

1 Non-linear input-output relationships in the subthalamic nucleus of

2 Parkinson's patients

4 Xiaowei Liu (刘晓薇)^{1,2,*,#}, Stefanie Glowinsky^{2,*}, Hodaya Abadi², Juan F León⁵, Wei
5 Wang (王伟)^{1,#}, David Arkadir⁴, Zvi Israel⁵, Hagai Bergman^{2,3,5} & Jing Guang (光
6 京)^{2,#}

⁸ ¹Department of Neurosurgery, West China Hospital, West China School of Medicine,
⁹ Sichuan University, Guoxue Lane No. 37, Chengdu 610041, Sichuan, China

² The Edmond and Lily Safra Center for Brain Science, The Hebrew University, Jerusalem, Israel.

12 ³ Department of Medical Neurobiology, Institute of Medical Research Israel-Canada
13 (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel

14 ⁴ Department of Neurology, Hadassah University Hospital, Jerusalem, Israel.

15 ⁵ Department of Neu

16 * Equal contribution

17 # Corresponding author
18 Corresponding authors' Email: xiaowei.liu@mail.huji.ac.il; co_60@126.com;
19 jing_wang@mail.huji.ac.il

19 jing.guang@mail.hupl.ac.cn

20

21 Both local field potentials (LFP) and spiking (SPK) activity in the subthalamic

22 nucleus (STN) are related

Both local field potentials (LFP) and spiking (SPK) activity in the subthalamic nucleus (STN) are related to Parkinson's disease (PD) symptoms; however, their relationship is poorly understood. We explore it by separating STN signals of 146 PD patients (308 trajectories, >25,000 recording sites) into aperiodic and periodic components and whitening these signals using their corresponding aperiodic parameters. The LFP aperiodic exponents resemble Brown noise ($\alpha = 2.20 \pm 0.40$) and are significantly higher than SPK aperiodic exponents ($\alpha = 0.11 \pm 0.22$, White noise). The periodic oscillations of LFP are overwhelmingly distributed in the high beta frequency domain while those of SPK are in both low and high beta domains. Beta oscillation center frequencies were downshifted in SPK relative to simultaneously recorded LFP. This demonstrates that the STN synaptic input (LFP) undergoes significant modifications when transformed into STN output (SPK) of PD patients, and may explain the critical role of STN in PD physiology and STN-Deep-Brain-Stimulation therapeutic efficacy.

35 **Introduction**

36 Beta oscillations in local field potentials (LFP) and spiking activity (SPK) in the
37 subthalamic nucleus (STN) are considered as the electrophysiological hallmark of
38 Parkinson's disease (PD)¹⁻⁷. Bipolar LFP recordings performed within a week of
39 electrode implantation, while patients were at rest and off medications, revealed an
40 high proportion of patients with peaks in low beta (LBeta, 13-20Hz), high beta
41 (HBeta, 20-35Hz) and both Beta sub-bands⁴. LBeta oscillations in LFP and spiking
42 signals are positively correlated with the severity of PD motor symptoms, and their
43 power is suppressed by treatment with antiparkinsonian medication or deep brain
44 stimulation (DBS)^{1, 4-6}. Moreover, studies using chronic neuronal sensing and
45 recording devices demonstrate that beta activity is a reliable biomarker of Parkinson's
46 symptoms, which supports the feasibility of the personalized precision-medicine
47 approach to adaptive neurostimulation based on the beta LFP activity^{8, 9}.

48 Many centers use extra-cellular recording of spiking (action-potential) activity to
49 aid navigation to the target brain regions in DBS surgery^{10, 11}. The spiking activity is a
50 proxy for the output of the recorded neurons, and can be recorded at distances smaller
51 than 0.1 mm from the microelectrode^{12, 13}. LFP is the low frequency (e.g., 0.1-70Hz)
52 electric potential recorded by electrodes in the extracellular space in brain tissue.
53 LFPs are most probably generated by subthreshold (e.g., synaptic activity) modulation
54 of the membrane potentials¹⁴. The exact relationship of LFPs to the neuronal activity
55 in the STN of PD patients is still unclear. Significant coherence was found between
56 the LFP and spiking activity in the subthalamic region³. Our group reported similar
57 results in the MPTP non-human primate (NHP) model of PD¹⁵. Beta oscillations in
58 LFP recordings play a role in the temporal dynamics of high frequency oscillations
59 (HFOs)^{16, 17}. A recent study reported that periodic single-neuron bursts in the STN
60 commonly preceded the LFP oscillation (13~33 Hz), but that other neuronal firing
61 activity had no relationship to the LFP¹⁸.

62 Neural oscillations have been extensively studied by advanced methods in the
63 time and frequency domains¹⁹⁻²¹. The traditional oscillation bands are predefined
64 based on the canonical frequency bands or extracted by applying narrowband filtering.
65 Usually, the power change is implicitly assumed as a frequency-specific power
66 change. However, most physiological phenomena follow power law (1/f, f represents
67 the frequency) rules²², and the power at each frequency band is a summation of their
68 aperiodic (1/f^α, α is a scaling parameter that is constant over the distribution of
69 frequencies) and periodic components. Thus, power changes of frequency bands can
70 result from: changes in true oscillatory power, shifts in oscillatory center frequency, or
71 changes in aperiodic parameters (offset and exponent)²³. Extracting the periodic
72 oscillations and aperiodic component from the signals of interest by Fitting
73 Oscillations and One Over F (FOOOF) analysis can overcome the limitation of
74 traditional narrowband analyses^{23, 24}.

75 To explore the relationship between LFP and spiking activity of PD patients, we
76 separate the STN LFP and spiking activity into periodic and aperiodic components

77 using the FOOOF algorithm²³, and whiten the neuronal activity using the aperiodic
78 exponent.

79 **Results**

80 Electrophysiological recording of the STN activity and neighboring structures was
81 done as part of the standard-of-care DBS navigation procedures. All signals were
82 recorded when the patients were awake and in a state of rest. The LFP and spiking
83 activity were obtained by offline filtering the raw data at 3-200Hz and 300-6000Hz
84 respectively, using 4 poles Butterworth, zero-phase band-pass filters. The spiking
85 activity was rectified¹ to reveal the low-frequency (<300Hz) oscillations in discharge
86 rate (Fig. 1 and S1). Based on our inclusion criteria, we included 308 out of 492
87 trajectories from 146 patients, and 25,822 and 27,130 recording sites of LFP and
88 spiking activity, respectively. Further details are shown in Table 1. The FOOOF
89 algorithm²³ decomposed the neuronal activity into aperiodic and periodic components
90 (Fig. 1). The aperiodic exponents were used to whiten the power spectral densities
91 (PSDs) of the LFP and the rectified spiking discharge rate (SPK) activity.

92

93 *Goodness of fit of the FOOOF analysis to the LFP and SPK activity*

94 We applied the FOOOF algorithm to both LFP and SPK single site recordings to
95 separate their PSDs into aperiodic and periodic components. Fig. 2 depicts the STN
96 LFP and SPK population mean of the raw PSDs and their aperiodic and periodic
97 components. The goodness of fit of the FOOOF analysis is assessed by the R^2 and
98 mean absolute error values (MAE, error). Optimally, R^2 and error should be as close
99 as possible to 1 and zero, respectively. The R^2 values of LFP are 0.99 ± 0.01 (mean \pm
100 SD) in the three STN subregions. The R^2 values of SPK are 0.64 ± 0.17 , 0.89 ± 0.15
101 and 0.65 ± 0.17 in Pre-STN, dorsal lateral oscillatory region of STN (DLOR) and
102 ventral medial non-oscillatory region of STN (VMNR), respectively.

103

104 The SPK lower R^2 values can be explained by its lower exponent values relative to
105 LFP (Fig. 2 and 3B). Our numerical simulations (Figure S2A and S2B) demonstrate
106 that exponents close to zero (as for our SPK activity) yield lower R^2 values, and that
107 as the absolute value of the exponent grows, the R^2 value approaches 1. The addition
108 of the periodic component of the signal reduces the effect of the exponent on the R^2
109 values. This explains why the R^2 values of SPK in pre-STN and VMNR are lower
110 than those in the DLOR with more prominent periodic components (Fig. 2 and S2).
111 Notably, the error is not affected by the span of the periodic power and exponent (α)
112 values (Fig. S2C). Indeed, both LFP and SPK have low error values in three STN
113 subregions (error < 0.04). We concluded that the FOOOF analysis provided a good fit
114 for our LFP and SPK data in the three STN subregions, and proceeded to compare
115 their aperiodic and periodic components.

116

117 *Significant differences in aperiodic parameters between LFP and SPK activity*

118 The aperiodic parameters are offset and exponent²³. LFP has much larger offsets than

119 SPK in the three subregions (Fig. 2 and 3A). There is no significant difference in LFP
120 offsets between subregions, while SPK offsets in each subregion are similar but
121 significantly different (Table S1).

122
123 The exponents of LFP and SPK are significantly different (2.20 ± 0.40 and $0.11 \pm$
124 0.22, respectively, Fig. 3B). The exponents of LFP and SPK resemble those of Brown
125 noise ($\alpha=2$) and White noise ($\alpha=0$), respectively (Fig. 2 and 3B). LFP exponent in the
126 pre-STN is significantly larger than that in the two subthalamic regions. The detailed
127 results of our multi-comparison analysis are shown in Table S1.

128
129 *Positive correlation between aperiodic parameters of LFP and SPK activity*

130 We evaluated the relationship between aperiodic parameters of LFP and SPK. We
131 found a robust and significant correlation between aperiodic parameters within a
132 signal type (i.e., LFP or SPK) in Pre-STN, DLOR and VMNR. The positive
133 correlation between the offset and exponent in both LFP and SPK signals is strongest
134 in DLOR (Fig. S3). Additionally, we found a mild correlation between different
135 signals' aperiodic parameters in DLOR (Fig. S3). This suggests that the relationship
136 between these parameters is specific to each signal type and does not generalize
137 across different signals in Pre-STN and VMNR, which is different from that in
138 DLOR.

139

140 *Robust differences in periodic power between LFP and SPK activity*

141 Fig. 2 bottom subplots depict the population periodic activity of LFP and SPK in
142 Pre-STN, DLOR and VMNR. Beta oscillations in LFP are clearly observed in the
143 three subregions (Fig. 2A), while in SPK they only exist in DLOR (Fig. 2B). LFP
144 HBeta (20-33Hz) oscillation in DLOR is significantly higher than that in both
145 Pre-STN and VMNR. There is no significant difference in LFP LBeta oscillations
146 between the three subregions.

147

148 SPK has smaller beta power than LFP. Additionally, the frequency distribution of beta
149 oscillations in SPK is obviously different from that in LFP (it is shifted left relative to
150 the LFP). LFP also shows theta and alpha oscillations in the three subregions (Fig.
151 2A), but SPK demonstrates theta oscillations in DLOR and no robust oscillations in
152 Pre-STN and VMNR (Fig. 2B).

