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Abstract:

There is considerable interest in understanding patterns of B-diversity that measure the amount of
change in species composition through space or time. Most hypotheses for B-diversity evoke
nonrandom processes that generate spatial and temporal within species aggregation; however, 3-
diversity can also be driven by random sampling processes. Here, we describe a framework
based on rarefaction curves that quantifies the non-random contribution of species compositional
differences across samples to B-diversity. We isolate the effect of within-species spatial or
temporal aggregation on beta-diversity using a coverage standardized metric of B-diversity (Bc).
We demonstrate the utility of our framework using simulations and an empirical case study
examining variation in avian species composition through space and time in engineered versus
natural riparian areas. The primary strengths of our approach are that it provides an intuitive
visual null model for expected patterns of biodiversity under random sampling that allows
integrating analyses across a-, y-, and B-scales. Importantly, the method can accommodate
comparisons between communities with different species pool sizes, and can be used to examine

species turnover both within and between meta-communities.
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Introduction

Ecologists are frequently interested in how the composition of species in a community changes
across space or time (Scheiner et al. 2011, Magurran et al. 2019, Daskalova et al. 2020).The
degree of change in species composition in assemblages across space or time is often referred to
as B-diversity: localities or time periods with fewer species in common have higher B-diversity.
Most conceptual explanations of B-diversity evoke processes that generate non-random spatial or
temporal patterns of species aggregation (Leibold and Chase 2018). Aggregation here refers to
clustering whereby individuals occur near other individuals of the same species in time and/or
space. For instance, two of the most commonly discussed mechanisms underlying patterns of -
diversity are environmental filtering and dispersal limitation (Legendre et al. 2005, Vellend
2016, Leibold and Chase 2018). Both of these mechanisms increase aggregation of species

distributions via conspecific clustering in space or time increasing -diversity.

Although most attention has been focused on the non-random mechanisms underpinning 3-
diversity, it can also reflect random sampling effects of individuals and species taken from
multiple points in space or time. Imagine we collect a sample of 40 individuals within a region or
time period that supports up to 50 different species. Even in the improbable case that the
numbers of individuals of each species are exactly the same (completely even), at least 10
species will be excluded from our sample because of the limited number of individuals. If we
then compare that sample to another from a different location in space or time, a different set of
10 (or more) species will be excluded simply due to random sampling effects: the species
composition of the two samples will differ entirely due to incomplete sampling. This
phenomenon has been variously termed a “sampling effect” (e.g., Adler et al. 2005), a

“rarefaction effect” (e.g., Palmer et al. 2008), and the “random placement model” (e.g., Coleman
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et al. 1982). The core idea is that the number of species observed in a sample is constrained by
the number of individuals in that sample. Returning to our thought experiment, if the species
have a more realistic abundance distribution, with many individuals of a few common species
and many species with few individuals (i.e., rare species), these sampling effects on B diversity
can be strong (Kraft et al. 2011, Chase et al. 2018, McGlinn et al. 2019, Engel et al. 2021). This
example emphasizes that spatial or temporal  diversity is potentially underlain by two factors: a)
the non-random turnover of species, due to ecological mechanisms such as environmental
filtering or dispersal limitation; and, b) the random turnover of species due to incomplete

sampling, especially of rare species (i.e., sampling effects).

Most metrics of B-diversity conflate variation from both random sampling effects and spatially
non-random mechanisms (Stegen et al. 2013, Chase et al. 2018, McGlinn et al. 2019, Engel et al.
2021, Chao et al. 2023). This means that the same observed change in B-diversity may be due to
different underlying mechanisms, sometimes referred to as a “many-to-one problem”, which are
common in ecological studies (Frank 2014, Scholes 2017). Specifically, random turnover can
occur where there are changes/differences in other non-spatial components of diversity, such as
the species abundance distribution and size of the regional species pool and the total number of
individuals. To illustrate this, consider the three hypothetical scenarios in Figure 1 using
Whittaker’s (1960) B-diversity (fs=y/a , where y is the regional, and @ is the average of local
diversity). In each scenario (Figl. a-c), a shift in a different component of community structure
results in a doubling of Whitaker’s B-diversity (from 1 to 2). In the first two cases (Figl.a, b), B-
diversity increases due simply to random placement of individuals resulting either from a shift in
the species-abundance distribution (SAD), for example, a decrease in evenness (Fig. 1a) or, from

