed by aberrant
9 epithelial cells, are differentially expressed in intestinal-type GC, and characterize both mature
10 and immature intestinal cells. We find that with increasing histologic severity, the expression of
11 intestinal stem-like cell markers increases. These data hold important future implications for future
12 cancer interception.

13

1 **Acknowledgements**

2 We thank all study participants for their contribution to this study. We also thank Advanced Cell
3 Diagnostics for the RNAscope HiPlex reagents, received as part of the spatial grant program to
4 IAW.

5

6 **Competing interests**

7 The authors declare that they have no competing interests.

8

9 **Authors' contribution**

10 RJH co-led manuscript writing, co-led conception and design, and co-led specimen collection.
11 IAW co-led manuscript writing, led bioinformatics and statistical analysis, drafted figures and co-
12 led interpretation of data. AS contributed to statistical analysis, interpretation of data, and figure
13 creation. AS performed experimentation including scRNA-seq and data analysis. MVS
14 performed specimen collection, specimen processing, and table generation. SG performed
15 bioinformatics analysis. RM performed experiments in support of smFISH. AA performed data
16 collection, specimen collection, and specimen processing. XB performed statistical analysis.
17 JS interpreted and annotated biopsies. QN assisted in the bioinformatics analysis. MRA
18 contributed to conception, design, and image generation. JHH co-led conception and design,
19 co-led specimen collection. HPJ co-led conception and design and provided overall
20 administrative oversight over the project. All authors participated in drafting the manuscript for
21 important intellectual content and gave approval for publication.

22

23 **Funding**

1 Funding for this work came from NIH grants (R01CA280089, R01HG006137 to HPJ). The work
2 was also supported by the Gastric Cancer Foundation. Additional support to HPJ came from
3 the Clayville Foundation. RJH was supported by the National Cancer Institute of the National
4 Institutes of Health under Award Number K08CA252635. IAW received funding from CONICYT
5 FONDAP 15130011.

6

7 **Ethics approval**

8 The collection of clinical data and biological specimens from GAPS, the spatial cohort, and in-
9 house scRNA-seq samples were approved by the Stanford University Institutional Review Board
10 (45077).

11

12 **Data availability statement**

13 Data from this study are available in phs001818.v1.p1. Downloaded datasets are available
14 under accession numbers GSE134520, GSE150290, and PRJNA678538. The code used in
15 this study can be accessed at <https://github.com/sqtc-stanford/GIM-spatial>.

16

1 **FIGURE LEGENDS**

2 **Figure 1: Overview of study design.** **A)** Multi-omics flow diagram demonstrating process of
3 discovering and orthogonally validating gene marker panel. At each step, the number of marker
4 genes is shown. **B)** Representation of the specimens for each step of the multi-omics validation.
5 The GAstic Precancerous conditions Study (**GAPS**) is a prospective study, incorporating normal
6 controls, low-risk precancerous lesions, high-risk gastric intestinal metaplasia (**GIM**), and early
7 gastric cancer (**GC**). High-risk GIM lesions defined as Operative Link on GIM scores III or IV.
8 GAPS specimens drawn equally from antrum (N=153) and body (N=150). A spatial
9 transcriptomics cohort was derived from in-house sources. Bulk RNA-seq data from The Cancer
10 Genome Atlas (**TCGA**) were used for validation. The scRNA-seq data was obtained both
11 prospectively as well as through secondary analyses of published GIM and GC data sets. NAG,
12 nonatrophic gastritis; CAG, chronic atrophic gastritis. *Immediately adjacent sections from the
13 same tissue samples were used for spatial transcriptomics and smFISH.

14

15 **Figure 2: Discovery and validation of the high-risk expression signature.** **A)** Heatmap and
16 hierarchical clustering of differentially expressed and co-expressed genes from the discovery
17 cohort of 88 samples, 22 high-risk (defined as OLGIM III-IV) and 66 low-risk (defined as OLGIM
18 0-II). Most of the high-risk samples clustered distinctly and separately from the low-risk group,
19 regardless of the anatomic site of the biopsy (top dendrogram). A set of genes were found to be
20 both differentially expressed between high- and low-risk samples. Cluster-5 (C-5) represents 105
21 genes which were selectively upregulated in their expression only in high-risk samples, regardless
22 of anatomic location. **B)** We found 100 genes from C-5 to be differentially upregulated in the
23 validation cohort (22 high-risk and 193 low-risk samples), confirming a robust signature for high-
24 risk GIM which is agnostic of location. Dotplot depicting over-representation analysis results of
25 these 100 genes: **C)** gene ontology terms are enriched with intestinal processes (e.g., brush

1 border, intestinal absorption); **D)** cell type signature gene sets are enriched for mature and
2 immature/fetal intestinal cell types.

3

4 **Figure 3: Spatial resolution of the high-risk signature. A)** An example of the expression profile
5 of *DMBT1* upon a Visium slide annotated by a pathologist for areas of normal glandular
6 architecture (base and pit) and metaplasia. *DMBT1* is shown as an example of a spatially
7 resolved gene mapping to pathologist-annotated metaplasia, whereas *SLC30A10* is shown as an
8 example of a gene not mapping to metaplasia and, thus, discarded from the spatially-resolved
9 signature. **B)** Heatmap depicting 36 differentially expressed genes from spatial pseudobulk
10 analysis that overlapped with bulk RNA-seq signature. **C)** Scatter plot showing \log_2 fold-change
11 of 36 genes from spatial pseudobulk analysis (X-axis) and \log_2 fold-change from TCGA-STAD
12 RNA-seq analysis. Twenty-six genes overexpressed in both analyses are shown in red. **D)**
13 Spatial mapping of the refined 26-gene signature onto Visium spots. **E)** Comparison of 26-gene
14 signature between metaplastic foci vs normal stomach base or pit (Kruskal-Wallis and Dunn test
15 FDR-adjusted $p < 0.001$). Note: each Visium spot is 55 μm in diameter, with 100 μm distance
16 between the center of adjacent spots.

17

18 **Figure 4: Single-cell identification of cell types expressing the high-risk signature. A)**
19 UMAP plot showing reference-mapped epithelial cells. **B)** UMAP plot showing module score. **C)**
20 Comparison of the module score between cell types. **D)** Heatmap showing the scaled expression
21 of the 26 genes by cell type. The gene dendrogram shows genes expressed primarily by “gastric”
22 enterocytes and another expressed predominantly by “gastric” intestinal stem-like cells. Cells
23 identified as goblet cells expressed TFF3. **E)** Stacked bar plots depicting the proportion of cell
24 types per sample, ordered by stage of Correa’s cascade. Gastric lineages are aggregated into a
25 single class. **F)** Comparison of module score across Correa’s cascade ($p < 0.001$ for all

1 comparisons). **G)** Comparison of the module score between GC and tumor-adjacent control
2 tissues ($p < 0.0001$).

