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Abstract: 28 

There is considerable interest in understanding patterns of ³-diversity that measure the amount of 29 

change in species composition through space or time. Most hypotheses for ³-diversity evoke 30 

nonrandom processes that generate spatial and temporal within species aggregation; however, ³-31 

diversity can also be driven by random sampling processes. Here, we describe a framework 32 

based on rarefaction curves that quantifies the non-random contribution of species compositional 33 

differences across samples to ³-diversity. We isolate the effect of within-species spatial or 34 

temporal aggregation on beta-diversity using a coverage standardized metric of ³-diversity (³C).  35 

We demonstrate the utility of our framework using simulations and an empirical case study 36 

examining variation in avian species composition through space and time in engineered versus 37 

natural riparian areas. The primary strengths of our approach are that it provides an intuitive 38 

visual null model for expected patterns of biodiversity under random sampling that allows 39 

integrating analyses across α-, ´-, and ³-scales. Importantly, the method can accommodate 40 

comparisons between communities with different species pool sizes, and can be used to examine 41 

species turnover both within and between meta-communities.  42 
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Introduction 43 

Ecologists are frequently interested in how the composition of species in a community changes 44 

across space or time (Scheiner et al. 2011, Magurran et al. 2019, Daskalova et al. 2020).The 45 

degree of change in species composition in assemblages across space or time is often referred to 46 

as ³-diversity: localities or time periods with fewer species in common have higher ³-diversity. 47 

Most conceptual explanations of ³-diversity evoke processes that generate non-random spatial or 48 

temporal patterns of species aggregation (Leibold and Chase 2018). Aggregation here refers to 49 

clustering whereby individuals occur near other individuals of the same species in time and/or 50 

space. For instance, two of the most commonly discussed mechanisms underlying patterns of ³-51 

diversity are environmental filtering and dispersal limitation (Legendre et al. 2005, Vellend 52 

2016, Leibold and Chase 2018). Both of these mechanisms increase aggregation of species 53 

distributions via conspecific clustering in space or time increasing ³-diversity.  54 

 55 

Although most attention has been focused on the non-random mechanisms underpinning ³-56 

diversity, it can also reflect random sampling effects of individuals and species taken from 57 

multiple points in space or time. Imagine we collect a sample of 40 individuals within a region or 58 

time period that supports up to 50 different species. Even in the improbable case that the 59 

numbers of individuals of each species are exactly the same (completely even), at least 10 60 

species will be excluded from our sample because of the limited number of individuals. If we 61 

then compare that sample to another from a different location in space or time, a different set of 62 

10 (or more) species will be excluded simply due to random sampling effects: the species 63 

composition of the two samples will differ entirely due to incomplete sampling. This 64 

phenomenon has been variously termed a <sampling effect= (e.g., Adler et al. 2005), a 65 

<rarefaction effect= (e.g., Palmer et al. 2008), and the <random placement model= (e.g., Coleman 66 
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et al. 1982). The core idea is that the number of species observed in a sample is constrained by 67 

the number of individuals in that sample.  Returning to our thought experiment, if the species 68 

have a more realistic abundance distribution, with many individuals of a few common species 69 

and many species with few individuals (i.e., rare species), these sampling effects on ³ diversity 70 

can be strong (Kraft et al. 2011, Chase et al. 2018, McGlinn et al. 2019, Engel et al. 2021). This 71 

example emphasizes that spatial or temporal ³ diversity is potentially underlain by two factors: a) 72 

the non-random turnover of species, due to ecological mechanisms such as environmental 73 

filtering or dispersal limitation; and, b) the random turnover of species due to incomplete 74 

sampling, especially of rare species (i.e., sampling effects).  75 

 76 

Most metrics of ³-diversity conflate variation from both random sampling effects and spatially 77 

non-random mechanisms (Stegen et al. 2013, Chase et al. 2018, McGlinn et al. 2019, Engel et al. 78 

2021, Chao et al. 2023). This means that the same observed change in ³-diversity may be due to 79 

different underlying mechanisms, sometimes referred to as a <many-to-one problem=, which are 80 

common in ecological studies (Frank 2014, Scholes 2017). Specifically, random turnover can 81 

occur where there are changes/differences in other non-spatial components of diversity, such as 82 

the species abundance distribution and size of the regional species pool and the total number of 83 

individuals. To illustrate this, consider the three hypothetical scenarios in Figure 1 using 84 

