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Abstract Understanding how humans control force is useful to understand human movement8

behaviors and sensorimotor control. However, it is not well understood how the human nervous9

system handles different control criteria such as accuracy and energetic cost. We conducted10

force tracking experiments where participants applied force isometrically while receiving visual11

force feedback, tracking step changes in target forces. The experiments were designed to12

disambiguate different plausible objective function components. We found that force tracking13

error was largely explained by a trade-off between error-reducing tendency and force biases, but14

we did not need to include an effort-saving tendency. Central tendency bias, which is a shift15

towards the center of the task distribution, and recency bias, which is a shift towards recent16

action, were necessary to explain many of our observations. Surprisingly, we did not observe17

such biases when we removed force requirements for pointing to the target, suggesting that such18

biases may be task-specific. This study provides insights into the broader field of motor control19

and human perceptions where behavioral or perceptual biases are involved.20

21

Introduction22

We interact with the world by applying forces. For example, we push the ground to walk, press23

pedals to ride a bicycle, and even apply muscle forces onto our own body parts to breathe, sing,24

and reach out a hand. Understanding how people control forces would be beneficial in under-25

standing how the nervous system performs sensorimotor control, insightful in designing robots26

and biomechanical simulations. One way to model sensorimotor control is to view it as an opti-27

mization problem, that there are objective functions that are optimized for and constraints that28

are needed to be satisfied while executing the task (Baron and Kleinman, 1969; Kleinman et al.,29

1970). There often aremultiple objectives and constraints inmany sensorimotor tasks and robotics30

applications (Dao et al., 2016; Jin et al., 2021). Our goal was to observe human subjects’ behaviors31

when they perform simple force tracking tasks, and to investigate objective functions that could32

explain the observed behaviors.33

In biomechanics simulations and robotics, researchers often formulate an objective function34

as a sum of error (or performance) term and effort (or energy cost, control energy) term. Such35

formulations are used to model human motor control (Emken et al., 2007; Izawa et al., 2008; Mi36

et al., 2009), in biomechanics simulations (De Groote et al., 2016; Lee and Umberger, 2016), and in37

robotics (Kalakrishnan et al., 2013;Miao et al., 2021). In optimal control theory, cost function of a38

linear quadratic regulator ("LQR", Kalman et al. (1960)) is often formulated as a sum of quadratic39

function of state and control input.40

1 of 26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.19.558388doi: bioRxiv preprint 

hansol.ryu@ucalgary.ca
srinivasan.88@osu.edu
https://doi.org/10.1101/2023.09.19.558388
http://creativecommons.org/licenses/by-nc/4.0/


Force plate

Screen

Applied
force

(A) Experimental setup (B) Interface on screen

Target
Force

feedback

(C) Types of targets

...

...

...

Error

Force
feedback

(a) Clear target: fixed dot

(b) Vague target: dancing dot

(c) Vague target: multiple dots

Experimental design

160 165 170 175 180

40

50

60

70

80

Time from trial start (s)

A
p
p
lie

d
 f
o
rc

e
 (

%
F
0)

target

Applied force

Error

(D) Measurement example

average force
during last 0.5s

Figure 1. Experimental design. (A) Subjects applied force on the the platform in front of them while looking

into a screen. Vertical force they applied was measured through a ground-mounted force plate, and the force

was relayed to a (B) screen that displayed applied force as a horizontal bar of a changing vertical location, as

well as a target. (C) There were three types of targets. Illustrated are conceptual representations of each

sub-trials. (D) Example of a trial, which was a series of sub-trials that changed target force in a random order.

Applied force and target force at the time are shown together. Force tracking error was defined as a difference

between the average applied force during the last 0.5 seconds of the sub-trial and the mode of the target.

Having an error term in the objective function ensures that the goal is achieved to a certain de-41

gree. In addition to the error term, there are several reasons to include an effort term, including:42

1) To handle redundancy problem: there are usually redundancy in the system, meaning there are43

multiple ways to achieve the goal, so additional criteria is needed (as discussed in De Groote and44

Falisse (2021)). 2) To better mimic biological systems: there are evidences suggesting that biolog-45

ical systems minimize energetic cost, so having the term allows simulation and robot to behave46

more like biological systems and thus provides more insights into understanding them (e.g., Srini-47

vasan (2011)). 3) For practical reasons: Robots often need to be efficient because power or energy48

consumption are some of the major concerns (e.g., Liu and Sun (2013); Pellegrinelli et al. (2015)).49

However, those functions and their relative weightings are usually arbitrarily designed and50

tuned until they produce acceptable outcomes. Some researchers refer to biological measure-51

ments to formulate some components of the objective function (e.g., Körding and Wolpert (2004)52

studied error, Berret et al. (2011) studied cost), but such investigations have not been considered53

in the context of human force tracking.54

We designed a force tracking experiment that allows us to compare various objective function55

models to experimental observations. Participants were asked to apply forces isometrically onto56

the platform in front of them through their hands, while receiving the force feedback as the height57
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Figure 2. Illustration of expected results for different target types and distributions.(A) Relative force

shifts with respect to the target shift. Subjects may shift by the same degree as the visual target position

changes, but they may shift less than the ascending target change if effort becomes a critical factor. (B)

Therefore, if minimizing error is the only factor that determines people’s behaviors, (1) we expect average

zero error for all force ranges and target types. However, if effort is a consideration too, and if vagueness of

the target as an extra allowance to facilitate effort-saving behavior, (2) we expect increasing error towards the

effort-saving direction as target vagueness increases. (C) Using targets of different distributions could provide

us extra information about how people perceived the task. As there are many definitions of centers in a

skewed distribution, including the mode, median, mean, and half-range, we could study where people were

aiming for, and whether this changes with increasing force demands. (D) Combined with effort

considerations, if effort does not affect the behavior and people are consistent with what “center” they aim

for, (1) we expect to see error trend across various distribution parameters that is best described by which

center they aimed for, and does not change with increased force requirements. If effort is combined with this

perception, (2) we expect that people’s response will be similar to that of (1) when force requirement is low,

but will shifts towards effort-saving way as force requirement increases.

of the bar on the screen (figure 1A, B). The force targets (figure 1C) they tracked were either clearly58

defined as a fixed single dot, or vaguely defined in two ways, as a single dot that had noise in its59

location or as a cloud of multiple dots. The targets were shown for 4 seconds (referred to as "sub-60

trial"), and the next target of the same kind appeared at a random location. We analyzed force61

error near the end of each sub-trials (figure 1D) to quantify the force tracking error.62