153

154 *The difference between LFP and SPK periodic and aperiodic results is not due to the*
155 *data processing methods*

156 To verify that the differences of aperiodic and periodic components between LFP and
157 SPK are not an artifact of the rectification of the SPK signal (Fig. 1C), we also
158 applied rectification to the LFP (Fig. S4). The rectified LFP has a strong goodness of
159 fit of FOOOF analysis ($R^2 \sim 0.99$, error < 0.05 ; Fig. S4C and S4D). The aperiodic
160 parameters of non-rectified and rectified LFPs don't reveal significant qualitative
161 differences (Fig. S4C and S4D). The rectified LFP offsets (Table S2 and Fig. S4C and
162 S4D) are statistically non-different between the three subregions and are much larger

163 than those of SPK (Fig. 3A). The rectified LFP exponent in Pre-STN is steepest,
164 which is same as the non-rectified LFP (Table S3, Fig. S4C and S4D). The average
165 exponent of rectified LFP in the three subregions is 1.78 ± 0.42 , which still resembles
166 Brown noise.

167

168 There are no significant qualitative differences between non-rectified and rectified
169 LFP in both their PSDs (frequency range $>13\text{Hz}$) and aperiodic power (Fig. S4A and
170 S4B). Rectified LFP has higher periodic power in theta and alpha frequency bands,
171 compared with the non-rectified LFP (Fig. S4A and S4B). This is in line with previous
172 studies demonstrating that full-wave rectification of EMG demodulates and enhances
173 underlying low-frequency components of the signal (“carrying” frequencies), which
174 may not be observed in the original signal due to the greater power of
175 higher-frequency components of the signal²⁵.

176

177 We used a numerical simulation to further verify that our observed shift in center
178 frequency of beta oscillations in SPK is not an artifact of our data processing. We
179 simulated Brown noise signals to which we added beta modulation and spikes (Fig
180 S5). The simulation demonstrates that LFP rectification smooths the power
181 distribution in the beta region, but doesn't change the center frequency (Fig. S5A-D).
182 After the addition of Poisson distributed spikes following a threshold crossing, the
183 offset and the exponent of the simulated LFP don't change (Fig. S5F and S5G). After
184 the band-pass (300-2000 Hz) filtering of the wide-band signal in figure S5G, the
185 remaining signal lost its low-frequency components (Fig. S5H). However, the
186 full-wave rectification reinstated the low-frequency (20 Hz) oscillatory component
187 (Fig. S5I). These results reveal, in line with our previous studies²⁶, that spikes don't
188 affect the LFP behavior, and that rectification (absolute operator) of the spiking
189 ($>300\text{Hz}$) activity expose the behavior of the discharge rate of the spikes.

190

191 Fig. S6 shows the differences between the envelope of the discharge rate (SPK, as
192 used in the DBS physiological navigation algorithms^{27, 28} and in this study) versus the
193 analog broad band (3-9000Hz) neuronal activity that include both the LFP and the
194 extracellularly recorded raw spiking activity. The broad-band neuronal signal can be
195 represented by power law distribution with exponent values higher than 2. However,
196 even though having good fitness (Fig. S6B), such broad-band presentation of the
197 neural activity masks the low-frequency oscillations that characterize the LFP and the
198 discharge rate of the STN in the parkinsonian state. This demonstrates the importance
199 of analyzing the LFP and SPK signals separately, as is done in the remainder of this
200 paper.

201

202 *Different distribution of beta oscillation in DLOR of STN between LFP and SPK raw
203 and whitened spectrograms*

204 To reveal the periodic activity, we used the FOOOF exponents to whiten the signals
205 (in frequency and time domain) at the level of each recording site (Fig. S1). The
206 average population spectrograms in fig. 4 are whitened in frequency domain. The

207 whitened LFP average spectrogram demonstrates more clear oscillations than the raw
208 LFP (Fig. 4A, LFP). Robust LFP HBeta periodic activity in the STN becomes visible
209 in the whitened spectrogram after the removal of activity resulting from volume
210 conductance (e.g., from cortical activity). We did this using z-score normalization
211 based on the pre-STN activity for each frequency bin (Fig. 4B, LFP).

212
213 In sharp contrast with the LFP, the whitened SPK spectrogram displays both LBeta
214 and HBeta oscillations in DLOR of STN (Fig. 4A and 4B). Thus, we found that LFP
215 and SPK have different distributions of beta oscillations in DLOR of STN. To verify
216 that this isn't due to the frequency domain whitening procedure, we compared the
217 results of the classical frequency domain method and the time domain whitening
218 method, and found them to be similar in both cases (Fig. S7).

219
220 *Lower peak beta frequency in SPK relative to LFP in the average population PSDs of*
221 *DLOR of STN*

222 Following the analysis of the different frequencies presenting in whitened SPK versus
223 whitened LFP spectrograms (Fig. 4), we analyzed their whitened PSDs in Pre-STN,
224 DLOR and VMNR separately (Fig. 5). In DLOR of STN, both whitened LFP and
225 whitened SPK have clear beta oscillations, though whitened LFP has peak beta power
226 in HBeta, while whitened SPK is in the LBeta range (Fig. 5A). In both Pre-STN and
227 VMNR, the alpha and beta oscillations appear in whitened LFP, but not in whitened
228 SPK. We applied z-score normalization based on the pre-STN activity to reduce
229 confounding effects of volume conductance on the STN activity. The locations of the
230 peak beta power in whitened LFP and whitened SPK in DLOR are still above and
231 below the 20 Hz HBeta-LBeta division line, respectively (Fig. 5B). Whitened LFP has
232 a higher frequency of peak beta power after this normalization compared to before
233 (Fig. 5). The beta oscillations in whitened LFP in VMNR of STN may partly come
234 from the DLOR, because the detection of the transition between the DLOR and
235 VMNR is less accurate and the boundary between the two subthalamic subregions is
236 not always sharp (sometimes the transition from the DLOR to the VMNR is
237 gradual²⁹). Additionally, the VMNR recording might be confounded by the volume
238 conductance of DLOR and/or cortex activity.

239
240 The frequencies of beta oscillations are different across patients. However, they tend
241 to be stable for the same patients and along a single STN trajectory¹. To further
242 explore the relationship between the frequencies of whitened LFP and whitened SPK
243 beta oscillations, we calculated their beta center frequencies (β CFs, referred as LFP
244 β CF and SPK β CF) for each trajectory. The raster displays of same trajectory LFP
245 and SPK β CFs reveal a robust tendency towards the right-lower half (LFP β CF >
246 SPK β CF, Fig. 6A). LFP β CF is significantly higher than SPK β CF, and the
247 fraction of pairs whose LFP β CF is larger than their corresponding SPK β CF far
248 exceeds the fraction that is smaller (Fig. 6A, middle and right subplots). We also
249 estimated β CF in PSDs normalized by frequency and distance (i.e., by the pre-STN
250 activity). The SPK β CF is relatively downshifted more, and the percentage of LFP

251 β CF larger than SPK β CF increases after the z-score normalization (Fig. 6B
252 compared to Fig. 6A).

253
254 Fig. 6C and 6D show β CFs from simultaneously recorded LFP and SPK signals of
255 single sites in DLOR of STN calculated from the PSDs normalized by frequency (Fig.
256 6C) and pre-STN activity (Fig. 6D). At the level of the single recording site (n =
257 9147), SPK β CF also tends to shift downward relative to LFP β CF. Whitening in the
258 temporal domain yields similar results (Fig. S8).

259
260 *Overlapped distribution and coherence of LFP and spiking activity beta oscillations
261 in DLOR of STN*

262 We calculated the regular and whitened magnitude-squared coherence (Fig. S1) of the
263 simultaneously recorded (in the same recording site) LFP and spiking activity to
264 estimate their frequency overlap and synchronicity. The coherence in beta frequency
265 band is higher in STN DLOR than in the other subregions (Fig. S9A and S9B). There
266 is no significant difference between regular and whitened coherences in any of the
267 subregions (Fig. S9B and S9C). Therefore, the distribution of LFP and spiking beta
268 oscillations overlapped in DLOR of STN, and the LFP-SPK signals have the strongest
269 coherence in the HBeta domain.

270
271 *The broader and asymmetric distribution of population SPK and LFP beta
272 oscillations reflects broader distribution of narrow-band frequencies oscillation of
273 single sites with symmetrical band width*

274 The broad and asymmetric distribution of LFP and SPK beta oscillations (Fig. 5) may
275 reflect different scenarios. It could be the result of many single site oscillations with
276 similar broad and asymmetric PSD (Fig. S10A), or of broad and asymmetric
277 distribution of single sites with narrow and symmetric PSD (Fig. S10B). The finding
278 of the down-shift between LFP and SPK β CFs (Fig. 6) is consistent with both
279 scenarios, but would reflect a different physiological mechanism. We therefore
280 calculated the half-band widths and half-side widths at the half-height of the beta
281 peaks in 9147 DLOR sites (from 308 trajectories) where both LFP and SPK beta
282 oscillations were simultaneously detected.

283
284 The population half-band widths of LFP are narrower than that of SPK (Fig. 7A).
285 After alignment to the β CF, the population half-band widths of LFP and SPK are
286 similar (Fig. 7A-C). LFP has a statistically smaller half-band width of beta oscillation
287 in single sites than SPK (Fig. 7D). However, compared to the difference between
288 non-aligned population half-band widths of LFP and SPK (2.3Hz), the difference
289 between their aligned population half-band widths (0.05Hz) and between their
290 half-band widths in single site (0.3Hz) is much smaller. For both LFP and SPK, the
291 aligned population β oscillations reveal symmetric distribution (Fig. 7C, S11A and
292 S11B), while the non-aligned population β oscillations show asymmetric distribution
293 (Fig. 5A, 5B, S11A and S11B). In the single recording sites, both LFP and SPK beta
294 oscillations have symmetric left and right flanks of half-band widths (Fig. S11A and

295 S11B).

296

297 We also evaluated the 1/4 and 3/4 height band widths and their half-side band widths
298 to confirm that our results are not due to a bias introduced from using only the
299 detection of half-band widths. Similar results were obtained (Fig. S11 and S12). Thus,
300 the different population distribution of LFP and SPK beta oscillations don't result
301 from the beta frequency distribution of single site (Fig. S10A), but rather reflect
302 different distribution of single sites' β CFs (Fig. S10B). These results therefore
303 indicate that the non-linear transmission of information from LFP to SPK reflects a
304 population downshift of SPK β CFs compared to LFP β CFs in the STN.

305

306 Discussion

307 In this study, we highlighted the differences and relationship between LFP and the
308 discharge rate of spiking activity (SPK) in Parkinson's patients by separating STN
309 neuronal activity into aperiodic and periodic components²³. We found that the LFP
310 exponent resembled Brown noise ($\alpha=2$), whereas SPK exponent is close to zero, the
311 exponent of white noise ($\alpha=0$). In the periodic components, we unexpectedly found
312 that β CFs were downshifted in SPK relative to LPF in the motor region (DLOR) of
313 STN. The β CFs shift was not caused by a shift in asymmetric distribution of LFP
314 and/or SPK beta oscillations. Rather, our results point to a different distribution of
315 symmetric, narrow oscillations of STN LFP and SPK activities.