Whittaker9s (1960) ³-diversity (³S = ´ / ÿ� , where ´ is the regional, and ÿ� is the average of local 85 

diversity). In each scenario (Fig1. a-c), a shift in a different component of community structure 86 

results in a doubling of Whitaker9s ³-diversity (from 1 to 2). In the first two cases (Fig1.a, b), ³-87 

diversity increases due simply to random placement of individuals resulting either from a shift in 88 

the species-abundance distribution (SAD), for example, a decrease in evenness (Fig. 1a) or, from 89 

a decrease in the total number of individuals (N) (Fig. 1b). In the third case, the same magnitude 90 
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of shift in ³S is due to an increase in conspecific aggregation (Fig. 1c). This <many-to-one" effect 91 

is particularly problematic when trying to link changes in ³-diversity to hypotheses that evoke 92 

changes to conspecific clustering due to environmental filtering or dispersal limitation. To link 93 

these mechanisms to ³-diversity, it would make sense to focus on patterns of ³-diversity that 94 

reflect only changes in conspecific aggregation rather than changes in N or the SAD (which we 95 

refer to as sampling effects). One consequence of ³-diversity metrics confounding both random 96 

and non-random variation is that most ³-diversity metrics can increase as aggregation decreases 97 

if N is decreasing or the SAD is becoming less even for example.  98 

 99 

Figure 1. Cartoon communities that illustrate how random sampling effects and non-random spatial 100 

effects can result in identical values of Whittaker9s ³-diversity (³S), where �� is average sample richness 101 

across plots (small boxes) and ´ is total species richness in a site (large boxes). The different symbols 102 

represent individuals of different species. Panels (a) and (b) illustrate changes in community structure that 103 

N changes

a)

b)

c)

sampling effects:

random encounter of species

spatial effects: 

non-random encounter of species
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are consistent with a random sampling model in which spatial ³ increases either because the regional 104 

species-abundance distribution (SAD) is less even (a) or because there are many fewer individuals (b). 105 

Panel (c), illustrates how a spatially non-random process such as environmental filtering results in 106 

conspecific aggregation producing an identical value of ³S.  107 

It is important to emphasize that this is a problem that potentially influences all ³-diversity 108 

metrics. Any metric of ³-diversity that does not explicitly consider the process of sampling is 109 

sensitive to sampling effects. So regardless of whether turnover is calculated using presence-110 

absence vs abundance data, is examined in space or time, or using pairwise vs multisite metrics, 111 

if the goal of the analysis is to link patterns of compositional change to mechanisms that generate 112 

non-random conspecific occurrence patterns, then sampling effects should be controlled for in 113 

the measurement of ³-diversity. Other authors have recognized this and proposed a 114 

randomization algorithm to try to control for sampling effects on ³-diversity (Kraft et al. 2011, 115 

Chase et al. 2011, Myers et al. 2013, 2015). Yet, continued debate as to exactly how to develop 116 

those randomizations, and just what the deviations mean (Kraft et al. 2012, Qian et al. 2012, 117 

2013, Xu et al. 2015, Tucker et al. 2016) indicates that a more general solution is necessary.  118 

 119 

In this paper, we describe a framework for quantifying the non-random contribution of species 120 

compositional differences across samples to ³-diversity. This framework can be applied to any 121 

question related to measuring compositional variation (i.e., ³-diversity) across samples, whether 122 

it be within a given (relatively homogeneous) metacommunity, across an environmental gradient, 123 

or through time. The approach allows us to differentiate the contribution of non-random species 124 

compositional shifts from the effects of sampling properties due to random placement to changes 125 

in ³-diversity. As a result, we can quantify and compare compositional shifts among samples 126 

through space or time, and potentially relate these to other features of the system (e.g., changing 127 
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spatial or environmental conditions). Here, our primary purpose is not to review and/or unify all 128 

metrics and measures of ³-diversity, nor to advocate for a single superior metric, both of which 129 

have been attempted (Tuomisto 2010, Chao et al. 2012, 2023). Rather, we promote a framework 130 

for measuring the relative influence of sampling and non-random associations that underlie ³-131 

diversity among samples, regardless of whether it is measured within or across landscapes, 132 

through time, or any combination thereof. Furthermore, rather than using different concepts and 133 

tools, we show how a single conceptual framework can identify the key components underlying 134 