We hypothesized that the vagueness of the target would result in more shifts in subjects’ be-63

haviors towards the effort-saving direction when force requirement increases. If effort is not a64

criterion, when subjects see the same distribution of dots simply shifted up to require more force65

(figure 2A), they would increase their force by the same amount. In that case, their behaviors would66

be largely explained by an error-based objective function alone (figure 2B-1). However, as there is67

some allowance due to the vagueness of the target, they may save effort by increasing the force68

by a slightly smaller amount than the target shift. In that case, we could model the behavior as a69

trade-off between error-reducing and effort-saving criteria in the objective function (figure 2B-2).70

In addition, we used skewed distributions when we defined vague targets to study error term71
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of the objective function (figure 2C). Skewed distributions have distinct mode, median, mean, and72

half of the range, which are the locations where error raised to power of 0, 1, 2, and infinity are73

minimized. For example, if a subject minimized error raised to about 1.5, on average they would74

place the force feedback bar between themedian andmean of the distributions (figure 2D-1). If an75

effort-saving tendency is added to the same error-reducing criterion in the objective function, we76

expect that people’s behaviors would not changemuch in low force range, but it will shift towards a77

direction that saves effort when the force requirement increases (figure 2D-2). We measured how78

participants changed their force according to the force requirement and given distributions, and79

applied inverse-optimization analysis to look for an objective function that best describes observed80

human behaviors.81

We observed shifts towards less forces in medium-high force range. However, there also were82

unexpected findings that looked like people systematically "wasted" effort in low to medium force83

range, meaning, they exerted more force than needed for no obvious benefits in reducing errors.84

Weused "central tendency bias" and "recency bias" to explain the results, and conducted additional85

follow-up experiments on a subset of the participants to test these biases. We use the term “central86

tendency bias” to describe the shift towards the center of the tasks. That is, if their current force is87

on a lower side, people tend to make errors towards the center, and end up producing more force88

than needed. In a similar manner, we use the term "recency bias" to refer to the bias towards the89

recent past action, meaning people tend to make an incomplete shift to the next target. Surpris-90

ingly, an effort term that increases with force, does not seem to have a significant effect on the91

model prediction. Further, we found that eliminating the force requirement as much as possible92

eliminated the biases, showing no significant bias in visual perception of the tasks.93
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Results94

How humans track step changes in forces95

Force tracking errors have task-dependent positive and negative biases96
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Results1: force tracking error as a function of force and target type

Figure 3. Median values of tracking error for different target force, target types and distribution

parameters. (A) Error, defined as a distance between average force people applied during the last 0.5

seconds of sub-trials and a mode of the target, for each target types. Asterisks indicate statistically significant

difference (p<0.05) for pairs of the force conditions, for every target types compared separately. (B)

Error-force pattern of individual subjects. (C) Median response for each target force and distribution

parameter. Pink shaded region represents the range between theoretical mean and median of each

distributions, and pink horizontal line represents the half of the distribution range.

Subjects typically took about 0.4 s seconds to initiate the force change after target location changed,97

and held the force until the next target was shown (figure 1D; average responses can be found in98

figure 9 and figure 10). We report distance from the mode of the distribution as the error in this99

paper unless otherwise noted.100

Wemeasured the force tracking error for different target types and force requirements. As we101

expected, people exerted less force relative to the targetwhen the target force increased, and there102

was a bigger change when the target was vaguer (figure 3A). However, what was unexpected for us103

was that people tended to exert more force than needed for low-medium range targets. These two104

observations, 1) negative correlation between error and target force and 2) positive error on the105

lower target force, were consistent across subjects (figure 3B). When targets were grouped based106

on the distribution parameters, force errors were in general in between median and half-range107

of the distributions. Each of the sub-grouped forces errors showed a negative correlation with a108

target force (figure 3C).109

Force tracking error results are not explained by error and effort minimization110

We used two types of objective function models to describe the observations. The objective func-111

tion we originally formulated was in the form of
1

errorĆ∕Ċ + āĂ ā , where error is absolute distance112

between the target and applied force, Ă is applied force, Ċ is number of target dots. Hyperpa-113

rameters Ć and ā are shape parameters for each functions, and ā is a constant that determines114
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Figure 4. Modeling force tracking errors using (A) error-and-effort model and (B) error-and-bias model.

In error-force plots (top row), different target types are indicated with different line types. In distribution

parameter-error plots (bottom row), lighter and more orange colors indicate lower target force, darker and

more blue colors indicate higher target force. Error shown on y axis in both types of plots are both error with

respect to the mode of the target distribution. Objective function models to generate the model prediction

here are
1

error1.6∕Ċ + 0.06Ă 5 for (A) and
1

error1.6∕Ċ + 0.15 Ă1.8
ctr−bias

for (B).

the relative weighting between two terms. Since human data is noisy, we aimed to keep the for-115

mulation as simple as possible. For the simplicity, we used
1
(errorĆ)∕Ċ to represent performance116

criteria for targets of different vagueness’s. The formulation has shallower minima for bigger Ċ if117

Ć < 2, thus competing terms in the objective function wouldmake theminima shift more for bigger118

Ċ . The effort term in this form has inherent limitations that it cannot explain positive force errors119

(figure 4A), and thus inverse optimization did not have a local minima within our search range. We120

illustrated a solution that was found on one end of the search range, but even bigger exponent121

on effort term would further minimize the objective function. Bigger exponent would make low to122

middle range error closer to zero, thus reduces model error. However, this formulation does not123

predict positive error in any case.124

We investigated which variable predicts force tracking error.125

Force tracking error might be fully determined by the target force or visual representation of the126

target force. However, there might be a bias that is determined by the temporal relationships127

between targets. We formulated variants of the objective functionmodels to represent these cases.128

One of our objective function models was error-and-bias model (figure 4B), which had a form of129

1
errorĆ∕Ċ + ĀĂ

Ā

bias
, where Ăbias represents the distance to some point when there is a tendency to130

shift towards that point, which will be further explained later. error is absolute distance between131

the target and applied force. Hyperparameters Ć and Ā are shape parameters for each functions,132

and Ā is a constant that determines the relative weighting between two terms. figure 4B shows the133

error-and-bias model that has a shift towards the average target force.134
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Additional experiments to disambiguate different terms135

