

1 **Sex Chromosomes and Gonads Shape the Sex-Biased Transcriptomic Landscape in *Tlr7*-**
2 **Mediated Demyelination During Aging**

3
4 Chloe Lopez-Lee^{1,2}, Lay Kodama^{1,3}, Li Fan¹, Man Ying Wong¹, Nessa R. Foxe¹, Laraib Jiaz¹,
5 Fangmin Yu¹, Pearly Ye¹, Jingjie Zhu¹, Kendra Norman¹, Eileen Ruth Torres¹, Rachel D. Kim⁴,
6 Gergey Alzaem Mousa¹, Dena Dubal⁵, Shane Liddelow^{4,6-8}, Wenjie Luo¹, and Li Gan^{1,2*}

7
8 ¹Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research
9 Institute, Weill Cornell Medicine, New York, NY

10 ²Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY

11 ³Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA

12 ⁴Neuroscience Institute, NYU Grossman School of Medicine, New York, NY

13 ⁵Department of Neurology, Weill Institute for Neurosciences, University of California San
14 Francisco, San Francisco, CA

15 ⁶Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY

16 ⁷Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY

17 ⁸Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York,
18 NY

19
20 *Corresponding author. Email: lig2033@med.cornell.edu

21
22 **One-sentence summary:**

23 Cell type-specific processes underlying aged demyelination are sex-biased and mediated by *Tlr7*.

24

25 **Abstract**

26 Demyelination occurs in aging and associated diseases, including Alzheimer's disease.
27 Several of these diseases exhibit sex differences in prevalence and severity. Biological sex
28 primarily stems from sex chromosomes and gonads releasing sex hormones. To dissect
29 mechanisms underlying sex differences in demyelination of aging brains, we constructed a
30 transcriptomic atlas of cell type-specific responses to illustrate how sex chromosomes, gonads,
31 and their interaction shape responses to demyelination. We found that sex-biased
32 oligodendrocyte and microglial responses are driven by interaction of sex chromosomes and
33 gonads prior to myelin loss. Post demyelination, sex chromosomes mainly guide microglial
34 responses, while gonadal composition influences oligodendrocyte signaling. Significantly,
35 ablation of the X-linked gene Toll-like receptor 7 (*Tlr7*), which exhibited sex-biased expression
36 during demyelination, abolished the sex-biased responses and protected against demyelination.

37 **Introduction**

38 Demyelination, or white matter loss, has been widely studied in autoimmune diseases
39 such as multiple sclerosis (MS), which is much more common in women than in men. Emerging
40 evidence has introduced the importance of demyelination in aging-associated neurodegenerative
41 diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD) (1-6). Like MS, AD
42 and PD also exhibit striking sex differences. In AD, prevalence is also higher in women than in
43 men, with two thirds of AD patients being women. In contrast, the opposite is true for PD with
44 male patients predominant (7-10). Little is known about how biological sex shapes the
45 mechanisms underlying demyelination with age.

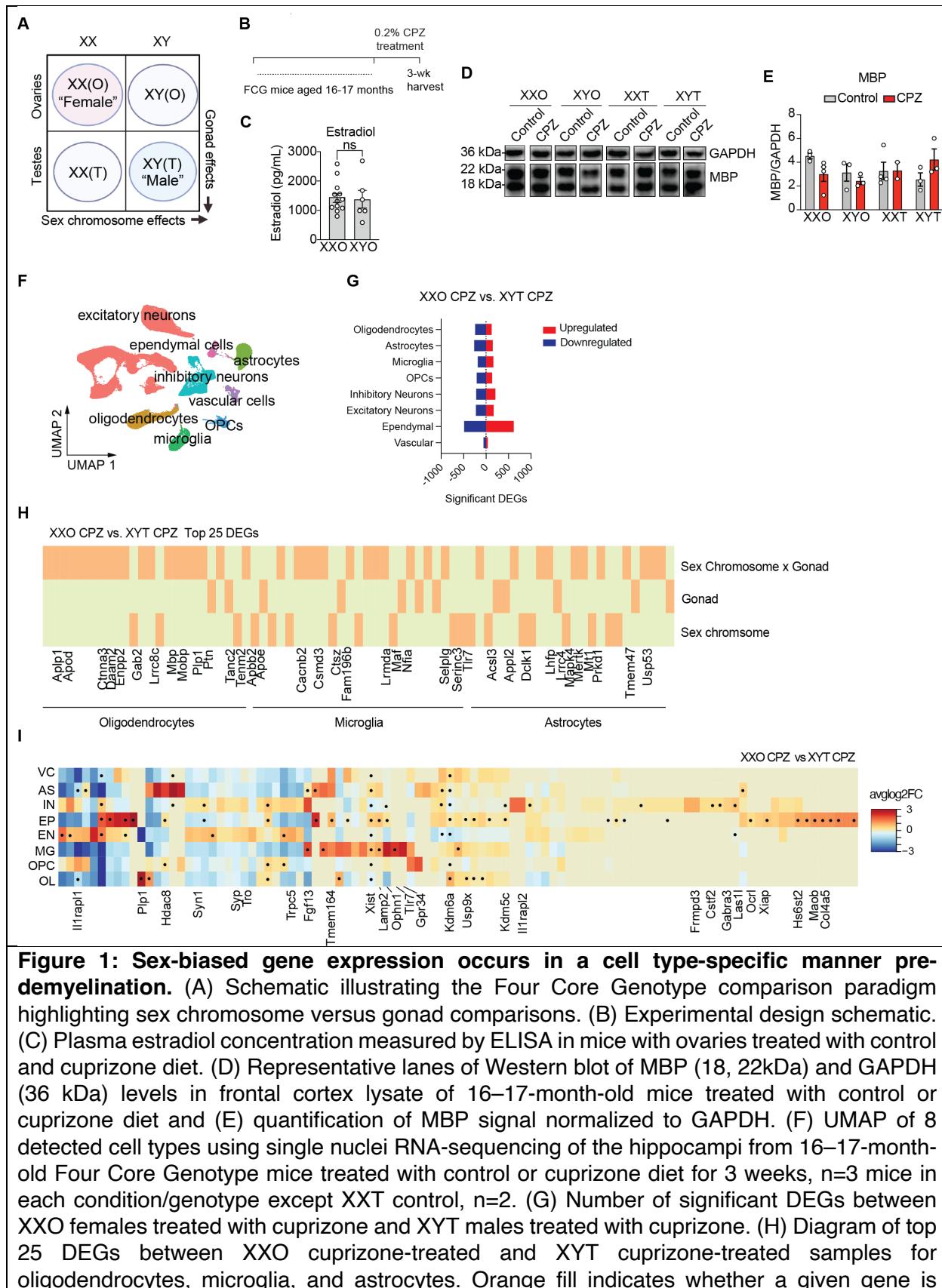
46 Biological sex is primarily contributed by sex chromosomes and gonads, which release
47 hormones such as estrogen and testosterone and are strongly influenced by aging. To investigate
48 whether sex-based variations are influenced by sex chromosomes, gonads, or their combined
49 interaction, we utilized the Four Core Genotype (FCG) mouse model, which allows for
50 independent assessment of gonadal and sex chromosomal effects (11). In this model, the *Sry*
51 gene required for testes formation is removed from the Y chromosome and inserted into an
52 autosome, resulting in 4 sex chromosome-gonad combinations: XX with ovaries (XXO), XY with
53 ovaries (XYO), XX with testes (XXT), or XY with testes (XYT). For the purposes of this study,
54 XXO refers to female sex, and XYT male sex. Previous studies have shown that FCG mice with
55 the same gonads exhibit similar levels of estrogen/testosterone regardless of sex chromosome
56 background (12-14), allowing the assessment of sex chromosome effects (XX vs. XY) in the
57 presence of similar levels of sex hormones, as well as gonadal effects (ovaries vs. testes). One
58 source of sex-biased expression comes from incomplete X chromosome inactivation (XCI), which
59 impacts at least 23% of X-linked genes (15). The resulting differences in gene expression
60 between sexes could lead to skewing of disease mechanisms, resulting in differential outcomes
61 (16). A catalogue of X-linked genes that exhibit sex-biased expression in various brain cell types
62 during aged demyelination would be a valuable resource to dissect the contribution of sex
63 chromosomes.

64 To induce demyelination and avoid autoimmune manifestations, we implemented
65 cuprizone (CPZ) (17). Through single nuclei RNA sequencing (snRNAseq), spatial
66 transcriptomics, and multiplex cytokine evaluations, we systematically studied CPZ-induced
67 responses at 3 weeks (pre-demyelination, before myelin loss) and 5 weeks (post-demyelination,
68 after myelin loss) specific to neural cell types, thereby pinpointing pivotal molecular mediators of
69 sex-biased effects. Our comprehensive analyses showcase how sex chromosomes and gonads
70 influence the central nervous system's reactions to aged demyelination in a cell type-specific
71 manner. We observed striking sex-biased responses in oligodendrocytes and microglia, which
72 are key responders to demyelination and exhibit intrinsic sex differences (18, 19). Moreover, our
73 study unveiled sex-biased expression of the X-linked microglial gene, *Tlr7*, during demyelination
74 *in vivo* and in cultured microglia. Ablation of *Tlr7* abolished the sex differences in microglial and
75 oligodendrocyte responses and protected against demyelination along with motor impairment,
76 establishing an essential, detrimental role of *Tlr7* and its importance in dictating sex disparities in
77 demyelination. This research paves the way for tailored therapeutics targeting sex differences,
78 and identifying therapeutic targets that are applicable for both sexes.