a decrease in the total number of individuals (V) (Fig. 1b). In the third case, the same magnitude
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of shift in fs is due to an increase in conspecific aggregation (Fig. 1¢). This “many-to-one" effect
is particularly problematic when trying to link changes in B-diversity to hypotheses that evoke
changes to conspecific clustering due to environmental filtering or dispersal limitation. To link
these mechanisms to B-diversity, it would make sense to focus on patterns of B-diversity that
reflect only changes in conspecific aggregation rather than changes in N or the SAD (which we
refer to as sampling effects). One consequence of B-diversity metrics confounding both random
and non-random variation is that most f-diversity metrics can increase as aggregation decreases

if N is decreasing or the SAD is becoming less even for example.

a) BS = 2 —
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Figure 1. Cartoon communities that illustrate how random sampling effects and non-random spatial
effects can result in identical values of Whittaker’s B-diversity (fs), where & is average sample richness
across plots (small boxes) and y is total species richness in a site (large boxes). The different symbols

represent individuals of different species. Panels (a) and (b) illustrate changes in community structure that
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are consistent with a random sampling model in which spatial B increases either because the regional
species-abundance distribution (SAD) is less even (a) or because there are many fewer individuals (b).
Panel (c), illustrates how a spatially non-random process such as environmental filtering results in
conspecific aggregation producing an identical value of fs.

It is important to emphasize that this is a problem that potentially influences all B-diversity
metrics. Any metric of B-diversity that does not explicitly consider the process of sampling is
sensitive to sampling effects. So regardless of whether turnover is calculated using presence-
absence vs abundance data, is examined in space or time, or using pairwise vs multisite metrics,
if the goal of the analysis is to link patterns of compositional change to mechanisms that generate
non-random conspecific occurrence patterns, then sampling effects should be controlled for in
the measurement of B-diversity. Other authors have recognized this and proposed a
randomization algorithm to try to control for sampling effects on B-diversity (Kraft et al. 2011,
Chase et al. 2011, Myers et al. 2013, 2015). Yet, continued debate as to exactly how to develop
those randomizations, and just what the deviations mean (Kraft et al. 2012, Qian et al. 2012,

2013, Xu et al. 2015, Tucker et al. 2016) indicates that a more general solution is necessary.

In this paper, we describe a framework for quantifying the non-random contribution of species
compositional differences across samples to B-diversity. This framework can be applied to any
question related to measuring compositional variation (i.e., B-diversity) across samples, whether
it be within a given (relatively homogeneous) metacommunity, across an environmental gradient,
or through time. The approach allows us to differentiate the contribution of non-random species
compositional shifts from the effects of sampling properties due to random placement to changes
in B-diversity. As a result, we can quantify and compare compositional shifts among samples

through space or time, and potentially relate these to other features of the system (e.g., changing


https://doi.org/10.1101/2023.09.19.558467
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.19.558467; this version posted September 22, 2023. The copyright holder for this preprint

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

spatial or environmental conditions). Here, our primary purpose is not to review and/or unify all
metrics and measures of B-diversity, nor to advocate for a single superior metric, both of which
have been attempted (Tuomisto 2010, Chao et al. 2012, 2023). Rather, we promote a framework
for measuring the relative influence of sampling and non-random associations that underlie -
diversity among samples, regardless of whether it is measured within or across landscapes,
through time, or any combination thereof. Furthermore, rather than using different concepts and
tools, we show how a single conceptual framework can identify the key components underlying

variation in species composition.

First, we describe a simple framework that uses rarefaction curves to decompose p-diversity into
components due to sampling effects, and those that are due to non-random aggregations of
species. Second, we show the framework can be applied to multiple, related questions about how

species composition varies across samples.