316 **Power-law behavior of subthalamic LFP activity.** We found that the LFP displays
317 power-law behavior. The power is inversely and linearly related to the frequency in
318 log-log plots, i.e., there is $1/f^\alpha$ scaling of the power (where α is what we refer as the
319 exponent). We found that LFP exponent in pre-STN is larger than the exponents in
320 STN, but the exponents in DLOR and VMNR don't differ from one another.

321

322 The exponent can be affected by many factors¹⁴, one of which is the relative
323 contribution of excitation and inhibition (E/I ratio)^{24, 30}. However, detailed
324 quantitative anatomy of the relative number and their somatic/dendritic location of
325 STN synaptic input is still missing^{31, 32}. Additionally, the E/I balance reflects the
326 physiological efficacy of the synaptic inputs, which is significantly affected by the
327 frequency and pattern of discharge of the GPe³³, and probably of cortico-STN neurons.
328 Thus, our results showing different exponent values in pre-STN and STN domains
329 cannot be easily framed with the suggested relationships with E/I ratio.

330

331 Our results possibly can be explained by the degree of neuronal expenditure. Greater
332 neural expenditure causes flatter slopes (smaller exponent)^{34, 35}. In PD, the activation
333 of the basal ganglia is profoundly altered, and STN activity is significantly elevated¹⁵.
334 We therefore expect LFP exponent in STN to be smaller than that in Pre-STN. There

335 are other possible explanations for our results as well, and future studies should
336 explore the neuronal/metabolic correlates of the exponent to address this question.

337

338 **Power-law behavior of subthalamic SPK activity.** For the spiking activity, we
339 filtered the raw signals with the 300-6000Hz bandpass filter. In line with our
340 physiological navigation algorithms²⁷, we then rectified the spiking activity by the
341 absolute operator²⁶ resulting in a signal indicating the neuronal discharge rates of the
342 multi-unit, or background activity recorded by our electrodes. This is different from
343 most previous studies that have used the spiking activity (e.g., 300-3000 Hz) of well
344 isolated single neurons^{36, 37}, however, at the price of masking of low-frequency
345 oscillations²⁵.

346

347 Using the FOOOF algorithm, we found the exponents of SPK are significantly
348 smaller than those of LFP (Fig. 3). SPK exponents are around zero, which resembles
349 the characteristics of a random process (white noise). This is in line with the Poisson
350 like distribution of spiking activity¹², the tendency to flat spectrum of cortical and
351 pallidal units^{38, 39}, and the demonstration that the PSD of the aggregate of spike trains
352 (with Poisson pattern and refractory period) has a flat spectrum, resembling that of
353 white noise⁴⁰.

354

355 Probably, the default, background activity of the STN (as of many structures in the
356 nervous system) is random in order to maximize the information capacity of the
357 system, and to maximize the signal-to-noise ratio of the evoked activity. In any case,
358 the possible mechanism and biological significances of the aperiodic parameters of
359 STN spiking activity require further study.

360

361 **The periodic behavior of subthalamic LFP and SPK activity.** LFP more likely
362 represents slow sub-threshold currents (primarily post-synaptic potentials) of a large
363 neuronal population from a radius of several millimeters and is considered to be a
364 proxy of the ‘input’ to the local neural network¹⁴. There are three possible origins of
365 LFP beta oscillations in the STN of PD patients: (1) generated within STN through
366 the network functional connectivity and driven by afferent inputs^{3, 6, 16, 17}; (2)
367 generated by the STN neurons themselves (intrinsic properties and subthreshold
368 somatic activity)¹⁸; (3) generated by the volume conductance of LFP from other
369 locations such as the cortex and other massive subcortical structures^{41, 42}. LFP and
370 SPK beta oscillations aren’t always simultaneously present in the same recording
371 electrode⁴¹. In addition, the magnitude of beta oscillations in LFP in the dorsal STN is
372 larger than that in SPK^{3, 41}, which is also shown in Figs. 2, 4 and 5. The data presented
373 here support the notion that the LFP (in the range of 3-70 Hz) in STN mainly results
374 from the afferent inputs and volume conductance. Notably, a major fraction of the
375 volume conductance is from the cortex, which is also a major source of STN afferents
376 (the hyper-direct pathway). Thus, there is a significant overlap of these possible
377 sources of STN LFP activity.

378

379 We can consider the spiking activity resulting from action potentials of a neuronal
380 structure as reflecting the ‘output’ of the network (since the fraction of interneurons in
381 the basal ganglia structures is minimal)^{26, 43}. PD pathologic mechanism may therefore
382 be better understood by exploring the ‘input-output’ or LFP-SPK relationship in the
383 STN. Previous studies indicate that in the STN of PD: (1) the firing of neurons is
384 phase-locked to LFP beta oscillations^{3, 18}; (2) the power of LFP is coherent with that
385 of SPK in the beta frequency band⁴⁴; (3) the beta phase of LFP modulates the
386 amplitude of the LFP high frequency oscillations (HFO, 200-500 Hz). However,
387 most of these studies were carried on small number of patients, and their analysis of
388 periodic phenomena might be confounded by the aperiodic components of the STN
389 activity. Finally, these studies are in line with our finding of sizeable fraction of
390 neurons with similar frequency of LFP and SPK oscillations (trajectories/units close
391 to the diagonal in Fig. 6 and S8), and the LFP-SPK coherence (Fig. S9).

392

393 Our study shed light on STN input-output question revealing a downshift of the
394 β CFs from LFP (input) to SPK (output) (Figs. 2, 4 and 5). This is correct even for
395 simultaneously recorded LFP and SPK in the same microelectrode, after z-score
396 normalization to remove the volume conducted LFP activity (Figs. 5 and 6). The
397 downshifted β CFs between SPK and LFP suggest a non-linear input-output
398 transformation of STN beta oscillations. The STN neurons encode and integrate their
399 inputs (LFP activity) from cerebral cortex, thalamus and GPe, and then decode the
400 outcome as their spiking activity. While LFP may be equally affected by all synaptic
401 inputs, the spiking activity is more affected by excitatory synapses, and by synapses
402 that are close to the soma. This is a possible source of the non-linearity that causes the
403 downshift of the β CFs toward the low-beta range in this input/output
404 encoding/decoding STN process. That is, spikes can be dissociated from LFP, which
405 even happened in the cortex⁴⁵. Finally, we expect that the STN spiking activity which
406 drives the central and output structures of the basal ganglia, rather than LFP beta
407 oscillations, probably underlies the motor, and possibly also the non-motor (e.g., sleep)
408 symptoms of PD.

409

410 **Conclusions and Limitations.** The LFP and spiking activity in the STN of 146 PD
411 patients were separated into periodic and aperiodic components using FOOOF
412 algorithm. We found the exponent of LFP resembled Brown noise and the exponent of
413 the discharge rate (SPK) was similar to white noise. We also found that the β CF in
414 DLOR of STN is downshifted in SPK compared to LFP. This downshift wasn’t
415 caused by asymmetrical distribution of beta oscillations in a single STN recording site,
416 and probably reflects the unique input-output relationships of STN neurons. Future
417 studies should test if this shift plays a crucial factor in the development of motor and
418 non-motor impairments in PD patients.

419

420 There are several caveats in our study worth noting. Firstly, this is a single center
421 study. Secondly, the results were obtained from Parkinson’s patients. There are no
422 signals from healthy individuals as a control group. Third, it’s difficult to distinguish

423 between power law and log-normal behaviors based on our limited (one-two orders)
424 frequencies (x-scale) tested. Other methods for estimating the exponent, and enabling
425 the detection of other features (e.g. knee) in the log-log plots were not tested here⁴⁶.
426 Finally, the frequency range tested started at 3Hz, and lower frequency (Delta)
427 oscillations were not included. However, the large number of patients and recording
428 sites used in this study support the validity of STN non-linear input-output
429 relationship. This improved understanding of STN pathophysiology and the LFP-SPK
430 beta downshift biomarker will likely pave the way for better adaptive DBS therapy.
431

432 Methods

433 **Patients.** Patients with PD underwent DBS implantation in the STN during the years
434 2016-2021 at Hadassah Medical Center in Jerusalem, Israel. The patients had to be off
435 medications starting the night before the DBS surgery. Inclusion criteria included
436 clinically established PD, eligibility for DBS procedure, and available intraoperative
437 electrophysiological data in the STN. Additionally, these patients consented to the
438 operative procedure and signed informed consent. This retrospective study was
439 approved by the local Institutional Review Board (IRB) committee (0339-21-HMO).
440

441 **Electrophysiological Recordings.** Data were acquired with NeuroOmega systems
442 (Alpha Omega Engineering, Ziporit Industrial Zone, Nof HaGalil, Israel). In each
443 hemisphere, 2 microelectrodes (Alpha Omega Engineering) were simultaneously
444 inserted along the planned trajectory targeting the STN in the central and posterior
445 Ben Gun positions, 2mm apart. In rare cases, only one microelectrode was used in the
446 central position due to the anatomy of the patient. All signals were recorded while the
447 patients were awake, at rest, and off medications (overnight washout). The raw signal
448 was sampled at 44 kHz and band-passed from 0.07 to 9,000 Hz using a hardware 2
449 and 3 pole Butterworth filter, respectively. We began recording at 10mm above target,
450 lowering the electrode between 100-400 μ m and recording for 4 seconds, after 2
451 seconds of stabilization, at each site, until we exited the STN. Further details on
452 microelectrode recordings and data acquisition can be found in our previous papers²⁷.
453

454 **Trajectory selection.** 308 trajectories were included for analysis out of a total of 492
455 microelectrode trajectories recorded during the relevant period (January 2016-June
456 2021). The selection criteria included: (1) the chosen trajectory contained the pre-STN,
457 the dorsal lateral oscillatory region (DLOR) and the ventromedial non-oscillatory
458 region (VMNR); (2) each subregion was longer than 1mm in length. The results
459 reported here were also similar when only the implanted leads were kept in one
460 trajectory per hemisphere (n = 225 trajectories).
461

462 **Data Analysis. Signal pre-processing.** The LFP and spiking signals were obtained by
463 processing the raw data offline (Fig. 1). The LFP was obtained by applying a
464 zero-phase digital 4th order band-pass Butterworth filter with cutoff frequencies
465 3-200Hz (MATLAB R2020b) to the raw signal. To obtain the spiking signal, we

466 applied a zero-phase digital 4th order band-pass Butterworth filter of 300-6000 Hz.
467 Following this step, we rectified the spiking signal by applying the absolute operator
468 and then subtracted the mean (of the rectified signal).

469 *Normalized root mean square (NRMS).* For each recording depth, the RMS of
470 both the LFP and spiking signals were calculated using equation (1)

471

$$EQ1: x_{RMS} = \sqrt{\frac{1}{N} \sum_{n=1}^N |x_n|^2}$$

472

473 where x_{RMS} is the RMS value at this site, N is the number of samples in the
474 time domain signal, and x_n is the nth value of the time signal. We normalized the
475 RMS values for each trajectory by dividing each RMS value by the average RMS
476 value of the first 10 sites (presumed to be an unbiased estimation of the baseline
477 activity in the white matter).

