

1 **Disentangling non-random structure from random placement when estimating β -diversity**
2 **through space or time**

3 Daniel J. McGlinn ([ORCID](#))^{1*}, Shane A. Blowes ([ORCID](#))^{2,3}, Maria Dornelas⁴, Thore Engel
4 ([ORCID](#))^{2,4,5}, Inês S. Martins^{4,7}, Hideyasu Shimadzu([ORCID](#))^{8,9}, Nicholas J. Gotelli ([ORCID](#))¹⁰,
5 Anne Magurran⁴, Brian McGill ([ORCID](#))¹¹, Jonathan M. Chase ([ORCID](#))^{2,3}

6 ¹Department of Biology, College of Charleston; Charleston, SC, USA.

7 ²German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig,
8 Germany.

9 ³Department of Computer Science, Martin Luther University Halle-Wittenberg; Halle (Saale),
10 Germany.

11 ⁴Centre for Biological Diversity, School of Biology, University of St Andrews; St Andrews,
12 Scotland.

13 ⁵Institute of Biodiversity, Friedrich Schiller University Jena; Jena, Germany

14 ⁶Helmholtz Centre for Environmental Research - UFZ, Department of Ecosystem Services'
15 Leipzig, Germany

16 ⁷Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of
17 York; York, UK.

18 ⁸Department of Mathematical Sciences, Loughborough University; Leicestershire, UK.

19 ⁹Department of Data Science, Kitasato University; Kanagawa, Japan.

20 ¹⁰Department of Biology, University of Vermont; Burlington, VT, USA.

21 ¹¹School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of
22 Maine; Orono, ME, USA.

23 *Corresponding & contact author: danmcglinn@gmail.com

24 **Open Research statement:** all code and data used in this manuscript are available at the
25 following link: https://github.com/MoBiodiv/beta_concept

26 **Keywords:** aggregation; patchiness; rarefaction; sampling effects; scaling; species-abundance
27 distribution; species turnover;

28 **Abstract:**

29 There is considerable interest in understanding patterns of β -diversity that measure the amount of
30 change in species composition through space or time. Most hypotheses for β -diversity evoke
31 nonrandom processes that generate spatial and temporal within species aggregation; however, β -
32 diversity can also be driven by random sampling processes. Here, we describe a framework
33 based on rarefaction curves that quantifies the non-random contribution of species compositional
34 differences across samples to β -diversity. We isolate the effect of within-species spatial or
35 temporal aggregation on beta-diversity using a coverage standardized metric of β -diversity (β_C).

36 We demonstrate the utility of our framework using simulations and an empirical case study
37 examining variation in avian species composition through space and time in engineered versus
38 natural riparian areas. The primary strengths of our approach are that it provides an intuitive
39 visual null model for expected patterns of biodiversity under random sampling that allows
40 integrating analyses across α -, γ -, and β -scales. Importantly, the method can accommodate
41 comparisons between communities with different species pool sizes, and can be used to examine
42 species turnover both within and between meta-communities.

43 **Introduction**

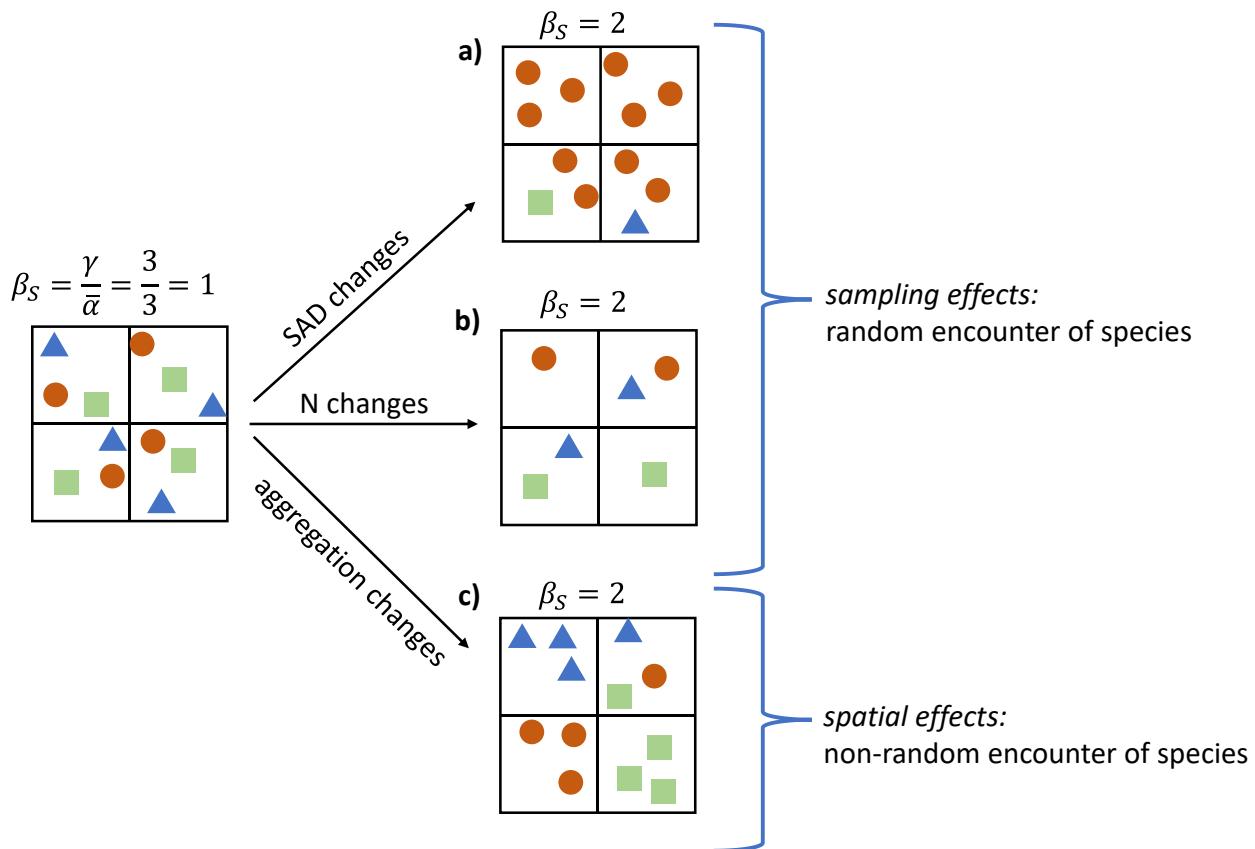
44 Ecologists are frequently interested in how the composition of species in a community changes
45 across space or time (Scheiner et al. 2011, Magurran et al. 2019, Daskalova et al. 2020). The
46 degree of change in species composition in assemblages across space or time is often referred to
47 as β -diversity: localities or time periods with fewer species in common have higher β -diversity.
48 Most conceptual explanations of β -diversity evoke processes that generate non-random spatial or
49 temporal patterns of species aggregation (Leibold and Chase 2018). Aggregation here refers to
50 clustering whereby individuals occur near other individuals of the same species in time and/or
51 space. For instance, two of the most commonly discussed mechanisms underlying patterns of β -
52 diversity are environmental filtering and dispersal limitation (Legendre et al. 2005, Vellend
53 2016, Leibold and Chase 2018). Both of these mechanisms increase aggregation of species
54 distributions via conspecific clustering in space or time increasing β -diversity.

55
56 Although most attention has been focused on the non-random mechanisms underpinning β -
57 diversity, it can also reflect random sampling effects of individuals and species taken from
58 multiple points in space or time. Imagine we collect a sample of 40 individuals within a region or
59 time period that supports up to 50 different species. Even in the improbable case that the
60 numbers of individuals of each species are exactly the same (completely even), at least 10
61 species will be excluded from our sample because of the limited number of individuals. If we
62 then compare that sample to another from a different location in space or time, a different set of
63 10 (or more) species will be excluded simply due to random sampling effects: the species
64 composition of the two samples will differ entirely due to incomplete sampling. This
65 phenomenon has been variously termed a “sampling effect” (e.g., Adler et al. 2005), a
66 “rarefaction effect” (e.g., Palmer et al. 2008), and the “random placement model” (e.g., Coleman

67 et al. 1982). The core idea is that the number of species observed in a sample is constrained by
68 the number of individuals in that sample. Returning to our thought experiment, if the species
69 have a more realistic abundance distribution, with many individuals of a few common species
70 and many species with few individuals (i.e., rare species), these sampling effects on β diversity
71 can be strong (Kraft et al. 2011, Chase et al. 2018, McGlinn et al. 2019, Engel et al. 2021). This
72 example emphasizes that spatial or temporal β diversity is potentially underlain by two factors: a)
73 the non-random turnover of species, due to ecological mechanisms such as environmental
74 filtering or dispersal limitation; and, b) the random turnover of species due to incomplete
75 sampling, especially of rare species (i.e., sampling effects).