A unified framework for dissecting the non-random contribution of species compositional variation
to B-diversity in space and time

The components of our framework are not new. The framework is based on a long history of
rarefaction and accumulation curves that depict how species numbers increase with increasing
sampling effort (Preston 1960, Sanders 1968). For example, Kobayashi (1982, 1983) showed
how spatial aggregation could be quantified from rarefaction curves by comparing subsets of
spatially explicit samples to the entire range of spatially randomized samples. Likewise, Gotelli
and Colwell (2001) showed how comparing accumulation or ‘collectors’ curves that retain
spatial information about the distributions of individuals to individual-based rarefaction curves

could provide an indicator of the degree to which aggregation influenced spatial patterns of
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152  species accumulations (see also Crist and Veech 2006, Chiarucci et al. 2009, Cayuela et al. 2015,
153  Chase et al. 2018, McGlinn et al. 2019). Finally, Olszewski (2004) explicitly discussed how the
154  comparisons between spatially explicit and randomized rarefaction curves could be used as an
155 index of B-diversity (see also Crist and Veech 2006, Dauby and Hardy 2012). These perspectives
156  have been more recently formalized using individual-based rarefaction curves (and related

157  diversity curves) to disentangle non-random structure from random placement underlying -

158  diversity within a given set of environmental conditions (i.e., a metacommunity) (Chase et al.
159 2018, McGlinn et al. 2019, 2021, Engel et al. 2021). Here, we generalize this approach and apply
160 it to questions examining B-diversity among different kinds of samples, such as sites across a
161  strong environmental gradient, or when quantifying temporal B-diversity.

162

163 Our framework is designed for one of the most common data types available to community

164  ecologists - a sample-by-species matrix. Each sample contains a vector of abundances of all

165  species sampled from a given assemblage and comes from a given local site. Samples can be

166  collected across multiple sites (a site-by-species matrix) or across multiple time periods (a time-
167  by-species matrix), or a combination of the two. For simplicity, we illustrate the different steps
168  of the approach with samples taken from two spatial locations or time points in Figure 2, but it
169  can be generalized to any number of samples. We assume that the communities being compared
170  are sampled in such a way that they have the same sample effort, i.e., the spatial and temporal
171  grain, extent, and sample arrangement are equal across communities (or can be standardized to
172 such). Here, we define a single sample as the a-scale, and the sum of samples as the y-scale;

173 however, other accumulation schemes are also possible, so long as the a-scale is a subset of the

174 y-scale.
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175

176  Step 1: Create a rarefaction curve for the sum of all samples: y-scale

177  If we pool the two (or more) samples, we can calculate the y-scale rarefaction curve (solid, thick
178  black line in Figure 2). This curve shows the number of species for a random sample of

179  individuals from the whole metacommunity or time series; for any sample of n individuals, S, is
180  the expected number of species in that sample. This type of rarefaction curve is sometimes

181  referred to as an individual-based rarefaction curve or random sampling model. The curve and its
182  variance has been derived analytically for sampling without replacement (Hurlbert 1971, see
183  Coleman et al. 1982 for formulation for sampling with replacement). Here, because we calculate
184  rarefaction using all samples, the y-scale curve represents a ‘null expectation’ of the number of
185  species for n individuals, when all individuals of all species occur randomly across the samples
186  (in space or time).

187

188  Step 2: Create a rarefaction curve for each individual sample and average them: a-scale

189  Next, we calculate the rarefaction curves for the individual samples (Fig 2, thin solid black lines)
190  and average them to obtain the a-scale rarefaction curve up to the number of individuals (») that
191  provides the target level of coverage (Fig. 2, thick dashed gray line; Engel et al. 2021). Here

192 coverage refers to how close the y curve has come to a hypothetical asymptote (i.e., it is an

193  estimate of sample completeness, Chao and Jost 2012).

194

195  Step 3: Compare the a and y- scale curves to estimate the f-scale patterns

196  The classical Whittaker’s Bs metric is calculated as y / @ where @ is average sample richness

197  (Whittaker 1960). Within our framework, these values are represented by the ends of the
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rarefaction curves (i.e., the average number of species per site [@], and all species observed
across all sites in a region or time points [y], Fig. 2).