Some of the variables inherently co-varied in the original protocol (referred to as “Protocol 1”), so136

we designed additional experiments to distinguish some of them and test models accordingly.137
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Figure 5. Additional protocols to test different model predictions. (A) Test protocols in terms of force

requirement and its visual representation on the screen. Purple arrows emphasize the main differences

between protocols. Protocol 1-reduced Ă tested for a lower half range of the force, while spanning to a full

visual target range. Protocol 2 and 3 had zero re-set period between each non-zero target forces. Protocol 3

had binary targets, where the target was alternating between only two locations each indicating zero and

non-zero target. This was done by changing the conversion ratio between force and visual target location

each time. Protocol 4 was done using a computer mouse, and did not require force to maintain the pointing

location. (B) Example of model predictions for these additional protocols. (1) Error-and-effort model, as an

example of a model that target force determines the error: results from all protocols will match with each

other when the target force is the same. (2) Error-and-bias model, as an example of a model that depends on

a target force and the experimental contexts. Error-force trend changes for each protocols, and we had

specific qualitative expectations for each protocols.

Design of the additional protocol and what we found from each of them are listed below. A138

subset of subjects who participated in original experiment using Protocol 1 participated in these139

additional tests, so we compared their responses to those of Protocol 1. We used a single fixed140

dot as a target in all additional tests to reduce the variability due to the target vagueness.141
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Figure 6. Experimental results of additional protocols and its comparison to model predictions.

Different lines indicate results of each protocols. As subsets of Protocol 1 subjects participated in additional

tests, we represented the results of matching subjects in Protocol 1 as a thick green line here, while showing

the results of all subjects as a dimmer line. Matching subjects result of Protocol 4 was omitted for simplicity,

because the error was consistently very close to zero for everyone. (A) Protocol 1-reduced Ă trial had a distinct

error trend compared to Protocol 1 in force domain, while its visual domain had a good match. Asterisks

indicates statistically significant different (p<0.05) difference between Protocol1-reduced Ă and Protocol 1 for

matching conditions. (B) Protocol 2, 3, 4 results in force and visual domain. Asterisks indicates statistically

significant difference between protocols and Protocol 1. (C) Comparison of (1) experimental results and (2, 3)

models. Error-and-effort model and error-and-effort models were poor and good predictor of data.
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Protocol 1 – reduced Ă shows that target force alone does not determine error.142

In Protocol 1 – reduced Ă , we tested lower half range of the force while keeping the range of the143

visual target fixed (figure 5A). Among our 12 subjects who participated in Protocol 1 experiment, 6144

of them participated in this additional protocol experiment on the same day.145

Results: Testing result shows that force-error relationship was significantly different between Pro-146

tocol 1 and Protocol 1 – reducedĂ , but visual target location – error relationship in generalmatched147

quite well between two protocols (figure 6A).148

Protocol 2 and 3 shows that testing order affects the error, and that visual representa-149

tion of the target force is not a good descriptor of error.150

We tested the same target force range as Protocol 1, but added zero force reset periods between151

non-zero force targets (figure 5A) to test the order effect. The difference between Protocol 2 and152

Protocol 3 was the visual representation of the target. In Protocol 2, visual representation was the153

same as the Protocol 1, i.e., target location was moved proportional to the required force. In Pro-154

tocol 3, targets appeared between only two locations, lower one indicating 0 force and higher one155

indicating various non-zero target forces. In this case, the ratio between force and target represen-156

tation changed each time new target was presented. On a different day from Protocol 1 testing, 4157

participants came back to participate in Protocol 2 and Protocol 3.158

Results: Testing results suggest that visual representation of the target is also not a good predictor159

of the force tracking error. Despite different visual target representations, there wasn’t significant160

difference between Protocol 2 and Protocol 3 in force-error relationship on all target force condi-161

tions (figure 6B). Those force-error relationships were significantly different from that of Protocol162

1 in the most of the target force range. The observations were similar in visual target location –163

error relationships. Error trends of Protocol 2 and Protocol 3 were similar to each other, but were164

different from that of Protocol 1. We also tested Protocol 2 - reduced Ă and Protocol 3- reduced Ă165

conditions, where we tested smaller range of the forces, while not changing the mapping between166

force and its visual representations. There were no notable differences between Protocol 2 and 3167

and their reduced Ă versions.168

Protocol 4 shows that visual bias does not explain the force bias.169

We asked subjects to track the target using a computer mouse, so that we could investigate the170

errors coming from visual aspects of the task. They did not need to keep exerting force to keep171

the mouse position, which is different from all other protocols where they needed to keep apply-172

ing the force until new target was shown. Eight out of twelve subjects performed this Protocol 4173

experiment on their personal computers.174

Results: Perticipants performed the tracking task almost perfectly. Visual tracking errors were175

overall quite small, and the error relationship was again significantly different from that of Proto-176

col 1 for most of the ranges (figure 6B).177

Model with force error and biases captured the experimental results qualitatively178

We reject hypotheses that force or visual representation of the force predict force tracking error,179

as force tracking errors were different for some protocols even for the same force or same visual180

target location. Any objective function model that mainly rely on mere force (e.g., figure 6C2) or181

visual representation to describe error trend would not be suitable to describe the observation.182

Error-and-bias model was better supported by the data. Error-and-central tendency bias model183

that fits Protocol 1 predicts the results of additional protocols fairly well (figure 6C3). The objective184

functions thatminimizedmean RMS error betweenmean data andmeanmodel prediction on each185

force condition of different protocols were as follows (figure 7):186
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• Error-and-central tendency bias model:187

Ă ∗ =argmin
Ă

Ċ1

Ā=1

error1.7
Ā

Ċ
+ 0.09Ă1.55

ctr−bias

=argmin
Ă

Ċ1

Ā=1

|Ătarget,Ā − Ă |1.7

Ċ
+ 0.09( �Ătarget − Ă )1.55,

• Error-and-recency bias model:188

Ă ∗ =argmin
Ă

Ċ1

Ā=1

error1.5
Ā

Ċ
+ 0.15Ă1.3

rec−bias

=argmin
Ă

Ċ1

Ā=1

|Ătarget,Ā − Ă |1.5

Ċ
+ 0.15(Ă − Ă0)

1.3,

• Error-and-combined bias model:189

Ă ∗ =argmin
Ă

Ċ1

Ā=1

error1.6

Ċ
+ 0.05Ă1.55

ctr−bias
+ 0.07Ă1.3

rec−bias
,

whereĂ ∗ is the prediction of the applied force based on the given objective function andĂ is the190

applied force that is to be optimized. Ătarget,Ā is the force indicated by Ā-th dot in the sub-trial, when191

Ċ is the number of dots presented. Bias-related terms Ăctr−bias is a distance to the "center" of the192

targets associated with central tendency bias, Ărec−bias is a distance to the recent action associated193

with recency bias. They are determined by �Ătarget , which is the average (or expected) target force194

of the whole trial consisted of many sub-trials, and Ă0, which is the force at the beginning of the195

sub-trial.196

Details of the inverse optimization analysis is described in the Methods section.197
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Figure 7. Variants of error-and-bias models describing the force tracking error from various protocols.