3

4 **Figure 5: Single-molecule fluorescence in situ hybridization (smFISH) of gastric intestinal**
5 **metaplasia.** Representative region showing H&E staining and smFISH for 6 genes in a GIM foci:
6 *TFF3, HKDC1, DMBT1, OLFM4, CPS1, and ANPEP*. **A)** Areas of mature intestinal cells
7 demonstrated robust expression of *TFF3* (goblet cells) and *ANPEP* (enterocytes). **B)** Other genes
8 (*OLFM4, DMBT1, CPS1, HKDC1*) localized to columnar cells near the isthmic/crypt regions in the
9 metaplastic glands (intestinal stem-like cells). The expression of these genes was mutually
10 exclusive, in space, from the mature markers. **C)** Representative normal gland showing that
11 genes from the signature are not expressed by normal gastric lineages.

1 **TABLES**

Table 1: Clinical and Histopathologic Attributes of Hp-negative Cohort

Enrolled Subjects (N=163)		Unique Gastric Biopsies (N=303)	
Characteristic	Frequency (%)	Finding	Frequency (%)
Age		All biopsies	
<50	40 (24.5)	Normal/NAG	204 (67.3)
50-69	90 (55.2)	CAG	99 (32.7)
>70	33 (20.2)	GIM severity	96 (31.7)
Female	105 (63.1)	Mild	42 (13.9)
Race/Ethnicity		Moderate	31 (10.2)
Non-Hispanic White	37 (22.7)	Severe	23 (7.6)
Black	1 (0.6)	Antrum	(N=153)
Hispanic	39 (23.9)	Normal/NAG	92 (60.7)
East Asian	70 (42.9)	CAG	61 (39.9)
Other	16 (9.8)	GIM severity	60 (39.2)
Foreign born	102 (62.6)	Mild	26 (17.0)
Family history*	16 (9.8)	Moderate	20 (13.1)
Proton pump inhibitor use	53 (20.4)	Severe	14 (9.2)
OLGIM stage**		Body	(N=150)
0 (no GIM)	92 (56.4)	Normal/NAG	112 (74.7)
I (lowest)	27 (16.6)	CAG	38 (25.3)
II	22 (13.5)	GIM severity	36 (24.0)
III	15 (9.2)	Mild	16 (10.7)
IV (highest)	7 (4.2)	Moderate	11 (7.3)
		Severe	9 (6.0)

Table 1 represents prospectively-recruited patients through GAPS (GAstric Precancerous conditions Study); clinical information on samples drawn from publicly-available data sources (e.g., TCGA cohort), as well as cancer resection specimens are not included in Table. *Family history defined as a first-degree relative diagnosed with gastric adenocarcinoma. **Gastric intestinal metaplasia (GIM) severity scores used to calculate operative link (OLGIM) stage. NAG, non-atrophic gastritis; CAG, chronic atrophic gastritis.

2

3

4

5

1 REFERENCES

2 1 Sung, H. *et al.* Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
3 Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J Clin* **71**, 209-249
4 (2021). <https://doi.org/10.3322/caac.21660>

5 2 Allemani, C. *et al.* Global surveillance of trends in cancer survival 2000-14 (CONCORD-
6 3): analysis of individual records for 37 513 025 patients diagnosed with one of 18
7 cancers from 322 population-based registries in 71 countries. *Lancet* **391**, 1023-1075
8 (2018). [https://doi.org/10.1016/S0140-6736\(17\)33326-3](https://doi.org/10.1016/S0140-6736(17)33326-3)

9 3 Correa, P. Human gastric carcinogenesis: a multistep and multifactorial process--First
10 American Cancer Society Award Lecture on Cancer Epidemiology and Prevention.
11 *Cancer Res* **52**, 6735-6740 (1992).

12 4 Hwang, Y. J. *et al.* Reversibility of atrophic gastritis and intestinal metaplasia after
13 Helicobacter pylori eradication - a prospective study for up to 10 years. *Aliment
14 Pharmacol Ther* **47**, 380-390 (2018). <https://doi.org/10.1111/apt.14424>

15 5 Ito, M. *et al.* Clinical prevention of gastric cancer by Helicobacter pylori eradication
16 therapy: a systematic review. *J Gastroenterol* **44**, 365-371 (2009).
17 <https://doi.org/10.1007/s00535-009-0036-8>

18 6 Take, S. *et al.* Risk of gastric cancer in the second decade of follow-up after
19 Helicobacter pylori eradication. *J Gastroenterol* **55**, 281-288 (2020).
20 <https://doi.org/10.1007/s00535-019-01639-w>

21 7 Sonnenberg, A., Lash, R. H. & Genta, R. M. A national study of Helicobactor pylori
22 infection in gastric biopsy specimens. *Gastroenterology* **139**, 1894-1901 e1892; quiz
23 e1812 (2010). <https://doi.org/10.1053/j.gastro.2010.08.018>

24 8 Sonnenberg, A. & Genta, R. M. Changes in the Gastric Mucosa With Aging. *Clin
25 Gastroenterol Hepatol* **13**, 2276-2281 (2015). <https://doi.org/10.1016/j.cgh.2015.02.020>

26 9 de Vries, A. C. *et al.* Gastric cancer risk in patients with premalignant gastric lesions: a
27 nationwide cohort study in the Netherlands. *Gastroenterology* **134**, 945-952 (2008).
28 <https://doi.org/10.1053/j.gastro.2008.01.071>

29 10 Song, H. *et al.* Incidence of gastric cancer among patients with gastric precancerous
30 lesions: observational cohort study in a low risk Western population. *BMJ* **351**, h3867
31 (2015). <https://doi.org/10.1136/bmj.h3867>

32 11 Li, D. *et al.* Risks and Predictors of Gastric Adenocarcinoma in Patients with Gastric
33 Intestinal Metaplasia and Dysplasia: A Population-Based Study. *Am J Gastroenterol
34* **111**, 1104-1113 (2016). <https://doi.org/10.1038/ajg.2016.188>

1 12 Reddy, K. M., Chang, J. I., Shi, J. M. & Wu, B. U. Risk of Gastric Cancer Among
2 Patients With Intestinal Metaplasia of the Stomach in a US Integrated Health Care
3 System. *Clin Gastroenterol Hepatol* **14**, 1420-1425 (2016).
4 <https://doi.org/10.1016/j.cgh.2016.05.045>