To estimate non-random spatial structure, we must compare the (average) a-scale curve (dashed
line) to the y-scale curve, after standardizing for sampling effects. We control for the numbers of
individuals sampled (i.e., sampling effects) by comparing the y- and a-scale rarefaction curves at

the same value of number of individuals (n).

o)
(@]
o
)

asssmmsssnfumEn, sws?

-
.

# of species (S,)

K
2
S

A J

# of individuals (n)

Figure 2: Individual based rarefaction curves at the a- and y-scales. Thin solid black lines depict
two a-scale curves, with their average shown by the thick dashed gray line; solid thick black line
shows the y-scale curve, which is calculated by pooling the two a-scale samples. Whittaker’s fs
is calculated as the ratio of ys and @&g. In contrast, coverage-based fic controls for the number of

individuals by using the ratio of ys, and @g,, where n provides a target degree of coverage that

10
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210  adjusts for variation in the regional SAD (species pool) when comparing between meta-

211  communities (eqn 5 from Engel et al. 2021).

212 To illustrate the behavior of these metrics, we simulated four scenarios similar to those shown on
213 Figure 1, and calculated Bs and Bc. All scenarios have 50 species in the regional pool, but they
214 vary from the starting community in either their evenness, total number of individuals, or

215  conspecific aggregation. When individuals of all species are distributed randomly and only the
216  evenness of the SAD decreases (Fig. 3A: high evenness 3B: low evenness) or the total number of
217  individuals decreases (Figure 3A: N = 1000; 3C: N = 400), we see that the average a-scale curve
218  (dashed gray line) falls directly on top of the y-scale curve (solid black line, Figure 3 E-G), and
219  low evenness and fewer individuals are associated with an increases in s, but Bc is equal to one
220  1in both cases (insets on Figure 3F and G). However, when we add non-random structure via

221  species aggregation (Figure 3D), the a- and y-scale IBR curves diverge (Figure 3H), and both

222 metrics are greater than one (compare inset Figure 3H to 3E).

A B Cc D
S= 50,N=1000 S = 50, N=1000 S = 50,N =400 S= 50,N = 1000
spatially random spatially random; less even SAD spatially random; lower N spatially clumped within species
L ..l::.‘..ra; "-'“' (':‘l o ¢ ', .‘ o] ] -l
o ’-.'-. & 2, =$' . LI L e’
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e 'yve & 3 s C . *
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224 Figure 3: Quantitative illustration that fs responds to changes to changes in evenness and the
225  total number of individuals, whereas fc only responds to changes in within-species aggregation.
226  Simulated communities are shown in panels (A-D) in which different colored dots represent

227  individuals of different species. The landscape (y scale) is divided into four quadrats (a scale,
228  dashed gray lines). Panels E-H show the corresponding rarefaction curves associated with each
229  artificial community for the y- (solid black line) and average a-scales (dashed gray line). Inset on
230  these panels is the value of each g diversity metric described. Note that f = 1 means species

231  composition does not vary among samples.

232

233 If species are randomly distributed among sites (or time points; Fig. 3A-C), then species will
234 likely be sampled at all sites, and the a- and y-scale curves will fall on top of each other (Fig. 3E-
235 Q). However, if species display conspecific aggregation (i.e., individuals within a species are
236  clumped, Fig. 3D) such that they are non-randomly distributed in space or time, then the a-scale
237  curve will fall below the y-scale curve (Fig. 3H), because new species will be encountered across
238  different sites or time points due to the within species aggregation, pulling the y-scale curve up
239  relative to the a-scale curve. The resulting ratio of ys, and &, , which we call coverage-based 3
240  diversity (fc, Engel et al. 2021), is indicative of the degree to which species show (non-random)
241  intraspecific aggregation among sites or time periods.

242

243 Thus, Bc reflects the degree of non-randomness in the spatial or temporal distribution of species
244 within the domain of (0, «). The example in Figure 3D shows a case where there is a non-

245  random distribution of species composition among samples, and Bc>1. However, it is also

246  plausible that the a- and y-scale curves could completely overlap (see e.g., Fig. 3E-G), in which

12
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case we would conclude that even though there is B-diversity (i.e., Bs>1), this is simply due to
random placement effects (Bc=1). Finally, species can also show conspecific segregation (i.e.,
individuals within a species are overdispersed more than random), where the a-scale curve falls

above the y-scale curve, and fc < 1 (not shown).