76
77 Most metrics of β -diversity conflate variation from both random sampling effects and spatially
78 non-random mechanisms (Stegen et al. 2013, Chase et al. 2018, McGlinn et al. 2019, Engel et al.
79 2021, Chao et al. 2023). This means that the same observed change in β -diversity may be due to
80 different underlying mechanisms, sometimes referred to as a “many-to-one problem”, which are
81 common in ecological studies (Frank 2014, Scholes 2017). Specifically, random turnover can
82 occur where there are changes/differences in other non-spatial components of diversity, such as
83 the species abundance distribution and size of the regional species pool and the total number of
84 individuals. To illustrate this, consider the three hypothetical scenarios in Figure 1 using
85 Whittaker’s (1960) β -diversity ($\beta_S = \gamma / \bar{\alpha}$, where γ is the regional, and $\bar{\alpha}$ is the average of local
86 diversity). In each scenario (Fig1. a-c), a shift in a different component of community structure
87 results in a doubling of Whittaker’s β -diversity (from 1 to 2). In the first two cases (Fig1.a, b), β -
88 diversity increases due simply to random placement of individuals resulting either from a shift in
89 the species-abundance distribution (SAD), for example, a decrease in evenness (Fig. 1a) or, from
90 a decrease in the total number of individuals (N) (Fig. 1b). In the third case, the same magnitude

91 of shift in β_S is due to an increase in conspecific aggregation (Fig. 1c). This “many-to-one” effect
92 is particularly problematic when trying to link changes in β -diversity to hypotheses that evoke
93 changes to conspecific clustering due to environmental filtering or dispersal limitation. To link
94 these mechanisms to β -diversity, it would make sense to focus on patterns of β -diversity that
95 reflect only changes in conspecific aggregation rather than changes in N or the SAD (which we
96 refer to as sampling effects). One consequence of β -diversity metrics confounding both random
97 and non-random variation is that most β -diversity metrics can increase as aggregation decreases
98 if N is decreasing or the SAD is becoming less even for example.



99
100 Figure 1. Cartoon communities that illustrate how random sampling effects and non-random spatial
101 effects can result in identical values of Whittaker’s β -diversity (β_S), where $\bar{\alpha}$ is average sample richness
102 across plots (small boxes) and γ is total species richness in a site (large boxes). The different symbols
103 represent individuals of different species. Panels (a) and (b) illustrate changes in community structure that

104 are consistent with a random sampling model in which spatial β increases either because the regional
105 species-abundance distribution (SAD) is less even (a) or because there are many fewer individuals (b).
106 Panel (c), illustrates how a spatially non-random process such as environmental filtering results in
107 conspecific aggregation producing an identical value of β_s .
108 It is important to emphasize that this is a problem that potentially influences all β -diversity
109 metrics. Any metric of β -diversity that does not explicitly consider the process of sampling is
110 sensitive to sampling effects. So regardless of whether turnover is calculated using presence-
111 absence vs abundance data, is examined in space or time, or using pairwise vs multisite metrics,
112 if the goal of the analysis is to link patterns of compositional change to mechanisms that generate
113 non-random conspecific occurrence patterns, then sampling effects should be controlled for in
114 the measurement of β -diversity. Other authors have recognized this and proposed a
115 randomization algorithm to try to control for sampling effects on β -diversity (Kraft et al. 2011,
116 Chase et al. 2011, Myers et al. 2013, 2015). Yet, continued debate as to exactly how to develop
117 those randomizations, and just what the deviations mean (Kraft et al. 2012, Qian et al. 2012,
118 2013, Xu et al. 2015, Tucker et al. 2016) indicates that a more general solution is necessary.
119
120 In this paper, we describe a framework for quantifying the non-random contribution of species
121 compositional differences across samples to β -diversity. This framework can be applied to any
122 question related to measuring compositional variation (i.e., β -diversity) across samples, whether
123 it be within a given (relatively homogeneous) metacommunity, across an environmental gradient,
124 or through time. The approach allows us to differentiate the contribution of non-random species
125 compositional shifts from the effects of sampling properties due to random placement to changes
126 in β -diversity. As a result, we can quantify and compare compositional shifts among samples
127 through space or time, and potentially relate these to other features of the system (e.g., changing

128 spatial or environmental conditions). Here, our primary purpose is not to review and/or unify all
129 metrics and measures of β -diversity, nor to advocate for a single superior metric, both of which
130 have been attempted (Tuomisto 2010, Chao et al. 2012, 2023). Rather, we promote a framework
131 for measuring the relative influence of sampling and non-random associations that underlie β -
132 diversity among samples, regardless of whether it is measured within or across landscapes,
133 through time, or any combination thereof. Furthermore, rather than using different concepts and
134 tools, we show how a single conceptual framework can identify the key components underlying
135 variation in species composition.

136

137 First, we describe a simple framework that uses rarefaction curves to decompose β -diversity into
138 components due to sampling effects, and those that are due to non-random aggregations of
139 species. Second, we show the framework can be applied to multiple, related questions about how
140 species composition varies across samples.

141

142 **A unified framework for dissecting the non-random contribution of species compositional variation
143 to β -diversity in space and time**

144 The components of our framework are not new. The framework is based on a long history of
145 rarefaction and accumulation curves that depict how species numbers increase with increasing
146 sampling effort (Preston 1960, Sanders 1968). For example, Kobayashi (1982, 1983) showed
147 how spatial aggregation could be quantified from rarefaction curves by comparing subsets of
148 spatially explicit samples to the entire range of spatially randomized samples. Likewise, Gotelli
149 and Colwell (2001) showed how comparing accumulation or ‘collectors’ curves that retain
150 spatial information about the distributions of individuals to individual-based rarefaction curves
151 could provide an indicator of the degree to which aggregation influenced spatial patterns of

152 species accumulations (see also Crist and Veech 2006, Chiarucci et al. 2009, Cayuela et al. 2015,
153 Chase et al. 2018, McGlenn et al. 2019). Finally, Olszewski (2004) explicitly discussed how the
154 comparisons between spatially explicit and randomized rarefaction curves could be used as an
155 index of β -diversity (see also Crist and Veech 2006, Dauby and Hardy 2012). These perspectives
156 have been more recently formalized using individual-based rarefaction curves (and related
157 diversity curves) to disentangle non-random structure from random placement underlying β -
158 diversity within a given set of environmental conditions (i.e., a metacommunity) (Chase et al.
159 2018, McGlenn et al. 2019, 2021, Engel et al. 2021). Here, we generalize this approach and apply
160 it to questions examining β -diversity among different kinds of samples, such as sites across a
161 strong environmental gradient, or when quantifying temporal β -diversity.

162

163 Our framework is designed for one of the most common data types available to community
164 ecologists - a sample-by-species matrix. Each sample contains a vector of abundances of all
165 species sampled from a given assemblage and comes from a given local site. Samples can be
166 collected across multiple sites (a site-by-species matrix) or across multiple time periods (a time-
167 by-species matrix), or a combination of the two. For simplicity, we illustrate the different steps
168 of the approach with samples taken from two spatial locations or time points in Figure 2, but it
169 can be generalized to any number of samples. We assume that the communities being compared
170 are sampled in such a way that they have the same sample effort, i.e., the spatial and temporal
171 grain, extent, and sample arrangement are equal across communities (or can be standardized to
172 such). Here, we define a single sample as the α -scale, and the sum of samples as the γ -scale;
173 however, other accumulation schemes are also possible, so long as the α -scale is a subset of the
174 γ -scale.

175

176 ***Step 1: Create a rarefaction curve for the sum of all samples: γ -scale***

177 If we pool the two (or more) samples, we can calculate the γ -scale rarefaction curve (solid, thick
178 black line in Figure 2). This curve shows the number of species for a random sample of
179 individuals from the whole metacommunity or time series; for any sample of n individuals, S_n is
180 the expected number of species in that sample. This type of rarefaction curve is sometimes
181 referred to as an individual-based rarefaction curve or random sampling model. The curve and its
182 variance has been derived analytically for sampling without replacement (Hurlbert 1971, see
183 Coleman et al. 1982 for formulation for sampling with replacement). Here, because we calculate
184 rarefaction using all samples, the γ -scale curve represents a ‘null expectation’ of the number of
185 species for n individuals, when all individuals of all species occur randomly across the samples
186 (in space or time).