478 *Power spectral density (PSD).* The PSD was estimated from both LFP and the
479 full wave rectified spiking signal in each recording depth using the pwelch method
480 (MATLAB R2020b), with a Hamming window of 2 seconds (resulting a frequency
481 resolution of 0.5 Hz), 50% overlap and frequency range from 3 to 200 Hz. Any sites
482 with a time signal that was shorter in duration than 1.5 times the window size (i.e., <
483 3s) was excluded from the analysis. The PSD values of frequencies that are affected
484 by the power-line noise (within 2 Hz of the 50 Hz frequency and its harmonics) were
485 replaced by the mean value of the closest non-affected values. Replacing the values
486 affected by the power-line noise by linear interpolation of the closest values instead
487 resulted in similar results.

488 The PSD was normalized either by frequency or by frequency and distance. For
489 each recording depth, each PSD value was divided by the total power of the frequency
490 range from 3 to 200 Hz to create a normalized PSD (NPSD). This normalization
491 overcomes the effects of changes in total power (RMS), and will be referred as
492 “normalized by f”. The deviation of NPSD from the mean value of the first 10 depths
493 in pre-STN was calculated, which will be referred as “normalized by f and d” or
494 ‘z-score’.

495 *Outlier removal.* If the value of RMS was more than 3 interquartile ranges above
496 the upper quartile or below the lower quartile, the signal in this recording site was
497 considered to be an outlier and was removed from both the RMS and PSD analyses.
498 The outliers were detected and excluded from the spiking and LFP signals based on
499 their respective RMS.

500 *FOOOF analysis.* The fitting oscillations & one over f (FOOOF) algorithm²³ was
501 used to separate neural power spectra into aperiodic and periodic components.
502 Aperiodic (offset and exponent) and periodic (center frequency, power, and bandwidth)
503 features were extracted from the LFP and rectified spiking (SPK) signals across the
504 frequency range from 3 to 70 Hz. We translated the FOOOF code from Python to
505 MATLAB language. We added one fitting parameter (peak_width_limits_per) to

506 avoid overfitting in high frequency. Each LFP and SPK PSD was fitted with the
507 following settings: `peak_width_limits = [0.8, 12]`, `peak_width_limits_per = [0.02, 0]`,
508 `max_n_peaks = 6`, `min_peak_height = 0.05`, `peak_threshold = 2`, `aperiodic_mode =`
509 `'fixed'`.

510 The FOOOF aperiodic components were used in the whitening procedures
511 detailed below. Finally, we used Spearman's Rho (correlation coefficient) to calculate
512 the relationship between the aperiodic components (offset and exponent) of LFP and
513 SPK in the Pre-STN, DLOR and VMNR.

514 *Whitening procedures.* In each recording site, the PSD values from 3 to 70 Hz
515 were whitened by multiplying each power by its frequency to the power of alpha as in
516 equation 2:

$$EQ2: p_{w_i} = p_{o_i} * f_i^{\alpha}$$

517 Where p_{w_i} is the whitened power at the i^{th} frequency, p_{o_i} is the original power
518 at the i^{th} frequency, f_i is the i^{th} frequency, and α is the aperiodic exponent calculated
519 by applying FOOOF to the PSD data²³. This whitening method was applied to both
520 LFP and spiking PSD (Fig. 1F). The corresponding whitened PSDs were called
521 “whitened LFP PSD” and “whitened SPK PSD”, respectively. This whitening method
522 will be referred as “whitening in frequency domain (pwelch-FOOOF-whitening)”.

523 *Time-domain whitening procedure.* Classical whitening is done in the frequency
524 domain as detailed in previous section. Here, we also whiten our data in the time
525 domain

526 (<https://www.mathworks.com/matlabcentral/fileexchange/65345-spectral-whitening>).
527 We applied the time-domain whitening technique to both the LFP and spiking signals
528 (Fig. S1). We first multiplied the time domain signal by an n-point symmetric Hann
529 window (where n is the length of the signal) to diminish spectral leakage. The Fourier
530 transform of this multiplied signal was then obtained with a fast Fourier transform (fft,
531 MATLAB R2020b). The magnitude and phase of each element were extracted from
532 this signal by computing the absolute value and the angle, respectively. The
533 magnitude values, in the frequency range from 3 to 70 Hz, were then whitened by
534 multiplying each magnitude by its frequency to the power of alpha as in equation 3:

$$EQ 3: m_{w_i} = m_{o_i} * f_i^{\alpha}$$

535 Where m_{w_i} is the whitened magnitude at the i^{th} frequency, m_{o_i} is the original
536 magnitude at the i^{th} frequency, f_i is the i^{th} frequency, and α is the aperiodic exponent
537 calculated from FOOOF on the magnitude data²³. The modified signal was then
538 transformed back to the time domain using MATLAB's inverse fast Fourier transform
539 (ifft, MATLAB R2020b) function to obtain the whitened signal (henceforth referred to
540 as the “whitened LFP signal” and the “whitened SPK signal”) (Fig. S1-E1 and S1E2).
541 The whitened PSD was then estimated from the whitened signal in each recording
542 depth using the pwelch method (MATLAB R2020b) as described above. Henceforth,
543 we will refer to this method as whitening in time domain

544 (FFT-FOOOF-whitening-iFFT-pwelch).

545 *Coherence analysis.* The coherence analysis between the LFP and rectified
546 spiking signals of the same microelectrodes was estimated using the magnitude
547 squared coherence function (MATLAB R2020b) with a Hamming window of 2
548 seconds (for a sampling rate of 44 KHz, resulting a frequency resolution of 0.5 Hz),
549 50% overlap. We show the frequency range from 3 to 70 Hz (Fig. S1D). We
550 performed the same coherence analysis on the whitened LFP and SPK signals using
551 the same parameters except that we limited the frequency range from 3 to 70 Hz
552 already at stage of the time-domain whitening since the value of aperiodic exponent
553 (alpha) was obtained at this range (Fig. S1F).

554 *Delimitating STN subregions.* The Hidden Markov Model (HMM) algorithm was
555 used to automatically detect the pre-STN, DLOR, VMNR and post-STN regions²⁷
556 from the spiking signal. We used these results to define the regions in both the SPK
557 and LFP analyses (Fig. 1E1 and 1E2).

558 *Averaging the PSD within safe boundaries.* The HMM algorithm enforces sharp
559 transitions between regions. To maximize the reliability of our subregion definition,
560 we chose to exclude the 0.5mm nearest to the border of each region thereby
561 establishing “safe boundaries”. Thus, in the DLOR and VMNR we excluded 0.5 mm
562 nearest to the detected borders of both entry and exit, and for pre-STN we excluded
563 the final 0.5mm preceding the exit (Fig. 1E1 and 1E2). We averaged the PSD within
564 the safe boundaries in each subregion. These averaged PSD from 3 to 70 Hz were
565 used for the FOOOF analysis (Fig. 1F).

566 *The simulation of aperiodic and periodic components and the test of their effects*
567 *on the FOOOF fitting R² and mean absolute error (MAE) values.* We simulated (based
568 on the function ($y = \alpha x + b$)) 3-70 Hz spectra without Gaussian periodic elements
569 using aperiodic exponent (α) ranging from -0.25 to 2.25 (Fig. S2 left subplots). The
570 aperiodic offset was set to equal α , in line with our finding of positive linear
571 correlation between the offset and the exponent (Fig. S3). We also simulated spectra
572 with Gaussian periodic elements using the same aperiodic parameters (Fig. S2, right
573 subplots). In this situation, three periodic Gaussian elements with mean, standard
574 deviation and amplitude values of 18 ± 5 Hz and $1.5 \log_{10}(\text{power})$, 25 ± 8 Hz and 3
575 $\log_{10}(\text{power})$, and 35 ± 5 Hz and $2 \log_{10}(\text{power})$, respectively were added. In addition,
576 a random noise with Gaussian distribution was added into each spectrum to achieve
577 mean absolute error (between spectrums with/without Gaussian noise, range from
578 0.005 to 0.145). FOOOF analysis was applied to those simulated spectra to obtain
579 their R² and MAE values. R² values were transformed using inverse hyperbolic
580 tangent. We repeated the above process for each permutation and combination of
581 offset, α and noise 20 times. R² (after hyperbolic arctangent transformation) and
582 MAE values were averaged and their corresponding standard deviations were
583 calculated. The averaged R² values were transformed back using hyperbolic tangent.
584 Only the average values are shown in Fig. S2.

585 *Simulation of Brown noise, LFP, spikes and β oscillations.* We used the
586 dsp.ColoredNoise function (MATLAB 2021a) to generate a Brown noise signal with a
587 length of 8192 samples (simulating a 2 second signal with a sampling rate of 4096

588 samples per second). We applied a high-pass 2nd order Butterworth filter with a
589 0.1Hz cutoff to imitate our patient data which are hardware high-pass filtered at this
590 frequency. We then removed the first and last 2048 samples, leaving only the 4096
591 middle samples in order to avoid filter edge effects. We simulated the β signal by
592 creating a 1 second (4096 samples per second) sine wave at 20Hz with an amplitude
593 of $0.5*SD(x)$ (where x is the Brownian noise signal). We added the β signal to the
594 Brownian noise signal to create the β modulated signal. We then rectified the β
595 modulated signal (i.e., took the absolute value of the signal) and subtracted the mean
596 of the rectified signals (Fig. S5A-D, left).

597 For the LFP plus spiking activity simulations (Figs S5F-I, left subplots), we
598 defined a high amplitude beta signal, with amplitude of $1.2*SD(x)$ in order allow us to
599 define a threshold at which the spikes would ride on the beta peaks, rather than being
600 influenced by low frequency activity due to the Brown noise. We added this high
601 amplitude β signal to the Brownian noise signal (x) to generate the high amplitude
602 β modulated “membrane potential” signal.

603 We then defined the spike threshold as the 60th percentile of the high amplitude
604 beta signal, and in the regions where the amplitude of the high amplitude β
605 modulated signal exceeded the threshold, we added simulated spikes. The added
606 spikes follow a Poisson distributed probability with a mean of 6 spikes per beta peak.
607 The spike signal was defined as a vector of zeros of the same length as the original
608 signal, with zeros replaced by ones at the time stamps where spikes were generated.
609 The spikes were multiplied by $3*max$ (high amplitude beta signal) and added to the
610 high amplitude beta modulated brown noise signal. This signal was then band-pass
611 filtered with a 6th order Butterworth filter at 300-2000Hz. Finally, the filtered signal
612 was rectified by taking the absolute operator.

613 The simulation PSDs were obtained by generating 1000 samples of the time
614 domain signals of each type described above, estimating the spectral density of each
615 using periodogram (MATLAB 2021a) with a Hamming window of 1s and
616 $NFFT=4096$. We performed a \log_{10} transform on the resultant frequency domain
617 signals and frequencies and averaged the results across the 1000 samples. The PSD
618 results are plotted in figure S5A-I on the right.