79

80 **Results**

81 *Sex-Biased Transcriptomic Changes Precede Myelin Loss in Aged Mice*


82 CPZ-induced myelin loss is time-dependent; 3 weeks of exposure results in oligodendrocyte
83 stress before myelin loss, and exposure to CPZ for 5 weeks or longer leads to severe myelin loss
84 (17). To determine the influence of sex chromosomes or gonads in early-stage demyelination
85 responses of aging mice, we treated 16–17-month-old FCG mice with 0.2% CPZ or control diet

86 for 3 weeks (Fig. 1A-B) (17). As expected, we observed similar levels of estradiol in XXO and
87 XY mice (Fig. 1C), allowing the assessment of sex chromosomes in the same gonadal
88 environment. Western blotting for myelin basic protein (MBP) in frontal cortex lysate revealed no
89 significant differences induced by the CPZ diet after 3 weeks (Fig. 1D-E), consistent with previous
90 studies (20). Immunostaining with MBP antibody also revealed no significant difference in myelin
91 density across the hippocampal CA3 region and corpus collosum (Figure S1A-D).

92 We performed snRNA-seq to investigate early responses to CPZ. A total of 201,175 nuclei
93 passed QC (Figure S2). The major cell types detected included oligodendrocytes, microglia,
94 astrocytes, and neurons (Fig. 1F). Among them, oligodendrocytes exhibited the highest number
95 (>700) of differentially expressed genes (DEGs) (Figure S3A), in line with oligodendrocytes being
96 the major target of CPZ. When comparing female (XXO) and male (XYT) mice treated with CPZ,
97 many sex-biased DEGs emerged across the different cell types (Fig. 1G, Table S1). Among the
98 top 25 DEGs between females and males treated with 3 weeks of CPZ, we calculated whether
99 the fold change difference for each gene was primarily attributed to sex chromosomes, gonads,
100 or their interaction (Fig. 1H, Figure S3B). Across the glial cells of the brain, namely
101 oligodendrocytes, microglia, and astrocytes, most sex-biased gene expression was cooperatively
102 driven by gonads and sex chromosomes. Importantly, myelination genes such as *Mbp*, *Plp1*, and
103 *Mobp* were widely downregulated in females compared to males and their expression was driven
104 by sex chromosome-gonad interactions (Fig. 1H, Table S1). On the other hand, DEGs involved
105 in the immune response expressed across microglia and astrocytes were largely influenced by
106 either sex chromosomes (*Tlr7*, *Serinc3*, *Selp1g*) or gonadal composition (*Ctsz*, *Tmem47*, *Prkd1*).
107 AD-associated genes also appeared to be strongly regulated by either sex chromosomes (*Apbb2*)
108 or gonads (*Apoe*, *Appl2*) (Fig. 1H, Table S1).

109 To begin to understand the role of sex chromosomes, we next examined how CPZ affects
110 over 80 X-linked genes in males and females (Fig. 1I, Table S1). Notably, many X-linked genes
111 exhibited sex-biased expression patterns in a cell type-specific manner, including a subset of X-
112 linked genes, *Syn1*, *Syp*, and *Trpc5*, associated with synaptogenesis and synaptic activity (Fig.
113 1I). The oligodendrocyte gene *Plp1* was strongly downregulated in females, as well as *Kdm6a*,
114 which has been implicated in AD-related longevity (16) (Table S1). The immune genes *Tlr7*,
115 *Lamp2*, and *Tmem164* as well as the cell signaling genes *Ophn1* and *Gpr34* were among the
116 most abundantly expressed by microglia compared to other cell types, with *Tlr7* and *Lamp2* also
117 exhibiting sex-biased expression (Fig. 1I). Thus, these results show that X-linked genes can have
118 both cell type- and sex-biased expression patterns in response to CPZ before the loss of myelin.

primarily regulated by gonad, sex chromosome, or requires both according to sex chromosome-gonad scores (see Supp 3H and Methods for methods of calculation). (I) Heatmap of X-linked genes detected by cell type. Color indicates average log2foldchange expression of a given cell type compared to all other cell types. Black dot indicates that a given gene is also a significant DEG via MAST in XXO cuprizone-treated vs. XYT cuprizone-treated samples. All data are represented as mean +/- s.e.m., two-way ANOVA with Tukey's post hoc multiple comparisons test.

119

120 *Oligodendrocyte responses regulated by sex chromosomes and gonads pre-demyelination.*

121 We next used pseudobulk analysis to identify responses occurring across all
122 oligodendrocytes. CPZ stimulated a sex-biased transcriptomic response, with about 500 more
123 DEGs than observed in untreated oligodendrocytes (Figure S4A, Table S1). Top pathways
124 downregulated by females with CPZ included neuronal support functions as well as myelination.
125 The top pathways upregulated in females in response to CPZ were metabolism and transcription
126 (Figure S4B–C).

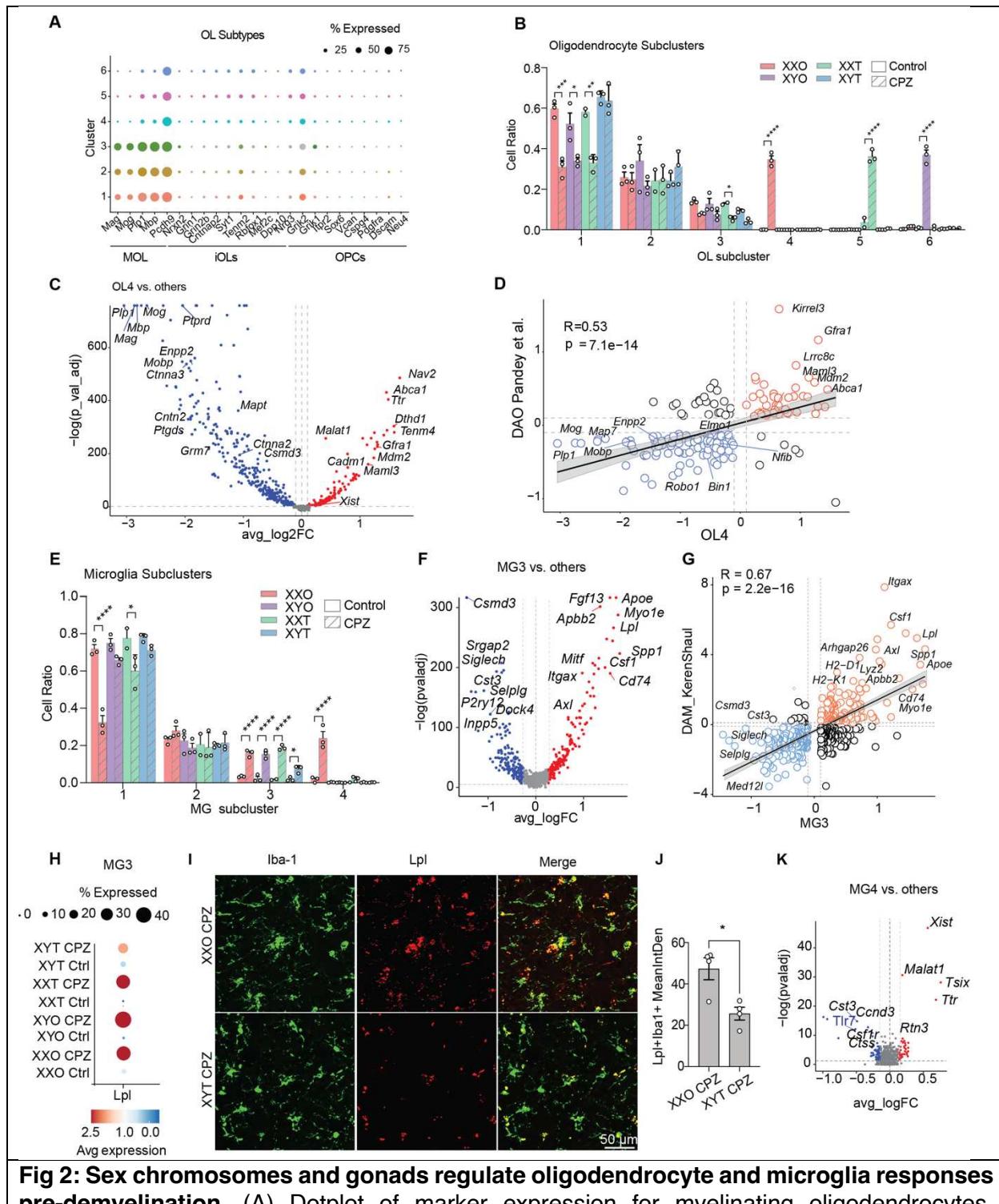
127 We next performed sub-clustering of oligodendrocytes in the snRNA seq dataset and
128 identified 6 subclusters of oligodendrocytes, including homeostatic (cluster 1) and myelinating
129 oligodendrocytes (MOLs) (Fig. 2A, Figure S4D, Table S2). 4 out of 6 subclusters had populations
130 altered by CPZ (Fig. 2B). CPZ treatment significantly reduced the number of cells in cluster 1 in
131 XXO, XXT, and XYO mice, but not in male XYT mice (Fig. 2B). Thus, the preservation of the
132 homeostatic oligodendrocyte subcluster appears to require both XY chromosomes and testes
133 (Fig. 2B). Cluster 4 was induced by CPZ in females alone (XXO); Clusters 5 and 6 were induced
134 by specific sex chromosome-gonad interactions but not in female (XXO) or male (XYT) mice (Fig.
135 2B).