(1) Experimental data from various protocols. Different lines indicate median results of each protocols. (2)-(4)

Models that best fit the overall experimental data, whose objective functions are weighted sum of error term

and (2) both central tendency bias and recency bias terms, (3) central tendency bias term, and (4) recency bias

term.

Changes in target forces describe error trends from all protocols.198

We further investigated how force tracking error is explained by a tendency to shift towards some199

point. As we pointed out earlier, the error-target force relationship (figure 8A) and the visual error-200

visual target location relationship had distinct patterns for each of the protocols. However, ex-201

pected change in target force (figure 8B) and change in target force from the recent past target202

(figure 8C) better describe error across different protocols. These support the idea of people’s203

tendency to shift towards either the recent past action or the center of the task. Error-and-effort204

model could not explain the positive error, but error-and-bias models could explain it: central ten-205

dency bias predicts positive error on a lower-range target forces as the center of the task is higher206

than the current force, and recency bias predicts positive error on lower range target forces as207

their recent past targets were on average higher than the current target.208

We defined recency bias as a function of Ărec−bias, which is the distance to the recent past action,209

and central tendency bias as a function of Ăctr−bias, which is the distance to the "center" of the targets210

or the average of the targets. From their definitions, the average of the Ărec−bias is close to Ăctr−bias211

except for the small discrepancies due to the order effect in Protocol 2 and 3. Therefore, models212

using recency bias, central tendency bias, or combination of recency bias and central tendency bias,213

all yield similar overall error trends (figure 7C). We analyzed sub-grouped data to see their separate214

effects, and found that they both seem to exist, which is presented in the following section.215
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Figure 8. Error trends with force, force transition from recent target, and expected future force

transition. Force tracking error is plotted against (A) the current target force, (B) distance to the target center

from the current target force, which is the expected transition, (C) distance to the recent past target force

from the current target force, which is the transition from the past. Shaded areas represent 40 to 60

percentiles of the data at each condition, and the thick lines represent the median of the data. We showed

visual error of Protocol 4 on the y axis as a reference, because force error is undefined. Y axis is for force

error for all other conditions.
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Comparing central tendency bias and recency bias216

Changes in target force affects error when current target force is fixed.217

(A) Average force transitions, grouped by current target force Fcurr 
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Figure 9. Protocol 1 sub-trials grouped into same target forces. (A) Averaged force time series grouped

based on its recent past target and current target forces. Brighter and more red colors are for higher

previous target force, and darker and more blue colors for lower previous target force. (B) Force error as a

function of target force change, among sub-trials that had same current target force. Each sub-panels are for

different current target forces. Shaded area represents 30, 40, 50 (=median), 60, 70 percentile data range.

Blue, red, purple lines are predictions using error-and-bias model with only central tendency bias, only

recency bias, or central bias and recency bias combined.

We grouped data of Protocol 1 – fixed dot target condition to investigate the recency bias effect. If218

recency bias does not have a notable effect, sub-trials that have the same target force will generally219

have the same errors, regardless of its recent past target. However, we do see a dependency on220

where the force started from, even if the target force is the same (figure 9A). Errors had negative221

correlations with force change, even when they are compared against sub-trials that had the same222

target force.223
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We considered three types of bias models in the objective function: central tendency bias, re-224

cency bias, and a combinedmodel that has both biases. While all three of them do similarly well at225

capturing the overall error trend with force, central tendency bias model does not capture the neg-226

ative correlation between force change and error when the target force is fixed (figure 9B). Recency227

bias and combined model are more suitable to describe this observation.228

Current target force affects the error among sub-trials that underwent same change in229

target force.230

(B) Data and bias models describing error-Fcurr
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Figure 10. Protocol 1 sub-trials grouped into same changes in target forces. (A) Averaged force change

time series, where y axis is a force difference with respect to the recent past target. Shown here are sub-trials

that had 10%Ă0 increment, same, or 10%Ă0 decrement from the recent past target. Brighter and more red

colors are for higher current target force, and darker and more blue colors for lower current target force. (B)

Force error as a function of current force, among sub-trials that had same change in the target force. Each

sub-panels are for different changes in the target force. Shaded area represents 30, 40, 50 (=median), 60, 70

percentile data range. Blue, red, purple lines are predictions using error-and-bias model with only central

tendency bias, only recency bias, or central bias and recency bias combined.
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We now grouped data of Protocol 1 – fixed dot target condition to investigate the central tendency231

bias effect. Here, we grouped sub-trials into the same target force changes, because analysis on232

the sub-trials that had same target forces showed that change in target force affects the force error.233

If recency bias alone could explain the observations and central tendency bias is has a negligible234

effect, groups of data that underwent the same target force change would have a similar error235

regardless of the current force requirement. However, we do see a dependency on the current236

target force level, when we compare sub-trials against other sub-trials that had the same target237

force change (figure 10A). Errors had negative correlations with target force in each of the groups238

that had same change in target forces. We explained this observation in terms of central tendency239

bias, that people make positive error when the center of the task is higher than the current target240

force, and make negative error when the center is lower than the current target force.241

We again considered three types of biasmodels in the objective function: central tendency bias,242

recency bias, and a combinedmodel that has both biases. Since change of target force is a variable243

that inherently co-varies with target force on average, all three models capture the overall error244

trend. However, recency bias model does not capture the negative correlation between target245

force and error when the target force change is the same (figure 10B). Central tendency bias and246

combined model are more suitable to describe this observation.247

Purely visual tasks did not have the biases248

We have showed that force or visual target locations alone were not good descriptors of error, but249

force bias could be a good descriptor. Then, if error could be explained by force bias, there is a250

chance that it could as well be explained by a visual bias. We therefore investigated whether visual251

bias could be an alternative explanation of the error trend we observed. Since visual location of252

the target was proportional to the force in Protocol 1, visual bias could explain the error trend253

