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Abstract 

Polygenic risk scores (PRS) are now showing promising predictive performance on a wide 

variety of complex traits and diseases, but there exists a substantial performance gap across 

different populations. We propose ME-Bayes SL, a method for ancestry-specific polygenic 

prediction that borrows information in the summary statistics from genome-wide association 

studies (GWAS) across multiple ancestry groups. ME-Bayes SL conducts Bayesian hierarchical 

modeling under a multivariate spike-and-slab model for effect-size distribution and incorporates 

an ensemble learning step to combine information across different tuning parameter settings and 

ancestry groups. In our simulation studies and data analyses of 16 traits across four distinct 

studies, totaling 5.7 million participants with a substantial ancestral diversity, ME-Bayes SL 

shows promising performance compared to alternatives. The method, for example, has an 

average gain in prediction R2 across 11 continuous traits of 40.2% and 49.3% compared to PRS-

CSx and CT-SLEB, respectively, in the African Ancestry population. The best-performing 

method, however, varies by GWAS sample size, target ancestry, underlying trait architecture, 

and the choice of reference samples for LD estimation, and thus ultimately, a combination of 

methods may be needed to generate the most robust PRS across diverse populations. 

 

Keywords: Bayesian hierarchical modeling, Effect-size distribution, Ensemble learning, 

Genome-wide association studies, Multi-ancestry polygenic prediction, Polygenic architecture. 
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Introduction 

Polygenic models for predicting complex traits are widely developed utilizing summary-level 

association statistics from genome-wide association studies (GWAS). While being on course to 

translate GWAS results into clinical practice, polygenic risk scores (PRS) encounter obstacles 

due to the poor predictive performance on underrepresented non-European (non-EUR) ancestry 

populations, especially those with substantial African ancestry1-4.  As sample sizes for GWAS in 

many non-EUR populations remain low for many traits, applications of PRS often rely on EUR-

based models, which underperform in other populations due in part to differences in allele 

frequencies, SNP effect sizes, and linkage disequilibrium (LD)1-3,5,6. 

 

To improve the poor performance of PRS on non-EUR populations, several multi-ancestry 

methods have recently been developed to combine information from available GWAS summary 

statistics and LD reference data across multiple ancestry groups. One simple approach is the 

weighted PRS7, which trains a linear combination of the PRS developed using single-ancestry 

methods (e.g., LD clumping and P-value thresholding, C+T) applied separately to available 

GWAS data across different ancestry groups7. More recent methods attempt to borrow 

information across ancestry at the level of individual SNPs based on Bayesian methods8,9, 

penalized regressions10,11, or through the extension of C+T12. However, applications show that 

no single method performs uniformly the best, and their performance depends on many aspects, 

including the underlying genetic architecture of the trait, the absolute and relative sample sizes 

across populations, and the algorithm for the estimation of LD based on the underlying reference 

dataset12. 
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We propose ME-Bayes SL, a novel method for developing ancestry-specific PRS by jointly 

modeling ancestry-specific GWAS summary data across diverse ancestries. ME-Bayes SL 

consists of two steps, a Bayesian modeling step which specifically models the genetic correlation 

in SNP effect size across ancestries via a multivariate spike and slab prior (<ME-Bayes=), and a 

super learning (SL) step to seek an <optimal= combination of a series of PRS obtained from ME-

Bayes under different tuning parameter settings and across ancestries. We evaluate the proposed 

method and benchmark it against a variety of alternatives through large-scale simulation studies 

and analyses of 16 traits from four different studies: (1) the Population Architecture using 

Genomics and Epidemiology (PAGE) Study supplemented with data from the Biobank Japan 

(BBJ) and UK Biobank (UKBB), (2) Global Lipids Genetics Consortium (GLGC), (3) All of US 

(AoU), and (4) 23andMe, Inc. These studies, with training data and additional validation samples 

from the UKBB study, included a total of 3.4 million European (EUR), 226K Admixed African, 

African, or African American (AFR), 437K Admixed Americans or Hispanic/Latino (AMR), 

389K East Asian (EAS), and 56K South Asian (SAS). Results reveal the promising performance 

of ME-Bayes SL for developing robust PRS in the multi-ancestry setting and identify a number 

of practical considerations for implementations that are crucial to the performance of the method. 