5 13 Spence, A. D. *et al.* Adenocarcinoma risk in gastric atrophy and intestinal metaplasia: a
6 systematic review. *BMC Gastroenterol* **17**, 157 (2017). <https://doi.org/10.1186/s12876-017-0708-4>

8 14 Cho, S. J. *et al.* Staging of intestinal- and diffuse-type gastric cancers with the OLGA
9 and OLGIM staging systems. *Aliment Pharmacol Ther* **38**, 1292-1302 (2013).
10 <https://doi.org/10.1111/apt.12515>

11 15 Yue, H., Shan, L. & Bin, L. The significance of OLGA and OLGIM staging systems in the
12 risk assessment of gastric cancer: a systematic review and meta-analysis. *Gastric
13 Cancer* **21**, 579-587 (2018). <https://doi.org/10.1007/s10120-018-0812-3>

14 16 Capelle, L. G. *et al.* The staging of gastritis with the OLGA system by using intestinal
15 metaplasia as an accurate alternative for atrophic gastritis. *Gastrointest Endosc* **71**,
16 1150-1158 (2010). <https://doi.org/10.1016/j.gie.2009.12.029>

17 17 den Hollander, W. J. *et al.* Surveillance of premalignant gastric lesions: a multicentre
18 prospective cohort study from low incidence regions. *Gut* **68**, 585-593 (2019).
19 <https://doi.org/10.1136/gutjnl-2017-314498>

20 18 Lee, J. W. J. *et al.* Severity of gastric intestinal metaplasia predicts the risk of gastric
21 cancer: a prospective multicentre cohort study (GCEP). *Gut* **71**, 854-863 (2022).
22 <https://doi.org/10.1136/gutjnl-2021-324057>

23 19 Nomura, A. *et al.* Helicobacter pylori infection and gastric carcinoma among Japanese
24 Americans in Hawaii. *N Engl J Med* **325**, 1132-1136 (1991).
25 <https://doi.org/10.1056/NEJM199110173251604>

26 20 Parsonnet, J. *et al.* Helicobacter pylori infection and the risk of gastric carcinoma. *N Engl
27 J Med* **325**, 1127-1131 (1991). <https://doi.org/10.1056/NEJM199110173251603>

28 21 Sorini, C. *et al.* Metagenomic and single-cell RNA-Seq survey of the Helicobacter pylori-
29 infected stomach in asymptomatic individuals. *JCI Insight* **8** (2023).
30 <https://doi.org/10.1172/jci.insight.161042>

31 22 Huang, K. K. *et al.* Genomic and Epigenomic Profiling of High-Risk Intestinal Metaplasia
32 Reveals Molecular Determinants of Progression to Gastric Cancer. *Cancer Cell* **33**, 137-
33 150 e135 (2018). <https://doi.org/10.1016/j.ccr.2017.11.018>

1 23 Zhang, P. *et al.* Dissecting the Single-Cell Transcriptome Network Underlying Gastric
2 Premalignant Lesions and Early Gastric Cancer. *Cell Rep* **27**, 1934-1947 e1935 (2019).
3 <https://doi.org/10.1016/j.celrep.2019.04.052>

4 24 Kim, J. *et al.* Single-cell analysis of gastric pre-cancerous and cancer lesions reveals cell
5 lineage diversity and intratumoral heterogeneity. *NPJ Precis Oncol* **6**, 9 (2022).
6 <https://doi.org/10.1038/s41698-022-00251-1>

7 25 Chey, W. D., Leontiadis, G. I., Howden, C. W. & Moss, S. F. ACG Clinical Guideline:
8 Treatment of Helicobacter pylori Infection. *Am J Gastroenterol* **112**, 212-239 (2017).
9 <https://doi.org/10.1038/ajg.2016.563>

10 26 Dixon, M. F., Genta, R. M., Yardley, J. H. & Correa, P. Classification and grading of
11 gastritis. The updated Sydney System. International Workshop on the Histopathology of
12 Gastritis, Houston 1994. *Am J Surg Pathol* **20**, 1161-1181 (1996).

13 27 Cancer Genome Atlas Research, N. Comprehensive molecular characterization of
14 gastric adenocarcinoma. *Nature* **513**, 202-209 (2014).
15 <https://doi.org/10.1038/nature13480>

16 28 Colaprico, A. *et al.* TCGAbiolinks: an R/Bioconductor package for integrative analysis of
17 TCGA data. *Nucleic Acids Res* **44**, e71 (2016). <https://doi.org/10.1093/nar/gkv1507>

18 29 Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing
19 and microarray studies. *Nucleic Acids Res* **43**, e47 (2015).
20 <https://doi.org/10.1093/nar/gkv007>

21 30 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network
22 analysis. *BMC Bioinformatics* **9**, 559 (2008). <https://doi.org/10.1186/1471-2105-9-559>

23 31 Nakahara, K. Special features of intestinal metaplasia and its relation to early gastric
24 carcinoma in man: observation by a method in which leucine aminopeptidase activity is
25 used. *J Natl Cancer Inst* **61**, 693-701 (1978).

26 32 Lee, H. J. *et al.* Gene expression profiling of metaplastic lineages identifies CDH17 as a
27 prognostic marker in early stage gastric cancer. *Gastroenterology* **139**, 213-225 e213
28 (2010). <https://doi.org/10.1053/j.gastro.2010.04.008>

29 33 van der Flier, L. G., Haegebarth, A., Stange, D. E., van de Wetering, M. & Clevers, H.
30 OLFM4 is a robust marker for stem cells in human intestine and marks a subset of
31 colorectal cancer cells. *Gastroenterology* **137**, 15-17 (2009).
32 <https://doi.org/10.1053/j.gastro.2009.05.035>

1 34 Gulaia, V. *et al.* Molecular Mechanisms Governing the Stem Cell's Fate in Brain Cancer:
2 Factors of Stemness and Quiescence. *Front Cell Neurosci* **12**, 388 (2018).
3 <https://doi.org/10.3389/fncel.2018.00388>

4 35 Wu, T. *et al.* clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
5 *Innovation (Camb)* **2**, 100141 (2021). <https://doi.org/10.1016/j.xinn.2021.100141>

6 36 Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing
7 biological themes among gene clusters. *OMICS* **16**, 284-287 (2012).
8 <https://doi.org/10.1089/omi.2011.0118>

9 37 Busslinger, G. A. *et al.* Human gastrointestinal epithelia of the esophagus, stomach, and
10 duodenum resolved at single-cell resolution. *Cell Rep* **34**, 108819 (2021).
11 <https://doi.org/10.1016/j.celrep.2021.108819>