variation in species composition. 135 

 136 

First, we describe a simple framework that uses rarefaction curves to decompose ³-diversity into 137 

components due to sampling effects, and those that are due to non-random aggregations of 138 

species. Second, we show the framework can be applied to multiple, related questions about how 139 

species composition varies across samples.  140 

 141 

A unified framework for dissecting the non-random contribution of species compositional variation 142 

to β-diversity in space and time 143 

The components of our framework are not new. The framework is based on a long history of 144 

rarefaction and accumulation curves that depict how species numbers increase with increasing 145 

sampling effort (Preston 1960, Sanders 1968). For example, Kobayashi (1982, 1983) showed 146 

how spatial aggregation could be quantified from rarefaction curves by comparing subsets of 147 

spatially explicit samples to the entire range of spatially randomized samples. Likewise, Gotelli 148 

and Colwell (2001) showed how comparing accumulation or 8collectors9 curves that retain 149 

spatial information about the distributions of individuals to individual-based rarefaction curves 150 

could provide an indicator of the degree to which aggregation influenced spatial patterns of 151 
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species accumulations (see also Crist and Veech 2006, Chiarucci et al. 2009, Cayuela et al. 2015, 152 

Chase et al. 2018, McGlinn et al. 2019). Finally, Olszewski (2004) explicitly discussed how the 153 

comparisons between spatially explicit and randomized rarefaction curves could be used as an 154 

index of ³-diversity (see also Crist and Veech 2006, Dauby and Hardy 2012). These perspectives 155 

have been more recently formalized using individual-based rarefaction curves (and related 156 

diversity curves) to disentangle non-random structure from random placement underlying ³-157 

diversity within a given set of environmental conditions (i.e., a metacommunity) (Chase et al. 158 

2018, McGlinn et al. 2019, 2021, Engel et al. 2021). Here, we generalize this approach and apply 159 

it to questions examining ³-diversity among different kinds of samples, such as sites across a 160 

strong environmental gradient, or when quantifying temporal ³-diversity.  161 

 162 

Our framework is designed for one of the most common data types available to community 163 

ecologists - a sample-by-species matrix. Each sample contains a vector of abundances of all 164 

species sampled from a given assemblage and comes from a given local site. Samples can be 165 

collected across multiple sites (a site-by-species matrix) or across multiple time periods (a time-166 

by-species matrix), or a combination of the two. For simplicity, we illustrate the different steps 167 

of the approach with samples taken from two spatial locations or time points in Figure 2, but it 168 

can be generalized to any number of samples. We assume that the communities being compared 169 

are sampled in such a way that they have the same sample effort, i.e., the spatial and temporal 170 

grain, extent, and sample arrangement are equal across communities (or can be standardized to 171 

such). Here, we define a single sample as the α-scale, and the sum of samples as the ´-scale; 172 

however, other accumulation schemes are also possible, so long as the α-scale is a subset of the 173 

´-scale. 174 
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 175 

Step 1: Create a rarefaction curve for the sum of all samples: ´-scale 176 

If we pool the two (or more) samples, we can calculate the ´-scale rarefaction curve (solid, thick 177 

black line in Figure 2). This curve shows the number of species for a random sample of 178 

individuals from the whole metacommunity or time series; for any sample of n individuals, Sn is 179 

the expected number of species in that sample. This type of rarefaction curve is sometimes 180 

referred to as an individual-based rarefaction curve or random sampling model. The curve and its 181 

variance has been derived analytically for sampling without replacement (Hurlbert 1971, see 182 

Coleman et al. 1982 for formulation for sampling with replacement). Here, because we calculate 183 

rarefaction using all samples, the ´-scale curve represents a 8null expectation9 of the number of 184 

species for n individuals, when all individuals of all species occur randomly across the samples 185 

(in space or time).  186 

 187 

Step 2: Create a rarefaction curve for each individual sample and average them: α-scale 188 

Next, we calculate the rarefaction curves for the individual samples (Fig 2, thin solid black lines) 189 

and average them to obtain the α-scale rarefaction curve up to the number of individuals (n) that 190 

provides the target level of coverage (Fig. 2, thick dashed gray line; Engel et al. 2021). Here 191 

coverage refers to how close the ´ curve has come to a hypothetical asymptote (i.e., it is an 192 

estimate of sample completeness, Chao and Jost 2012). 193 

 194 

Step 3: Compare the α and ´- scale curves to estimate the ³-scale patterns 195 

The classical Whittaker9s ³S metric is calculated as ´ / ÿ� where ÿ� is average sample richness 196 