 

Results 

ME-Bayes SL Overview 

Considering that GWAS summary-level association statistics can be shared much more easily 

among research teams than individual-level genotype and phenotype data, we will focus on PRS 

methods that can use summary-statistics from the GWAS training samples. The implementation 

of our proposed method ME-Bayes SL, as well as other multi-ancestry methods which we will 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2023. ; https://doi.org/10.1101/2023.04.12.536510doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.12.536510
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

compare ME-Bayes SL to, requires three (ancestry-specific) datasets from each training ancestry 

group: (1) GWAS summary data, (2) LD reference data, and (3) a validation (tuning + testing) 

dataset with genotype and phenotype data for an adequate number of individuals that are 

independent of GWAS samples and LD reference samples. 

 

 

Figure 1: ME-Bayes SL Workflow. [Step 0] apply LDpred2 to each of the K training 
populations (ancestry groups) to obtain estimated causal SNP proportions (�ā , ā = 1,& ,ă) and 
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heritability (/ā2, ā = 1,& ,ă) parameters based on the tuning set, these parameters will be used 
to specify the prior distributions and tuning parameter settings for ME-Bayes. [Step 1] ME-
Bayes: jointly model across all training populations to obtain a total of (L×K) PRS models under 
L different tuning parameter settings for Pr⁡(�1Ā ,& , �þĀ) (functions of �ās) and ÿā1ā2s across K 

training populations. [Step 2] for the target population, apply the super learning (SL) algorithm 
with 3 base learners (elastic net regression, ridge regression, and linear regression) to train an 
<optimal= linear combination of the (L×K) PRS models, which we call the ME-Bayes SL PRS 
model, based on the tuning set of the target population. The prediction performance of the final 
ME-Bayes SL PRS model should be evaluated on an independent testing set. 

 

We now introduce ME-Bayes SL, a novel method for enhanced ancestry-specific polygenic risk 

prediction based on available GWAS summary-level association statistics and LD reference data 

across multiple ancestry groups. ME-Bayes SL consists of two steps (Figure 1): (1) a Bayesian 

modeling step (<ME-Bayes=) to model the genetic correlation structure in SNP effect size across 

ancestry groups while accounting for ancestry-specific LD across SNPs, and (2) a super learning 

(SL) step to construct an <optimal= linear combination of a series of PRS obtained from ME-

Bayes under different tuning parameter settings and across all ancestry groups. Additionally, a 

step 0 was conducted before step 1 to obtain tuned causal SNP proportion and heritability 

parameters for each training ancestry group from LDpred2. These parameters will be used to 

specify the prior causal SNP proportions and heritability parameters in ME-Bayes. 

 

Step 1: ME-Bayes: a Bayesian model for estimating ancestry-specific SNP effect sizes 

ME-Bayes tailors effect size estimates for each ancestry group by incorporating data from other 

ancestry groups via Bayesian hierarchical modeling with a multivariate spike and slab prior on 

SNP effect sizes across ancestry groups. For population-specific SNPs, i.e., SNPs with minor 

allele frequency (MAF)>0.01 in only one ancestry group, we assume a spike-and-slab prior as in 

LDpred2. For SNPs that are polymorphic across multiple populations, the between-SNP 

correlation is induced in two aspects: (1) we assume a SNP is causal in all those populations or 
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none, and (2) the effect sizes for causal SNPs across populations are correlated (see Online 

Methods for details). The prior specification is distinct compared to the recent method PRS-CSx8 

in two aspects: (1) the use of a multivariate spike-and-slab prior versus a continuous shrinkage 

prior to perform shrinkage estimation; and (2) flexible specification of genetic correlation 

structure across ancestry groups in ME-Bayes SL compared to PRS-CSx, which assumes a single 

hyperparameter is shared across different ancestry groups and thus incorporates as fairly rigid 

specification of the correlation structure. 