12 38 Gao, S. *et al.* Tracing the temporal-spatial transcriptome landscapes of the human fetal
13 digestive tract using single-cell RNA-sequencing. *Nat Cell Biol* **20**, 721-734 (2018).
14 <https://doi.org/10.1038/s41556-018-0105-4>

15 39 Liberzon, A. *et al.* The Molecular Signatures Database (MSigDB) hallmark gene set
16 collection. *Cell Syst* **1**, 417-425 (2015). <https://doi.org/10.1016/j.cels.2015.12.004>

17 40 Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell
18 transcriptomic data across different conditions, technologies, and species. *Nat
19 Biotechnol* **36**, 411-420 (2018). <https://doi.org/10.1038/nbt.4096>

20 41 Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-
21 seq data using regularized negative binomial regression. *Genome Biol* **20**, 296 (2019).
22 <https://doi.org/10.1186/s13059-019-1874-1>

23 42 Wong, W. M., Poulsom, R. & Wright, N. A. Trefoil peptides. *Gut* **44**, 890-895 (1999).
24 <https://doi.org/10.1136/gut.44.6.890>

25 43 Kjellev, S. The trefoil factor family - small peptides with multiple functionalities. *Cell Mol
26 Life Sci* **66**, 1350-1369 (2009). <https://doi.org/10.1007/s00018-008-8646-5>

27 44 Huang, K. K. *et al.* Spatiotemporal Genomic Profiling of Intestinal Metaplasia Reveals
28 Clonal Dynamics of Gastric Cancer Progression. *bioRxiv*, 2023.2004.2010.536195
29 (2023). <https://doi.org/10.1101/2023.04.10.536195>

30 45 Sathe, A. *et al.* Single-Cell Genomic Characterization Reveals the Cellular
31 Reprogramming of the Gastric Tumor Microenvironment. *Clin Cancer Res* **26**, 2640-
32 2653 (2020). <https://doi.org/10.1158/1078-0432.CCR-19-3231>

33 46 Huang, K. K. *et al.* Spatiotemporal Genomic Profiling of Intestinal Metaplasia Reveals
34 Clonal

1 Dynamics of Gastric Cancer Progression. *bioRxiv* (2023).
2 <https://doi.org/10.1101/2023.04.10.536195>

3 47 Nowicki-Osuch, K. *et al.* Single-Cell RNA Sequencing Unifies Developmental Programs
4 of Esophageal and Gastric Intestinal Metaplasia. *Cancer Discov* **13**, 1346-1363 (2023).
5 <https://doi.org/10.1158/2159-8290.CD-22-0824>

6 48 Graham, D. Y. & Zou, W. Y. Guilt by association: intestinal metaplasia does not progress
7 to gastric cancer. *Curr Opin Gastroenterol* **34**, 458-464 (2018).
8 <https://doi.org/10.1097/MOG.0000000000000472>

9 49 Chu, P. G., Jiang, Z. & Weiss, L. M. Hepatocyte antigen as a marker of intestinal
10 metaplasia. *Am J Surg Pathol* **27**, 952-959 (2003). <https://doi.org/10.1097/00000478-200307000-00010>

12 50 Kim, J. *et al.* CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-
13 mutant lung cancer cells. *Nature* **546**, 168-172 (2017).
14 <https://doi.org/10.1038/nature22359>

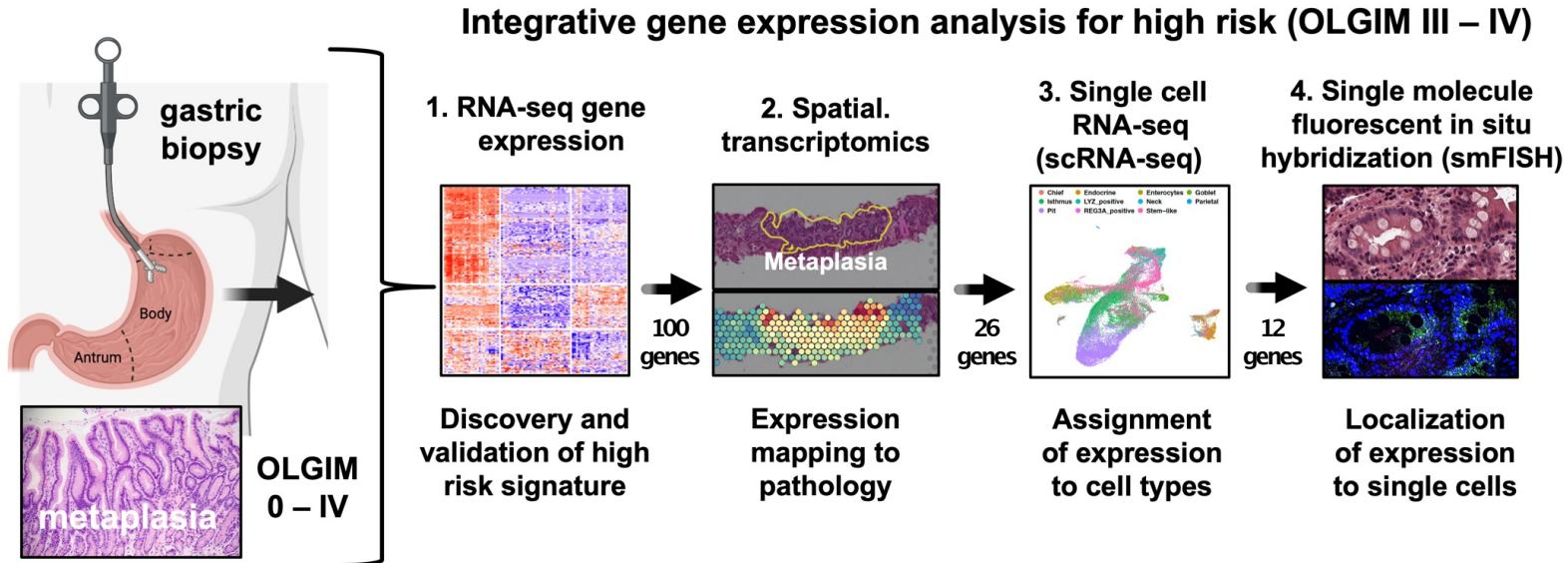
15 51 Wang, M. Q. *et al.* HKDC1 upregulation promotes glycolysis and disease progression,
16 and confers chemoresistance onto gastric cancer. *Cancer Sci* **114**, 1365-1377 (2023).
17 <https://doi.org/10.1111/cas.15692>

18 52 Yu, C., Bao, T. T., Jin, L., Lu, J. W. & Feng, J. F. HKDC1 Silencing Inhibits Proliferation
19 and Glycolysis of Gastric Cancer Cells. *J Oncol* **2023**, 3876342 (2023).
20 <https://doi.org/10.1155/2023/3876342>