(figure 11 left) as much as the force bias does. The most striking counterexample is from Protocol254

4, where subjects used a computer mouse to track the targets and did not need to exert force to255

maintain the pointing location. Although recency bias is commonly studied in visual tasks, we do256

not observe clear visual biases from Protocol 4 (figure 11 right). Subjects made almost no error257

for single fixed target when they use a computer mouse to track the target. When they tracked a258

vague targetwhich is a set ofmultiple dots, overall variability increased, but therewas no significant259

trend in visual error, and its mean is not significantly different from 0 regardless of the visual target260

location.261
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Figure 11. Tracking errors in visual domain, comparing Protocol 1 and Protocol 4. Results from target

type of single dot and multiple dots are shown here. Shaded areas represent 40 and 60 percentile data,

thicker lines in the middle of the area are median of the data. We represent visual error with respect to (A)

current visual target location, (B) distance to the center of the visual target, (C) distance to the recent past

target location. Asterisks in top row sub-panel indicate statistically significant difference from zero for both

target types separately. There were no significant difference from zero from Protocol 4.
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Discussion262

We measured force tracking errors while subjects performed tracking tasks of various protocols263

and modeled their behaviors using an objective function with an error term and force bias term.264

Ouroriginal aimwas tomeasure the trade-offbetween task performance andeffort, butweneeded265

to include bias term(s) rather than an effort term in the objective function to explain the result. The266

main discrepancy between the observation and our original expectation was that people made267

consistent positive force errors in some ranges, which is not explainable by either effort-saving268

tendency or error-reducing tendency. Central tendency bias and recency bias, which means ten-269

dency to shift towards the center of the tasks and towards the recent action, seem to explain the270

data well when combined with an error model. To our knowledge, these biases in force tracking271

tasks are not previously observed and modeled.272

In certain modeling scenarios, refining the control objective function, as demonstrated in this273

study, can yield significant benefits, while in others, the advantagesmay be less evident. The useful-274

ness of such refinementmay dependon the level of detail at which one examines the phenomenon,275

and on practical considerations such as computational requirements and analytical solvability. On276

the other hand, understanding human tendency to make biases while performing motor tasks277

could be could have broader applications in various fields, including human-machine interaction278

and human factors engineering. Additionally, exploring the connection between these biases and279

neuromuscular disorders could also provide deeper insights into motor control and hold the po-280

tential for various clinical applications, including diagnosis and rehabilitation.281

We initially attempted to model the force tracking error using an effort model because it is a282

common expectation that motor control is usually done in an energetically optimal way. Observa-283

tion that people apply more force than needed in low-medium force range seem to be an example284

that people did not optimize for energy, at least during the experiment. However, could it turn285

out to be energetically cheaper to make such positive biases? For example, if there is a huge cost286

associatedwith force changes, it could bemore efficient to spend slightlymore energy onmaintain-287

ing force and save a bigger energy by reduced a force change. Since we did not directly measure288

the energetic cost during the experiment, we cannot conclusively claim that people’s behavior was289

energetically suboptimal. However, our speculation is that energy saving is not a primary explana-290

tion of the biases, because: 1) transient cost people save seem to be small compared to what they291

spend throughout the sub-trials while maintaining the force, 2) usually “fast change” is regarded292

energetically costly, but people did not seem to slow down the transient even when there was no293

explicit speed requirement, suggesting that transient cost is not of a significant consideration, and294

3) people often did reach a lower force than the target, and increased the force to again to make295

positive force error at the end, which is shown as followings (Box 1).296

Wemodeled force tracking error as an outcome of competing goals of reducing error and bias-323

ing towards a center, but there could be alternative models to capture the same phenomenon. We324

used our bias models to predict errors from additional protocols, but the model is still descriptive325

in a sense that we did not test for the underlying mechanism or causality of such bias. Our descrip-326

tion of biases suggests that people tend to reduce force change, either from the past by making an327

incomplete shift, or toward the future bymaking an anticipatory error towards the expected target.328

However, since we have not proven whether reduction in force change is the primary cause of the329

errors, it may turn out to be a secondary change following another one. It would be an interesting330

future work to investigate the causality of the biases.331

Includingmore terms in the objective functionmodel could capture a broader range of phenom-332

ena, but it could also make the inverse optimization problem more underdetermined, potentially333

leading to an unreliable solution. Central tendency bias and recency bias exhibit similar effects on334

the overall trend predictions in our experimental designs; thus, one may not need to model both335

biases to explain some behaviors, depending on their goals. We did not particularly design exper-336

iments to distinguish these two biases, and there were multiple sets of solutions yielding similarly337
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Box 1. Undershoot in descending sub-trials.297298

Undershoot in descending sub-trials (where current target force was lower than the recent

past target) are particularly interesting, because it provides insights into the underlying reason

of the positive force errors.
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good inverse optimization results (figure 7). Our subgroup analysis suggests that both seem to338

have an effect, but we do not claim that we quantitatively verified recency bias and central ten-339

dency bias. It would be interesting to design experiments to further disambiguate the biases that340

originate from the past action and originate from the anticipatory action for the future. For exam-341

ple, one could design a trial order that cycles through three stages, two random non-zero target342

forces followed by one zero target, so that average past action is distinct from the average future ac-343

tions. Even the formulation of the error-reducing tendency must have been an over-simplification344

if the aim was to closely understand what people perceive as a target. Error function could have a345

different form depending on the number of dots presented as a target, or could take into account346

how individual subjects subjectively defined the tasks.347

There could be various biases in humanmotor control, and some of them could happen imme-348

diately without task-specific experiences while some of themmay need learning of a task. Some of349

the biases could take a long time to change its properties, while others may rapidly adapt to each350

of the tasks. We assumed that subjects readily had an expectation of the center of the target when351

wemodeled central tendency bias, but further research is needed to justify this in depth. We chose352

to model the central tendency bias this way because we had a speculation that the bias does not353

seem to rely on learning from each trial, because force tracking error seemed to happen instantly354

when testing began, and because we do not observe clearly changes over the course of the trial.355