619 *Alignment to the beta center frequency.* The averaged PSD within DLOR of each
620 trajectory was used to detect the highest peak beta frequency between 13 and 33 Hz as
621 beta center frequency (β CF). The frequency of each site of this trajectory was shifted
622 so the β CF is 0 Hz. This alignment enables us to illustrate the relative distribution of
623 power relative to the center frequency. The alignment to the β CF was applied to LFP
624 and SPK PSDs, as well as their coherence (Fig. 7, S7 and S9). We used the both
625 averaged trajectory PSD and single site PSD. The use of average trajectory PSD
626 enhances the accuracy of the estimate, and since the frequency of beta oscillations
627 along a single trajectory DLOR is highly stable¹.

628 *Calculating band widths of beta oscillation.* The normalized PSD (NPSD) was
629 used to find the highest beta peak and its location from 13-33 Hz. Half the highest
630 peak prominence (half-highest-prom) was used as the reference height for width
631 measurement. The half-band width was calculated by finding the distance between the

632 half-highest-prom on the left and right flanks of the beta oscillation (Fig. 7). The
633 powers around the half-highest-prom and their corresponding frequencies were used
634 for linear fitting to get the left and right edges of the half-band width. The distance
635 between the left (or right) edge and the location of highest beta peak was called
636 half-band-half-side width (Fig. S11). It was calculated at three levels. At the level of
637 the single site ($n = 9147$), we calculated the band widths of beta oscillation separately
638 for each site. At the level of a single trajectory ($n = 308$), we averaged the NPSD
639 within DLOR of each trajectory and calculated the beta band width from the averaged
640 NPSD. At the population level ($n = 1$), we used the average of the NPSD within the
641 DLOR of all trajectories to calculate the beta oscillation bandwidth. A similar
642 procedure was done for the 1/4 height and 3/4 height band widths and their half side
643 band widths.

644 *The simulation of oscillations showing the possible scenarios causing the shift*
645 *between LFP and SPK in the DLOR of STN.* We simulated three broad and
646 asymmetric PSDs with the frequency range from 3 to 70 Hz in single sites: the first
647 one was constructed by three Gaussian elements with mean, standard deviation and
648 amplitude values of 18 ± 5 Hz and $4 \log_{10}(\text{power})$ 25 ± 8 Hz and $2 \log_{10}(\text{power})$, and
649 35 ± 5 Hz and $1 \log_{10}(\text{power})$, respectively; the second one was constructed by three
650 Gaussian elements with mean, standard deviation and amplitude values of 18 ± 5 Hz
651 and $1 \log_{10}(\text{power})$, 25 ± 8 Hz and $4 \log_{10}(\text{power})$, and 35 ± 5 Hz and $0.5 \log_{10}(\text{power})$,
652 respectively; the third one was constructed by three Gaussian elements with mean,
653 standard deviation and amplitude values of 18 ± 5 Hz and $1.5 \log_{10}(\text{power})$, 25 ± 8 Hz
654 and $2 \log_{10}(\text{power})$, and 35 ± 5 Hz and $1 \log_{10}(\text{power})$, respectively (Fig. S10A, left
655 panel). The three broad and asymmetric PSDs were averaged to generate the
656 population PSD (Fig. S10A, right panel).

657 Three narrow and symmetric PSDs with the frequency range from 3 to 70 Hz in
658 single sites were simulated with Gaussian elements. Their mean, standard deviation
659 and amplitude values are 18 ± 5 Hz and $1.5 \log_{10}(\text{power})$, 25 ± 8 Hz and 2
660 $\log_{10}(\text{power})$, and 35 ± 5 Hz and $1 \log_{10}(\text{power})$, respectively (Fig. S10B, left panel).
661 The three narrow and symmetric PSDs were averaged to create the population PSD
662 (Fig. S10B, right panel).

663

664 **Statistical Analysis.** Statistical analyses were performed using MATLAB (R2020b).
665 If not specified, the statistics presented were the mean \pm standard deviation (SD) and
666 statistical significance was set at $p < 0.05$. We used the Bonferroni correction to
667 correct for multiple comparisons. We used the Wilcoxon rank sum test to compare the
668 PSD in each frequency point (Figs. 2, 5, 7, S4, S6 and S7) (two-tailed). The Wilcoxon
669 signed rank test was used for pairwise comparison of beta center frequency and
670 half-band width (Figs. 6, 7, S8, S9, S11 and S12) (two-tailed). The N-way analysis of
671 variance was used to analyze the difference in aperiodic parameters between LFP and
672 SPK (Fig 3 and Table S1, S2 and S3).

673

674 **Acknowledgement.** This study was supported by the grants of the ISF Breakthrough

675 Research program, Grant NO.: 1738/22, Collaborative research center TRR295,
676 Germany. Project number 424778381, Israel-China bi-national scientific foundation
677 (with Mingsha Zhang, BNU), Grant NO.: 3380/20 and the Silverstein foundation (to
678 Hagai Bergman). The scholarship from China Scholarship Council (to Xiaowei Liu).
679 We thank our patients and the members of the clinical teams at the Hadassah Medical
680 Center, Jerusalem, Israel.

681

682 **Contributions.** H.B., and J.G., designed the research; Z.I. performed the deep brain
683 stimulation surgery. H.A., J.F.L., and Z.I. acquired the data; X.L., S.G., H.B., and J.G.
684 made the analysis and interpretation of data. X.L. made the first draft of manuscript;
685 All authors read and approved the final manuscript

686

687 **Data Availability.** The data used in this study is available from the corresponding
688 author upon reasonable request.

689

690 **Code Availability.** The code used in this study is available from the corresponding
691 author upon reasonable request.

692

693 **Reference:**

- 694 1. Zaidel, A., Spivak, A., Grieb, B., Bergman, H. & Israel, Z. Subthalamic span of β
695 oscillations predicts deep brain stimulation efficacy for patients with Parkinson's
696 disease. *Brain* **133**, 2007-2021 (2010).
- 697 2. Levy, R., Hutchison, W.D., Lozano, A.M. & Dostrovsky, J.O. High-frequency
698 synchronization of neuronal activity in the subthalamic nucleus of parkinsonian
699 patients with limb tremor. *Journal of Neuroscience* **20**, 7766-7775 (2000).
- 700 3. Kühn, A.A., *et al.* The relationship between local field potential and neuronal
701 discharge in the subthalamic nucleus of patients with Parkinson's disease.
702 *Experimental neurology* **194**, 212-220 (2005).
- 703 4. Darcy, N., *et al.* Spectral and spatial distribution of subthalamic beta peak activity
704 in Parkinson's disease patients. *Experimental Neurology* **356**, 114150 (2022).
- 705 5. Foffani, G., Bianchi, A.M., Baselli, G. & Priori, A. Movement-related frequency
706 modulation of beta oscillatory activity in the human subthalamic nucleus. *The Journal
707 of physiology* **568**, 699-711 (2005).
- 708 6. Brown, P. & Williams, D. Basal ganglia local field potential activity: character
709 and functional significance in the human. *Clinical neurophysiology* **116**, 2510-2519
710 (2005).
- 711 7. van Wijk, B., de Bie, R. & Beudel, M. A systematic review of local field potential
712 physiomarkers in Parkinson's disease: from clinical correlations to adaptive deep
713 brain stimulation algorithms. *Journal of Neurology*, 1-16 (2022).
- 714 8. Feldmann, L.K., *et al.* Subthalamic beta band suppression reflects effective
715 neuromodulation in chronic recordings. *European Journal of Neurology* **28**,
716 2372-2377 (2021).
- 717 9. Abosch, A., *et al.* Long-term recordings of local field potentials from implanted
718 deep brain stimulation electrodes. *Neurosurgery* **71**, 804-814 (2012).

719 10. Gross, R.E., Krack, P., Rodriguez-Oroz, M.C., Rezai, A.R. & Benabid,
720 A.L.J.M.d.o.j.o.t.M.D.S. Electrophysiological mapping for the implantation of deep
721 brain stimulators for Parkinson's disease and tremor. **21**, S259-S283 (2006).

722 11. Neumann, W.-J., Köhler, R.M. & Kühn, A.A. A practical guide to invasive
723 neurophysiology in patients with deep brain stimulation. *Clinical Neurophysiology*
724 (2022).

725 12. Abeles, M. *Local cortical circuits: an electrophysiological study* (Springer
726 Science & Business Media, 2012).

727 13. Asanuma, H. *The motor cortex* (Raven Press (ID), 1989).

728 14. Buzsáki, G., Anastassiou, C.A. & Koch, C. The origin of extracellular fields and
729 currents—EEG, ECoG, LFP and spikes. *Nature reviews neuroscience* **13**, 407-420
730 (2012).

731 15. Deffains, M., *et al.* Subthalamic, not striatal, activity correlates with basal ganglia
732 downstream activity in normal and parkinsonian monkeys. *Elife* **5**, e16443 (2016).

733 16. López-Azcárate, J., *et al.* Coupling between beta and high-frequency activity in
734 the human subthalamic nucleus may be a pathophysiological mechanism in
735 Parkinson's disease. *Journal of Neuroscience* **30**, 6667-6677 (2010).

736 17. van Wijk, B.C., *et al.* Subthalamic nucleus phase–amplitude coupling correlates
737 with motor impairment in Parkinson's disease. *Clinical Neurophysiology* **127**,
738 2010-2019 (2016).

739 18. Scherer, M., *et al.* Single-neuron bursts encode pathological oscillations in
740 subcortical nuclei of patients with Parkinson's disease and essential tremor.
741 *Proceedings of the National Academy of Sciences* **119**, e2205881119 (2022).

742 19. Kass, R.E., Eden, U.T. & Brown, E.N. *Analysis of neural data* (Springer, 2014).

743 20. Cohen, M.X. *Analyzing neural time series data: theory and practice* (MIT press,
744 2014).

745 21. Ermentrout, B. & Terman, D.H. *Mathematical foundations of neuroscience*
746 (Springer, 2010).

747 22. Bak, P. *How nature works: the science of self-organized criticality* (Springer
748 Science & Business Media, 2013).

749 23. Donoghue, T., *et al.* Parameterizing neural power spectra into periodic and
750 aperiodic components. *Nature neuroscience* **23**, 1655-1665 (2020).

751 24. Christoph Wiest, F.T., Alek Pogosyan, Manuel Bange, Muthuraman Muthuraman,
752 Sergiu Groppa, Natasha Hulse, Harutomo Hasegawa, Keyoumars Ashkan, Fahd Baig,
753 Francesca Morgante, Erlick A Pereira, Nicolas Mallet, Peter J Magill, Peter Brown,
754 Andrew Sharott, Huiling Tan. The aperiodic exponent of subthalamic field potentials
755 reflects excitation/inhibition balance in Parkinsonism. *Elife* **12**, e82467 (2023).