(Whittaker 1960). Within our framework, these values are represented by the ends of the 197 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2023. ; https://doi.org/10.1101/2023.09.19.558467doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558467
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

rarefaction curves (i.e., the average number of species per site [ÿ�], and all species observed 198 

across all sites in a region or time points [ā], Fig. 2).  199 

To estimate non-random spatial structure, we must compare the (average) α-scale curve (dashed 200 

line) to the ´-scale curve, after standardizing for sampling effects. We control for the numbers of 201 

individuals sampled (i.e., sampling effects) by comparing the ´- and α-scale rarefaction curves at 202 

the same value of number of individuals (n).  203 

 204 

Figure 2: Individual based rarefaction curves at the α- and ´-scales. Thin solid black lines depict 205 

two α-scale curves, with their average shown by the thick dashed gray line; solid thick black line 206 

shows the ´-scale curve, which is calculated by pooling the two α-scale samples. Whittaker9s ³S 207 

is calculated as the ratio of ´S and ���. In contrast, coverage-based ³C controls for the number of 208 

individuals by using the ratio of ´Sn and  ����, where n provides a target degree of coverage that 209 
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adjusts for variation in the regional SAD (species pool) when comparing between meta-210 

communities (eqn 5 from Engel et al. 2021).  211 

To illustrate the behavior of these metrics, we simulated four scenarios similar to those shown on 212 

Figure 1, and calculated ³S and ³C. All scenarios have 50 species in the regional pool, but they 213 

vary from the starting community in either their evenness, total number of individuals, or 214 

conspecific aggregation. When individuals of all species are distributed randomly and only the 215 

evenness of the SAD decreases (Fig. 3A: high evenness 3B: low evenness) or the total number of 216 

individuals decreases (Figure 3A: N = 1000; 3C: N = 400), we see that the average α-scale curve 217 

(dashed gray line) falls directly on top of the ´-scale curve (solid black line, Figure 3 E-G), and 218 

low evenness and fewer individuals are associated with an increases in ³S, but ³C is equal to one 219 

in both cases (insets on Figure 3F and G). However, when we add non-random structure via 220 

species aggregation (Figure 3D), the α- and ´-scale IBR curves diverge (Figure 3H), and both 221 

metrics are greater than one (compare inset Figure 3H to 3E). 222 

 223 
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Figure 3: Quantitative illustration that ³S responds to changes to changes in evenness and the 224 

total number of individuals, whereas ³C only responds to changes in within-species aggregation. 225 

Simulated communities are shown in panels (A-D) in which different colored dots represent 226 

individuals of different species. The landscape (´ scale) is divided into four quadrats (α scale, 227 

dashed gray lines). Panels E-H show the corresponding rarefaction curves associated with each 228 

artificial community for the ´- (solid black line) and average α-scales (dashed gray line). Inset on 229 

these panels is the value of each ³ diversity metric described. Note that ³ = 1 means species 230 

composition does not vary among samples.   231 

 232 

If species are randomly distributed among sites (or time points; Fig. 3A-C), then species will 233 

likely be sampled at all sites, and the α- and ´-scale curves will fall on top of each other (Fig. 3E-234 

G). However, if species display conspecific aggregation (i.e., individuals within a species are 235 

clumped, Fig. 3D) such that they are non-randomly distributed in space or time, then the α-scale 236 

curve will fall below the ´-scale curve (Fig. 3H), because new species will be encountered across 237 

different sites or time points due to the within species aggregation, pulling the ´-scale curve up 238 

relative to the α-scale curve. The resulting ratio of ´Sn and ÿ���, which we call coverage-based ³ 239 

diversity (³C , Engel et al. 2021), is indicative of the degree to which species show (non-random) 240 

intraspecific aggregation among sites or time periods.  241 

 242 

Thus, ³C reflects the degree of non-randomness in the spatial or temporal distribution of species 243 

within the domain of (0, ∞). The example in Figure 3D shows a case where there is a non-244 

random distribution of species composition among samples, and ³C>1.  However, it is also 245 

plausible that the α- and ´-scale curves could completely overlap (see e.g., Fig. 3E-G), in which 246 
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case we would conclude that even though there is ³-diversity (i.e., ³S>1), this is simply due to 247 

random placement effects (³C=1). Finally, species can also show conspecific segregation (i.e., 248 