One additional benefit of fc (that is not illustrated in Figure 3 but described in detail in Engel et
al. 2021) is that this metric is unbiased when comparing -diversity across meta-communities
that differ in the size of their species pools (e.g., in temperate vs. tropical environments, or across
strong environmental gradients). This is accomplished by computing Bc within each meta-
community at the same level of sample coverage or completeness (Chao and Jost 2012). In
effect, ensuring that y-scale sample coverage is the same for all metacommunities means that the
value of n (the number of individuals for which ys, and @g,, are calculated) varies among

metacommunities.

To summarize, traditional measures of variation in species composition across area or time (fs)
are shaped by both random and non-random sampling processes, and we can isolate the non-
random structure in space or time in determining that scaling by calculating Bc (Table 1).
Furthermore, we can evaluate these B-diversity measures for a wide variety of questions
concerning species compositional shifts in space and time. We provide R code to calculate
classical Bs and Bc (as well as several other B metrics which we do not show here for simplicity)
in mobr::calc_beta_div (McGlinn et al. 2022).

Table 1. Multiplicative £ diversity metrics and the effects that they capture. Species abundance

distribution (SAD) effects are due to changes in species evenness and/or the size of the species
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270  pool, N effects refer to changes in richness due to variation in the number of individuals
271  sampled, while aggregation effects refer to changes in richness due to variation in how

272  individuals are spatially or temporally distributed (clumped, random, or overdispersed).

Metric Number of individuals | Effect controlled for | Effects captured
sampled (n)
Bs Regional n vs average none SAD, N, and aggregation

(Whittaker’s) [ local n

Bc Regional n equals local | N and SAD (evenness [ aggregation
(coverage) n and corresponds to a and size of pool)
target level of coverage.
Across meta-

communities, coverage
is fixed but n may vary.

273

274  Onme approach, many questions: Some example applications.

275  There are several benefits to our approach. Rarefaction curves provide an intuitive visualization
276  of a- and y-diversity patterns, the shape of the SAD, and the degree of variation in species

277  composition that exists between samples. Moreover, the same family of measures can be used to
278  estimate f-diversity, and to differentiate between random placement and non-random structure
279  leading to biodiversity scaling for multiple related questions. We illustrate some of this potential
280  using a case study. We examined compositional variation in bird diversity between natural and
281  engineered riparian habitats using a subset of data from the Central Arizona-Phoenix Long-Term
282  Ecological Research site (Warren et al. 2022). We focus on riparian habitats where water

283  permanence was perennial, and contrast sites in engineered settings (including a landscaped

284  riparian preserve, a constructed wetland, and a water retention area along the Salt River, each
285  surrounded by urban or agricultural areas) with those in more natural environments (located

286  along perennial river reaches and surrounded by desert). Point count surveys with a 40-m fixed
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radius were conducted by trained observers that recorded all birds seen and heard; we analyzed
samples collected in spring between 2001 and 2016. Before calculating our metrics, we ensured
that sample effort was consistent across all sites and years; this meant three sites were retained

from each habitat (engineered and natural), and data from 2003 and 2009 were discarded due to

missing samples.

Using these effort-standardized data, we address four questions examining how random and non-
random components contribute to patterns of B-diversity through space and time: (1) does the
total spatiotemporal variation in community composition differ between engineered and natural
habitats? (2) How does spatial variation in community composition change through time in each
of the two habitats? (3) Does the temporal variation in community composition differ between
engineered and natural habitats? (4) Are there compositional differences between (rather than

within) engineered and natural habitats, and do any differences change through time?

Q1) does the total spatiotemporal variation in community composition differ between
engineered and natural habitats?