756 25. Yao, B., Salenius, S., Yue, G.H., Brown, R.W. & Liu, J.Z. Effects of surface EMG
757 rectification on power and coherence analyses: an EEG and MEG study. *Journal of*
758 *neuroscience methods* **159**, 215-223 (2007).

759 26. Moran, A., Bergman, H., Israel, Z. & Bar-Gad, I. Subthalamic nucleus functional
760 organization revealed by parkinsonian neuronal oscillations and synchrony. *Brain* **131**,
761 3395-3409 (2008).

762 27. Valsky, D., Marmor-Levin, O., Deffains, M., Eitan, R. & Blackwell, K.T. Stop!

763 Border Ahead: Automatic Detection of Subthalamic Exit During Deep Brain
764 Stimulation Surgery. *Movement Disorders* **32**, 71 (2017).

765 28. Zaidel, A., Spivak, A., Shpigelman, L., Bergman, H. & Israel, Z. Delimiting
766 subterritories of the human subthalamic nucleus by means of microelectrode
767 recordings and a Hidden Markov Model. *Movement disorders* **24**, 1785-1793 (2009).

768 29. Moshel, S., *et al.* Subthalamic nucleus long-range synchronization—an
769 independent hallmark of human Parkinson's disease. *Frontiers in systems*
770 *neuroscience* **7**, 79 (2013).

771 30. Gao, R., Peterson, E.J. & Voytek, B. Inferring synaptic excitation/inhibition
772 balance from field potentials. *Neuroimage* **158**, 70-78 (2017).

773 31. Maling, N., Lempka, S.F., Blumenfeld, Z., Bronte-Stewart, H. & McIntyre, C.C.
774 Biophysical basis of subthalamic local field potentials recorded from deep brain
775 stimulation electrodes. *Journal of neurophysiology* **120**, 1932-1944 (2018).

776 32. Terman, D., Rubin, J.E., Yew, A. & Wilson, C. Activity patterns in a model for the
777 subthalamopallidal network of the basal ganglia. *Journal of Neuroscience* **22**,
778 2963-2976 (2002).

779 33. Atherton, J.F., Menard, A., Urbain, N. & Bevan, M.D. Short-term depression of
780 external globus pallidus-subthalamic nucleus synaptic transmission and implications
781 for patterning subthalamic activity. *Journal of Neuroscience* **33**, 7130-7144 (2013).

782 34. Lendner, J.D., *et al.* An electrophysiological marker of arousal level in humans.
783 *Elife* **9** (2020).

784 35. Arnett, A.B., Peisch, V. & Levin, A.R. The role of aperiodic spectral slope in
785 event-related potentials and cognition among children with and without attention
786 deficit hyperactivity disorder. *Journal of Neurophysiology* **128**, 1546-1554 (2022).

787 36. Plenz, D., *et al.* Self-organized criticality in the brain. *Frontiers in Physics* **9**,
788 639389 (2021).

789 37. Klaus, A., Yu, S. & Plenz, D. Statistical analyses support power law distributions
790 found in neuronal avalanches. *PloS one* **6**, e19779 (2011).

791 38. Rivlin-Etzion, M., Ritov, Y.a., Heimer, G., Bergman, H. & Bar-Gad, I. Local
792 shuffling of spike trains boosts the accuracy of spike train spectral analysis. *Journal of*
793 *neurophysiology* **95**, 3245-3256 (2006).

794 39. Bair, W., Koch, C., Newsome, W. & Britten, K. Power spectrum analysis of
795 bursting cells in area MT in the behaving monkey. *Journal of Neuroscience* **14**,
796 2870-2892 (1994).

797 40. Gao, R. Interpreting the electrophysiological power spectrum. *Journal of*
798 *neurophysiology* **115**, 628-630 (2016).

799 41. Marmor, O., *et al.* Local vs. volume conductance activity of field potentials in the
800 human subthalamic nucleus. *Journal of neurophysiology* **117**, 2140-2151 (2017).

801 42. Wennberg, R.A. & Lozano, A.M. Intracranial volume conduction of cortical
802 spikes and sleep potentials recorded with deep brain stimulating electrodes. *Clinical*
803 *neurophysiology* **114**, 1403-1418 (2003).

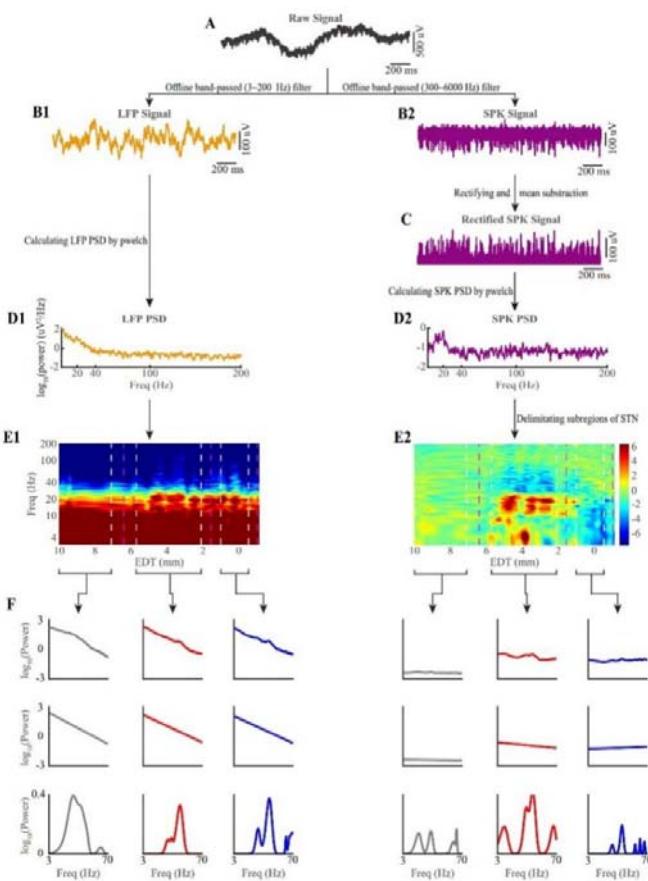
804 43. Hardman, C.D., *et al.* Comparison of the basal ganglia in rats, marmosets,
805 macaques, baboons, and humans: volume and neuronal number for the output, internal
806 relay, and striatal modulating nuclei. *Journal of Comparative Neurology* **445**, 238-255

807 (2002).

808 44. Weinberger, M., *et al.* Beta oscillatory activity in the subthalamic nucleus and its
809 relation to dopaminergic response in Parkinson's disease. *Journal of neurophysiology*
810 **96**, 3248-3256 (2006).

811 45. Rule, M.E., Vargas-Irwin, C.E., Donoghue, J.P. & Truccolo, W. Dissociation
812 between sustained single-neuron spiking and transient β -LFP oscillations in primate
813 motor cortex. *Journal of Neurophysiology* **117**, 1524-1543 (2017).

814 46. Gerster, M., *et al.* Separating neural oscillations from aperiodic 1/f activity:
815 challenges and recommendations. *Neuroinformatics* **20**, 991-1012 (2022).


816

817

818

819

820

821

822 Figure 1: **Electrophysiological pre-processing and analysis.** (A) Two seconds'
823 example of raw signal band-passed filtered from 0.07 to 9000 Hz. (B1) The LFP

824 signal is obtained by zero-phase band-pass filtering the raw signal from 3-200Hz. (B2)
825 The spiking (SPK) signal is obtained by zero-phase band-pass filtering of the raw
826 signal from 300 to 6000 Hz. (C) The rectified SPK signal is obtained by applying the
827 absolute operator to the spiking signal and then subtracting the mean. (D1) The LFP
828 power spectral density (PSD) in the range of 3 to 200 Hz is obtained by pwelch
829 function (MATLAB). (D2) The SPK PSD (3 to 200 Hz) is obtained by applying the
830 pwelch function to the mean-subtracted rectified SPK signal. (E1 and E2)
831 Spectrograms and delimitating sub-regions of STN. X-axis is the estimated distance to
832 the target (EDT). Y-axis is the frequency from 3 to 200 Hz (logarithmic scale). The
833 spectrogram's color-scale represents $10 \cdot \log_{10}(\text{spectral power} / \text{average spectral power})$.
834 The first and third vertical magenta dashed lines indicate the entry and exit of STN,
835 respectively, and the second one represents the boundary between the dorsolateral
836 oscillatory region (DLOR) and the ventromedial non-oscillatory region (VMNR). The
837 vertical white dashed lines represent the safe 0.5 mm margins of each sub-region.
838 STN borders were found by hidden Markov analysis (HMM) of neural spiking in E2,
839 and were copied to the same trajectory LFP data in E1. (F) The first row shows the
840 averaged PSD (from 3 to 70 Hz) of each sub-region of a single trajectory. The
841 aperiodic (row 2) and periodic (row 3) components of LFP and SPK activity of this
842 single trajectory are obtained by applying FOOOF analysis to the averaged PSD in the
843 first row. The columns indicate the regions: pre-STN (grey), STNDLOR (red) and
844 STN VMNR (blue). See also Figure S1.