187

188 ***Step 2: Create a rarefaction curve for each individual sample and average them: α -scale***

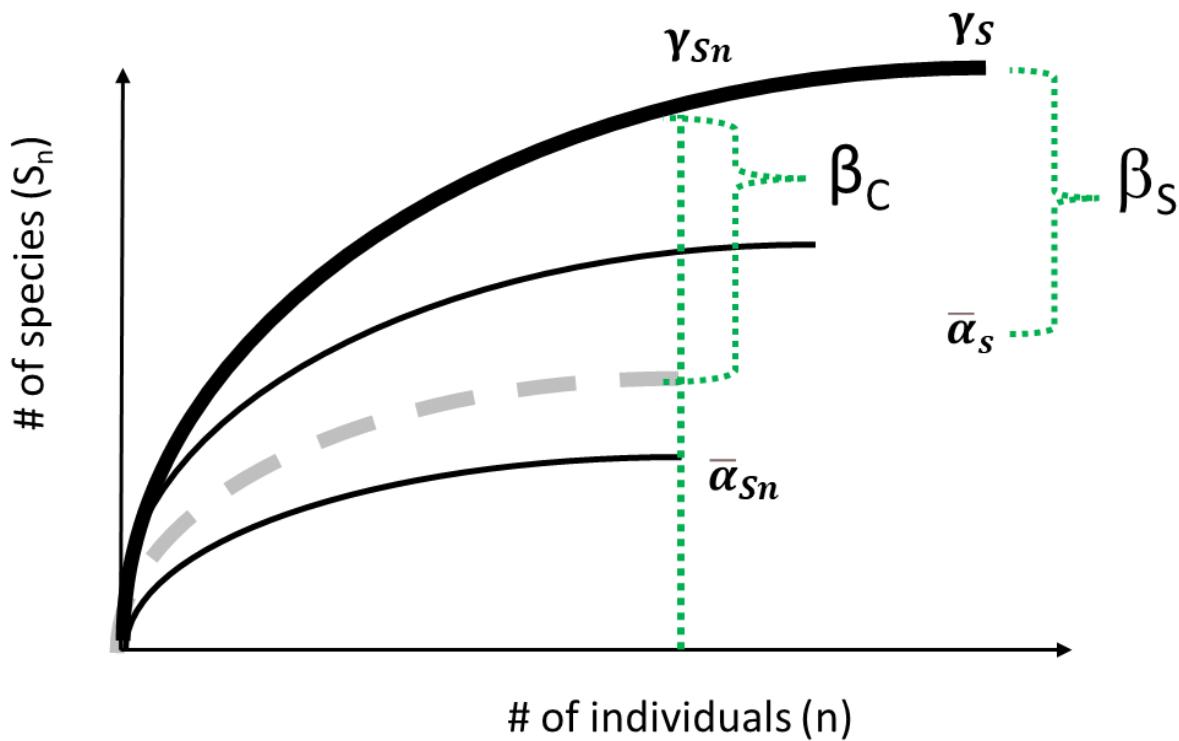
189 Next, we calculate the rarefaction curves for the individual samples (Fig 2, thin solid black lines)
190 and average them to obtain the α -scale rarefaction curve up to the number of individuals (n) that
191 provides the target level of coverage (Fig. 2, thick dashed gray line; Engel et al. 2021). Here
192 coverage refers to how close the γ curve has come to a hypothetical asymptote (i.e., it is an
193 estimate of sample completeness, Chao and Jost 2012).

194

195 ***Step 3: Compare the α and γ - scale curves to estimate the β -scale patterns***

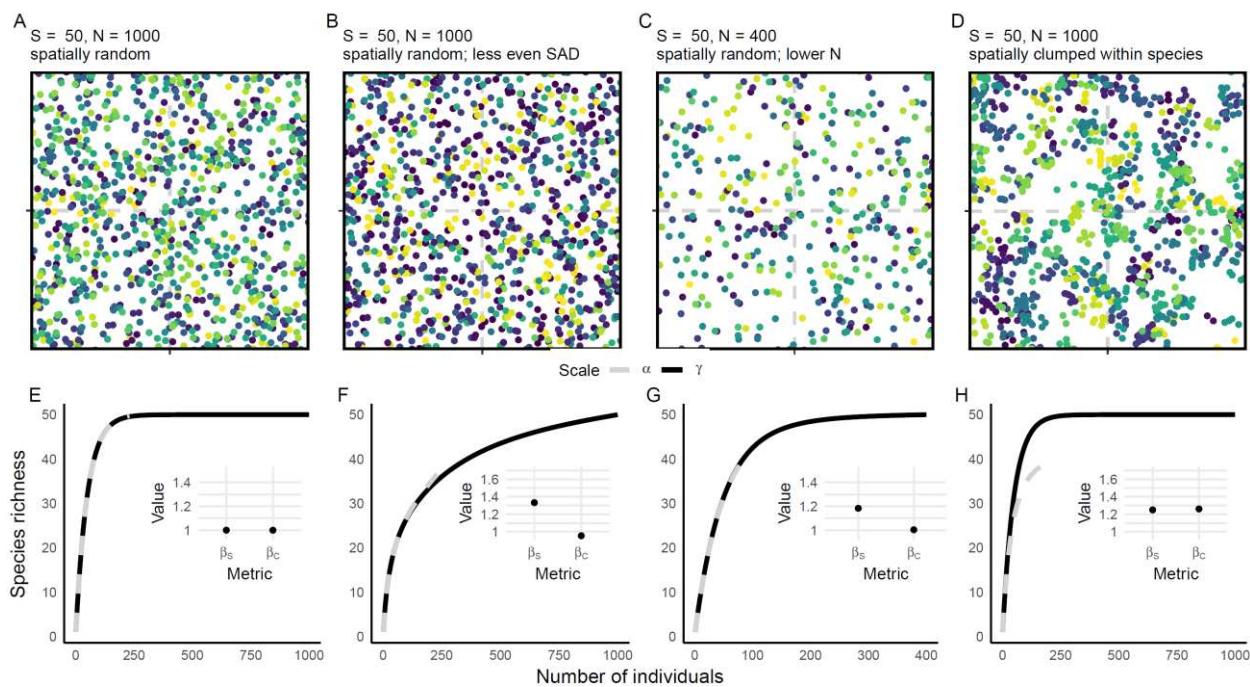
196 The classical Whittaker’s β_s metric is calculated as $\gamma / \bar{\alpha}$ where $\bar{\alpha}$ is average sample richness
197 (Whittaker 1960). Within our framework, these values are represented by the ends of the

198 rarefaction curves (i.e., the average number of species per site [$\bar{\alpha}$], and all species observed
199 across all sites in a region or time points [γ], Fig. 2).
200 To estimate non-random spatial structure, we must compare the (average) α -scale curve (dashed
201 line) to the γ -scale curve, after standardizing for sampling effects. We control for the numbers of
202 individuals sampled (i.e., sampling effects) by comparing the γ - and α -scale rarefaction curves at
203 the same value of number of individuals (n).



204
205 Figure 2: Individual based rarefaction curves at the α - and γ -scales. Thin solid black lines depict
206 two α -scale curves, with their average shown by the thick dashed gray line; solid thick black line
207 shows the γ -scale curve, which is calculated by pooling the two α -scale samples. Whittaker's β_s
208 is calculated as the ratio of γ_s and $\bar{\alpha}_s$. In contrast, coverage-based β_c controls for the number of
209 individuals by using the ratio of γ_{sn} and $\bar{\alpha}_{sn}$, where n provides a target degree of coverage that

210 adjusts for variation in the regional SAD (species pool) when comparing between meta-
211 communities (eqn 5 from Engel et al. 2021).
212 To illustrate the behavior of these metrics, we simulated four scenarios similar to those shown on
213 Figure 1, and calculated β_S and β_C . All scenarios have 50 species in the regional pool, but they
214 vary from the starting community in either their evenness, total number of individuals, or
215 conspecific aggregation. When individuals of all species are distributed randomly and only the
216 evenness of the SAD decreases (Fig. 3A: high evenness 3B: low evenness) or the total number of
217 individuals decreases (Figure 3A: $N = 1000$; 3C: $N = 400$), we see that the average α -scale curve
218 (dashed gray line) falls directly on top of the γ -scale curve (solid black line, Figure 3 E-G), and
219 low evenness and fewer individuals are associated with an increases in β_S , but β_C is equal to one
220 in both cases (insets on Figure 3F and G). However, when we add non-random structure via
221 species aggregation (Figure 3D), the α - and γ -scale IBR curves diverge (Figure 3H), and both
222 metrics are greater than one (compare inset Figure 3H to 3E).