individuals within a species are overdispersed more than random), where the α-scale curve falls 249 

above the ´-scale curve, and ³C < 1 (not shown). 250 

 251 

One additional benefit of ³c (that is not illustrated in Figure 3 but described in detail in Engel et 252 

al. 2021) is that this metric is unbiased when comparing ³-diversity across meta-communities 253 

that differ in the size of their species pools (e.g., in temperate vs. tropical environments, or across 254 

strong environmental gradients). This is accomplished by computing ³C within each meta-255 

community at the same level of sample coverage or completeness (Chao and Jost 2012). In 256 

effect, ensuring that ´-scale sample coverage is the same for all metacommunities means that the 257 

value of n (the number of individuals for which ´Sn and ÿ��� are calculated) varies among 258 

metacommunities.  259 

 260 

To summarize, traditional measures of variation in species composition across area or time (³S) 261 

are shaped by both random and non-random sampling processes, and we can isolate the non-262 

random structure in space or time in determining that scaling by calculating ³C (Table 1). 263 

Furthermore, we can evaluate these ³-diversity measures for a wide variety of questions 264 

concerning species compositional shifts in space and time. We provide R code to calculate 265 

classical ³S and ³C (as well as several other ³ metrics which we do not show here for simplicity) 266 

in mobr∷calc_beta_div (McGlinn et al. 2022).  267 

Table 1. Multiplicative ³ diversity metrics and the effects that they capture. Species abundance 268 

distribution (SAD) effects are due to changes in species evenness and/or the size of the species 269 
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pool, N effects refer to changes in richness due to variation in the number of individuals 270 

sampled, while aggregation effects refer to changes in richness due to variation in how 271 

individuals are spatially or temporally distributed (clumped, random, or overdispersed).   272 

Metric Number of individuals 

sampled (n) 

Effect controlled for Effects captured 

ĀS 

(Whittaker9s) 
Regional n vs average 

local n 

none SAD, N, and aggregation 

ĀC 

(coverage) 

Regional n equals local 

n and corresponds to a 

target level of coverage. 

Across meta-

communities, coverage 

is fixed but n may vary. 

N and SAD (evenness 

and size of pool) 

aggregation  

 273 

One approach, many questions: Some example applications. 274 

There are several benefits to our approach. Rarefaction curves provide an intuitive visualization 275 

of α- and ´-diversity patterns, the shape of the SAD, and the degree of variation in species 276 

composition that exists between samples.  Moreover, the same family of measures can be used to 277 

estimate ³-diversity, and to differentiate between random placement and non-random structure 278 

leading to biodiversity scaling for multiple related questions. We illustrate some of this potential 279 

using a case study. We examined compositional variation in bird diversity between natural and 280 

engineered riparian habitats using a subset of data from the Central Arizona-Phoenix Long-Term 281 

Ecological Research site (Warren et al. 2022). We focus on riparian habitats where water 282 

permanence was perennial, and contrast sites in engineered settings (including a landscaped 283 

riparian preserve, a constructed wetland, and a water retention area along the Salt River, each 284 

surrounded by urban or agricultural areas) with those in more natural environments (located 285 

along perennial river reaches and surrounded by desert). Point count surveys with a 40-m fixed 286 
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radius were conducted by trained observers that recorded all birds seen and heard; we analyzed 287 

samples collected in spring between 2001 and 2016. Before calculating our metrics, we ensured 288 

that sample effort was consistent across all sites and years; this meant three sites were retained 289 

from each habitat (engineered and natural), and data from 2003 and 2009 were discarded due to 290 

missing samples.  291 

 292 

Using these effort-standardized data, we address four questions examining how random and non-293 

random components contribute to patterns of ³-diversity through space and time: (1) does the 294 

total spatiotemporal variation in community composition differ between engineered and natural 295 

habitats? (2) How does spatial variation in community composition change through time in each 296 

of the two habitats? (3) Does the temporal variation in community composition differ between 297 

engineered and natural habitats? (4) Are there compositional differences between (rather than 298 

within) engineered and natural habitats, and do any differences change through time?  299 

 300 

Q1) does the total spatiotemporal variation in community composition differ between 301 

engineered and natural habitats? 302 

We used all site-year combinations within each habitat to examine total spatiotemporal variation 303 

in community composition. ´-scale rarefaction curves combine all the samples across space and 304 

time within habitats, and show that the engineered habitat had more individuals, but fewer 305 

species than the natural habitat (Figure 4i). To examine spatiotemporal variation, we defined the 306 