21 53 Wang, X. *et al.* HKDC1 promotes the tumorigenesis and glycolysis in lung
22 adenocarcinoma via regulating AMPK/mTOR signaling pathway. *Cancer Cell Int* **20**, 450
23 (2020). <https://doi.org/10.1186/s12935-020-01539-7>

24 54 Chen, X. *et al.* PGC1beta Regulates Breast Tumor Growth and Metastasis by SREBP1-
25 Mediated HKDC1 Expression. *Front Oncol* **9**, 290 (2019).
26 <https://doi.org/10.3389/fonc.2019.00290>

27 55 Dong, L. *et al.* Proteogenomic characterization identifies clinically relevant subgroups of
28 intrahepatic cholangiocarcinoma. *Cancer Cell* **40**, 70-87 e15 (2022).
29 <https://doi.org/10.1016/j.ccr.2021.12.006>

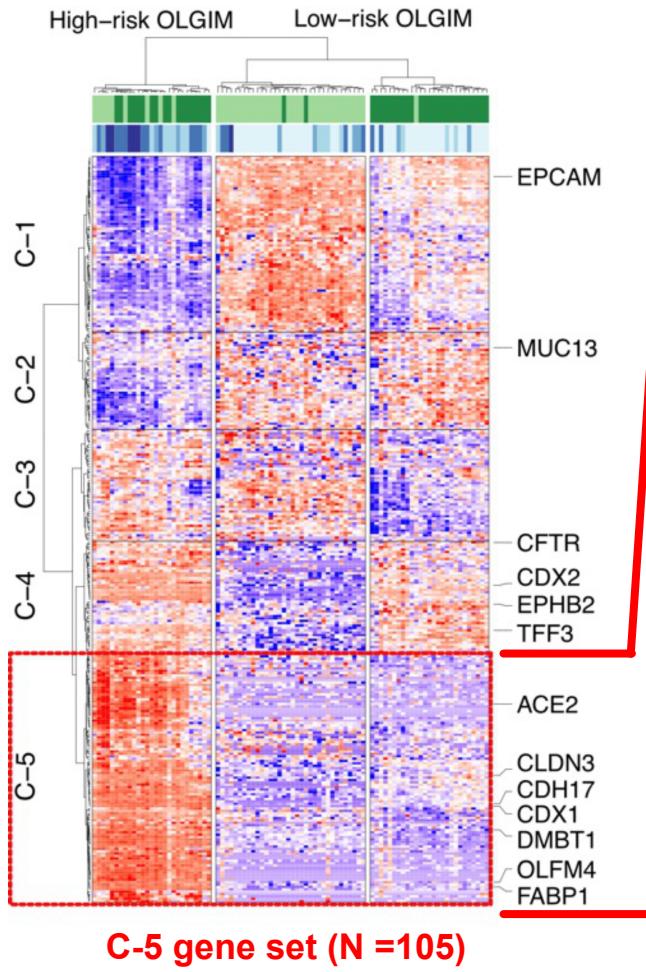

30 56 Khan, M. W. *et al.* The hexokinase "HKDC1" interaction with the mitochondria is
31 essential for liver cancer progression. *Cell Death Dis* **13**, 660 (2022).
32 <https://doi.org/10.1038/s41419-022-04999-z>

1 57 Kumagai, K. *et al.* Expansion of Gastric Intestinal Metaplasia with Copy Number
2 Aberrations Contributes to Field Cancerization. *Cancer Res* **82**, 1712-1723 (2022).
3 <https://doi.org/10.1158/0008-5472.CAN-21-1523>