223

224 Figure 3: Quantitative illustration that β_S responds to changes in evenness and the
225 total number of individuals, whereas β_C only responds to changes in within-species aggregation.
226 Simulated communities are shown in panels (A-D) in which different colored dots represent
227 individuals of different species. The landscape (γ scale) is divided into four quadrats (α scale,
228 dashed gray lines). Panels E-H show the corresponding rarefaction curves associated with each
229 artificial community for the γ - (solid black line) and average α -scales (dashed gray line). Inset on
230 these panels is the value of each β diversity metric described. Note that $\beta = 1$ means species
231 composition does not vary among samples.

232
233 If species are randomly distributed among sites (or time points; Fig. 3A-C), then species will
234 likely be sampled at all sites, and the α - and γ -scale curves will fall on top of each other (Fig. 3E-
235 G). However, if species display conspecific aggregation (i.e., individuals within a species are
236 clumped, Fig. 3D) such that they are non-randomly distributed in space or time, then the α -scale
237 curve will fall below the γ -scale curve (Fig. 3H), because new species will be encountered across
238 different sites or time points due to the within species aggregation, pulling the γ -scale curve up
239 relative to the α -scale curve. The resulting ratio of γ_{Sn} and $\bar{\alpha}_{Sn}$, which we call coverage-based β
240 diversity (β_C , Engel et al. 2021), is indicative of the degree to which species show (non-random)
241 intraspecific aggregation among sites or time periods.

242
243 Thus, β_C reflects the degree of non-randomness in the spatial or temporal distribution of species
244 within the domain of $(0, \infty)$. The example in Figure 3D shows a case where there is a non-
245 random distribution of species composition among samples, and $\beta_C > 1$. However, it is also
246 plausible that the α - and γ -scale curves could completely overlap (see e.g., Fig. 3E-G), in which

247 case we would conclude that even though there is β -diversity (i.e., $\beta_s > 1$), this is simply due to
248 random placement effects ($\beta_c = 1$). Finally, species can also show conspecific segregation (i.e.,
249 individuals within a species are overdispersed more than random), where the α -scale curve falls
250 above the γ -scale curve, and $\beta_c < 1$ (not shown).

251
252 One additional benefit of β_c (that is not illustrated in Figure 3 but described in detail in Engel et
253 al. 2021) is that this metric is unbiased when comparing β -diversity across meta-communities
254 that differ in the size of their species pools (e.g., in temperate vs. tropical environments, or across
255 strong environmental gradients). This is accomplished by computing β_c within each meta-
256 community at the same level of sample coverage or completeness (Chao and Jost 2012). In
257 effect, ensuring that γ -scale sample coverage is the same for all metacommunities means that the
258 value of n (the number of individuals for which γ_{S_n} and $\bar{\alpha}_{S_n}$ are calculated) varies among
259 metacommunities.

260
261 To summarize, traditional measures of variation in species composition across area or time (β_s)
262 are shaped by both random and non-random sampling processes, and we can isolate the non-
263 random structure in space or time in determining that scaling by calculating β_c (Table 1).
264 Furthermore, we can evaluate these β -diversity measures for a wide variety of questions
265 concerning species compositional shifts in space and time. We provide R code to calculate
266 classical β_s and β_c (as well as several other β metrics which we do not show here for simplicity)
267 in mobr::calc_beta_div (McGlinn et al. 2022).

268 Table 1. Multiplicative β diversity metrics and the effects that they capture. Species abundance
269 distribution (SAD) effects are due to changes in species evenness and/or the size of the species

270 pool, N effects refer to changes in richness due to variation in the number of individuals
271 sampled, while aggregation effects refer to changes in richness due to variation in how
272 individuals are spatially or temporally distributed (clumped, random, or overdispersed).

Metric	Number of individuals sampled (n)	Effect controlled for	Effects captured
β_s (Whittaker's)	Regional n vs average local n	none	SAD, N, and aggregation
β_c (coverage)	Regional n equals local n and corresponds to a target level of coverage. Across meta-communities, coverage is fixed but n may vary.	N and SAD (evenness and size of pool)	aggregation

273

274 **One approach, many questions: Some example applications.**

275 There are several benefits to our approach. Rarefaction curves provide an intuitive visualization
276 of α - and γ -diversity patterns, the shape of the SAD, and the degree of variation in species
277 composition that exists between samples. Moreover, the same family of measures can be used to
278 estimate β -diversity, and to differentiate between random placement and non-random structure
279 leading to biodiversity scaling for multiple related questions. We illustrate some of this potential
280 using a case study. We examined compositional variation in bird diversity between natural and
281 engineered riparian habitats using a subset of data from the Central Arizona-Phoenix Long-Term
282 Ecological Research site (Warren et al. 2022). We focus on riparian habitats where water
283 permanence was perennial, and contrast sites in engineered settings (including a landscaped
284 riparian preserve, a constructed wetland, and a water retention area along the Salt River, each
285 surrounded by urban or agricultural areas) with those in more natural environments (located
286 along perennial river reaches and surrounded by desert). Point count surveys with a 40-m fixed

287 radius were conducted by trained observers that recorded all birds seen and heard; we analyzed
288 samples collected in spring between 2001 and 2016. Before calculating our metrics, we ensured
289 that sample effort was consistent across all sites and years; this meant three sites were retained
290 from each habitat (engineered and natural), and data from 2003 and 2009 were discarded due to
291 missing samples.

292

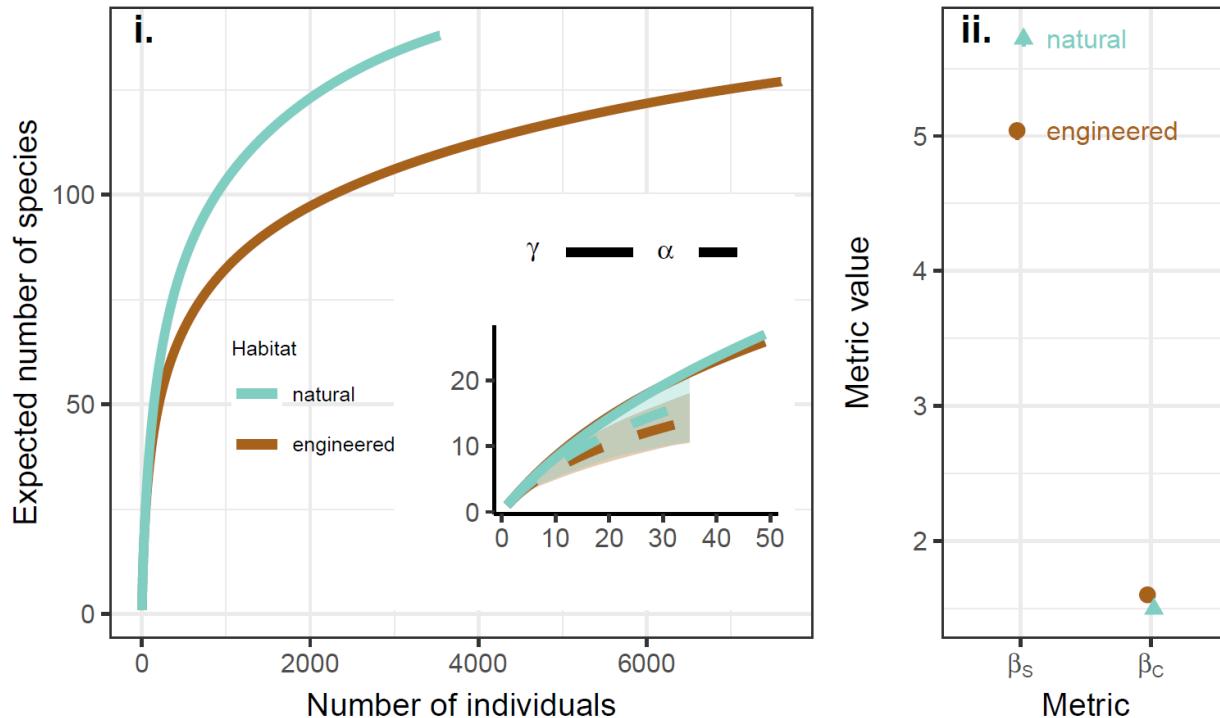
293 Using these effort-standardized data, we address four questions examining how random and non-
294 random components contribute to patterns of β -diversity through space and time: (1) does the
295 total spatiotemporal variation in community composition differ between engineered and natural
296 habitats? (2) How does spatial variation in community composition change through time in each
297 of the two habitats? (3) Does the temporal variation in community composition differ between
298 engineered and natural habitats? (4) Are there compositional differences between (rather than
299 within) engineered and natural habitats, and do any differences change through time?