We used all site-year combinations within each habitat to examine total spatiotemporal variation
in community composition. y-scale rarefaction curves combine all the samples across space and
time within habitats, and show that the engineered habitat had more individuals, but fewer
species than the natural habitat (Figure 41). To examine spatiotemporal variation, we defined the
a-scale as a single site-year combination within a habitat (Figure 41 inset shows a- and y-scale
curves). The greater number of species in the natural habitat compared to the engineered habitat

resulted in higher Bs in natural habitats. However, this pattern was reversed for fc when the
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310  influence of sampling effects were removed from the calculations (Figure 4ii), meaning that

311  aggregation in time and space was similar in the engineered and natural habitats.

i ii.
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312

313 Figure 4. Total spatiotemporal S-diversity: (i) y-scale rarefaction curves for each habitat, with
314  inset showing y- and average a-scales (note an individual a-scale curve was a single site in a

315  single year); (ii) mean fs and fc [point] (95% quantile whiskers not visible) of total

316  spatiotemporal S-diversity jackknife resamples in each habitat type.

317

318  Q2) How does spatial variation in community composition change through time in each of the
319  two habitats?

320  Figure 5 shows the pattern of spatial B-diversity in engineered and natural habitats through time.
321  Psincreased through time for the natural sites, indicating that those communities were becoming
322  more different from one another through time (opposite to the oft expected pattern of biotic

323 homogenization, where communities become more similar through time and spatial B diversity
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324 declines). There was no similar trend in spatial Bs of the engineered sites, and by the end of the
325 time series (but not the beginning) the engineered sites had lower levels of Bs than the natural
326  sites. However, this pattern qualitatively changed when the influence of non-random patterns
327  was explicitly considered. Bc indicates that species became less aggregated within engineered
328  sites through time, suggesting biotic homogenization after random-placement mechanisms were
329  controlled, and no change in Bc in the natural habitat. Combined, these results suggest the

330  apparent pattern of increasing differentiation in the natural habitat was mostly driven by

331  sampling effects (e.g., altered numbers of individuals, and/or rare species), and that there was a

332  weak decrease of within species aggregation across sites in the engineered habitat.

Bs Bc
® - natural
o °
2.004 == engineered
2 ®
® ® ° <
g ) °
g 1.75 -
[0
>
RS
© 1.504
= °
_ e e
e ——
1.254 b v o \a ¢
ﬁ
®
1.00 ®
2004 2012 2004 2012
Year

333

334  Figure 5. Spatial f-diversity as a function of time for fis and fc in the two habitats. Trend lines
335  represent OLS linear models with their 95% CI.

336
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Q3) Does the temporal variation in community composition differ between engineered and
natural habitats?

Across all years, sites in the engineered habitat had greater variation than sites in natural habitat
in both the total number of individuals (i.e., the end points of the y-scale curves on the x-axis,
Fig. 61), and shape of the SAD (reflected by greater variation in the curvature of the y-scale
rarefaction). On average, natural sites had slightly higher levels of temporal s than the
engineered sites, but the variation among sites (and only three replicates) meant there was no
overall difference in temporal Bs between habitats (Fig. 6ii). We conclude that the weak
differences of temporal s between habitats were primarily due to random sampling effects (Fig.
61) because this pattern disappeared for B¢ (and Bc was slightly higher in the engineered habitat).
In both habitats, Bs was also more than double the value of B¢, suggesting that more than 50% of
year-to-year variation in community composition was due to changes in the number of
individuals and/or rare species. The similar values B¢ in both habitats indicates that temporal

autocorrelation of species presences did not differ much between natural and engineered habitats.
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351

352  Figure 6. Temporal S-diversity: (i) y-scale rarefaction curves for each site (i.e., all years

353  combined), with inset showing y- and the average a-scales for each site; (ii) temporal fs and fic
354  (mean [point] and 95% quartiles [whiskers] of jackknife resamples) of total temporal S-diversity.
355

356  Q4) Are there compositional differences between engineered and natural habitats, and do any
357  differences change through time?