4
5

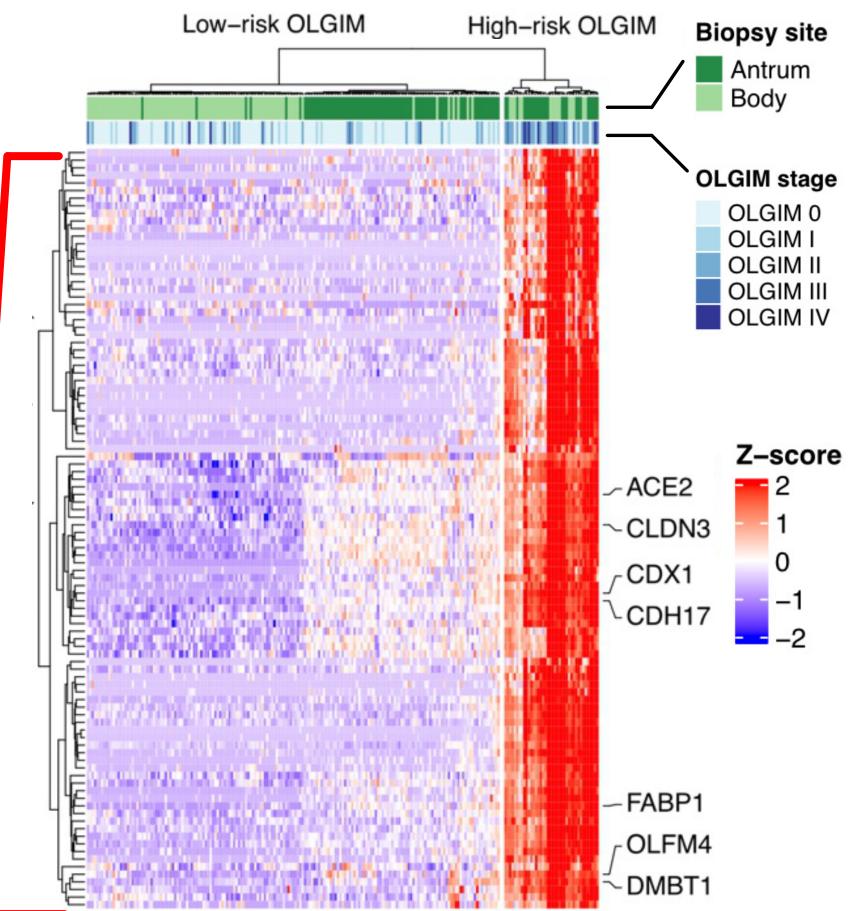
Figure 1

A

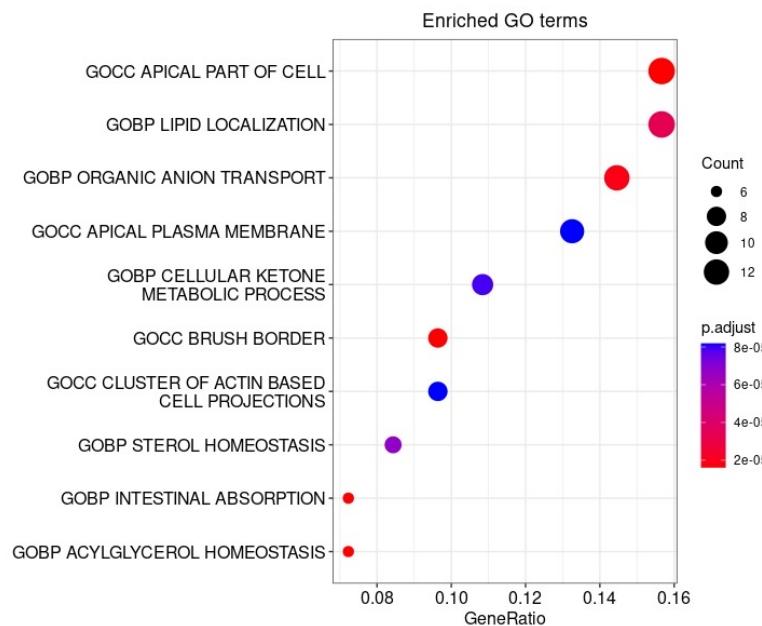

B

Study samples overview

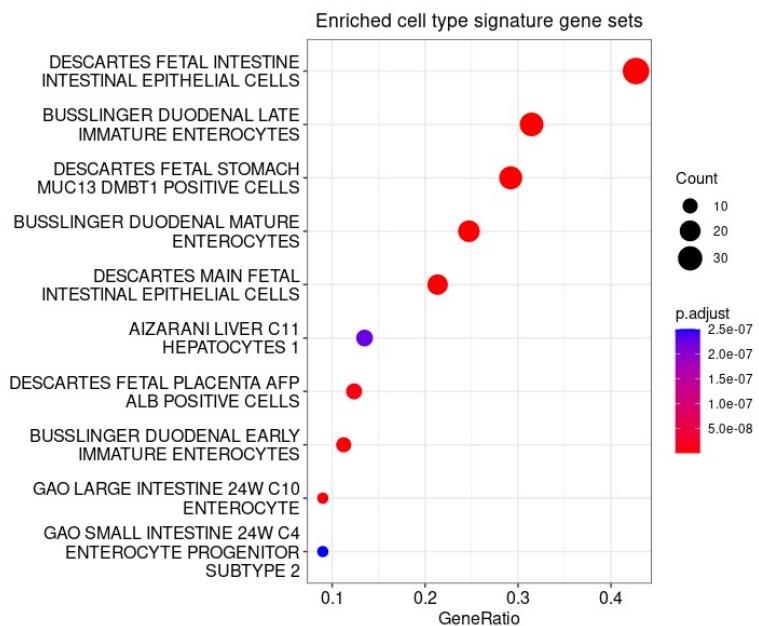
Step	RNA-seq gene expression		Spatial Transcriptomics		RNA-seq of gastric cancer		scRNA-seq		smFISH	
Cohort	GAPS		Spatial Cohort		TCGA Cohort		Public and in-house		Spatial Cohort	
Samples	207	Controls	4*	GIM	180	GC	2	Normal	4*	GIM
	52	Low-risk lesions	1*	GC	18	Matched controls	3	NAG	1*	GC
	44	High-risk GIM					3	CAG		
	(153)	Antrum					13	GIM		
	(150)	Body					10	GC		
							9	Matched controls		
Total	303		5		198		40		5	


Figure 2

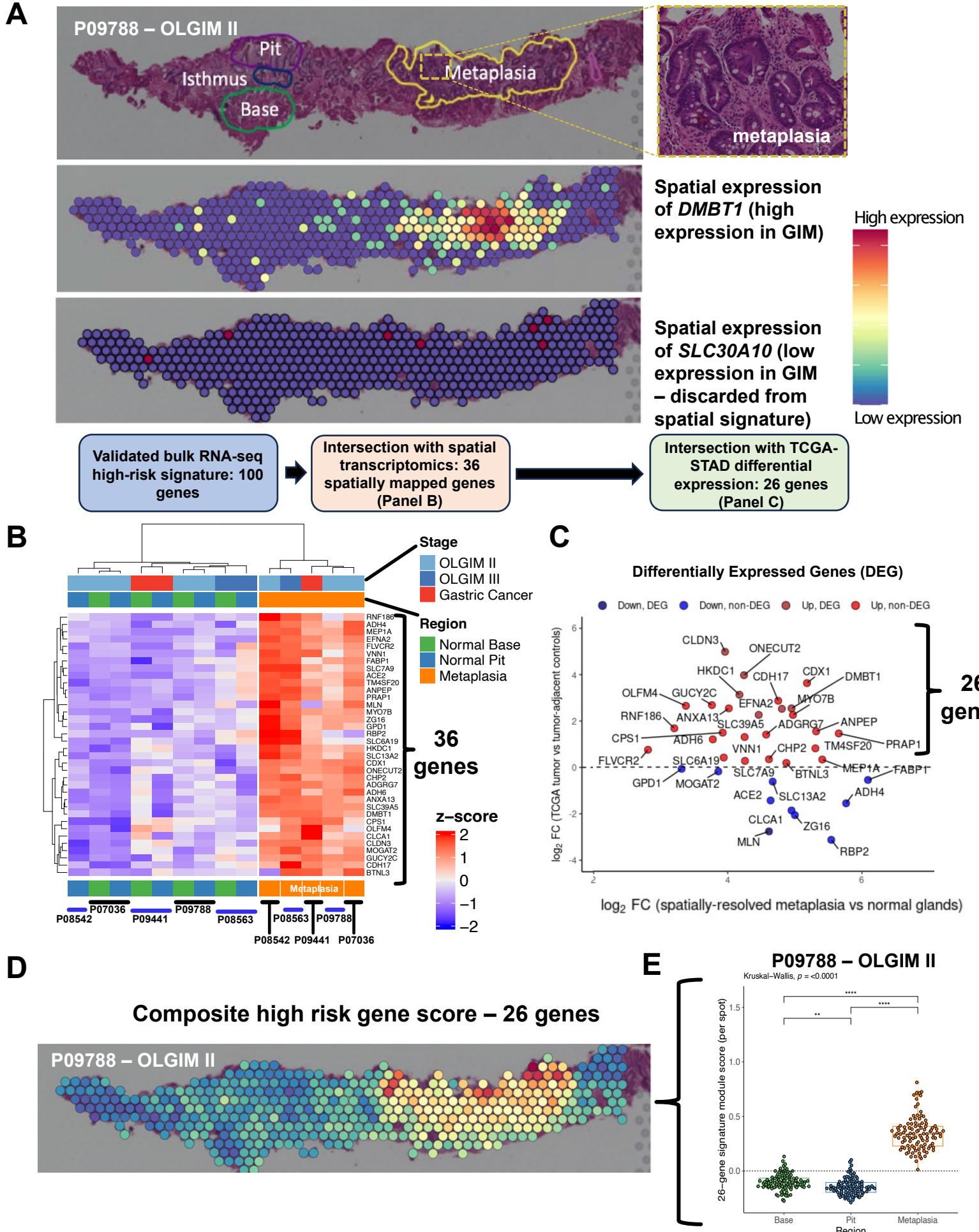
A Discovery cohort (N = 88 samples)