136 Examination of cluster 4 (OL4) revealed downregulation of myelinating genes, including *Mbp*,
137 *Mag*, and *Plp1*. Myelin regulators such as catenins were also downregulated in this cluster (Fig.
138 2C, Table S2). In addition, genes involved in oligodendrocyte endocytosis, phospholipase D
139 signaling, and cell adhesion, which are required for myelin morphogenesis, were diminished in
140 cluster 4 (21) (Figure S4E). Strikingly, cluster 4 exhibited a strong, positive correlation with a
141 disease-associated oligodendrocyte (DAO) signature identified in MS patients, including high
142 levels of *Kirrel3* and low levels of *Robo1* (Fig. 2D) (22). Taken together, sex chromosomes and
143 gonads work cooperatively to induce early sex-specific responses in male and female
144 oligodendrocytes preceding demyelination.

145

146 *Microglial responses are regulated by sex chromosomes and gonads pre-demyelination.*

147 Pseudobulk analyses of microglia from the snRNA seq dataset revealed a sex-biased
148 transcriptomic response with about 250 genes differentially expressed (Figure S4F). Pathway
149 analyses of the DEGs revealed downregulated metabolic processes and upregulated
150 phagocytosis and immune pathways (Figure S4G-H). Neuroimmune genes such as *Apoe*, *H2-K1*,
151 *Axl*, *Myo1e*, *Trim14*, and *Cd9* were upregulated in females compared to males, indicating that
152 microglia from female mice likely stimulated a stronger immune response to early demyelination
153 before myelin loss (Table S1).


154 At the single-cell level, we identified 7 microglial subpopulations and observed significant
155 changes in 3 clusters induced by CPZ (Fig. 2E, Figure S4I, Table S3). Interestingly, the proportion
156 of homeostatic microglial cluster 1 was downregulated by CPZ only in genotypes with XX sex
157 chromosomes, indicating the predominant influence of sex chromosomes over gonads in
158 transforming microglial states away from the homeostatic state. The proportion of cells in cluster
159 3 was increased by CPZ across all genotypes but less induced in males (XYT). In cluster 3, we

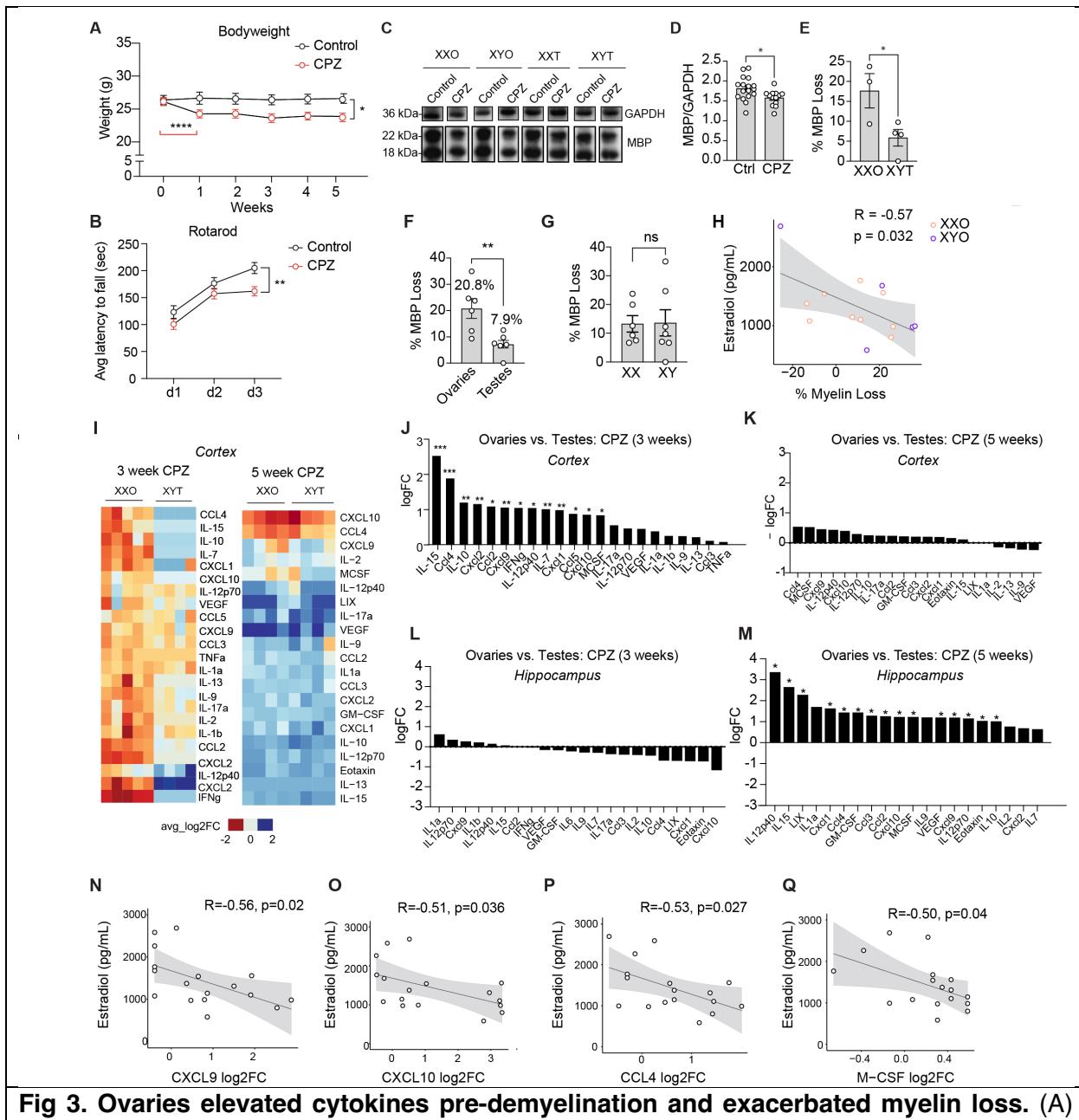
160 observed the upregulation of hallmark disease-associated microglia (DAM) genes such as *Apoe*,
161 *Lpl*, and *Cd74* (Table S3). Cluster 3 DEGs indeed were positively correlated with the DAM gene
162 signature initially observed in an amyloid mouse model (23) (Fig. 2F-G). Expression of *Lpl* was
163 significantly elevated by CPZ in all genotypes except for XYT (male) mice (Fig. 2H).
164 Immunostaining further confirmed that levels of LPL were higher in CPZ-treated female microglia
165 compared with male counterparts (Fig. 2I-J).

166 Cluster 4, which was unique to XXO mice treated with CPZ, exhibited upregulated expression
167 of epigenetic factors, such as *Xist* and *Tsix*, as well as downregulated expression of a specific
168 subset of immune genes, including *Trf7*, *Csf1r*, *Ctss*, and *Nfia*, compared to their expression in all
169 other subclusters (Fig. 2K, Table S3). Together, these findings indicate that female
170 oligodendrocytes and microglia exhibit larger loss of homeostatic and stronger gain of disease-
171 associated transcriptomic profiles compared to male counterparts.

172

Fig 2: Sex chromosomes and gonads regulate oligodendrocyte and microglia responses pre-demyelination. (A) Dotplot of marker expression for myelinating oligodendrocytes, immature oligodendrocytes, and OPCs by subcluster. (B) Cell ratios of 30,011 oligodendrocytes within each subcluster colored by genotype and patterned by treatment. (C) Volcano plot of DEGs in cluster 4 compared to all other clusters. Dashed lines represent log2foldchange threshold of 0.1 and adjusted p value threshold of 0.05. (D) Correlation between Cluster 4 markers and published Disease Associated Oligodendrocyte genes from Pandey et al. 2022. Dashed lines represent log2foldchange threshold of 0.1. Red circles are genes upregulated by

Cluster 4 and blue circles are genes downregulated by cluster 4. Pearson's correlation test (two-sided). (E) Cell ratio of 12,473 microglia within each subcluster colored by genotype and patterned by treatment. (F) Volcano plot of DEGs in cluster 3 compared to all other clusters. Dashed lines represent log2foldchange threshold of 0.25 and adjusted p value threshold of 0.05. (G) Correlation between Cluster 3 markers and published Disease Associated Microglia genes from Keren-Shaul et al. 2017. Dashed lines represent log2foldchange threshold of 0.1. Red circles are genes upregulated by Cluster 4 and blue circles are genes downregulated by cluster 4. (H) Dotplot of *Lpl* expression by genotype and treatment within cluster 3 (I) Representative images of LPL and IBA-1 immunofluorescence taken in CA3 region of XYO and XYT cuprizone-treated samples. (J) Quantification of LPL and IBA-1 colocalization. (K) Volcano plot of DEGs in cluster 4 compared to all other clusters. Dashed lines represent log2foldchange threshold of 0.1 and adjusted p value threshold of 0.05. Pearson's correlation test (two-sided). All data are represented as mean +/- s.e.m., for data in (B, E) significance was determined by two-way ANOVA with Tukey's post hoc multiple comparisons test. In (J) significance was determined by unpaired, nonparametric student's t-test with Mann-Whitney test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.