358  Finally, the same concepts and tools that we used to examine variation in species composition
359  within treatments can also be used to compare species composition between treatments through
360 time. Essentially, this asks whether bird communities in natural and engineered sites are random
361  subsets of a common larger species pool? Do non-random spatial patterns contribute to any

362  differentiation? And do these patterns change over time? (Fig. 7). Here, the overall difference
363  between treatments (Ps) was larger than one (there is some species turnover between habitats)

364  and slightly declined through time (homogenization). However, when only non-random patterns
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365  were considered, Bc was closer to, though still greater than one, and only slightly declined
366  through time. This suggests that once we control for sampling effects that compositional
367  differences between the habitats were relatively small but still detectable and not changing

368  through time.
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369

370  Figure 7. Compare species composition between the engineered and natural riparian habitat types
371  (i.e., the p-diversity) as a function of time.

372

373  Discussion

374  We have described and demonstrated an integrated framework for quantifying the underlying

375  causes of B-diversity and namely if those causes are due to random sampling effects or
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aggregating mechanisms such as environmental filtering and dispersal limitation. The approach
that we have described provides a generalized framework for comparing patterns of total -
diversity, which we call Bs, to those that specifically partial out the non-random patterns of 3-
diversity (Bc). We have demonstrated that any question relating to how species composition
changes across samples, whether they be taken through space or time, can be subject to the same
approach and metrics. For many cases, this greatly simplifies what can seem a complex endeavor

of finding the ‘right’ B-metric for the question at hand.

Often, researchers switch B-diversity metrics and concepts when measuring compositional shifts
within a metacommunity or among heterogeneous sites along an environmental gradient (e.g.,
Anderson et al. 2011). For example, within a metacommunity, estimates of B-diversity are often
based on measures of dispersion in community composition among sites (e.g., Anderson et al.
2006). These measures, however, can be strongly influenced by both the relative abundances of
species, and the size of the regional species pool. This means that randomization-based null
models) are needed if one wants to compare levels of dispersion among different
metacommunities, and/or make inferences regarding potential driving mechanisms (e.g., Chase
etal. 2011, Kraft et al. 2011, Myers et al. 2013). However, the appropriate form of
randomization for the null model remains contentious (Kraft et al. 2012, Qian et al. 2012, Mori et
al. 2015, Tucker et al. 2016, Xing and He 2021). Our rarefaction-based approach can also be
considered a type of null sampling model. However, comparing rarefaction curves has a number
of benefits over other null model approaches: by calculating a- and y-scale curves, B-diversity
can be put back into the context of scale-dependent multicomponent changes in diversity (Chase

et al. 2018, Blowes et al. 2022, Rolls et al. 2023); rarefaction curves can be based on analytical
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solutions improving efficiency; and, rarefaction curves can be visualized, making them more
intuitive and easier to communicate than other null model approaches. Nevertheless, some of the
concerns arising from the use of null models also apply to the approach overviewed here. For
example, there is a strong ‘Narcissus’ effect (i.e., the outcome reflects the inputs) in developing
null models to evaluate whether differences among samples deviate from a null expectation; the
samples that are used to calculate y-diversity influence the likelihood that they will deviate from
a null expectation (Ulrich et al. 2017). The same is certainly true for the use of individual-based
rarefaction curves in which deviations are mathematically constrained by the two end points of

the rarefaction curve (McGlinn et al. 2021).

Baselga (2010) has advocated an approach that partitions measures of dissimilarity among
samples (e.g., Jaccard’s or Sorensen’s index or an abundance-based equivalent) into measures
that capture species turnover between samples, and those that account for the nestedness of
species difference between samples (but see Sizling et al. 2022). In essence, the nestedness part
of this partition is the same as our ‘random-placement’ effect, while turnover captures the
essence of our B-diversity measures that capture non-random variation among samples. For
example, in our case study we asked whether bird species in engineered and natural riparian
habitats were a random subset of the same regional species pool (Figure 7). We found that s
values were quite high compared to the Pc values, which indicates the turnover component is

small relative to the nested component in Baselga’s approach.