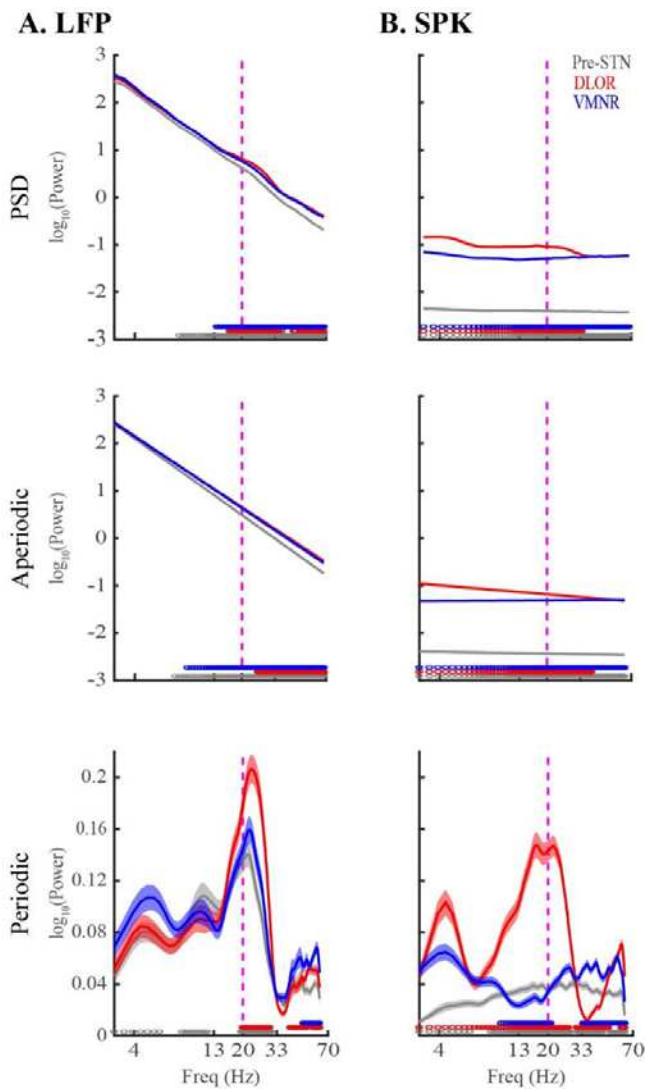
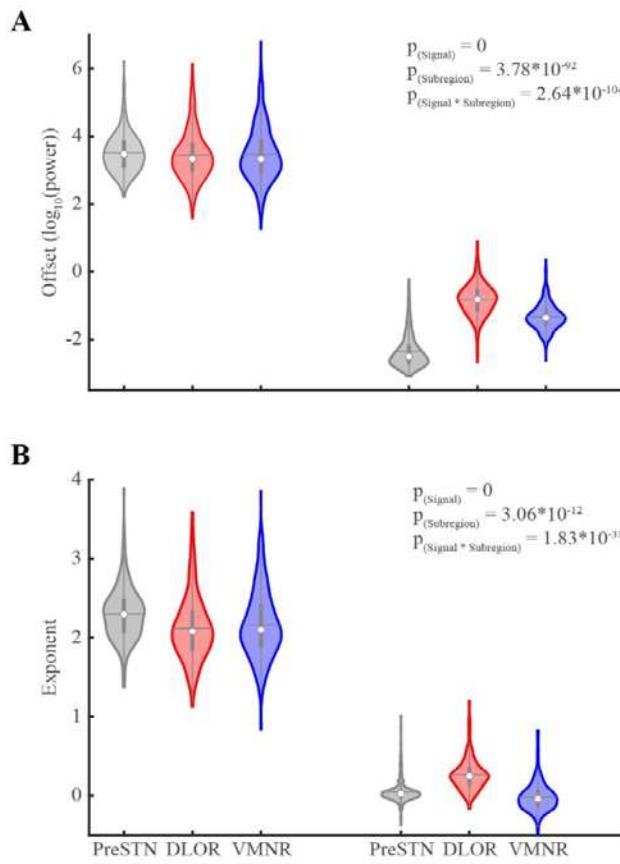
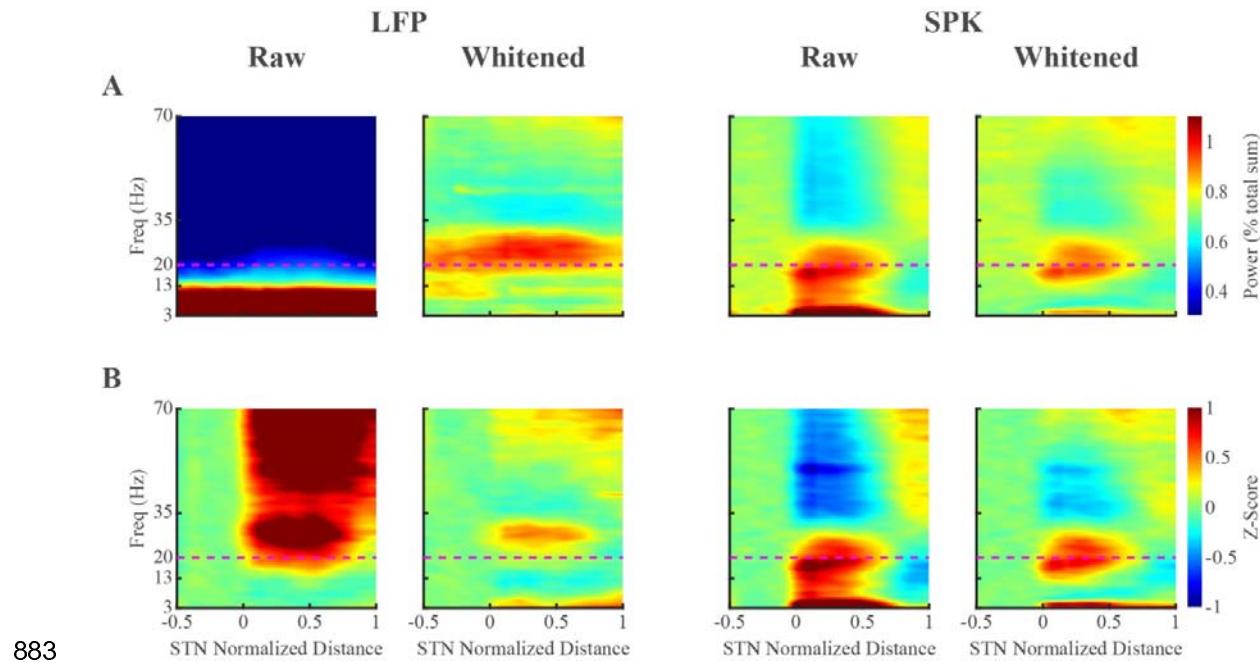



Figure 2: **Robust differences in aperiodic and periodic components of subthalamic LFP and spiking (SPK) population activity.** (A) Population mean LFP PSD (row 1) and its aperiodic (row 2) and periodic (row 3) components in three STN sub-regions. (B) Population mean SPK PSD (row 1) and its aperiodic (row 2) and periodic (row 3) components in the same three STN sub-regions. The grey/red/blue lines indicate the pre-STN, STN-DLOR and STN-VMNR, respectively. Their corresponding shade lines indicate SEM. The colored circles above the x-axes represent the frequencies at which there was a significant difference between the pre-STN and DLOR (grey), between the DLOR and VMNR (red), and between the VMNR and pre-STN (blue). Significance was calculated using the Wilcoxon rank sum test and the Bonferroni correction ($p < 0.05/3 = 0.0167$). Vertical dashed lines represent the 20 Hz frequency point. See also Figures S2, S3, S4, S5 and S6.


860

861

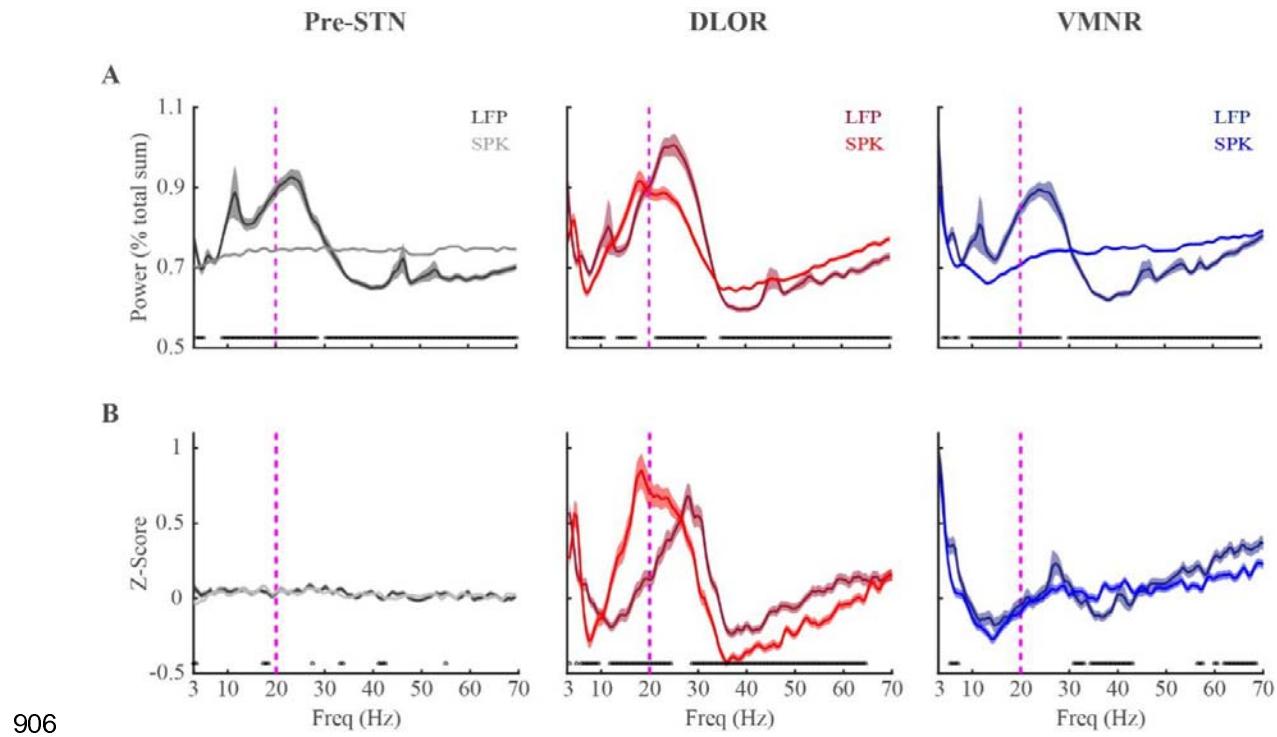
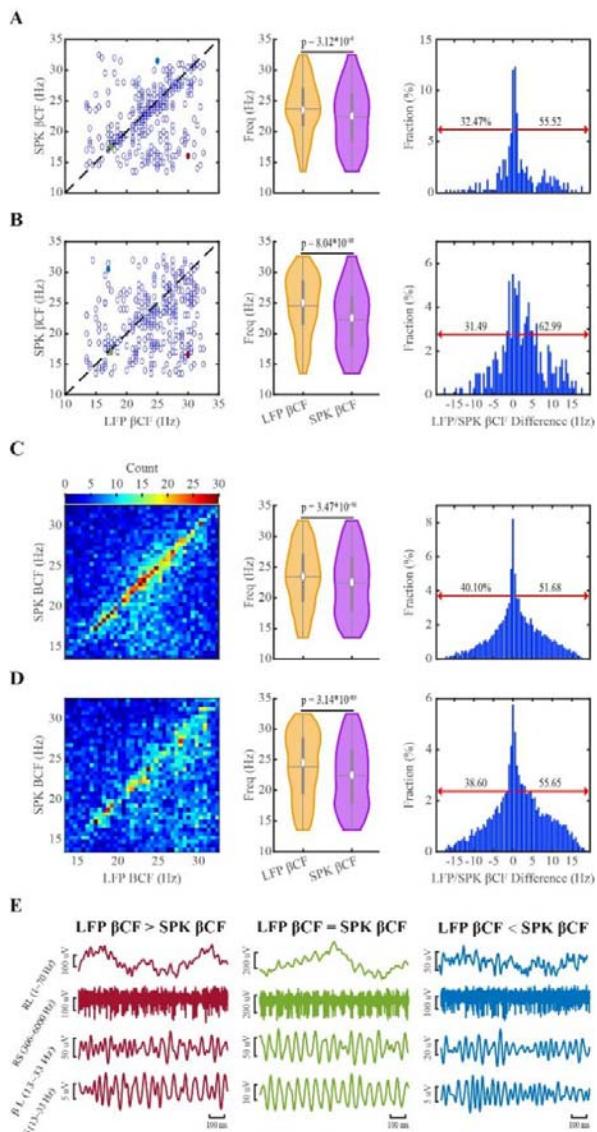
862 **Figure 3: Significant differences in aperiodic parameters of LFP and spiking**
863 **(SPK) activity in the sub-regions of the subthalamic nucleus.** (A) The aperiodic
864 offset parameter of LFP and spiking (SPK) in three STN sub-regions. (B) The aperiodic
865 exponent parameter of LFP and SPK in three STN sub-regions. The pre-STN is shown
866 in grey, the STN-DLOR in red, and the STN-VMNR in blue. The contour of the violin
867 plots shows the distribution of the data. The white circle shows the median. The
868 horizontal grey line represents the mean. The grey vertical bold lines span from the
869 25th to the 75th percentiles of the sample, and the length of this line is the inter-quartile
870 range. The lowest and highest whiskers of the violin plots are values which are 1.5
871 times the inter-quartile range below the 25th percentile and above the 75th percentile.
872 The N-way analysis of variance was used to analyze the difference of aperiodic
873 parameters. The $P_{(\text{Signal})}$ indicates that there is a significant difference in offset or
874 exponent values between LFP and spiking (SPK) activity (offset: $p = 0$; exponent: $p =$
875 0). The $P_{(\text{Subregion})}$ indicates the statistical difference of offset or exponent values
876 between pre-STN, DLOR and VMNR (offset: $p = 3.78 \times 10^{-92}$; exponent: $p =$
877 3.06×10^{-12}). The $P_{(\text{Signal} * \text{Subregion})}$ represents the interaction effect of the difference of
878 offset and exponent values between the signal types and sub-regions (offset: $p =$
879 2.64×10^{-104} ; exponent: $p = 1.83 \times 10^{-31}$). Detailed results of multiple comparisons are
880 shown in Table S1. See also Figures S2, S3, S4, S5 and S6.