300

301 ***Q1) does the total spatiotemporal variation in community composition differ between
302 engineered and natural habitats?***

303 We used all site-year combinations within each habitat to examine total spatiotemporal variation
304 in community composition. γ -scale rarefaction curves combine all the samples across space and
305 time within habitats, and show that the engineered habitat had more individuals, but fewer
306 species than the natural habitat (Figure 4i). To examine spatiotemporal variation, we defined the
307 α -scale as a single site-year combination within a habitat (Figure 4i inset shows α - and γ -scale
308 curves). The greater number of species in the natural habitat compared to the engineered habitat
309 resulted in higher β_S in natural habitats. However, this pattern was reversed for β_C when the

310 influence of sampling effects were removed from the calculations (Figure 4ii), meaning that
311 aggregation in time and space was similar in the engineered and natural habitats.

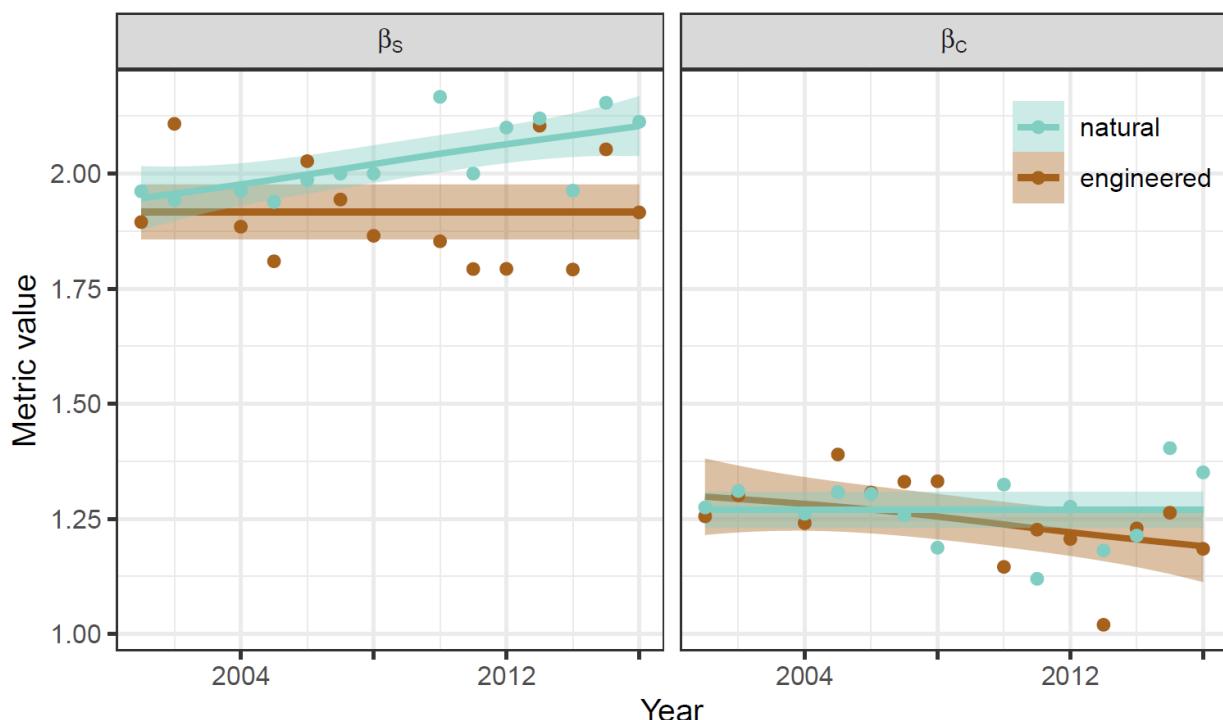


312
313 Figure 4. Total spatiotemporal β -diversity: (i) γ -scale rarefaction curves for each habitat, with
314 inset showing γ - and average α -scales (note an individual α -scale curve was a single site in a
315 single year); (ii) mean β_s and β_c [point] (95% quantile whiskers not visible) of total
316 spatiotemporal β -diversity jackknife resamples in each habitat type.

317
318 ***Q2) How does spatial variation in community composition change through time in each of the***
319 ***two habitats?***

320 Figure 5 shows the pattern of spatial β -diversity in engineered and natural habitats through time.
321 β_s increased through time for the natural sites, indicating that those communities were becoming
322 more different from one another through time (opposite to the oft expected pattern of biotic
323 homogenization, where communities become more similar through time and spatial β diversity

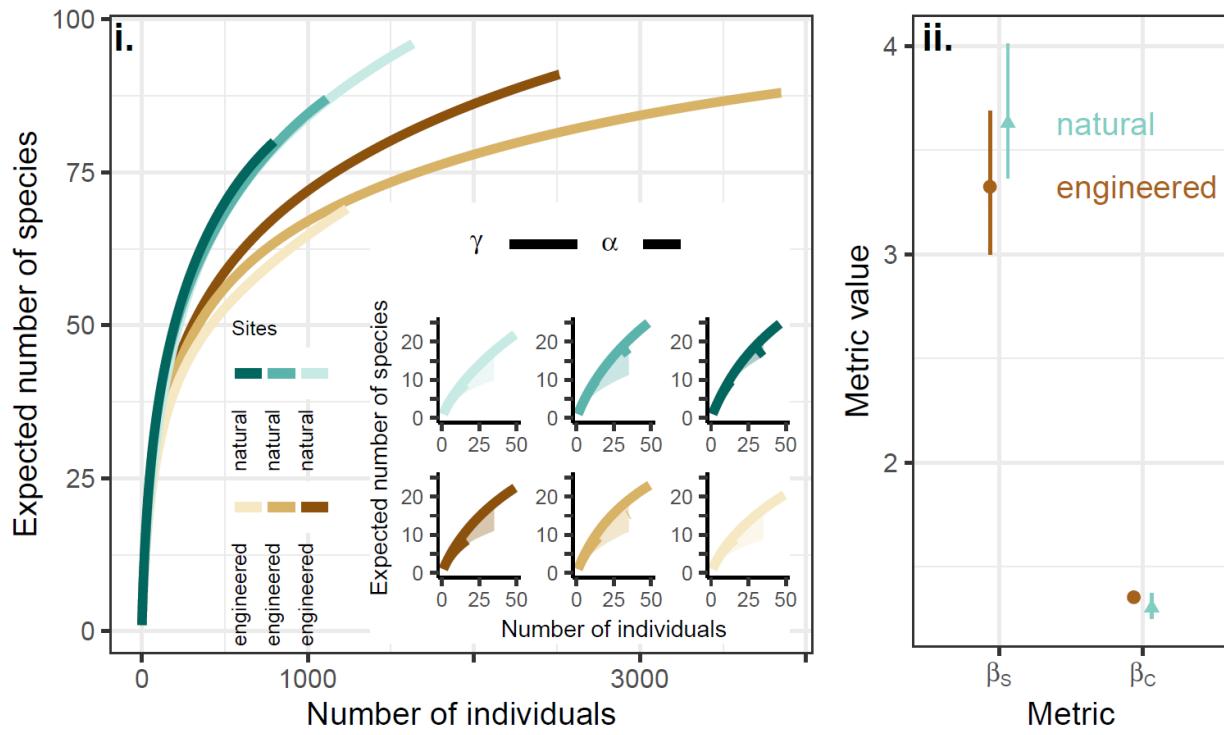
324 declines). There was no similar trend in spatial β_S of the engineered sites, and by the end of the
325 time series (but not the beginning) the engineered sites had lower levels of β_S than the natural
326 sites. However, this pattern qualitatively changed when the influence of non-random patterns
327 was explicitly considered. β_C indicates that species became less aggregated within engineered
328 sites through time, suggesting biotic homogenization after random-placement mechanisms were
329 controlled, and no change in β_C in the natural habitat. Combined, these results suggest the
330 apparent pattern of increasing differentiation in the natural habitat was mostly driven by
331 sampling effects (e.g., altered numbers of individuals, and/or rare species), and that there was a
332 weak decrease of within species aggregation across sites in the engineered habitat.