173

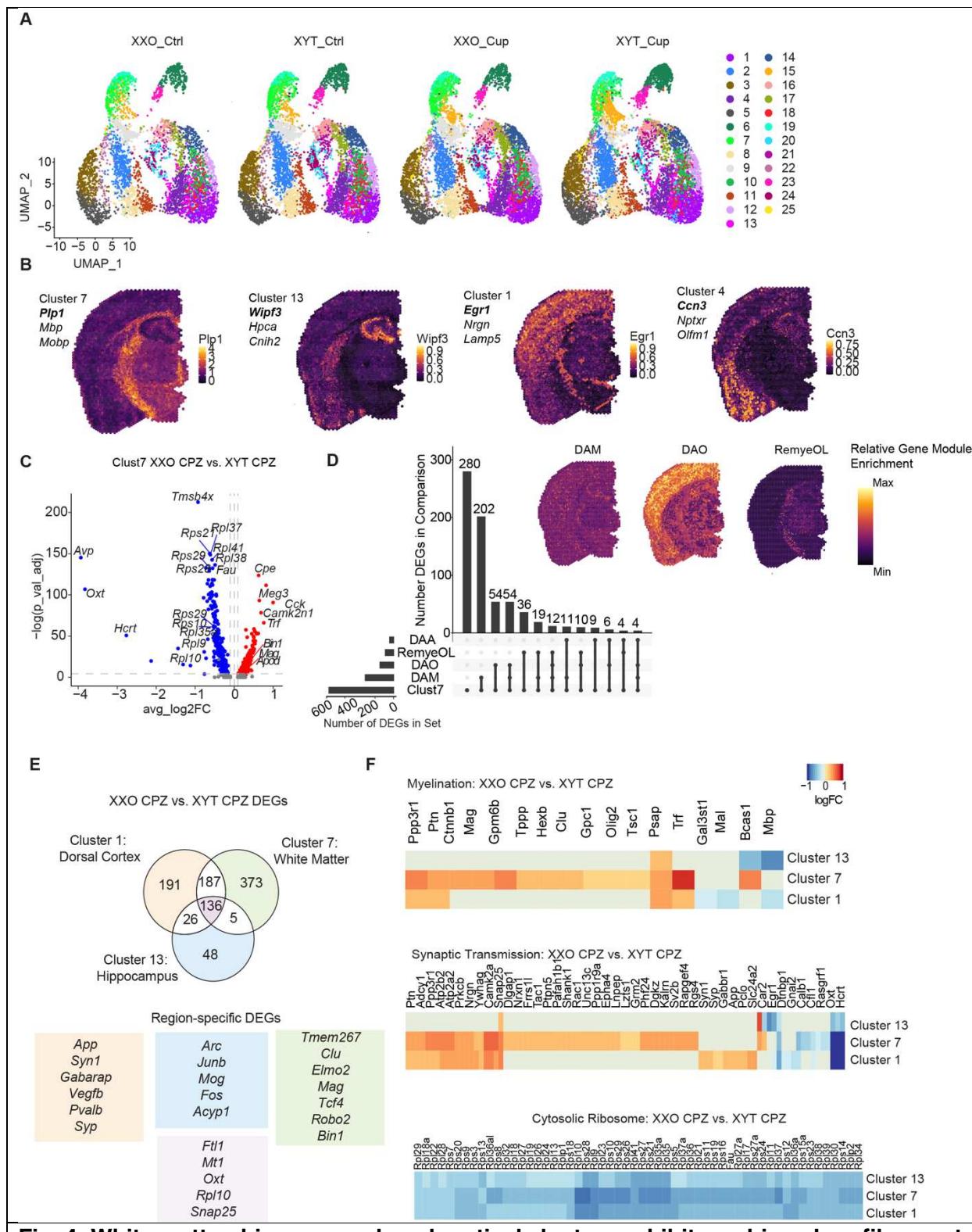
174 *Ovaries Worsen CPZ-induced Neuroinflammation and Myelin Loss*

175 Our results thus far revealed that sex chromosomes and gonads interact to exert striking sex-
176 biased transcriptomic responses induced by CPZ prior to myelin loss. To examine the effects of
177 sex chromosomes and gonads in mice with myelin loss, we treated aged FCG mice with CPZ for
178 5 weeks. In addition to weight loss throughout the treatment, significant motor impairment was
179 detected at the end of the 5-week treatment using rotarod test (Fig. 3A-B).

180 In frontal cortex, CPZ-treated female mice showed significant myelin loss as detected by
181 western blot, with female mice exhibiting greater myelin loss than males (Fig. 3C-E). Further
182 analyses revealed that mice with ovaries (XXO and XYO) exhibited greater loss of myelin,
183 suggesting a gonadal influence on demyelination (Fig. 3F). In contrast, the sex chromosome
184 composition did not alter myelin loss (Fig. 3G). We measured plasma estradiol to determine
185 whether systemic estradiol levels played a role in myelin loss in ovary-bearing mice. Interestingly,
186 low estradiol was associated with more pronounced myelin loss in mice with ovaries (Fig. 3H).

187 To directly investigate the dynamic inflammatory responses during demyelination, we
188 performed a multiplex ELISA assay to measure cytokine and chemokine levels 3 weeks and 5
189 weeks after CPZ treatment in both frontal cortex and hippocampus (Table S4). In frontal cortex,
190 CPZ-treated female mice exhibited higher cytokine/chemokine levels than male equivalents at 3
191 weeks, but not 5 weeks, of CPZ treatment (Fig 3I). We also found that the presence of ovaries
192 significantly increased several cytokines/chemokines after 3 weeks, but not 5 weeks, of CPZ
193 treatment (Fig. 3J-K). In the hippocampus, however, ovary-associated neuroinflammation was
194 minimal at 3 weeks of CPZ treatment but was profoundly higher at 5 weeks of CPZ treatment
195 (Fig. 3L-M). Immunostaining of MBP revealed significant myelin loss in the hippocampus across
196 all genotypes by the end of the 5 weeks (Figure S5A-B). Interestingly, we found that the levels of
197 multiple cytokines in hippocampus, including CXCL9, CXCL10, CCL4, and M-CSF, were
198 negatively correlated with plasma estradiol levels, indicating that estradiol loss could lead to
199 exacerbated hippocampal neuroinflammation in response to myelin loss (Fig. 3N-Q).

Fig 3. Ovaries elevated cytokines pre-demyelination and exacerbated myelin loss. (A) Weight change in control compared to 5-week cuprizone-treated FCG mice aged 10-11 months. (B) Average latency to fall during rotarod test for control and 5-week cuprizone-treated FCG mice, x-axis is day 1, day 2, day 3. (C) Representative lanes of Western blot for MBP (18 and 22 kDa) and GAPDH (36 kDa) performed on frontal cortex lysate of mice treated with control and 5-week cuprizone diet (n=3-6 mice per genotype per treatment). (D) Quantification of MBP signal between control and 5-week cuprizone-treated samples. (E-G) Quantification of percent myelin loss in 5-week cuprizone-treated samples from Western blot between females and males in (E), mice with ovaries versus testes in (F), and XX versus XY genotypes in (G). (H) Correlation between plasma estradiol concentration and percent myelin loss in 5-week cuprizone-treated mice with ovaries. (I) Heatmap of multiplex cytokine panel of frontal cortex lysate between cuprizone-treated XXO females and XYT males. (J) Quantification of cytokine levels average log2foldchange between genotypes with ovaries (XXO, XYO) and genotypes


with testes (XXT, XYT) for 3 week and (K) 5-week CPZ treatments. (L) Quantification of hippocampal cytokine levels average log2foldchange between genotypes with ovaries (XXO, XYO) and genotypes with testes (XXT, XYT) for 3 week and (M) 5-week CPZ treatments. (N) Correlation of plasma estradiol level with levels of cytokine in hippocampal lysate CXCL9 (O) CXCL10 (P) CCL4 and (Q) M-CSF. Pearson's correlation test (two-sided). All data are represented as mean +/- s.e.m. For data in (A-B) significance was determined by mixed model with Sidak's post hoc multiple comparisons test. In (D-G) significance was determined by unpaired, nonparametric student's t-test with Mann-Whitney test. Significance for cytokine levels was determined using linear regression package Glimma in R (Methods), *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

200

201 *Spatial Transcriptomics Indicates Sex-biased Transcriptomic Responses Post-demyelination.*

202 The disparate dynamics of CPZ-induced demyelination in hippocampus and cortex prompted
203 us to assess how sex chromosomes and gonads affect transcriptomic responses to myelin loss
204 in a region-specific manner. We performed spatial transcriptomics in FCG mice treated with CPZ
205 for 5 weeks, and sequenced coronal brain sections from XXO Ctrl, XXO CPZ, XYT Ctrl, and XYT
206 CPZ animals (Figure S6). A total of 25 transcriptomic clusters were identified (Fig. 4A, Table S5).
207 Based on the marker gene expression, several regions were identified, including white matter,
208 hippocampus, and dorsal/ventral cortices (Fig. 4B). For the white matter cluster 7, comparing
209 female and male mice treated with CPZ, we observed the downregulation of numerous ribosomal
210 proteins as well as the upregulation of the AD risk genes *Apod* and *Bin1* in female mice (Fig. 4C).
211 To determine the cell type composition of cluster 7, we cross-referenced cluster 7 marker genes
212 with published cell type-specific signatures, including signatures for DAM, DAOs, disease-
213 associated astrocytes (DAAs), and remyelinating oligodendrocytes (RemyeOL) (22-25) (Fig. 4D).
214 Most overlapping genes in cluster 7 were DAM-related genes, but DAO- and RemyeOL-related
215 genes were also represented, with few genes related to DAAs. When gene module scores for
216 these signatures were mapped to spatial locations, we observed that DAMs were distributed
217 throughout the brain, whereas DAOs were highly concentrated in the dorsal cortex and
218 RemyeOLs were concentrated in white matter (Fig. 4D).

219 To better understand whether sex-biased DEGs were region-dependent, we compared DEGs
220 in white matter, hippocampus, and dorsal cortex clusters from female and male mice treated with
221 CPZ (Table S5). White matter exhibited the most sexually dimorphic transcriptomic profile,
222 followed by the dorsal cortex (Fig. 4E). Unique sex-biased genes in the dorsal cortex included
223 *App*, *Syp*, and *Pvalb*, potentially indicating differences in synaptic transmission. Among the unique
224 hippocampal genes were plasticity-oriented genes, such as *Arc* and *Fos*. The 3 regions also
225 shared 136 sex-biased genes, including *Oxt*, *Snap25*, and *Mt1* (Table S5). Heatmaps show that
226 genes related to myelination and synaptic transmission signaling were upregulated in females,
227 particularly in white matter cluster 7 (Fig. 4F). Cytosolic ribosome genes were downregulated in
228 females across all 3 regions (Fig. 4F).