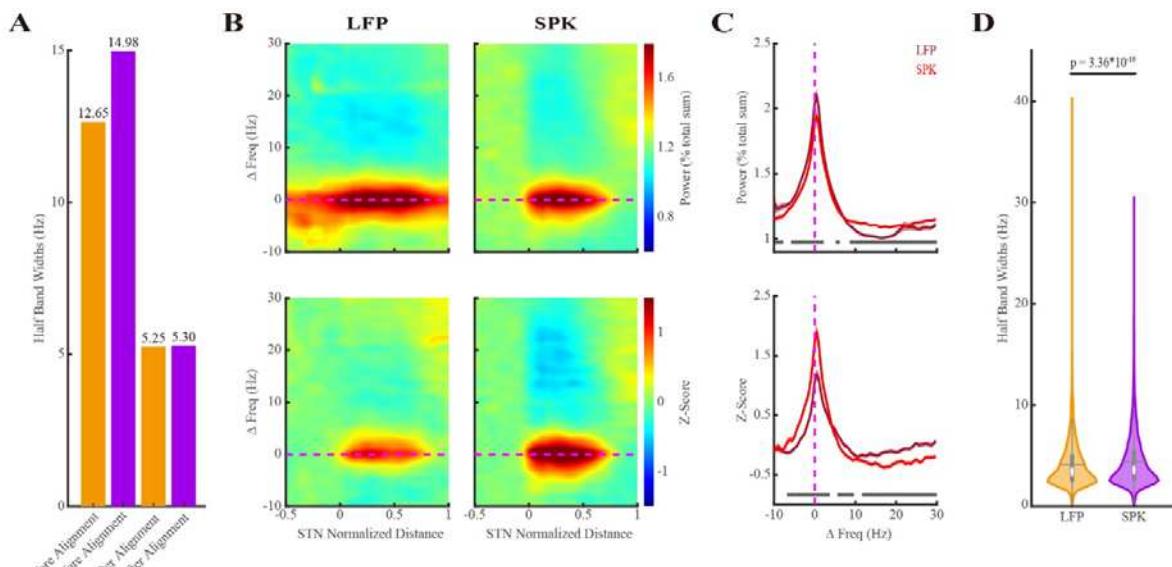
881

883

884

885 **Figure 4: Raw and whitened averaged spectrograms reveal differences in beta**
886 **frequency distribution between LFP and spiking (SPK) activity in the**
887 **dorsolateral oscillatory region of subthalamic nucleus.** (A) Raw and whitened
888 spectrograms of LFP and SPK are normalized by the total amount of power in the
889 tested frequency range (3-70Hz) for each tested distance site (normalization by
890 frequency). (B) The raw and whitened spectrograms of LFP and SPK are normalized
891 by frequency (as in A) and by the power in the pre-STN domain per each frequency
892 bin (normalization by distance). The spectrograms in columns 2 and 4 of A and B are
893 whitened in frequency domain ($p_{w_i} = p_{o_i} * f_i^\alpha$, p_{w_i} is the whitened power at the i^{th} -
894 frequency, p_{o_i} is the original power at the i^{th} frequency, f_i is the i^{th} frequency, and α
895 is the aperiodic exponent of each recording site). The x-axis is the normalized
896 distance to the target (normalize STN length from entry to exit to 1). The entrance and
897 exit of STN are represented by 0 and 1, respectively. The negative values on the x axis
898 indicate the pre-STN region. The y-axis is frequency in linear scale. The color-scale
899 of the power spectral density normalized by frequency (A) indicates the percentage
900 power of frequency bin out of total power. The color-scale of the power spectral
901 density normalized by frequency and by distance (B) represents the deviation from the
902 mean value of the first 10 depths in pre-STN (z-score, standard deviation unit). The
903 horizontal magenta dashed line is the referenced line of 20 Hz. See also Figure S7.
904
905


Figure 5: **Averaged power spectrum densities show that the peak beta oscillations in spiking (SPK) activity is at a lower frequency than that of LFP in the dorsolateral oscillatory region of the subthalamic nucleus.** (A) The PSDs of LFP and SPK are normalized by frequency in three sub-regions. (B) The PSDs of LFP and SPK are normalized by frequency and by distance (Pre-STN activity). The dark and light lines indicate the LFP and SPK respectively in the pre-STN (grey), STN-DLOR (red) and STN-VMNR (blue). Their corresponding shade lines indicate SEM. The black circles above the X-axes indicate frequencies at which there were significant differences (Wilcoxon rank sum test) between LFP and spiking activity. See also Figure S7.

920

921 **Figure 6: Downshift of the center frequency of beta oscillations of spiking (SPK)**
 922 **activity compared to LFP in the dorsolateral oscillatory region of subthalamic**
 923 **nucleus.** (A and B) The unit to get beta center frequencies (β BCFs) is trajectory. (C and
 924 D) The unit to get β BCFs is single recording site. (A and C) The β BCFs are obtained
 925 from the frequency-normalized power spectra. (B and D) The β BCFs are obtained from
 926 the frequency- and distance-normalized power spectra. The dark dashed lines on left
 927 panel of A and B are the diagonal line (at which $x=y$). The violins in the middle panel
 928 of A, B, C and D demonstrate the distribution of β BCFs of LFP and SPK. The
 929 significance levels shown in the violin plots were calculated by the Wilcoxon signed
 930 rank test. In the right panel, the red arrows indicate the percentage of SPK β BCFs that
 931 were upshifted (left) and downshifted (right) compared to the corresponding LFP
 932 β BCFs. (E) shows the raw signals of three examples (LFP β BCF is larger than, equal to,
 933 or smaller than SPK β BCF, from left to right). The examples shown in E are marked in
 934 the corresponding colors (red, green, and blue) on the left panel of A and B. RL: raw
 935 LFP; RS: raw SPK; β L: β frequency band of LFP; β S: β frequency band of SPK. See

936 also Figures S8, S9 and S10.

937

938

939 **Figure 7: The distributional of beta oscillations of LFP and spiking (SPK) activity**
940 **in single site is narrower than the population distribution of beta oscillation in**
941 **the STN DLOR.** (A) The population half-band width of LFP and SPK beta
942 oscillations in dorsolateral oscillatory region of subthalamic nucleus. The first and
943 second orange/purple bars indicate the half-band width of LFP/SPK before and after
944 the alignment to the peak beta frequency, respectively. (B) The spectrograms of LFP
945 (left panel) and SPK (right panel) are whitened in the frequency domain and their
946 frequencies are shifted to the peak beta frequency. The color-scale in the first row of B
947 indicates the percentage of total power. The color-scale in the second row of B
948 represents the standard deviation from the mean value of the first 10 depths in
949 pre-STN (z-score). The horizontal magenta dashed line is the reference line of the
950 peak beta frequency (Δ Freq = 0 Hz). (C) The averaged power spectrum of LFP (dark
951 red line) and SPK (light red line) in the dorsolateral oscillatory region (DLOR) the of
952 STN. Their corresponding shade lines indicate SEM. The power spectrum is
953 normalized by frequency (upper subplot) and by frequency and distance (lower
954 subplot). (D) Violin plots of the distribution of half-band widths of LFP and spiking
955 beta oscillations (4.10 ± 2.34 Hz vs 4.40 ± 2.62 Hz (mean \pm SD), respectively) in each
956 recording site. The Wilcoxon signed rank test was used for pairwise comparison of
957 half-band widths between LFP and spiking activity. See also Figures S10, S11 and
958 S12.

959

960

961

962

963

964

965

Table 1. Demographics of patients, trajectories and STN

Demographics	Results	
Patients (N)	146	
Age (years) (Mean \pm SD)	62.03 \pm 9.63	
Gender (N, %)		
Male	100 (68.49%)	
Female	46 (31.51%)	
Disease Duration (years) (Mean \pm SD)	10.17 \pm 3.84	
Preoperative LEDD (mg) (Mean \pm SD)	1,020.71 \pm 545.48	
Preoperative UPDRS-II scores (Mean \pm SD)		
Off medication	43.43 \pm 12.73	
On medication	19.76 \pm 8.99	
Total trajectories (N)	492	
Trajectories included (N)	308	
Right (E1, E2)	156 (68, 88)	
Left (E1, E2)	152 (72, 80)	
Recording Sites	LFP	SPK
Total sites (N)	42,680	42,680
Sites included (N, %)	25,822 (60.50%)	27,130 (63.57%)
Sites excluded (N, %)	16,858 (39.50%)	15,550 (36.43%)
Short signal length (N, %)	1,288 (3.02%)	1,288 (3.02%)
Outliers of RMS (N, %)	2,262 (5.30%)	434 (1.02%)
Trajectories excluded (N, %)	13,308 (31.18%)	13,828 (32.40%)
The length of sub-regions (mm) (Mean \pm SD)	LFP	SPK
Pre-STN	4.35 \pm 1.51	4.40 \pm 1.50
DLOR	3.03 \pm 1.08	3.06 \pm 1.09
VMNR	2.63 \pm 0.96	2.63 \pm 0.96
DLOR-Per	0.53 \pm 0.14	0.53 \pm 0.14

STN: Subthalamic nucleus. SD: Standard deviation. N: number. LEDD: levodopa equivalent daily dose. E1: electrode 1 (Ben-Gun posterior location). E2: electrode 2 (Ben-Gun central location). DLOR: Dorsal lateral oscillatory region. VMNR: Ventral lateral non-oscillatory region. DLOR-Per: The percentage of DLOR length out of the total STN length (DLOR+VMNR)

966