α-scale as a single site-year combination within a habitat (Figure 4i inset shows α- and ´-scale 307 

curves). The greater number of species in the natural habitat compared to the engineered habitat 308 

resulted in higher ³S in natural habitats. However, this pattern was reversed for ³C when the 309 
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influence of sampling effects were removed from the calculations (Figure 4ii), meaning that 310 

aggregation in time and space was similar in the engineered and natural habitats.  311 

 312 

Figure 4. Total spatiotemporal ³-diversity: (i) ´-scale rarefaction curves for each habitat, with 313 

inset showing ´- and average α-scales (note an individual α-scale curve was a single site in a 314 

single year); (ii) mean ³S and ³C [point] (95% quantile whiskers not visible) of total 315 

spatiotemporal ³-diversity jackknife resamples in each habitat type. 316 

 317 

Q2) How does spatial variation in community composition change through time in each of the 318 

two habitats? 319 

Figure 5 shows the pattern of spatial ³-diversity in engineered and natural habitats through time. 320 

³S increased through time for the natural sites, indicating that those communities were becoming 321 

more different from one another through time (opposite to the oft expected pattern of biotic 322 

homogenization, where communities become more similar through time and spatial ³ diversity 323 
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declines). There was no similar trend in spatial ³S of the engineered sites, and by the end of the 324 

time series (but not the beginning) the engineered sites had lower levels of ³S than the natural 325 

sites. However, this pattern qualitatively changed when the influence of non-random patterns 326 

was explicitly considered. ³C indicates that species became less aggregated within engineered 327 

sites through time, suggesting biotic homogenization after random-placement mechanisms were 328 

controlled, and no change in ³C in the natural habitat. Combined, these results suggest the 329 

apparent pattern of increasing differentiation in the natural habitat was mostly driven by 330 

sampling effects (e.g., altered numbers of individuals, and/or rare species), and that there was a 331 

weak decrease of within species aggregation across sites in the engineered habitat. 332 

 333 

Figure 5. Spatial ³-diversity as a function of time for ³S and ³C in the two habitats. Trend lines 334 

represent OLS linear models with their 95% CI. 335 

 336 
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Q3) Does the temporal variation in community composition differ between engineered and 337 

natural habitats? 338 

Across all years, sites in the engineered habitat had greater variation than sites in natural habitat 339 

in both the total number of individuals (i.e., the end points of the ´-scale curves on the x-axis, 340 

Fig. 6i), and shape of the SAD (reflected by greater variation in the curvature of the ´-scale 341 

rarefaction). On average, natural sites had slightly higher levels of temporal ³S than the 342 

engineered sites, but the variation among sites (and only three replicates) meant there was no 343 

overall difference in temporal ³S between habitats (Fig. 6ii). We conclude that the weak 344 

differences of temporal ³S between habitats were primarily due to random sampling effects (Fig. 345 

6i) because this pattern disappeared for ³C (and ³C was slightly higher in the engineered habitat). 346 

In both habitats, ³S was also more than double the value of ³C, suggesting that more than 50% of 347 

year-to-year variation in community composition was due to changes in the number of 348 

individuals and/or rare species. The similar values ³C in both habitats indicates that temporal 349 

autocorrelation of species presences did not differ much between natural and engineered habitats.   350 
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 351 

Figure 6. Temporal ³-diversity: (i) ´-scale rarefaction curves for each site (i.e., all years 352 

combined), with inset showing ´- and the average α-scales for each site; (ii) temporal ³S and ³C 353 

(mean [point] and 95% quartiles [whiskers] of jackknife resamples) of total temporal ³-diversity.  354 

 355 

Q4) Are there compositional differences between engineered and natural habitats, and do any 356 

differences change through time?  357 

Finally, the same concepts and tools that we used to examine variation in species composition 358 

within treatments can also be used to compare species composition between treatments through 359 

time. Essentially, this asks whether bird communities in natural and engineered sites are random 360 

subsets of a common larger species pool? Do non-random spatial patterns contribute to any 361 

differentiation? And do these patterns change over time? (Fig. 7). Here, the overall difference 362 

between treatments (³S) was larger than one (there is some species turnover between habitats) 363 

and slightly declined through time (homogenization). However, when only non-random patterns 364 
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were considered, ³C was closer to, though still greater than one, and only slightly declined 365 

through time. This suggests that once we control for sampling effects that compositional 366 

differences between the habitats were relatively small but still detectable and not changing 367 

through time. 368 

 369 

Figure 7. Compare species composition between the engineered and natural riparian habitat types 370 