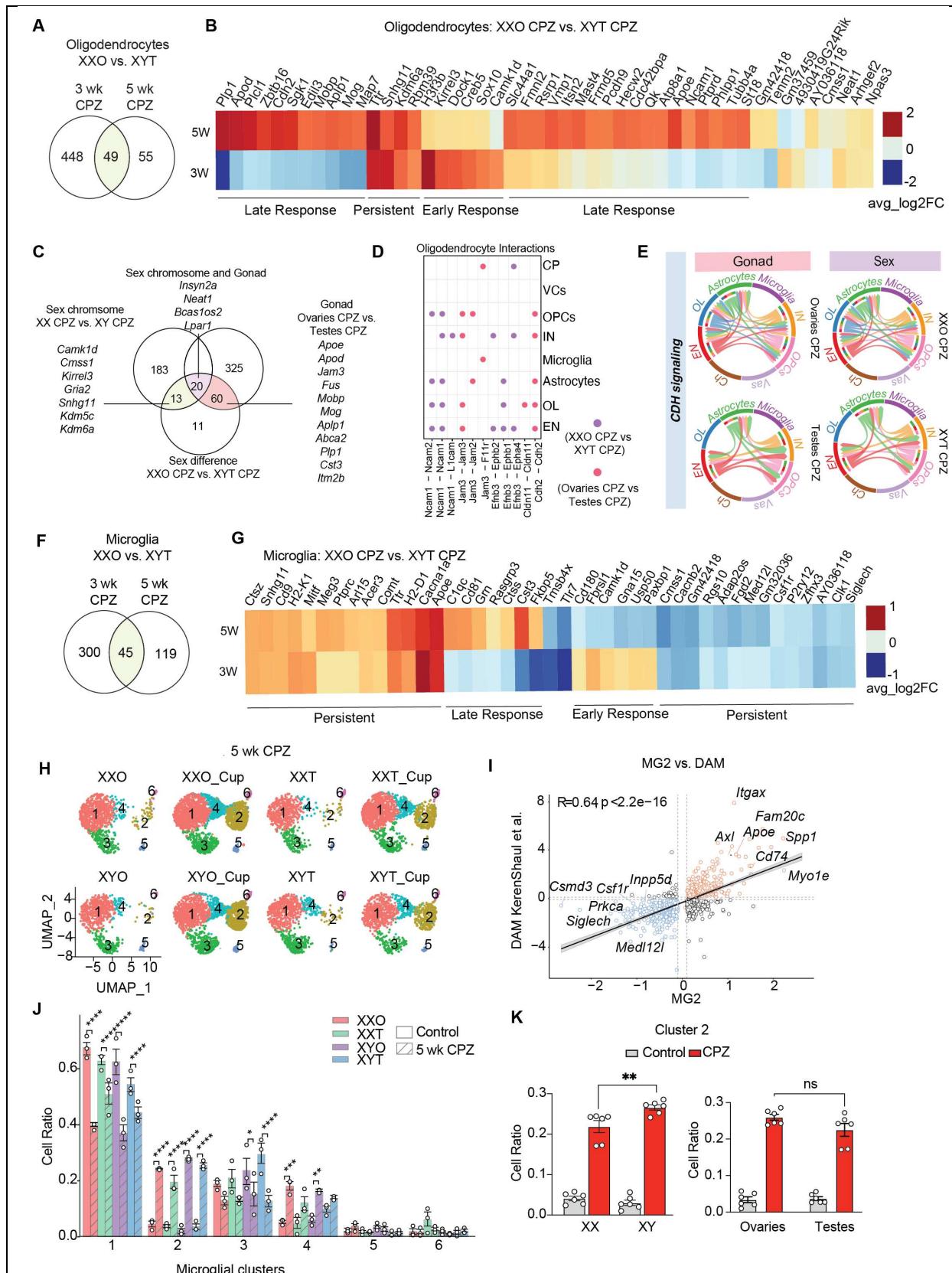
Fig. 4: White matter, hippocampal, and cortical clusters exhibit sex-biased profiles post-demyelination. (A) UMAP of spatial subclusters across XXO control, XXO CPZ, XYT control, and XYT CPZ-treated 9–11-month-old FCG mice. (B) Representative section showing marker gene expression for clusters 7, 13, 1, and 4. Marker gene shown is bolded. (C) Volcano plot

showing cluster 7 DEGs between X XO and XY T treated with 5-week cuprizone. (D) Upset plot showing cluster 7 overlap with published gene signatures for DAM, DAO, DAA, and RemyeOL. Representative section showing module enrichment scores for DAM, DAO, and RemyeOL are shown. (E) Venn diagram showing number of DEGs between females (XXO) and males (XYT) in clusters 1, 7, 13, and overlap. Unique DEGs for each region between XXO CPZ and XY T CPZ are shown with rectangle color corresponding to Venn diagram color. (F) Heatmaps for myelination, synaptic transmission, and cytosolic ribosome gene expression in clusters 1, 7, and 13.

229

230 *Sex Regulates Oligodendrocyte and Microglia Signaling During Demyelination.*

231 Our results from the spatial transcriptomics experiment revealed that sexual dimorphisms in
232 transcriptomic profile occur across key brain regions during demyelination. Since
233 oligodendrocytes are the primary glial cells that produce and maintain myelin sheaths, we
234 examined oligodendrocyte responses at the single cell level at different stages of demyelination
235 in hippocampus (Figure S7). We compared the snRNA seq datasets from 3-week CPZ and 5-
236 week CPZ treatments (Table S6). Like the dynamic nature of inflammatory responses in cytokine
237 levels, the oligodendrocyte transcriptome was also regulated in a temporal-specific manner. The
238 difference between male and female oligodendrocytes was greatest after 3 weeks of CPZ
239 treatment before myelin loss and lessened by 5 weeks of CPZ treatment (Fig. 5A). Nevertheless,
240 we detected 49 genes, including the key myelination genes *Plp1* and *Mobp*, that exhibited sex-
241 biased expression under both treatment conditions (Fig. 5A-B, Table S6). Interestingly, the sex-
242 biased myelination genes were first downregulated in females following 3 weeks of CPZ treatment
243 but were upregulated in females after 5 weeks of treatment, suggesting sex-specific regulation of
244 these myelination genes at different demyelination stages (Fig. 5A-B). To determine which sex-
245 biased transcriptomic differences were attributed to sex chromosomes versus gonadal
246 composition, we compared mice with XX and XY genotypes and mice with ovaries and testes
247 during demyelination (Table S6). Among the DEGs, 13 of the sex biased DEGs were influenced
248 by sex chromosome composition, 60 were influenced by gonadal composition, and 20 were
249 influenced by both (Fig. 5C). The 60 DEGs influenced by gonadal composition included
250 myelination genes (*Mobp*, *Plp1*), amyloid genes (*Aplp1*, *Abca2*, *Itm2b*), and AD risk genes (*Apoe*,
251 *Apod*) (Fig. 5C).


252 We next investigated how the sex-biased DEGs identified in oligodendrocytes influence other
253 cell types using CellChat analysis, which provides predictions on cell-cell interactions (26). We
254 focused analyses on sex biased DEGs and DEGs caused by gonadal composition, the two most
255 abundant categories (Fig. 5D). Ligands whose expression was specifically driven by gonads
256 included *Cdh2*, which has been shown to facilitate oligodendrocyte myelination capacity via
257 neurons (27). Strikingly, the sex difference in CDH signaling appeared to be exclusively attributed
258 to gonadal composition. CDH signaling was completely absent in male (XYT) oligodendrocytes
259 and in the presence of testes. In female (XXO) oligodendrocytes, CDH signaling projected to
260 astrocytes and neurons (Fig. 5E).

261 Microglia exhibited a robust sex-biased transcriptomic signature after myelin loss (Fig. 5F-G,
262 Table S7). Neuroimmune genes such as *Apoe* and *H2-D1* remained highly upregulated in females
263 compared to males, and the homeostatic microglial genes *P2ry12* and *Csf1r* were downregulated
264 in females. The expression of smaller subsets of genes was exclusively observed pre- or post-
265 demyelination; among these genes were *C1qc* and *Cd180* pre-demyelination along with *Usp50*
266 post-demyelination.

267 At the single-cell level, we identified a subcluster of microglia with increased abundance
268 induced by CPZ treatment across all genotypes, MG2, which exhibited a transcriptomic profile

269 highly correlated to that of DAMs (Fig. 5H-J, Table S7). This cluster was sex chromosome-driven,
270 but the number of cells within this cluster was decreased in mice with female XX sex chromosome
271 composition (Fig. 5K). This cluster was not affected by gonadal composition (Fig. 5K). Within
272 cluster 2, XX microglia exhibited differential expression of autosomal DAM-related genes in
273 addition to X-linked genes such as *Tlr7*, *Kdm6a*, and *Tmsb4x* (Table S7). Taken together, these
274 findings suggest that sex chromosomes appear to play a more important role than gonads in
275 modulating microglial activation states than post-demyelination.