333
334 Figure 5. Spatial β -diversity as a function of time for β_S and β_C in the two habitats. Trend lines
335 represent OLS linear models with their 95% CI.
336

337 ***Q3) Does the temporal variation in community composition differ between engineered and***
338 ***natural habitats?***

339 Across all years, sites in the engineered habitat had greater variation than sites in natural habitat
340 in both the total number of individuals (i.e., the end points of the γ -scale curves on the x-axis,
341 Fig. 6i), and shape of the SAD (reflected by greater variation in the curvature of the γ -scale
342 rarefaction). On average, natural sites had slightly higher levels of temporal β_S than the
343 engineered sites, but the variation among sites (and only three replicates) meant there was no
344 overall difference in temporal β_S between habitats (Fig. 6ii). We conclude that the weak
345 differences of temporal β_S between habitats were primarily due to random sampling effects (Fig.
346 6i) because this pattern disappeared for β_C (and β_C was slightly higher in the engineered habitat).
347 In both habitats, β_S was also more than double the value of β_C , suggesting that more than 50% of
348 year-to-year variation in community composition was due to changes in the number of
349 individuals and/or rare species. The similar values β_C in both habitats indicates that temporal
350 autocorrelation of species presences did not differ much between natural and engineered habitats.



351

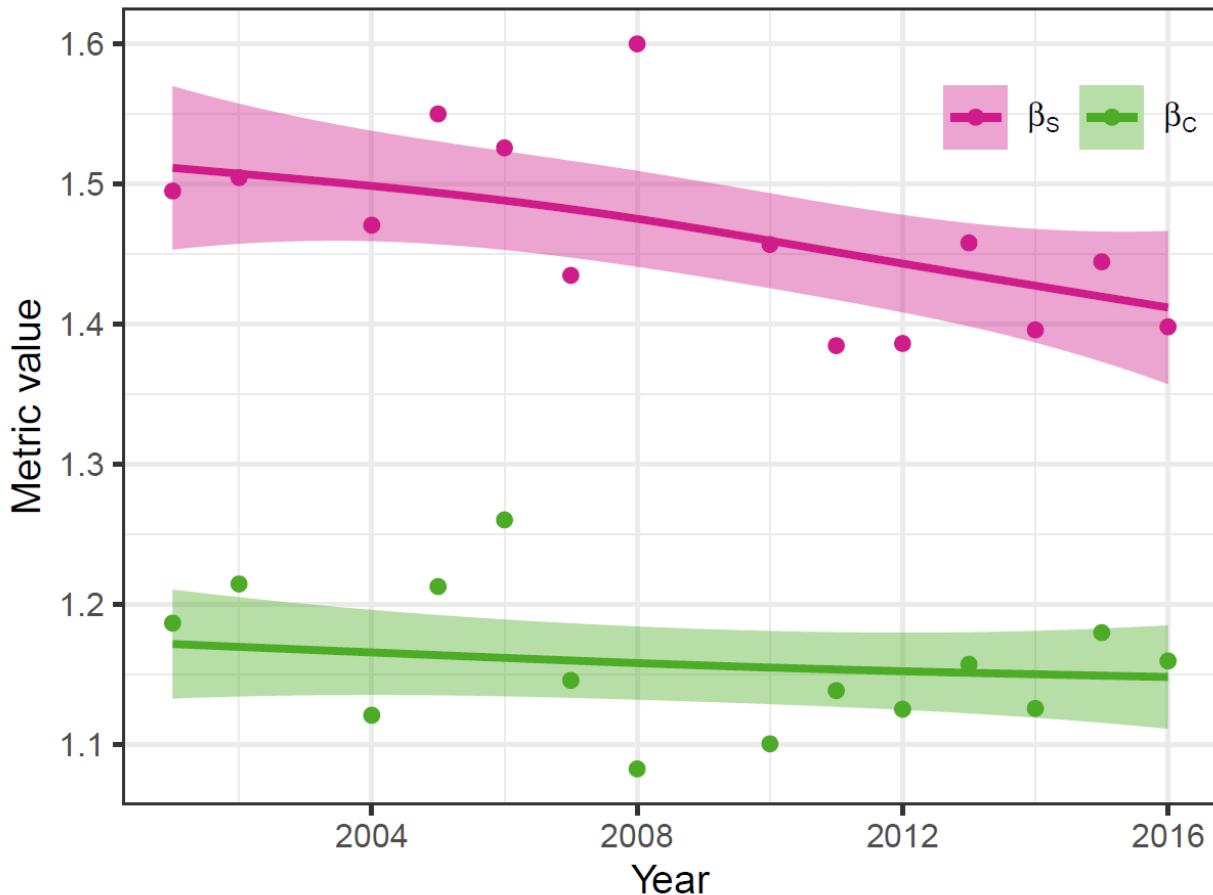
352 Figure 6. Temporal β -diversity: (i) γ -scale rarefaction curves for each site (i.e., all years
 353 combined), with inset showing γ - and the average α -scales for each site; (ii) temporal β_s and β_c
 354 (mean [point] and 95% quartiles [whiskers] of jackknife resamples) of total temporal β -diversity.

355

356 ***Q4) Are there compositional differences between engineered and natural habitats, and do any
 357 differences change through time?***

358 Finally, the same concepts and tools that we used to examine variation in species composition
 359 within treatments can also be used to compare species composition between treatments through
 360 time. Essentially, this asks whether bird communities in natural and engineered sites are random
 361 subsets of a common larger species pool? Do non-random spatial patterns contribute to any
 362 differentiation? And do these patterns change over time? (Fig. 7). Here, the overall difference
 363 between treatments (β_s) was larger than one (there is some species turnover between habitats)
 364 and slightly declined through time (homogenization). However, when only non-random patterns

365 were considered, β_C was closer to, though still greater than one, and only slightly declined
366 through time. This suggests that once we control for sampling effects that compositional
367 differences between the habitats were relatively small but still detectable and not changing
368 through time.



369
370 Figure 7. Compare species composition between the engineered and natural riparian habitat types
371 (i.e., the β -diversity) as a function of time.

372

373 **Discussion**

374 We have described and demonstrated an integrated framework for quantifying the underlying
375 causes of β -diversity and namely if those causes are due to random sampling effects or

376 aggregating mechanisms such as environmental filtering and dispersal limitation. The approach
377 that we have described provides a generalized framework for comparing patterns of total β -
378 diversity, which we call β_S , to those that specifically partial out the non-random patterns of β -
379 diversity (β_C). We have demonstrated that any question relating to how species composition
380 changes across samples, whether they be taken through space or time, can be subject to the same
381 approach and metrics. For many cases, this greatly simplifies what can seem a complex endeavor
382 of finding the ‘right’ β -metric for the question at hand.

383
384 Often, researchers switch β -diversity metrics and concepts when measuring compositional shifts
385 within a metacommunity or among heterogeneous sites along an environmental gradient (e.g.,
386 Anderson et al. 2011). For example, within a metacommunity, estimates of β -diversity are often
387 based on measures of dispersion in community composition among sites (e.g., Anderson et al.
388 2006). These measures, however, can be strongly influenced by both the relative abundances of
389 species, and the size of the regional species pool. This means that randomization-based null
390 models) are needed if one wants to compare levels of dispersion among different
391 metacommunities, and/or make inferences regarding potential driving mechanisms (e.g., Chase
392 et al. 2011, Kraft et al. 2011, Myers et al. 2013). However, the appropriate form of
393 randomization for the null model remains contentious (Kraft et al. 2012, Qian et al. 2012, Mori et
394 al. 2015, Tucker et al. 2016, Xing and He 2021). Our rarefaction-based approach can also be
395 considered a type of null sampling model. However, comparing rarefaction curves has a number
396 of benefits over other null model approaches: by calculating α - and γ -scale curves, β -diversity
397 can be put back into the context of scale-dependent multicomponent changes in diversity (Chase
398 et al. 2018, Blowes et al. 2022, Rolls et al. 2023); rarefaction curves can be based on analytical

399 solutions improving efficiency; and, rarefaction curves can be visualized, making them more
400 intuitive and easier to communicate than other null model approaches. Nevertheless, some of the
401 concerns arising from the use of null models also apply to the approach overviewed here. For
402 example, there is a strong ‘Narcissus’ effect (i.e., the outcome reflects the inputs) in developing
403 null models to evaluate whether differences among samples deviate from a null expectation; the
404 samples that are used to calculate γ -diversity influence the likelihood that they will deviate from
405 a null expectation (Ulrich et al. 2017). The same is certainly true for the use of individual-based
406 rarefaction curves in which deviations are mathematically constrained by the two end points of
407 the rarefaction curve (McGinn et al. 2021).