(i.e., the ³-diversity) as a function of time. 371 

 372 

Discussion 373 

We have described and demonstrated an integrated framework for quantifying the underlying 374 

causes of ³-diversity and namely if those causes are due to random sampling effects or 375 
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aggregating mechanisms such as environmental filtering and dispersal limitation. The approach 376 

that we have described provides a generalized framework for comparing patterns of total ³-377 

diversity, which we call ³S, to those that specifically partial out the non-random patterns of ³-378 

diversity (³C). We have demonstrated that any question relating to how species composition 379 

changes across samples, whether they be taken through space or time, can be subject to the same 380 

approach and metrics. For many cases, this greatly simplifies what can seem a complex endeavor 381 

of finding the 8right9 ³-metric for the question at hand. 382 

 383 

Often, researchers switch ³-diversity metrics and concepts when measuring compositional shifts 384 

within a metacommunity or among heterogeneous sites along an environmental gradient (e.g., 385 

Anderson et al. 2011). For example, within a metacommunity, estimates of ³-diversity are often 386 

based on measures of dispersion in community composition among sites (e.g., Anderson et al. 387 

2006). These measures, however, can be strongly influenced by both the relative abundances of 388 

species, and the size of the regional species pool. This means that randomization-based null 389 

models) are needed if one wants to compare levels of dispersion among different 390 

metacommunities, and/or make inferences regarding potential driving mechanisms (e.g., Chase 391 

et al. 2011, Kraft et al. 2011, Myers et al. 2013). However, the appropriate form of 392 

randomization for the null model remains contentious (Kraft et al. 2012, Qian et al. 2012, Mori et 393 

al. 2015, Tucker et al. 2016, Xing and He 2021). Our rarefaction-based approach can also be 394 

considered a type of null sampling model. However, comparing rarefaction curves has a number 395 

of benefits over other null model approaches: by calculating α- and ´-scale curves, ³-diversity 396 

can be put back into the context of scale-dependent multicomponent changes in diversity (Chase 397 

et al. 2018, Blowes et al. 2022, Rolls et al. 2023); rarefaction curves can be based on analytical 398 
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solutions improving efficiency; and, rarefaction curves can be visualized, making them more 399 

intuitive and easier to communicate than other null model approaches. Nevertheless, some of the 400 

concerns arising from the use of null models also apply to the approach overviewed here. For 401 

example, there is a strong 8Narcissus9 effect (i.e., the outcome reflects the inputs) in developing 402 

null models to evaluate whether differences among samples deviate from a null expectation; the 403 

samples that are used to calculate ´-diversity influence the likelihood that they will deviate from 404 

a null expectation (Ulrich et al. 2017). The same is certainly true for the use of individual-based 405 

rarefaction curves in which deviations are mathematically constrained by the two end points of 406 

the rarefaction curve (McGlinn et al. 2021). 407 

 408 

Baselga (2010) has advocated an approach that partitions measures of dissimilarity among 409 

samples (e.g.,  Jaccard9s or Sorensen9s index or an abundance-based equivalent) into measures 410 

that capture species turnover between samples, and those that account for the nestedness of 411 

species difference between samples (but see Šizling et al. 2022). In essence, the nestedness part 412 

of this partition is the same as our 8random-placement9 effect, while turnover captures the 413 

essence of our ³-diversity measures that capture non-random variation among samples. For 414 

example, in our case study we asked whether bird species in engineered and natural riparian 415 

habitats were a random subset of the same regional species pool (Figure 7). We found that ³S 416 

values were quite high compared to the ³C values, which indicates the turnover component is 417 

small relative to the nested component in Baselga9s approach. 418 

 419 

As with spatial ³-diversity comparisons, there have been variable approaches to capture  ³-420 

diversity through time (Legendre 2019, Magurran et al. 2019, Tatsumi et al. 2022). Most 421 
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measures of temporal turnover calculate turnover as a metric of community dissimilarity through 422 

time. Often rates of change between an initial and subsequent samples, or the rate of decay in 423 

dissimilarity as a function of the time elapsed between samples being compared are estimated, 424 

which can then be compared across systems or taxa (e.g., Korhonen et al. 2010, Blowes et al. 425 