Fig 5: Regulation of oligodendrocytes and microglia by sex during demyelination. (A) Venn diagram showing number of oligodendrocytes DEGs between females (XXO) and males (XYT) in 3-week cuprizone-treated mice, 5-week cuprizone treated mice, and overlap. (B) Heatmap showing log2foldchange values of DEGs between females (XXO) and males (XYT) overlapping between 3- and 5-week cuprizone treatment in oligodendrocytes (overlap in Venn Diagram from A). (C) Venn diagram of number of DEGs between female and male, and DEGs contributed by sex chromosome (green), gonad (pink), and both (purple). (D) CellChat analysis showing ligand-receptor pairs with sex-biased expression (purple) or sex-biased and gonad-driven expression (pink). (E) Chord diagram showing CDH signaling split by sex, gonad, or sex chromosome. (F) Venn diagram showing number of microglia DEGs between females (XXO) and males (XYT) in 3-week cuprizone compared to control, 5-week cuprizone compared to control, and overlap. (G) Heatmap of DEGs between XXO females and XYT males treated with cuprizone overlapping between 3-week and 5-week cuprizone treated microglia. Heat indicates average log2foldchange expression of a given gene between XXO cuprizone-treated and XYT cuprizone-treated samples. (H) UMAP of 10,929 microglia split by condition (I) Correlation between Cluster 2 markers and published Disease Associated Microglia genes from Keren-Shaul et al. 2017. Dashed lines represent log2foldchange threshold of 0.1. Red circles are genes upregulated by Cluster 2 and blue circles are genes downregulated by cluster 2. (J) Cell ratios within each subcluster by genotype and treatment. (K) Cell ratios of cluster 2 in control and 5-week cuprizone-treated samples between XX genotypes (XXO, XXT) and XY genotypes (XYO, XYT). Adjacent graph shows cell ratios of cluster 2 between ovaries (XXO, XYO) and testes (XXT, XYT) genotypes. All data are represented as mean +/- range, for data in (J) significance was determined by two-way ANOVA with Tukey's post hoc multiple comparisons test. For data in (K) significance was determined by unpaired, nonparametric student's t-test with Mann-Whitney test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

276

277

Tlr7 KO Mitigates Transcriptomic Sex Differences and Protects Against Myelin Loss During Aging

278

279

280

281

282

283

284

285

286

287

During demyelination, myelin debris falling from the axon sheath stimulate microglia. To further dissect the contribution of sex chromosomes to microglial responses to demyelination, we treated primary male or female microglia from FCG mice with myelin. We performed bulk RNA-seq and compared transcriptomic responses in primary microglia isolated from female and male mice (Table S8). To explore converging mechanisms *in vitro* and *in vivo*, we analyzed the overlapping DEGs by comparing the DEGs across our 3 experimental conditions (*in vitro* myelin treatment, *in vivo* CPZ treatment for 3 weeks, and *in vivo* CPZ treatment for 5 weeks) (Fig. 6A, Table S8). Of these 17 DEGs, *Tlr7*, an X-linked immune gene that is predominantly expressed by microglia, was consistently and substantially downregulated in all 3 experimental groups (Fig. 6B).

288

289

290

291

292

293

294

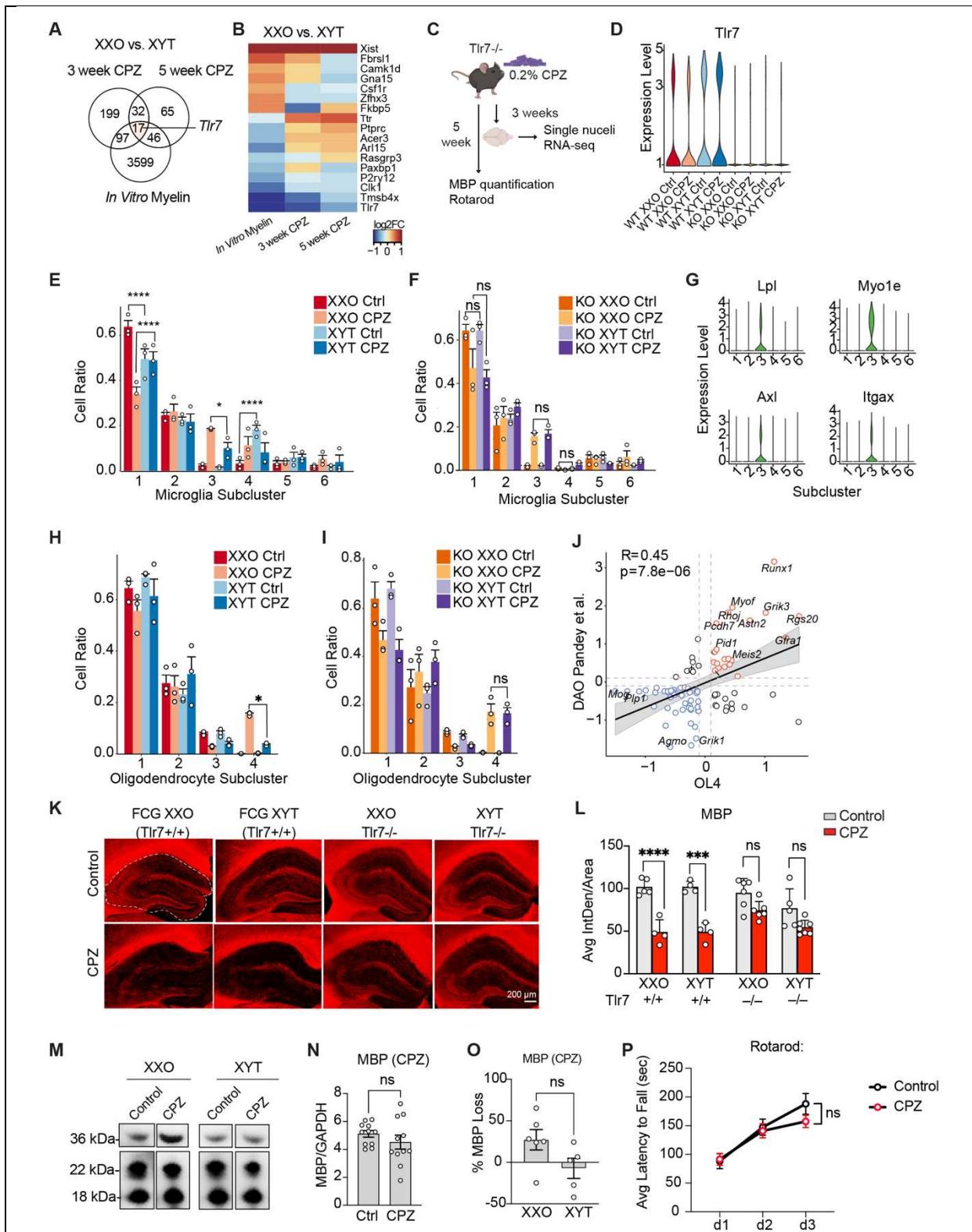
295

296

Given the importance of *Tlr7* in microglial responses and the sex-biased inflammation during demyelination, we next tested if *Tlr7* contributed to the sex differences seen during demyelination. To determine if deleting *Tlr7* abolishes the sex differences in demyelination, we treated TLR7 knockout mice (TLR7KO) with CPZ for 3 or 5 weeks then assessed rotarod performance, myelin loss, and cell type-specific responses via snRNA-seq (Fig. 6C). The snRNA-seq data from male and female TLRKO mice treated with 3-wk CPZ were directly compared to that of FCG mice with intact *Tlr7*. For direct comparison, the two sets of snRNA-seq data were integrated; This integrated dataset contained 188,720 nuclei that passed QC (Figure S8). As expected, *Tlr7* RNA was not detected in the KO mice (Fig. 6D).

297

298


The integrated microglia population exhibited 6 subclusters (Figure S9A, Table S8). We observed a robust loss of the homeostatic microglia cluster (cluster 1) and an increase in DAMs-

299 enriched cluster (cluster 3) in female mice but not in male mice treated with 3-week CPZ,
300 reaffirming the sex-biased microglial response (Fig. 6E). In contrast, TLR7KO male and female
301 microglial responses were similar, exhibiting similar trends toward decreases in cluster 1 and
302 similar increases in cluster 3 (Fig. 6F). Analyses of cluster 3 revealed enrichment of typical DAMs,
303 including *Lpl*, *Myo1e*, *Axl*, and *Itgx* (Fig. 6G).

304 The integrated oligodendrocytes population exhibited 4 main subclusters (Figure S9B, Table
305 S8); CPZ expanded the proportion of cells in cluster 4 in female, but not in male FCG mice with
306 normal *Tlr7* as expected (Fig. 6H). The sex difference was abolished in the absence of *Tlr7*, as
307 both males and female TLR7KO mice exhibited similar expansion of oligodendrocytes cluster 4
308 in response to CPZ (Fig. 6I). Cluster 4 is enriched with DAO, as expected (Fig. 6J, Figure S9C).

309 While TLRKO abolished the sex-dimorphic transcriptomic responses, resulting in similar
310 responses in male and female microglia and oligodendrocytes at the early phase of
311 demyelination, similar weight loss was induced by 5 weeks of CPZ regardless of the presence of
312 *Tlr7* (Figure S8D). However, deleting *Tlr7* ameliorated CPZ-induced myelin loss in frontal cortex
313 and hippocampus (Fig. 6K-O). Moreover, deleting *Tlr7* prevented motor impairment across males
314 and females (Fig. 6P). Taken together, our results established the importance of *Tlr7* in mediating
315 sex differences in demyelination and its essential role in contributing to demyelination and
316 associated motor deficits.