 

We infer posterior estimates of LD-adjusted SNP effect sizes across different ancestries via an 

efficient Markov chain Monte Carlo (MCMC) algorithm (Online Methods). Multiple PRS will 

be developed for each ancestry under carefully designed settings of two sets of tuning 

parameters, (1) the causal SNP proportion in each ancestry group, which will be used to specify 

the correlated prior causal probabilities across ancestry groups (Online Methods), and (2) the 

between-ancestry genetic correlation in SNP effect sizes. Ancestry-specific SNP effect sizes are 

estimated based on MCMC with an approximation strategy previously implemented in the 

LDpred2 algorithm13, which substantially reduces the number of iterations required to reach 

convergence with a spike-and-slab type prior on a large number of correlated SNPs. Detailed 

MCMC algorithm and estimation procedure are described in Online Methods. 

 

Step 2: Super Learning (SL) 

Research has shown that combining multiple C+T PRS under different p-value thresholds14 or 

combining the best ancestry-specific PRS across multiple ancestry groups7,8 can significantly 

improve predictive performances. Thus, as a second step of ME-Bayes SL, we consider 
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combining PRS obtained from the ME-Bayes step both across different tuning parameter settings 

and across ancestry groups via an SL model trained on the tuning dataset. SL is an ensemble 

learning method for seeking an <optimal= linear combination of various base learners for 

prediction15. In our analyses, we consider three linear base learners, including linear regression, 

elastic net regression16, and ridge regression17. A similar SL procedure was also implemented 

recently in another multi-ancestry method CT-SLEB12. In our simulation studies and real data 

examples, we will show explicitly how much improvement in predictive power can be obtained 

separately through the Bayesian modeling step and the SL step. Considering that both weighted 

PRS and PRS-CSx construct a linear combination of the best PRS for each ancestry group, we 

tried the same approach on our Bayesian model (ME-Bayes) and called this alternative method 

<weighted ME-Bayes=. We observe on both simulated data and real data that the gain in 

predictive power by this linear combination strategy is mostly lower than, and sometimes 

comparable to, the gain by our proposed SL strategy. (Supplementary Figures 1-13, <weighted 

ME-Bayes= versus <ME-Bayes SL=). 

 

Simulation Settings 

We first investigate the performance of ME-Bayes SL and a series of existing methods under 

various simulated scenarios of the genetic architecture of a continuous trait and absolute and 

relative GWAS sample sizes across ancestry groups. This large-scale dataset, including 

simulated genotype and phenotype data for a total of 600,000 individuals across EUR, AFR, 

AMR, EAS, and SAS, was recently released by our group12. Detailed simulation setup is 

described in Zhang et al. (2022)12 and briefly summarized in the Supplementary Notes. We apply 

eight existing approaches for comparison, which include two single-ancestry methods applied to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2023. ; https://doi.org/10.1101/2023.04.12.536510doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.12.536510
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

GWAS and LD reference data from the target population: (1) C+T, (2) LDpred2; the same 

single-ancestry methods applied to GWAS and LD reference data for EUR: (3) EUR C+T, (4) 

EUR LDpred2; and three existing multi-ancestry methods applied to ancestry-specific GWAS 

and LD reference data for all ancestry groups: (5) weighted C+T (weighted PRS using C+T as 

the base method), (6) weighted LDpred2 (weighted PRS using LDpred2 as the base method), (7) 

PRS-CSx8, and (8) CT-SLEB12. Results from another two recently proposed multi-ancestry 

methods, PolyPred+18 and XPASS9, on the same simulated dataset are reported in Zhang et al. 