However, we do not have strong evidence to show whether subjects make biases based on their356

experience of the trial or expectation of it, or based on the combination of them or even neither357

of them. It is conceivable that people may start making biases based on their prior expectation358

and refine the expectation as they have more experience with the task. It would be interesting359

to design experiments that give subjects a more different impression of the task from its actual360

composition, and to see which one is a better predictor of the behaviors.361

One of the reasons that biases in force tracking tasks were not commonly recognized in biome-362

chanics studies might be due to the specifics of the common experimental designs. In biome-363

chanics literature, it is common to 1) measure force transients that start from rest, and 2) report364

absolute value of the error, which omits the directionality of the error. Researchers sometimes365

describe that people are less accurate at producing bigger forces. Our findings suggests that this366

description might be highly context-dependent, and there could be a more general description of367

the phenomenon. Our error-and-bias model predicts that absolute error is minimized near the368

center of the tasks (figure 12A), rather than monotonically increasing with the force magnitude.369

Despite that overall root-mean-squared (RMS) errors in experimental results were shifted up com-370

pared to the model predictions (potentially due to human variabilities), our model captures the371

overall trend of error (figure 12B) that had minima near the center of the task.372

Our results are still consistent with the previous studies, whenwe look at the non-zero sub-trials373

of our Protocol 2 and 3, which were always followed by a zero force sub-trials. RMS errors indeed374

roughly increased with the force magnitude in these cases. Directionality of the error during these375

sub-trials was also consistent with previous studies: we predict and measure negative errors, and376

previous studies also usually measured negative force tracking errors (e.g., directly reported in377

Todorov (2002), could be inferred from figures in (Kudzia et al., 2022)). However, what had been378

usually not measured and reported in previous studies is that RMS force error during zero force379

sub-trials increases again (figure 12A), and that people tend to make a positive error for this range.380

The RMS error trend was even more dramatically different from the monotonic increase when we381

consider Protocol 1 results, where target forces were not reset to zero force.382

This leaves us a question whether we could truly eliminate order effects in scientific measure-383

ments. As we pointed out, even separating trials by resting periods and having a “fresh start” could384

give us a wrong impression of the phenomenon, because starting from zero is one of the special385

cases as well. It would be important to be 1) consistent and clear with what we measure, 2) rec-386

ognize that what we observe might be a special case of a more general phenomenon, and 3) try387

to distinguish co-varying variables if possible. For example, force magnitude and force increment388
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(C) Experimental results: signal dependent noise

(B) Experimental restuls: root mean squared error

(A) Model: root mean squared error
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Figure 12. Root-mean-squared error and signal dependent noise during force tracking tasks. For

root-mean-squared (RMS) error, we use error defined as a distance between the mean of the target

distributions and average force applied during the last 0.5 seconds of the sub-trials. We show RMS error that

(A) model predicted and (B) measured from experiments. Lines of different colors indicate different protocols

and target types. Target force on the x axis indicates mode of the target distributions. (C) Standard deviation

of higher frequency component of the force, with respect to the target force. This higher frequency

component of force is referred as motor noise in some literature, and its dependency to the target force is an

example of signal dependent noise. Lines of different colors indicate different protocols and target types.
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co-varies if tests always begin from zero, but they did not co-vary in our Protocol 1, and provided389

us with a more general view of the nature of force tracking errors. On the other hand, signal de-390

pendent noise, which is defined as standard deviation of force after removing a low frequency391

component, had a closer match between trials and seemed to increase with force (figure 12C; con-392

sistent with Jones et al. (2002)). This quantity seems to be less context-dependent than force error,393

and thus, has a higher chance of being explained by simpler physiological properties such as mus-394

cle characteristics or nervous systemdynamics. However, what wemeasured could still be a partial395

description of a more general phenomenon, as it always is in science.396

It was interesting to us that we did not observe a significant bias when people performed an397

almost fully visual task (figure 11), considering that many studies on recency bias and central ten-398

dency bias aremeasured from visual pattern recognition tasks. It is conceivable that humanminds399

would have various biases without involving themuscular system. On the other hand, some biases400

may be caused by more passive and physical properties of the body without involving perceptions401

and judgements, and some biases might be caused by combinations of them. From studying the402

biases of force tracking tasks, we became curious if there is a chance that some of the percep-403

tual biases could be attributed to motor control biases more than researchers commonly thought.404

For example, ocular motor control may have a similar bias as what we observed in this study that405

involved arm muscles, and that could result in a bias in visual sensation. There could be biases406

caused during measurement procedures as well, because subjects were often asked to indicate407

their perception of patterns using some physical device by manipulating it, which involves some408

degree of motor control.409

Force bias does not seem to be a commonly recognized phenomenon in an isolatedmotor con-410

trol setting, but we could relate it to a broader field of motor control. In a singing study, it was411

reported that people tend to compress the pitch shifts, and “bad singer”s tend to make more such412

compression (Pfordresher and Brown, 2007). In speech studies, there is a window model suggest-413

ing that people make a minimal shifts between acceptable windows of some variables (Keating414

et al., 1990). Moreover, when we consider the recency bias in broader terms that people tend415

to keep acting similarly, there are more such examples in biomechanics studies. For example,416

walk-to-run and run-to-walk speeds are reported to be different ("hysteresis effect in speed for the417

walk-run transition", Diedrich and Warren Jr (1995)), which is not simply explained by the idea that418

animals choose the most economic gait at a given speed. People change their behavioral mode419

between one-handed grasping and and two-handed grasping depending on the size of the object,420

and it is reported that there is an order effect in such shifts (Frank et al., 2009). Some researchers421

attribute these biases to “economy” that people save energy by reducing transitions, although this422

claim is usually difficult to be directly tested. We hope that an extension of our current study could423

give insights into these broader fields of behavioral studies.424

To conclude, we examinedwhich objective function best describes human force tracking errors.425

In many motor control studies, objective functions are modeled to include error and effort terms,426

typically in quadratic forms. However, we designed an experiment to test them and indeed found427

a different formulation. Exponent on the error we found was smaller than 2, and bias term(s) were428

needed instead of an effort term in order to capture the behavior that was consistent across par-429

ticipants. Our findings on biases suggest that biological motor control, even in a simple isometric430

force production task, can be highly context-dependent, and commonly hypothesized formulation431

might not be adequate to represent the phenomenon. As we continue to explore the intricacies432

of human force control, further research may offer valuable insights into our understanding of433

human movement behaviors and underlying principles of the nervous system.434
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Methods435