Fig. 6. TLR7 KO abolished sex differences in pre-demyelination transcriptomic responses and protected against myelin loss. (A) Venn diagram of DEGs between XXO and XYT microglia treated with myelin *in vitro* or cuprizone *in vivo*. (B) Heatmap of 17 DEGs between XXO and XYT shared across *in vitro* myelin and *in vivo* cuprizone treatments. (C)

Experimental design for cuprizone treatment of TLR7KO mice. (D) Violin plot showing pseudo-bulk *Tlr7* expression (E) Microglia cell ratios of each subcluster by genotype and treatment for Four Core Genotype samples treated with control or 3-week cuprizone diet. (F) Microglia cell ratios of each subcluster by genotype and treatment for *Tlr7* knockout samples treated with control or 3 week cuprizone diet. (G) Violin plots showing expression levels of DAM genes *Lpl*, *Myo1e*, *Axl*, and *Itgax* by subcluster. (H) Oligodendrocyte cell ratios of each subcluster by genotype and treatment for Four Core Genotype samples treated with control or 3-week cuprizone diet. (I) Oligodendrocyte cell ratios of each subcluster by genotype and treatment for *Tlr7* knockout samples treated with control or 3 week cuprizone diet. (J) Correlation between Cluster 4 markers and published Disease Associated Oligodendrocyte genes from Pandey et al. 2022. Dashed lines represent log2foldchange threshold of 0.1. Red circles are genes upregulated by Cluster 4 and blue circles are genes downregulated by cluster 4. (K) Representative images of MBP immunofluorescence in whole hippocampus of control and cuprizone-treated mice. (L) Quantification of MBP signal intensity. (M) Representative lanes of Western blot for MBP (18 and 22 kDa) and GAPDH (36 kDa) performed on frontal cortex lysate of mice treated with control and 5-week cuprizone diet (n=3-6 mice per genotype per treatment). (N) Quantification of MBP signal between control and 5-week cuprizone-treated samples. (O) Quantification of percent myelin loss in 5-week cuprizone-treated samples from Western blot between females and males in G. (P) Average latency to fall during rotarod test for control and 5-week cuprizone-treated mice, n=11-16 per treatment. All data are represented as mean +/- range, for data in (E-F, H-I) significance was determined by two-way ANOVA with Tukey's post hoc multiple comparisons test. For data in (L), significance was determined by three-way ANOVA with Tukey's post hoc multiple comparisons test. For data in (N-O) significance was determined by unpaired, nonparametric student's t-test with Mann-Whitney test. For data in (P), significance was determined by mixed model with Sidak's multiple comparisons test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

317

318

Discussion

319

320

Our current study combines snRNAseq, spatial transcriptomics, and behavioral studies to shed light on the roles of sex chromosomes and gonads in cell type-specific responses to disease progression related to demyelination in aging brains. We established the first brain cell type-specific atlas that allows for dissociating the impact of sex chromosomes and gonads on demyelination, identifying notable roles of sex chromosomes and gonadal composition in influencing the responses of oligodendrocytes and microglia. A key discovery was the sex-biased expression of the microglial gene, *Tlr7*. Removing TLR7 eradicated the observed sex differences in cell type-specific responses, offering protection against demyelination and motor impairment.

321

322

A prior study documented the sex-specific expression of X-linked genes in various human tissues (15). Since sex-specific gene expression is tied to varying susceptibilities to immune diseases, especially autoimmune conditions (28), our current study mapped the expression of over 80 X-linked genes in different brain cell types at the single cell level, both under standard conditions and after demyelination events in aging. We found that when faced with demyelinating triggers, sex-specific gene expression spans disease-associated processes including myelin formation (*Plp*), chaperon-mediated autophagy (*Lamp2*), and inflammatory reactions (*Tlr7*). These revelations present opportunities to further investigate the molecular underpinnings of sex-specific neuroinflammatory and demyelinating events. The regulation of XCI is a nuanced process, influenced by the interplay of non-coding RNAs, epigenetic alterations, and nuclear structure, some of which could be involved in mediating sex-specific neuroinflammation and demyelination.

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339 Our study constructed a dynamic cell type-specific map of responses shaped by sex
340 chromosomes and gonads during the demyelination process. Striking sex-biased responses were
341 observed in both microglia and oligodendrocytes prior to overt myelin loss, with female
342 oligodendrocytes and microglia exhibiting robust expansion of disease-associated states while
343 little shifts were observed for male counterparts. These findings are consistent with the notion that
344 the disease-associated transcriptomic changes in microglia and oligodendrocytes are not only
345 responses to the injury, but also active contributors to disease progression. Indeed, the stronger
346 transcriptomic responses in female mice are associated with more significant myelin loss than
347 male mice. Interestingly, while both sex chromosomes and gonads contribute to the robust
348 transcriptomic responses in females, gonads, especially ovaries, play a pivotal role in
349 demyelination during aging. In mice with ovaries (XXO and XYO), levels of plasma estradiol, a
350 type of estrogen, seem to inversely impact myelin loss. Moreover, levels of specific cytokines
351 were inversely correlated with plasma estradiol levels at the timepoint with significant myelin loss
352 in the hippocampus, indicating that a reduction in estradiol may intensify hippocampal
353 neuroinflammation in response to myelin loss. These observations align with the abundant
354 evidence that estrogen is neuroprotective (29). Specifically, estrogen receptor ER β on the
355 microglia and oligodendroglia were found to contribute to the neuroprotective/anti-inflammatory
356 and remyelinating effects of estrogen in female mice (30). However, it is also conceivable that
357 other gonadal hormones, such as progesterone, testosterone, follicle-stimulating hormone (FSH),
358 or luteinizing hormone, may also contribute the differences in myelin loss attributed to ovaries.
359 For example, a recent study showed a combined beneficial effect of testosterone and estrogens
360 on microglial responses favoring regeneration in a mouse model of EAE (31). Reduced estrogen
361 can also induce higher levels of FSH, which were found to impair cognition and exacerbate AD
362 pathology in an ovariectomized mouse model of AD (32).

363 Sex-biased microglial and inflammatory responses to CPZ were also dynamic and region-
364 specific. In frontal cortex, heightened cytokine/chemokine levels, many of which are pro-
365 inflammatory, were associated with ovaries after 3 weeks (but not 5 weeks) of CPZ treatment.
366 Contrastingly, in the hippocampus, ovary-related neuroinflammation was almost negligible at 3
367 weeks but notably high after 5 weeks. Moreover, levels of specific cytokines inversely correlated
368 with plasma estradiol levels when there is significant myelin loss in the hippocampus, consistent
369 with anti-inflammatory function of estrogen. Interestingly, the strong DAM responses at 3 weeks
370 of CPZ appear to be driven by the sex chromosomes and gonads interaction, while at 5 weeks of
371 CPZ the microglial responses seemed to be driven by sex chromosomes, with lower responses
372 associated with XX chromosomes. Dissecting how sex modifies the link between inflammatory
373 responses and myelin loss will shed light on mechanisms underlying the dynamic demyelination
374 process.

375 Our study uncovered TLR7 as a key player mediating the sex differences and myelin loss
376 induced by CPZ. TLR7 recognizes fragments of single-stranded RNA (ssRNA) and triggers
377 inflammatory responses (33). The ssRNA could come from RNA viral infection, such as SARS-
378 COVID 2, or released from mitochondria (33). Our current study revealed that TLR7KO eliminated
379 the sex differences in oligodendrocytes and microglia response to demyelination, suggesting that
380 TLR7 plays an important role in the sex-biased demyelination response. Moreover, TLR7 rescued
381 myelin loss and motor deficits in both males and females treated with CPZ, pointing to a key
382 detrimental role of TLR7 during demyelination. *Tlr7* was found to facilitate TNFa-related pain
383 resolution, which exhibit striking sex differences (34). Deleting *Tlr7* slowed down the adaptive
384 resolution of pain in models of acute and chronic inflammation in both sexes (34), supporting a
385 central role of TLR7 in determining the functional consequence of inflammation. How female
386 microglia exhibit lower expression of TLR7 during demyelination is puzzling. One likely
387 mechanism is sex-biased epigenetic regulations. In support of this hypothesis, a recent study

388 showed that TLR7 has altered CpG methylation patterns, which leads to downregulation in males
389 compared to females in the most severe cases of COVID-19 (35). Further studies are needed to
390 determine whether epigenetic mechanisms are involved in sex-biased expression of TLR7
391 microglia. Intriguingly, miRNAs have emerged as endogenous ligands for *Tlr7* (36). It remains a
392 possibility that the sex-biased expression of miRNAs in microglia plays a role in driving *Tlr7*
393 activation during demyelination (37).

394 Sex differences in neuroscience remain vastly understudied, especially in the context of aging
395 and disease. Our findings indicate that sex is a primary modifier of the demyelination process,
396 which occurs in MS, AD, and PD, all of which exhibit sex-biased prevalence and severity (38).
397 Thus, this study reinforces the importance of including biological sex as a variable in experimental
398 designs, especially those pertaining to disease-associated models. The dynamic transcriptomic
399 changes we observed in both oligodendrocytes and microglia highlight the nuanced differences
400 in male and female responses. The fact that certain genes and cellular signaling pathways exhibit
401 differential activity based on sex chromosomes or gonadal composition has profound implications
402 for understanding disease mechanisms and developing potential treatments. Thus, these
403 observations stress the need for consideration of biological sex in both basic and translational
404 scientific studies.