408

409 Baselga (2010) has advocated an approach that partitions measures of dissimilarity among
410 samples (e.g., Jaccard’s or Sorensen’s index or an abundance-based equivalent) into measures
411 that capture species turnover between samples, and those that account for the nestedness of
412 species difference between samples (but see Šízling et al. 2022). In essence, the nestedness part
413 of this partition is the same as our ‘random-placement’ effect, while turnover captures the
414 essence of our β -diversity measures that capture non-random variation among samples. For
415 example, in our case study we asked whether bird species in engineered and natural riparian
416 habitats were a random subset of the same regional species pool (Figure 7). We found that β_S
417 values were quite high compared to the β_C values, which indicates the turnover component is
418 small relative to the nested component in Baselga’s approach.

419

420 As with spatial β -diversity comparisons, there have been variable approaches to capture β -
421 diversity through time (Legendre 2019, Magurran et al. 2019, Tatsumi et al. 2022). Most

422 measures of temporal turnover calculate turnover as a metric of community dissimilarity through
423 time. Often rates of change between an initial and subsequent samples, or the rate of decay in
424 dissimilarity as a function of the time elapsed between samples being compared are estimated,
425 which can then be compared across systems or taxa (e.g., Korhonen et al. 2010, Blowes et al.
426 2019). However, as with spatial β -diversity, these measures cannot discern whether observed
427 rates of turnover are different from what would be expected from a random placement model
428 through time. Authors have used different approaches to remedy this problem. For example,
429 Dornelas et al. (2014) compared rates of temporal β -diversity to those expected from a neutral
430 model (Hubbell 2001) to discern whether turnover rates were faster than expected under the
431 assumption of neutral dynamics, while Stegen et al. (2013) used a null model to determine
432 whether temporal turnover patterns were greater than expected from sampling effects. Temporal
433 turnover can also be decomposed into changes due to abundances (similar to our ‘sampling’
434 effects) and changes due to species turnover (Shimadzu et al. 2015, Lamy et al. 2015). As with
435 spatial β -diversity measures, our approach is similar, but simplifies the problem by asking
436 whether temporal changes are non-random in a time series.

437
438 Recently, authors have developed approaches to partition the influence of species gains and
439 losses to changes in spatial β -diversity through time (Rosenblad and Sax 2017, Tatsumi et al.
440 2021), and these have been expanded to incorporate changes in relative abundances (Tatsumi et
441 al. 2022). These methods are useful for examining “winning” and “losing” species that underlie
442 changes in spatial β -diversity through time. However, these methods risk isolating beta-diversity
443 changes from local (α) and regional (γ) scale changes, and are unable to disentangle random
444 versus non-random structure associated with these changes. Thus, our approach can provide a

445 complementary, and more complete picture into scale-dependent changes driving variation of
446 spatial composition through time.

447

448 Finally, for simplicity we have focused here on two related metrics: β_S and β_C . Other measures of
449 β diversity with different weights on common and rare species (i.e., Hill numbers) (Jost 2007,
450 Tuomisto 2010, Chao et al. 2012, 2023, but see Lande 1996) can also be calculated at different
451 points along the rarefaction curves. For example, the metric based on Simpson's entropy, also
452 known as the probability of interspecific interaction (PIE) (or Gini-Simpson index)(Hurlbert
453 1971) (where $q=2$ in the Hill number continuum; Jost 2007, Chao et al. 2014), can be visualized
454 as the slope at the base of the rarefaction curve (Chase et al. 2018, McGlinn et al. 2019). These
455 Hill numbers or numbers equivalents can also be used with the multiplicative diversity partition
456 used here (i.e., $\gamma = \alpha * \beta$; Jost 2007), and result in an effective number of distinct communities,
457 with the tuning parameter (i.e., order q) determining the sensitivity to rare and common species.
458 Recently, Chao et al. (2023) also proposed a framework for standardizing beta-diversity that
459 consider the joint influence of sampling effects and spatial/temporal aggregation. Their
460 framework and ours both standardize biodiversity data to the same level of sample coverage
461 when comparing β between meta-communities. However, an important difference between the
462 approaches is that Chao et al. (2023) assume that individuals are independently sampled (i.e.,
463 randomly encountered), whereas we assume that individuals within a sample are not independent
464 of one another due to aggregation. In fact, our primary intention here is to explicitly quantify the
465 important contributions of aggregation to β -diversity, which cannot be directly measured with
466 the Chao et al. (2023) approach.

467 **Conclusions**

468 Ecologists are often interested in examining the role of metacommunity-level mechanisms such
469 as dispersal limitation and environmental filtering for patterns of β -diversity (Vellend 2016,
470 Leibold and Chase 2018). The generalized approach that we have described relies on a set of
471 intuitive metrics from sampling theory to quantify total β -diversity (β_S), and β -diversity due to
472 non-random aggregation (β_C), which will allow for stronger tests of hypotheses related to
473 mechanisms expected to influence patterns of aggregation. In addition, the framework provides
474 an integrated way to examine how changes at finer (α) and coarser (γ) scales combine to
475 determine variation in species composition (β). This places a central focus on scale-dependent
476 diversity changes, with the potential to uncover deeper insights into scale-dependence by varying
477 the focal spatial or temporal grain of the analysis. It remains an open question as to how much
478 variation in β -diversity reflects random sampling effects vs non-random aggregation effects. Our
479 framework provides a means of addressing this question across space and time.

480 **Acknowledgements:**

481 DJM, SAB, TE, JMC gratefully acknowledge the support of the German Centre of Integrative
482 Biodiversity Research (iDiv) Halle-Jena-Leipzig (funded by the German Research Foundation;
483 FZT 118). ISM received funding from the European Union Horizon 2020 research and
484 innovation programme under the Marie Skłodowska-Curie grant agreement no. 894644. TE was
485 supported by the German Research Foundation (DFG) within the project “Establishment of the
486 National Research Data Infrastructure (NFDI)” in the consortium NFDI4Biodiversity (project
487 number 442032008).

488 **Literature Cited**

489 Adler, P. B. et al. 2005. Evidence for a general species-time-area relationship. *Ecology* 86:2032–
490 2039.

491 Anderson, M. J. et al. 2011. Navigating the multiple meanings of β diversity: a roadmap for the
492 practicing ecologist. *Ecology Letters* 14:19–28.

493 Anderson, M. J., K. E. Ellingsen, and B. H. McArdle. 2006. Multivariate dispersion as a measure
494 of beta diversity. *Ecology Letters* 9:683–693.

495 Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. *Global
496 Ecology and Biogeography* 19:134–143.

497 Blowes, S. A. et al. 2019. The geography of biodiversity change in marine and terrestrial
498 assemblages. *Science* 366:339–345.

499 Blowes, S. A. et al. 2022. Local biodiversity change reflects interactions among changing
500 abundance, evenness, and richness. *Ecology*:e3820.

501 Cayuela, L., N. J. Gotelli, and R. K. Colwell. 2015. Ecological and biogeographic null
502 hypotheses for comparing rarefaction curves. *Ecological Monographs* 85:437–455.

503 Chao, A. et al. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling
504 and estimation in species diversity studies. *Ecological Monographs* 84:45–67.

505 Chao, A. et al. 2023. Rarefaction and extrapolation with beta diversity under a framework of Hill
506 numbers: The iNEXT.beta3D standardization. *Ecological Monographs* n/a:e1588.

507 Chao, A., C.-H. Chiu, and T. C. Hsieh. 2012. Proposing a resolution to debates on diversity
508 partitioning. *Ecology* 93:2037–2051.

509 Chao, A., and L. Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing
510 samples by completeness rather than size. *Ecology* 93:2533–2547.

511 Chase, J. M. et al. 2018. Embracing scale-dependence to achieve a deeper understanding of
512 biodiversity and its change across communities. *Ecology Letters* 21:1737–1751.

513 Chase, J. M., N. J. B. Kraft, K. G. Smith, M. Vellend, and B. D. Inouye. 2011. Using null models
514 to disentangle variation in community dissimilarity from variation in α -diversity.
515 *Ecosphere* 2:art24.

516 Chiarucci, A. et al. 2009. Spatially constrained rarefaction: incorporating the autocorrelated
517 structure of biological communities into sample-based rarefaction. *Community Ecology*
518 10:209–214.

519 Coleman, B. D., M. A. Mares, M. R. Willig, and Y. H. Hsieh. 1982. Randomness, area, and
520 species richness. *Ecology* 63:1121–1133.

521 Crist, T. O., and J. A. Veech. 2006. Additive partitioning of rarefaction curves and species-area
522 relationships: unifying alpha-, beta- and gamma-diversity with sample size and habitat
523 area. *Ecology Letters* 9:923–932.