As with spatial B-diversity comparisons, there have been variable approaches to capture B-

diversity through time (Legendre 2019, Magurran et al. 2019, Tatsumi et al. 2022). Most
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measures of temporal turnover calculate turnover as a metric of community dissimilarity through
time. Often rates of change between an initial and subsequent samples, or the rate of decay in
dissimilarity as a function of the time elapsed between samples being compared are estimated,
which can then be compared across systems or taxa (e.g., Korhonen et al. 2010, Blowes et al.
2019). However, as with spatial B-diversity, these measures cannot discern whether observed
rates of turnover are different from what would be expected from a random placement model
through time. Authors have used different approaches to remedy this problem. For example,
Dornelas et al. (2014) compared rates of temporal B-diversity to those expected from a neutral
model (Hubbell 2001) to discern whether turnover rates were faster than expected under the
assumption of neutral dynamics, while Stegen et al. (2013) used a null model to determine
whether temporal turnover patterns were greater than expected from sampling effects. Temporal
turnover can also be decomposed into changes due to abundances (similar to our ‘sampling’
effects) and changes due to species turnover (Shimadzu et al. 2015, Lamy et al. 2015). As with
spatial B-diversity measures, our approach is similar, but simplifies the problem by asking

whether temporal changes are non-random in a time series.

Recently, authors have developed approaches to partition the influence of species gains and
losses to changes in spatial B-diversity through time (Rosenblad and Sax 2017, Tatsumi et al.
2021), and these have been expanded to incorporate changes in relative abundances (Tatsumi et
al. 2022). These methods are useful for examining “winning” and “losing” species that underlie
changes in spatial B-diversity through time. However, these methods risk isolating beta-diversity
changes from local (a) and regional (y) scale changes, and are unable to disentangle random

versus non-random structure associated with these changes. Thus, our approach can provide a
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complementary, and more complete picture into scale-dependent changes driving variation of

spatial composition through time.

Finally, for simplicity we have focused here on two related metrics: Bs and fc. Other measures of
B diversity with different weights on common and rare species (i.e., Hill numbers) (Jost 2007,
Tuomisto 2010, Chao et al. 2012, 2023, but see Lande 1996) can also be calculated at different
points along the rarefaction curves. For example, the metric based on Simpson’s entropy, also
known as the probability of interspecific interaction (PIE) (or Gini-Simpson index)(Hurlbert
1971) (where g=2 in the Hill number continuum; Jost 2007, Chao et al. 2014), can be visualized
as the slope at the base of the rarefaction curve (Chase et al. 2018, McGlinn et al. 2019). These
Hill numbers or numbers equivalents can also be used with the multiplicative diversity partition
used here (i.e., y = a*f; Jost 2007), and result in an effective number of distinct communities,
with the tuning parameter (i.e., order g) determining the sensitivity to rare and common species.
Recently, Chao et al. (2023) also proposed a framework for standardizing beta-diversity that
consider the joint influence of sampling effects and spatial/temporal aggregation. Their
framework and ours both standardize biodiversity data to the same level of sample coverage
when comparing B between meta-communities. However, an important difference between the
approaches is that Chao et al. (2023) assume that individuals are independently sampled (i.e.,
randomly encountered), whereas we assume that individuals within a sample are not independent
of one another due to aggregation. In fact, our primary intention here is to explicitly quantify the
important contributions of aggregation to B-diversity, which cannot be directly measured with

the Chao et al. (2023) approach.
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Conclusions

Ecologists are often interested in examining the role of metacommunity-level mechanisms such
as dispersal limitation and environmental filtering for patterns of B-diversity (Vellend 2016,
Leibold and Chase 2018). The generalized approach that we have described relies on a set of
intuitive metrics from sampling theory to quantify total B-diversity (fs), and f-diversity due to
non-random aggregation (fic), which will allow for stronger tests of hypotheses related to
mechanisms expected to influence patterns of aggregation. In addition, the framework provides
an integrated way to examine how changes at finer («) and coarser (y) scales combine to
determine variation in species composition (f). This places a central focus on scale-dependent
diversity changes, with the potential to uncover deeper insights into scale-dependence by varying
the focal spatial or temporal grain of the analysis. It remains an open question as to how much
variation in B-diversity reflects random sampling effects vs non-random aggregation effects. Our
framework provides a means of addressing this question across space and time.
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