405

406 **ACKNOWLEDGEMENTS**

407 The study was supported by:
408 the NIH U54NS100717 (to LG)
409 R01AG072758 (to LG)
410 R01AG054214 (to LG)
411 R01AG074541 (to LG)
412 Tau Consortium (to LG)
413 JPB Foundation (to LG)
414 Gilliam Fellowship (to CLL)

415 We would like to thank Fenghua Hu for assistance troubleshooting the MBP staining.

416

417 **AUTHOR CONTRIBUTIONS**

418 Conceptualization: LG, CLL, LK
419 Methodology: PY, ERT, GAM, RDK, DD, SAL
420 Investigation: CLL, LK, LF, MYW, NRF, LJ, FY, JZ, and KN
421 Visualization: CLL, MYW, NRF
422 Funding Acquisition: LG, CLL
423 Writing – original draft: CLL, LG
424 Writing – reviewing and editing: LG, CLL, LK, SAL

425

426 **DECLARATION OF INTERESTS**

427 The authors declare no competing interests.

428

429 **SUPPLEMENTARY MATERIALS**

430 Materials and Methods
431 Figs. S1 to S9
432 Tables S1 to S8
433 References (39-44)

434 **References**

- 435 1. S. E. Nasrabad, B. Rizvi, J. E. Goldman, A. M. Brickman, White matter changes in Alzheimer's
436 disease: a focus on myelin and oligodendrocytes. *Acta Neuropathol Commun* **6**, 22 (2018).
- 437 2. M. A. Araque Caballero *et al.*, White matter diffusion alterations precede symptom onset in
438 autosomal dominant Alzheimer's disease. *Brain* **141**, 3065-3080 (2018).
- 439 3. P. L. Chiang *et al.*, White matter damage and systemic inflammation in Parkinson's disease. *BMC*
440 *Neurosci* **18**, 48 (2017).
- 441 4. D. C. Dean, 3rd *et al.*, Association of Amyloid Pathology With Myelin Alteration in Preclinical
442 Alzheimer Disease. *JAMA Neurol* **74**, 41-49 (2017).
- 443 5. T. D. Faizy *et al.*, The Myelin Water Fraction Serves as a Marker for Age-Related Myelin
444 Alterations in the Cerebral White Matter - A Multiparametric MRI Aging Study. *Front Neurosci*
445 **14**, 136 (2020).
- 446 6. A. Peters, The effects of normal aging on myelin and nerve fibers: a review. *J Neurocytol* **31**, 581-
447 593 (2002).
- 448 7. S. Oveisgharan *et al.*, Sex differences in Alzheimer's disease and common neuropathologies of
449 aging. *Acta Neuropathol* **136**, 887-900 (2018).
- 450 8. I. Coales *et al.*, Alzheimer's disease-related transcriptional sex differences in myeloid cells. *J*
451 *Neuroinflammation* **19**, 247 (2022).
- 452 9. M. A. Beydoun *et al.*, Sex differences in the association of the apolipoprotein E epsilon 4 allele
453 with incidence of dementia, cognitive impairment, and decline. *Neurobiol Aging* **33**, 720-731
454 e724 (2012).
- 455 10. M. Arnold *et al.*, Sex and APOE epsilon4 genotype modify the Alzheimer's disease serum
456 metabolome. *Nat Commun* **11**, 1148 (2020).
- 457 11. G. J. De Vries *et al.*, A model system for study of sex chromosome effects on sexually dimorphic
458 neural and behavioral traits. *J Neurosci* **22**, 9005-9014 (2002).
- 459 12. M. V. Sasidhar, N. Itoh, S. M. Gold, G. W. Lawson, R. R. Voskuhl, The XX sex chromosome
460 complement in mice is associated with increased spontaneous lupus compared with XY. *Ann*
461 *Rheum Dis* **71**, 1418-1422 (2012).
- 462 13. J. D. Gatewood *et al.*, Sex chromosome complement and gonadal sex influence aggressive and
463 parental behaviors in mice. *J Neurosci* **26**, 2335-2342 (2006).
- 464 14. B. Manwani *et al.*, Sex differences in ischemic stroke sensitivity are influenced by gonadal
465 hormones, not by sex chromosome complement. *J Cereb Blood Flow Metab* **35**, 221-229 (2015).
- 466 15. T. Tukiainen *et al.*, Landscape of X chromosome inactivation across human tissues. *Nature* **550**,
467 244-248 (2017).
- 468 16. E. J. Davis *et al.*, A second X chromosome contributes to resilience in a mouse model of
469 Alzheimer's disease. *Sci Transl Med* **12**, (2020).
- 470 17. P. Jhelum *et al.*, Ferroptosis Mediates Cuprizone-Induced Loss of Oligodendrocytes and
471 Demyelination. *J Neurosci* **40**, 9327-9341 (2020).
- 472 18. A. Villa *et al.*, Sex-Specific Features of Microglia from Adult Mice. *Cell Rep* **23**, 3501-3511 (2018).
- 473 19. M. Swamydas, D. Bessert, R. Skoff, Sexual dimorphism of oligodendrocytes is mediated by
474 differential regulation of signaling pathways. *J Neurosci Res* **87**, 3306-3319 (2009).
- 475 20. U. Chrzanowski, C. Schmitz, A. Horn-Bochtler, A. Nack, M. Kipp, Evaluation strategy to determine
476 reliable demyelination in the cuprizone model. *Metab Brain Dis* **34**, 681-685 (2019).
- 477 21. C. Winterstein, J. Trotter, E. M. Kramer-Albers, Distinct endocytic recycling of myelin proteins
478 promotes oligodendroglial membrane remodeling. *J Cell Sci* **121**, 834-842 (2008).
- 479 22. S. Pandey *et al.*, Disease-associated oligodendrocyte responses across neurodegenerative
480 diseases. *Cell Rep* **40**, 111189 (2022).

481 23. H. Keren-Shaul *et al.*, A Unique Microglia Type Associated with Restricting Development of
482 Alzheimer's Disease. *Cell* **169**, 1276-1290 e1217 (2017).

483 24. N. Habib *et al.*, Disease-associated astrocytes in Alzheimer's disease and aging. *Nat Neurosci* **23**,
484 701-706 (2020).

485 25. R. R. Voskuhl *et al.*, Gene expression in oligodendrocytes during remyelination reveals
486 cholesterol homeostasis as a therapeutic target in multiple sclerosis. *Proc Natl Acad Sci U S A*
487 **116**, 10130-10139 (2019).

488 26. S. Jin *et al.*, Inference and analysis of cell-cell communication using CellChat. *Nat Commun* **12**,
489 1088 (2021).

490 27. M. Chen *et al.*, N-Cadherin is Involved in Neuronal Activity-Dependent Regulation of Myelinating
491 Capacity of Zebrafish Individual Oligodendrocytes In Vivo. *Mol Neurobiol* **54**, 6917-6930 (2017).

492 28. E. Xing, A. C. Billi, J. E. Gudjonsson, Sex Bias and Autoimmune Diseases. *J Invest Dermatol* **142**,
493 857-866 (2022).

494 29. S. Zarate, T. Stevensner, R. Gredilla, Role of Estrogen and Other Sex Hormones in Brain Aging.
495 Neuroprotection and DNA Repair. *Front Aging Neurosci* **9**, 430 (2017).

496 30. A. J. Khalaj *et al.*, Estrogen receptor (ER) beta expression in oligodendrocytes is required for
497 attenuation of clinical disease by an ERbeta ligand. *Proc Natl Acad Sci U S A* **110**, 19125-19130
498 (2013).

499 31. A. Zahaf *et al.*, Androgens show sex-dependent differences in myelination in immune and non-
500 immune murine models of CNS demyelination. *Nat Commun* **14**, 1592 (2023).

501 32. J. Xiong *et al.*, FSH blockade improves cognition in mice with Alzheimer's disease. *Nature* **603**,
502 470-476 (2022).

503 33. N. A. Lind, V. E. Rael, K. Pestal, B. Liu, G. M. Barton, Regulation of the nucleic acid-sensing Toll-
504 like receptors. *Nat Rev Immunol* **22**, 224-235 (2022).

505 34. T. N. Friedman *et al.*, Sex differences in peripheral immune cell activation: Implications for pain
506 and pain resolution. *Brain Behav Immun* **114**, 80-93 (2023).

507 35. A. Gomez-Carballa *et al.*, Sex-biased expression of the TLR7 gene in severe COVID-19 patients:
508 Insights from transcriptomics and epigenomics. *Environ Res* **215**, 114288 (2022).

509 36. T. Wallach *et al.*, Identification of CNS Injury-Related microRNAs as Novel Toll-Like Receptor 7/8
510 Signaling Activators by Small RNA Sequencing. *Cells* **9**, (2020).

511 37. L. Kodama *et al.*, Microglial microRNAs mediate sex-specific responses to tau pathology. *Nat
512 Neurosci* **23**, 167-171 (2020).

513 38. C. Lopez-Lee, L. Kodama, L. Gan, Sex Differences in Neurodegeneration: The Role of the Immune
514 System in Humans. *Biol Psychiatry* **91**, 72-80 (2022).

515 39. T. Stuart *et al.*, Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902 e1821
516 (2019).

517 40. G. Finak *et al.*, MAST: a flexible statistical framework for assessing transcriptional changes and
518 characterizing heterogeneity in single-cell RNA sequencing data. *Genome Biol* **16**, 278 (2015).

519 41. A. Subramanian *et al.*, Gene set enrichment analysis: a knowledge-based approach for
520 interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* **102**, 15545-15550
521 (2005).

522 42. A. Liberzon *et al.*, Molecular signatures database (MSigDB) 3.0. *Bioinformatics* **27**, 1739-1740
523 (2011).

524 43. E. Zhao *et al.*, Spatial transcriptomics at subspot resolution with BayesSpace. *Nat Biotechnol* **39**,
525 1375-1384 (2021).

526 44. C. Wang *et al.*, Microglial NF-kappaB drives tau spreading and toxicity in a mouse model of
527 tauopathy. *Nat Commun* **13**, 1969 (2022).