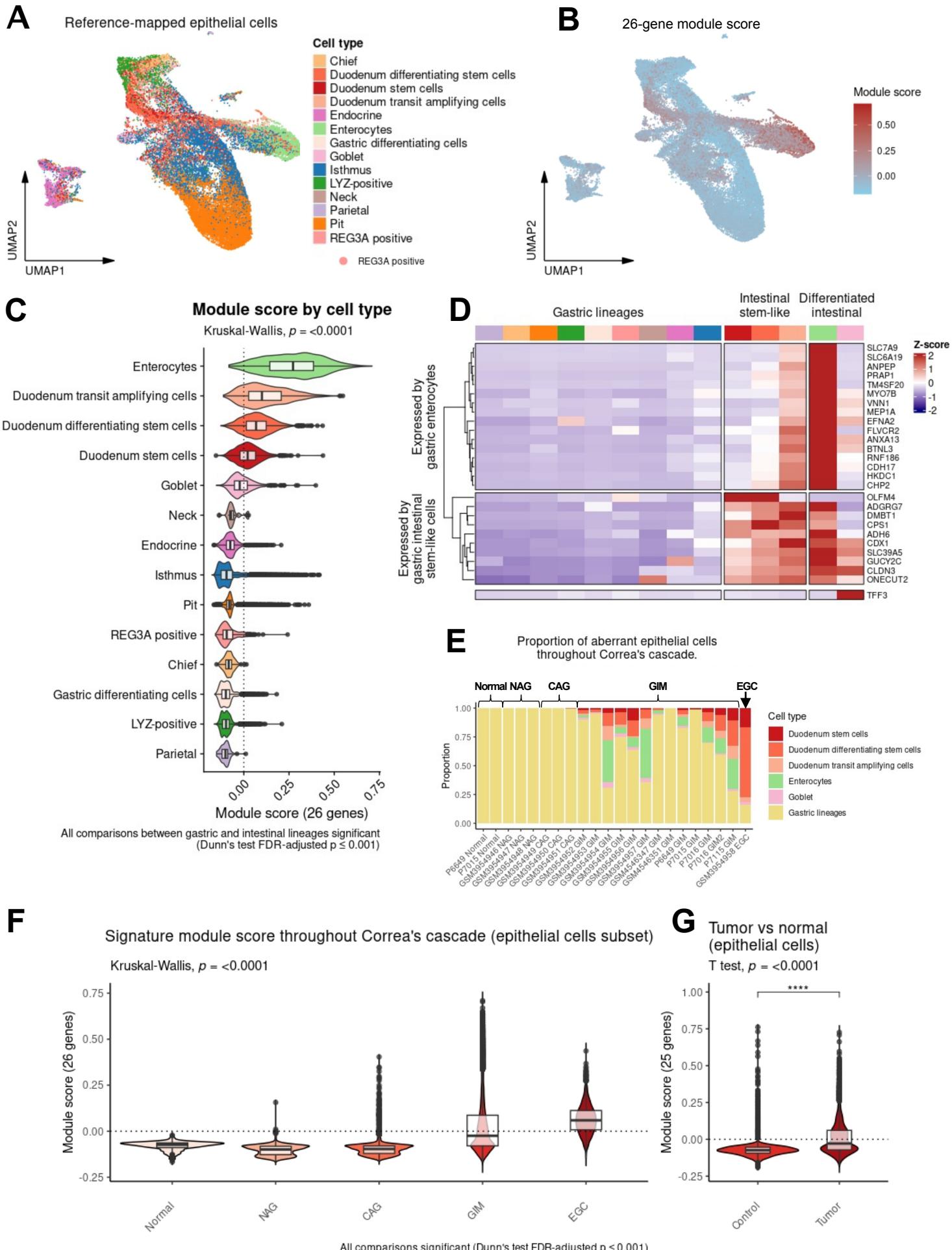

C-5 gene set (N =105)

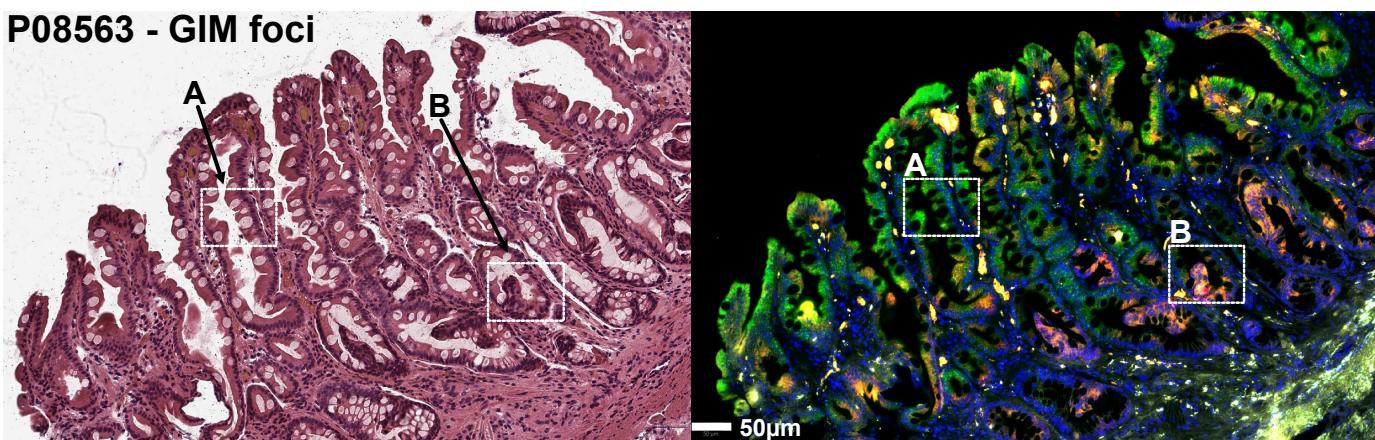
B Validation cohort (N = 215 samples)