Experimental procedure436

Subjects (Ċsubjects = 12; 4 Female, 8 Male) participated in Protocol 1, and a subset of them partic-437

ipated in additional studies later. This human subject research was reviewed and approved by438

The Ohio State University’s Institutional Review Board, and all subjects participated with written439

informed consent.440

Wemeasured elbowheight from the ground and subtracted half of the subject’s forearm length441

to set a platform height they pressed onto, whichmade the forearm angle about 30 degrees below442

the horizontal line. After setting the force platform, we measured the individualized force target443

range Ă0 by asking the participants to apply a force that they can comfortably hold for 30 seconds.444

We encouraged participants to apply reasonably high force, and reduce it until it felt comfortable445

to hold. Real time force feedback was given on the monitor, and we encouraged them to control446

the feedback bar location. After measuring the force range, we verified it again that subjects could447

comfortably exert the force for 30 seconds. The process was repeated until we found the force448

that the subject was comfortable with producing for an extended amount of time.449

After giving participants verbal description of the tasks, we provided them with practice trials,450

which were shorter versions of the trials so that they can see the test procedure and try the tasks.451

We introduced different target types in turn – fixed single dot, then single dancing dot, and then452

multiple dots. Target changed color between blue and red each sub-trials, and all participants453

confirmed that the colors were significantly different for them. We instructed the participants that454

the target location changed every 4 seconds with the change of the target color, and asked them to455

apply force so that the force feedback bar points the target. For vague targets, we told them that456

the dots are dancing around some fixed point and are not moving away as long as the color stays457

the same, and asked them to point where they perceive as a target from the overall impression of458

the dots. We explicitly asked them not to chase individual occurrence of the dots, but to perceive459

its center and place the bar there. Participants practiced each of the target types for at least 5460

sub-trials, and we repeated the practice if subjects desired to do so or were unclear with the task.461

Each trial was composedof 74 sub-trials. The first three trialswere excluded from the analysis to462

make sure that subjects adapt to a different target type. Following 70 conditions covered possible463

combinations of force level and distribution parameters in a random order, which is described in464

the following paragraph. After these 70 sub-trials that are used for analysis, the last sub-trial of465

each trial was 100%Ă0 one, from which we checked that subjects were still capable of producing466

more than 80% of Ă0. 4 seconds of 74 sub-trials took about 5 minutes.467

We tested 20, 30, ..., 80% of Ă0 in Protocol 1, and used distribution parameter ÿ =-2, -1, -0.5,468

-0.1, -0, +0, +0.1, +0.5, +1, +2 to generate vague targets, resulting in 7 force levels × 10 distribution469

parameters = 70 combinations. For the fixed single dot condition, we measured each force level470

10 times to ensure the same number of sub-trials. In Protocol 1 - reduced Ă , force levels we tested471

were 10, 15, ..., 40 %Ă0. In Protocol 2 and 3, non-zero forces were 20, 30, ..., 80%Ă0, and each472

force level was measured 5 times, again resulting in a total of 70 sub-trails including zero force473

periods. In Protocol 2 and 3 - reduced Ă conditions, non-zero force levels were 20, 25, 30, ..., 50474

%Ă0. Protocol 3 had a binary visual target locations, which were same as the target for 0 force and475

80%Ă0 in Protocol 2.476

We defined distribution parameter ÿ as follows. Positive non-zero distribution parameters cor-477

responds to a shape parameter of Pareto Distribution truncated between 0 and 5 (Zaninetti and478

Ferraro, 2008). The range was scaled to match 10% and 20%Ă0. We generated distributions of neg-479

ative non-zero ÿ same as a positive ÿ, except that the whole distribution was flipped so that the tail480

of the distribution goes the opposite way. Two symmetric distributions were also used: truncated481

uniform distribution was referred to as ÿ = −0, and truncated normal distribution that had similar482

standard deviation as other Pareto distributions were referred as ÿ = +0 in this study as special483

cases of skewed distributions.484
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Six of the subjects had a force feedback that went down when they applied force, and six of485

the subjects had a force feedback that went up when they applied force. We did so to see if there486

is a visual bias linked to a vertical directionality. We did not observe a notable difference between487

subjects of each feedback directionality. Each time before the test started, we asked subjects to488

place their hands on the platform and relax arm muscles, try not to exert active force onto the489

platform and let the platform take the weight of the hands. This hand weight was set to zero force,490

so that participants did not need to actively spend energy lifting up their hands to match low force491

requirements.492

Protocol 1 and 4 involved testing vague targets. In Protocol 1 – dancing dot target condition,493

a dot appeared within 10% and 20%Ă0 range, and in Protocol 1 and 4 – multiple dots conditions,494

240 dots appeared within 20%Ă0. We tested all target types in a random order two times. Other495

protocols were measured once per protocol. Subjects took about 2 minutes of rest between trials496

and occasionally took longer breaks as desired.497

Data collection and processing498

CustomMATLAB software was used to show targets and force feedback on the screen. Force plate499

(Bertec Corporation, Ohio, USA) mounted on the ground was used to collect force data. Force500

plate data was collected through a motion capture interface (Nexus, Vicon, Oxford, UK) that was501

relayed to MATLAB software. Target and force feedback were updated at 60Hz, which matched502

the monitor refresh rate. Force was collected at 8 times faster speed, which is 960Hz. Multiple503

dots changed their horizontal positions every frame. The target radius was about 0.7%Ă0.504

Mean value of force during the last 0.5 seconds of each sub-trials was defined as the steady-505

state force value, and this value minus the target force was defined as force error. We normalized506

force error by Ă0. Mean value of force during the first 0.1 seconds of each sub-trials was defined507

as an initial force, and was used to calculate recency bias. To study signal dependent noise, we508

obtained a fast component of the force change by subtracting a slow frequency response from509

a faster frequency response. Fifth order Butterworth low pass filters with cut-off frequency of510