(2022)12. Taking into account both ancestral diversity and computational efficiency, throughout 

the text, we restrict all our analyses to the SNPs among approximately 2.0 million SNPs in 

HapMap 319 plus Multi-Ethnic Genotyping Array (MEGA)20 that are also available in the 

discovery GWAS, LD reference panel, and validation (tuning + testing) samples. We assess the 

predictive performance of a PRS by prediction R2, i.e., the proportion of variance of the trait 

explained by the PRS. Results of the various methods are compared in five simulation settings: 

(1) fixed common SNP heritability, strong negative selection, with a genetic correlation set to ÿ = 0.8 between any two ancestry groups (Figure 2, Supplementary Figures 1-2), (2) fixed per-

SNP heritability, strong negative selection, ÿ = 0.8 (Supplementary Figures 3-4), (3) fixed per-

SNP heritability, strong negative selection, with a weaker between-ancestry genetic correlation ÿ = 0.6 (Supplementary Figures 5-6), (4) fixed common SNP heritability, no negative selection, ÿ = 0.8 (Supplementary Figures 7-8), and (5) fixed common SNP heritability, mild negative 

selection, ÿ = 0.8 (Supplementary Figures 9-10). 
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Figure 2: Simulation results showing performance of the PRS constructed by ME-Bayes 
SL and various existing methods, assuming a fixed common SNP heritability (0.4) across 
ancestries under a strong negative selection model for the relationship between SNP 
effect size and allele frequency. The genetic correlation in SNP effect size is set to 0.8 across 
all pairs of populations. The causal SNP proportion (degree of polygenicity) is set to 1.0%, 
0.1%, or 0.05% (~192ă, 19.2ă, or 9.6ă causal SNPs). We generate data for ~19 million 
common SNPs (MAFg1%) across the five ancestries but conduct analyses only on the ~2.0 
million SNPs in HapMap 3 + MEGA. The PRS-CSx software only considers approximately 1.2 
million HapMap 3 SNPs and therefore we report the performance of PRS-CSx PRS only based 
on the HapMap 3 SNPs. The discovery GWAS sample size is set to (a) 15,000 or (b) 80,000 for 
each non-EUR ancestry, and 100,000 for EUR. A tuning set consisting of 10,000 individuals is 
used for parameter tuning and training the SL in CT-SLEB and ME-Bayes SL or the linear 
combination model in weighted C+T, weighted LDpred2, and PRS-CSx. The reported ý2 values 
are calculated on an independent testing set of 10,000 individuals for each ancestry group. 

 

Simulation results 

The multi-ancestry methods tend to outperform the single-ancestry methods, except for weighted 

C+T, which performs worse than LDpred2 when GWAS sample size of the non-EUR target 

population becomes adequately large (Figure 2, Supplementary Figures 1-10). When the 

discovery GWAS sample size of the target non-EUR population is relatively small (N=15,000) 

compared to EUR GWAS (N=100,000), EUR PRS tends to outperform PRS generated based on 

training data from the target non-EUR population; but as GWAS sample size of the target non-

EUR population increases, the prediction R2 of LDpred2 eventually becomes substantially higher 

than that of EUR C+T and EUR LDpred2. Among the existing multi-ancestry methods, weighted 

LDpred2, PRS-CSx, and CT-SLEB perform similarly but show advantages over others in 

different settings: weighted LDpred2 performs well in the scenario of a large causal SNP 

proportion, CT-SLEB performs similarly as PRS-CSx but shows some advantages when there is 

a small causal SNP proportion (0.05%) and when GWAS sample size for target non-EUR 

population is small. Overall, the proposed ME-Bayes SL method outperforms these existing 

methods in almost all settings. This is expected given that the SNP effect sizes were simulated 

under a multivariate spike-and-slab distribution as assumed in the ME-Bayes model. The 
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proposed SL step (in ME-Bayes SL) and the alternative linear combination step (in weighted 

ME-Bayes) only provide minimal improvement in R2 on top of ME-Bayes (Supplementary 

Figures 1-10). This may be because when the specified distribution of SNP effect sizes 

approximates the true distribution well, the best PRS trained for each ancestry by ME-Bayes can 

already provide a high predictive power, and an additional step of combining PRS across tuning 

parameter settings and ancestry groups is unnecessary. 