2019). However, as with spatial ³-diversity, these measures cannot discern whether observed 426 

rates of turnover are different from what would be expected from a random placement model 427 

through time. Authors have used different approaches to remedy this problem. For example, 428 

Dornelas et al. (2014) compared rates of temporal ³-diversity to those expected from a neutral 429 

model (Hubbell 2001) to discern whether turnover rates were faster than expected under the 430 

assumption of neutral dynamics, while Stegen et al. (2013) used a null model to determine 431 

whether temporal turnover patterns were greater than expected from sampling effects. Temporal 432 

turnover can also be decomposed into changes due to abundances (similar to our 8sampling9 433 

effects) and changes due to species turnover (Shimadzu et al. 2015, Lamy et al. 2015). As with 434 

spatial ³-diversity measures, our approach is similar, but simplifies the problem by asking 435 

whether temporal changes are non-random in a time series.  436 

 437 

Recently, authors have developed approaches to partition the influence of species gains and 438 

losses to changes in spatial ³-diversity through time (Rosenblad and Sax 2017, Tatsumi et al. 439 

2021), and these have been expanded to incorporate changes in relative abundances (Tatsumi et 440 

al. 2022). These methods are useful for examining <winning= and <losing= species that underlie 441 

changes in spatial ³-diversity through time. However, these methods risk isolating beta-diversity 442 

changes from local (α) and regional (´) scale changes, and are unable to disentangle random 443 

versus non-random structure associated with these changes. Thus, our approach can provide a 444 
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complementary, and more complete picture into scale-dependent changes driving variation of 445 

spatial composition through time.  446 

 447 

Finally, for simplicity we have focused here on two related metrics: ³S and ³C. Other measures of 448 

³ diversity with different weights on common and rare species (i.e., Hill numbers) (Jost 2007, 449 

Tuomisto 2010, Chao et al. 2012, 2023, but see Lande 1996) can also be calculated at different 450 

points along the rarefaction curves. For example, the metric based on Simpson9s entropy, also 451 

known as the probability of interspecific interaction (PIE) (or Gini-Simpson index)(Hurlbert 452 

1971) (where q=2 in the Hill number continuum; Jost 2007, Chao et al. 2014), can be visualized 453 

as the slope at the base of the rarefaction curve (Chase et al. 2018, McGlinn et al. 2019). These 454 

Hill numbers or numbers equivalents can also be used with the multiplicative diversity partition 455 

used here (i.e., ´ = α*³; Jost 2007), and result in an effective number of distinct communities, 456 

with the tuning parameter (i.e., order q) determining the sensitivity to rare and common species. 457 

Recently, Chao et al. (2023) also proposed a framework for standardizing beta-diversity that 458 

consider the joint influence of sampling effects and spatial/temporal aggregation. Their 459 

framework and ours both standardize biodiversity data to the same level of sample coverage 460 

when comparing ³ between meta-communities. However, an important difference between the 461 

approaches is that Chao et al. (2023) assume that individuals are independently sampled (i.e., 462 

randomly encountered), whereas we assume that individuals within a sample are not independent 463 

of one another due to aggregation. In fact, our primary intention here is to explicitly quantify the 464 

important contributions of aggregation to ³-diversity, which cannot be directly measured with 465 

the Chao et al. (2023) approach.   466 
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Conclusions 467 

Ecologists are often interested in examining the role of metacommunity-level mechanisms such 468 

as dispersal limitation and environmental filtering for patterns of ³-diversity (Vellend 2016, 469 

Leibold and Chase 2018). The generalized approach that we have described relies on a set of 470 

intuitive metrics from sampling theory to quantify total ³-diversity (³S), and ³-diversity due to 471 

non-random aggregation (³C), which will allow for stronger tests of hypotheses related to 472 

mechanisms expected to influence patterns of aggregation. In addition, the framework provides 473 

an integrated way to examine how changes at finer (α) and coarser (´) scales combine to 474 

determine variation in species composition (³). This places a central focus on scale-dependent 475 

diversity changes, with the potential to uncover deeper insights into scale-dependence by varying 476 

the focal spatial or temporal grain of the analysis. It remains an open question as to how much 477 

variation in ³-diversity reflects random sampling effects vs non-random aggregation effects. Our 478 

framework provides a means of addressing this question across space and time. 479 
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