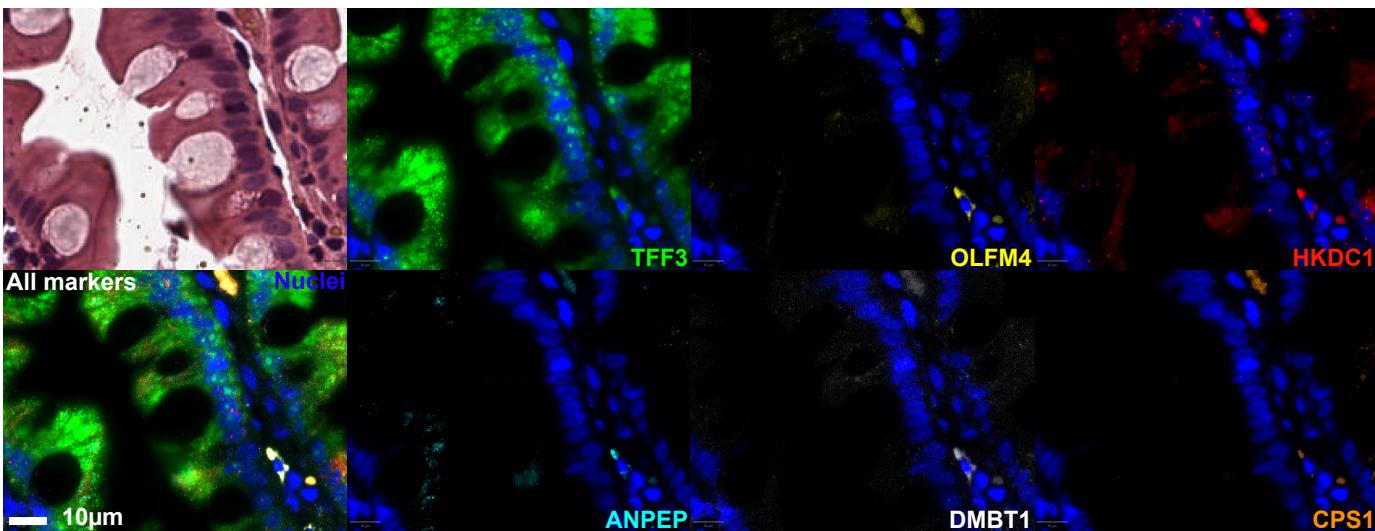


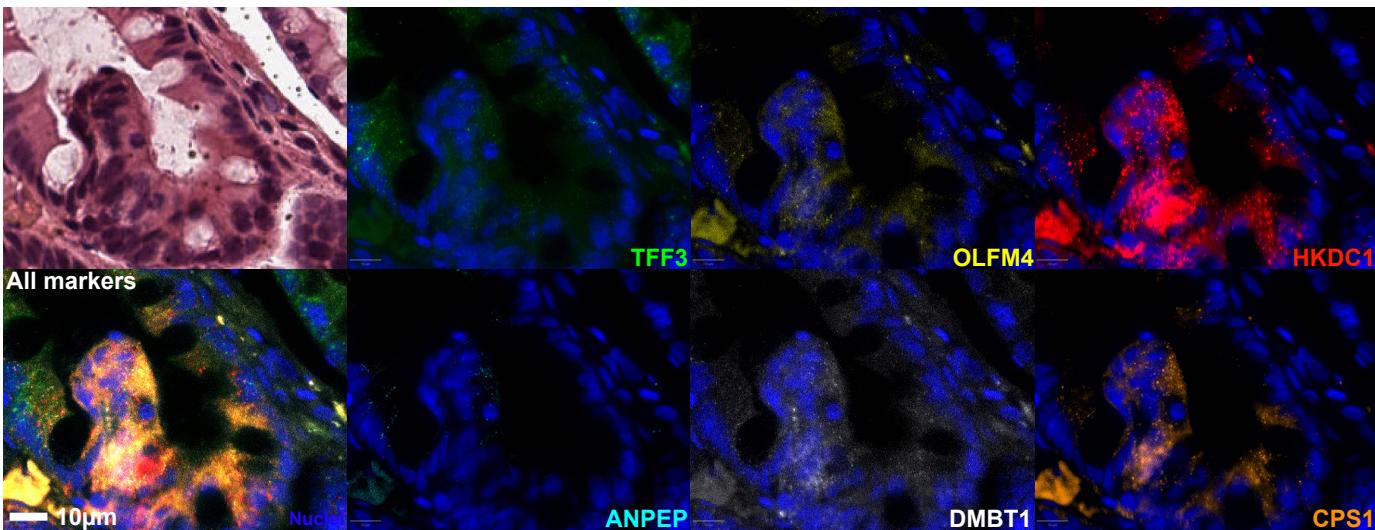
C-5 validated gene subset (N =100)

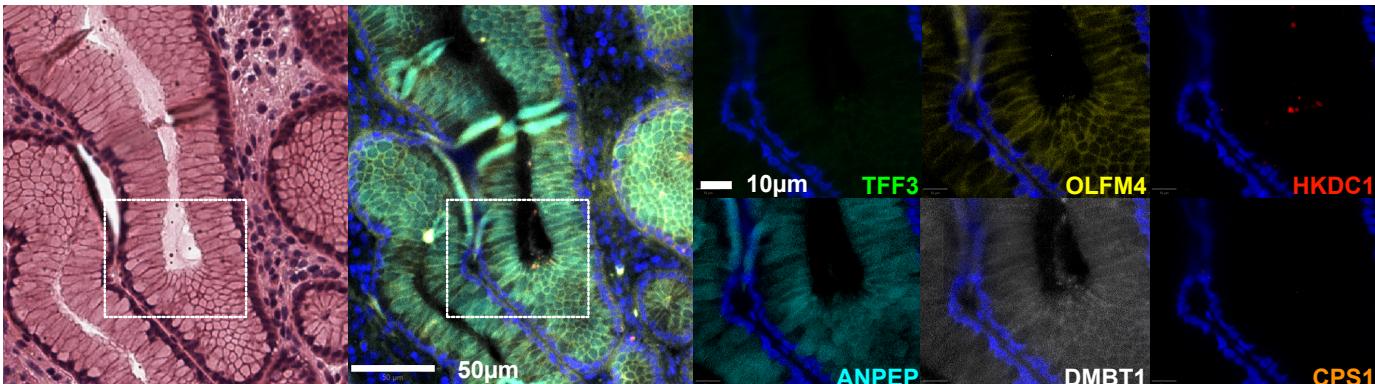

C


D


Figure 3


Figure 4


Figure 5


A - Differentiated intestinal cells

B - Intestinal stem-like cells

Normal pyloric glands