524 Daskalova, G. N. et al. 2020. Landscape-scale forest loss as a catalyst of population and
525 biodiversity change. *Science* 368:1341–1347.

526 Dauby, G., and O. J. Hardy. 2012. Sampled-based estimation of diversity sensu stricto by
527 transforming Hurlbert diversities into effective number of species. *Ecography* 35:661–
528 672.

529 Dornelas, M. et al. 2014. Assemblage Time Series Reveal Biodiversity Change but Not
530 Systematic Loss. *Science* 344:296–299.

531 Engel, T. et al. 2021. Using coverage-based rarefaction to infer non-random species
532 distributions. *Ecosphere* 12:e03745.

533 Frank, S. A. 2014. Generative models versus underlying symmetries to explain biological
534 pattern. *Journal of Evolutionary Biology* 27:1172–1178.

535 Gotelli, N. J., and R. K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the
536 measurement and comparison of species richness. *Ecology Letters* 4:379–391.

537 Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton
538 Univ. Press, Princeton, NJ.

539 Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters.
540 *Ecology* 52:577–586.

541 Jost, L. 2007. Partitioning diversity into independent alpha and beta components. *Ecology*
542 88:2427–2439.

543 Kobayashi, S. 1982. The rarefaction diversity measurement and the spatial distribution of
544 individuals. *Japanese Journal of Ecology* 32:255–258.

545 Kobayashi, S. 1983. Another calculation for the rarefaction diversity measurement for different
546 spatial distributions. *Japanese Journal of Ecology* 33:101–102.

547 Korhonen, J. J., J. Soininen, and H. Hillebrand. 2010. A quantitative analysis of temporal
548 turnover in aquatic species assemblages across ecosystems. *Ecology* 91:508–517.

549 Kraft, N. J. B. et al. 2011. Disentangling the Drivers of β Diversity Along Latitudinal and
550 Elevational Gradients. *Science* 333:1755–1758.

551 Kraft, N. J. B. et al. 2012. Response to Comments on “Disentangling the Drivers of β Diversity
552 Along Latitudinal and Elevational Gradients.” *Science* 335:1573–1573.

553 Lamy, T., P. Legendre, Y. Chancerelle, G. Siu, and J. Claudet. 2015. Understanding the Spatio-
554 Temporal Response of Coral Reef Fish Communities to Natural Disturbances: Insights
555 from Beta-Diversity Decomposition. *PLOS ONE* 10:e0138696.

556 Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple
557 communities. *Oikos* 76:5–13.

558 Legendre, P. 2019. A temporal beta-diversity index to identify sites that have changed in
559 exceptional ways in space–time surveys. *Ecology and Evolution* 9:3500–3514.

560 Legendre, P., D. Borcard, and P. R. Peres-Neto. 2005. Analyzing beta diversity: Partitioning the
561 spatial variation of community composition data. *Ecological Monographs* 75:435–450.

562 Leibold, M. A., and J. M. Chase. 2018. *Metacommunity Ecology*. Princeton University Press,
563 Princeton, New Jersey.

564 Magurran, A. E., M. Dornelas, F. Moyes, and P. A. Henderson. 2019. Temporal β diversity—A
565 macroecological perspective. *Global Ecology and Biogeography* 28:1949–1960.

566 McGlinn, D. J. et al. 2019. Measurement of Biodiversity (MoB): A method to separate the scale-
567 dependent effects of species abundance distribution, density, and aggregation on diversity
568 change. *Methods in Ecology and Evolution* 10:258–269.

569 McGlinn, D. J. et al. 2021. A multiscale framework for disentangling the roles of evenness,
570 density, and aggregation on diversity gradients. *Ecology*:e03233.

571 Mori, A. S., S. Fujii, R. Kitagawa, and D. Koide. 2015. Null model approaches to evaluating the
572 relative role of different assembly processes in shaping ecological communities.
573 *Oecologia* 178:261–273.

574 Myers, J. A. et al. 2013. Beta-diversity in temperate and tropical forests reflects dissimilar
575 mechanisms of community assembly. *Ecology Letters*:151–157.

576 Myers, J. A., J. M. Chase, R. M. Crandall, and I. Jiménez. 2015. Disturbance alters beta-diversity
577 but not the relative importance of community assembly mechanisms. *Journal of Ecology*
578 103:1291–1299.

579 Olszewski, T. D. 2004. A unified mathematical framework for the measurement of richness and
580 evenness within and among multiple communities. *Oikos* 104:377–387.

581 Palmer, M. W., D. J. McGlinn, and J. F. Fridley. 2008. Artifacts and artificiations in biodiversity
582 research. *Folia Geobotanica* 43:245–257.

583 Preston, F. W. 1960. Time and space and the variation of species. *Ecology* 41:611–627.

584 Qian, H., S. Chen, L. Mao, and Z. Ouyang. 2013. Drivers of β -diversity along latitudinal
585 gradients revisited. *Global Ecology and Biogeography* 22:659–670.

586 Qian, H., X. Wang, and Y. Zhang. 2012. Comment on “Disentangling the Drivers of β Diversity
587 Along Latitudinal and Elevational Gradients.” *Science* 335:1573–1573.

588 Rolls, R. J. et al. 2023. Biotic homogenisation and differentiation as directional change in beta
589 diversity: synthesising driver–response relationships to develop conceptual models across
590 ecosystems. *Biological Reviews* 98:1388–1423.

591 Rosenblad, K. C., and D. F. Sax. 2017. A new framework for investigating biotic
592 homogenization and exploring future trajectories: oceanic island plant and bird
593 assemblages as a case study. *Ecograph* 40:1040–1049.

594 Sanders, H. L. 1968. Marine benthic diversity: a comparative study. *American Naturalist*
595 102:243–282.

596 Scheiner, S. M. et al. 2011. The underpinnings of the relationship between space, time, and
597 species richness. *Ecological Monographs* 81:195–213.

598 Scholes, R. J. 2017. Taking the Mumbo Out of the Jumbo: Progress Towards a Robust Basis for
599 Ecological Scaling. *Ecosystems* 20:4–13.

600 Shimadzu, H., M. Dornelas, and A. E. Magurran. 2015. Measuring temporal turnover in
601 ecological communities. *Methods in Ecology and Evolution* 6:1384–1394.

602 Šízling, A. L. et al. 2022. Mathematically and biologically consistent framework for presence-
603 absence pairwise indices. *bioRxiv*.

604 Stegen, J. C. et al. 2013. Stochastic and deterministic drivers of spatial and temporal turnover in
605 breeding bird communities. *Global Ecology and Biogeography* 22:202–212.

606 Tatsumi, S., R. Iritani, and M. W. Cadotte. 2021. Temporal changes in spatial variation:
607 partitioning the extinction and colonisation components of beta diversity. *Ecology Letters*
608 24:1063–1072.

609 Tatsumi, S., R. Iritani, and M. W. Cadotte. 2022. Partitioning the temporal changes in
610 abundance-based beta diversity into loss and gain components. *Methods in Ecology and*
611 *Evolution* 13:2042–2048.

612 Tucker, C. M., L. G. Shoemaker, K. F. Davies, D. R. Nemergut, and B. A. Melbourne. 2016.
613 Differentiating between niche and neutral assembly in metacommunities using null
614 models of β -diversity. *Oikos* 125:778–789.

615 Tuomisto, H. 2010. A diversity of beta diversities: straightening up a concept gone awry. Part 1.
616 Defining beta diversity as a function of alpha and gamma diversity. *Ecography* 33:2–22.

617 Ulrich, W. et al. 2017. The tangled link between β - and γ -diversity: a Narcissus effect weakens
618 statistical inferences in null model analyses of diversity patterns. *Global Ecology and*
619 *Biogeography* 26:1–5.

620 Vellend, M. 2016. *The Theory of Ecological Communities*. Princeton University Press,
621 Princeton, NJ, USA.

622 Warren, P., S. B. Lerman, H. Bateman, M. Katti, and E. Shochat. 2022. Point-count bird
623 censusing: long-term monitoring of bird abundance and diversity in central Arizona-
624 Phoenix, ongoing since 2000 ver 20. Environmental Data Initiative.

625 Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. *Ecological*
626 *Monographs* 30:279–338.

627 Xing, D., and F. He. 2021. Analytical models for β -diversity and the power-law scaling of β -
628 deviation. *Methods in Ecology and Evolution* 12:405–414.

629 Xu, W., G. Chen, C. Liu, and K. Ma. 2015. Latitudinal differences in species abundance
630 distributions, rather than spatial aggregation, explain beta-diversity along latitudinal
631 gradients. *Global Ecology and Biogeography* 24:1170–1180.