25Hz and 5Hz were applied to force data using zero phase filtering in order to calculate these slow511

and faster responses. Standard deviation of this fast component during the last 0.5 seconds was512

reported as a "noise" to investigate signal dependent noise (figure 12).513

Protocol 4 - test using computer mouse with negligible forces514

CustomMATLAB software was used to conduct tests of Protocol 4. We kept the testing interface as515

similar as possible to other protocols, except that vertical position of the horizontal bar that used516

to indicate the applied force was changed to indicate the vertical position of the mouse pointer on517

the screen. The cursor was hidden and subjects could only see the height of the horizontal bar as518

they moved the computer mouse.519

We used a MATLAB callback function that responded to mouse position change. Trials were520

similar to those of Protocol 1, in terms of test duration and conditions. We tested a fixed single521

dot and multiple dots using this interface. Unlike Protocol 1, multiple dots did not change their522

horizontal locations in Protocol 4, because we could not guarantee a constant refresh rate through523

the interface we employed. We recorded the time and position of the mouse pointer each time524

there was a change. Clicking was not required to perform the task.525

Predictions for additional protocols based on the bias terms.526

We considered two types of biases in this paper. Predictions of the force tracking error based on527

central tendency bias and recency bias are as follows.528

Predictions based on central tendency bias. We modeled a tendency to shift towards the "cen-529

ter" of the tasks, where “center” was defined as the mean of the target forces throughout the530

trial. The mean of the tasks in Protocol 1 was 50%Ă0, and the mean of the tasks in Protocol531
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1-reduced Ă was 25%Ă0. Using this model, we expected that errors would in general cross 0532

around these force levels in each of the protocols. In Protocol 2 and 3, since half of the sub-533

trials were at 0%, the mean of the targets was 25%Ă0. We expected that zero force sub-trials534

would have positive errors, and non-zero force sub-trials would have more negative errors535

as the target force increased. We used the same center for Protocol 2 and 3 – reduced Ă ,536

because subjects were unaware of the reduced force range.537

Predictions based on recency bias. We modeled a tendency to shift towards the recent past ac-538

tion. In Protocol 1 and Protocol 1-reduced Ă , prediction based on recency bias model was539

that lower target forces would have positive errors, because their recent past force is higher540

than their current forces on average. Similarly, the prediction on higher forces was that they541

would have negative errors, and medium range forces would have errors near zero. This dis-542

tinction of low, medium, high forces were all relative to the force range of each trials in this543

bias model. Similar to the central tendency bias model, we expect that errors would cross544

zero near 50% Ă0 and 25% Ă0 respectively for Protocol 1 - full range and reduced Ă conditions.545

In Protocol 2 and 3 where there were zero reset periods, we expected that zero force sub-546

trials would have positive errors because their recent past forces were always higher than547

the current force. Similarly, we expected that non-zero sub-trials would have more negative548

error as target force increased, because their recent past forces were always zero. Protocol549

2 and 3 – reduced Ă were expected to have similar error trends as their full Ă range versions.550

Only difference could be on zero force sub-trials, because their average distance to the recent551

past target was smaller in reduced range protocols than in full-range protocols, thus could552

result in a slightly smaller positive error on zero force sub-trials.553

Both central tendency bias and recency bias models predict similar overall error trends because554

their expected values are similar to each other. Bothmodels predict that neither error-target force555

relationship, nor visual error-visual location relationship will be consistent across different proto-556

cols, because bias is dependent on force and the context of the experiments. In addition, both bias557

models predict that there is a bias in the force domain, not in the visual domain; thus, we predicted558

that Protocol 4 will not have such bias because the task does not require maintenance force.559

Inverse optimization560

Wedid grid search to perform inverse optimization to select hyperparameters of objective function561

models. We used a similar mathematical formulation to represent both central tendency bias and562

recency bias had, which was:563

Ă ∗ =argmin
Ă

Ċ
1

Ā=1

error
Ć

Ā

Ċ
+ ĀĂ

Ā

bias
,

where Ă ∗ is the prediction of the force which minimizes the given objective function, errorj is564

absolute distance between Ā-th dot and the force applied, summed over number of target dots565

Ċ . Ăbias is absolute distance from the applied force to the bias center. It is the distance to the566

perceived average of the target forces for central tendency bias, and distance to the initial force at567

the beginning of the sub-trial for recency bias.568

We searched for error exponents Ć between 1.4 and 1.9 range by the increments of 0.1, bias569

weightings Ā between 0.01 and 0.25 by the increments of 0.01, and bias exponent Ā between 1570

and 2 by the increments of 0.05. For each combination of these hyperparameters, we calculated571

the model prediction of each sub-trials. The model predicts the forces that minimize the given572

objective function. To avoid local minima issue and to improve the computational efficiency, we573

evaluated the objective function within ±30%Ă0 around the target by the increments of 0.05%Ă0,574

and found the minimum value among them.575

After calculating predictions for each sub-trials and each combinations of hyperparameters, we576

selected the set of hyperparameters that produced similar error-force relationship as the experi-577

mental results. Since error trend we aimed tomodel was in a relatively small magnitude compared578
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to large inter-subject and intra-subject variabilities, we selected an objective function that captures579

the overall behavior. The objective functions that minimized mean RMS error between mean data580

and mean model prediction on each force condition for the entire protocols were:581

• Error-and-central tendency bias model:582

Ă ∗ =argmin
Ă

Ċ
1

Ā=1

error1.7
Ā

Ċ
+ 0.09Ă1.55

ctr−bias
,

• Error-and-recency bias model:583

Ă ∗ =argmin
Ă

Ċ
1

Ā=1

error1.5
Ā

Ċ
+ 0.15Ă1.3

rec−bias
.

After performing inverse optimization on central tendency bias model and recency bias model584

separately, we confirmed that they indeed have a similar formulation and have a similar effect585

of the force error predictions. We performed an inverse optimization on a combined bias model586

while keeping some of the hyperparameters fixed based on these results. We chose to fix some587

parameters to avoid overfitting, because we have confirmed that two biases have similar effects588

on the overall results, and human data is already very noisy.589

We scanned the error exponent Ć between 1.4 and 1.9 by the increments of 0.1, while chang-590

ing two bias weightings between 0.01 and 0.25 by the increments of 0.01. The bias exponent Ā591

was fixed to the optimal value that was found earlier. The objective function that minimized RMS592

distance between mean data and mean model predictions on error-force relationships was:593

• Error-and-combined bias model:594

Ă ∗ =argmin
Ă

Ċ
1

Ā=1

error1.6

Ċ
+ 0.05Ă1.55

ctr−bias
+ 0.07Ă1.3

rec−bias
.
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