 

We also checked computation intensity of ME-Bayes SL in comparison with PRS-CSx. A 

comparison of computation time between PRS-CSx and CT-SLEB on the same simulation 

dataset was reported in Zhang et al. (2022)12. With AMD EPYC 7702 64-Core Processors 

running at 2.0 GHz using a single core, on chromosome 22 and with a total of 5 ×⁡(K+1) tuning 

parameter settings, ME-Bayes SL has an average runtime of approximately 75.9 minutes 

combining ă=3 ancestry groups with a total of 17,192 SNPs, 127.2 minutes combining ă=4 

ancestry groups with 17,721 SNPs, and 237.4 minutes across ă=5 ancestry groups with 17,722 

SNPs. Although not as fast as simpler methods such as CT-SLEB and XPASS, ME-Bayes SL is 

computationally more efficient than PRS-CSx (K=3: 3.8-fold, K=4: 3.2-fold, K=5: 2.5-fold) and 

thus is easier to implement than PRS-CSx especially when four or more training populations are 

available to be combined. 

 

PAGE + UKBB + BBJ data analysis with validation on non-EUR individuals from PAGE 

We evaluate the performance of the various methods on predicting the polygenic risk of inverse-

rank normal transformed BMI (IRNT BMI), high-density lipoprotein (HDL), and low-density 

lipoprotein (LDL) separately for AFR, AMR, and EAS. We collected ancestry-specific training 
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GWAS summary data for AFR and AMR from PAGE, GWAS summary data for EAS from 

BBJ, and EUR GWAS summary data from UKBB. The PRS developed by the various methods 

are evaluated on validation individuals of AFR, AMR, and EAS populations from PAGE. We 

use genotype data for 498 EUR, 659 AFR, 347 AMR, 503 EAS, and 487 SAS individuals from 

the 1000 Genomes project as the LD reference data21. 

 

Figure 3: Prediction R2 on validation individuals of AFR (N=2,015–3,428), EAS (N=2,316-
4,647), and AMR ancestries (N=3,479-4,397) in PAGE based on discovery GWAS from 
PAGE (AFR NGWAS=7,775 – 13,699, AMR NGWAS=13,894 – 17,558), BBJ (EAS NGWAS=70,657 – 
158,284), and UKBB (EUR NGWAS=315,133 – 355,983). We used genotype data from 1000 
Genomes Project (498 EUR, 659 AFR, 347 AMR, 503 EAS, 487 SAS) as the LD reference 
dataset. All methods were evaluated on the ~2.0 million SNPs that are available in HapMap 3 + 
MEGA, except for PRS-CSx which is evaluated based on the HapMap 3 SNPs only, as 
implemented in their software. Ancestry- and trait-specific GWAS sample sizes, number of 
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SNPs included, and validation sample sizes are summarized in Supplementary Table 3.1. A 
random half of the validation individuals is used as the tuning set to tune model parameters, as 
well as train the SL in CT-SLEB and ME-Bayes SL or the linear combination model in weighted 
C+T, weighted LDpred2, and PRS-CSx. The other half of the validation set is used as the 
testing set to report R2 values for PRS on each ancestry, after adjusting for whether or not the 
sample is from BioMe and the top 10 genetic principal components for BMI, and additionally the 
age at lipid measurement and sex. 

 

In this set of analyses, we observe that the multi-ancestry methods tend to outperform single-

ancestry methods for EUR, AFR, and AMR (Figure 3, Supplementary Figure 11, Supplementary 

Table 3). For EAS, LDpred2 can reach an R2 similar to or higher than that of EUR LDpred2 and 

multi-ancestry methods, which is possibly because the BBJ GWAS sample sizes for EAS are 

relatively large (N=70,657 – 158,284). For the proposed method ME-Bayes SL, we observe 

potential improvement in R2 from both the Bayesian modeling step (<ME-Bayes= versus 

<LDpred2=) and the SL step (<ME-Bayes SL= versus <ME-Bayes=). The linear combination 

strategy (<weighted ME-Bayes=, Supplementary Figure 11) provides a smaller or similar gain in 

R2 compared to our SL strategy (<ME-Bayes SL=). The relative performance of the various 

multi-ancestry methods varies by trait and ancestry, and no method is uniformly better than 

others. In some settings, ME-Bayes SL PRS gives a lower R2 than the PRS trained by weighted 

LDpred2 and PRS-CSx in some settings, such as for BMI on AFR and LDL on EAS. But in 

general, ME-Bayes SL PRS has the best overall performance, with an average increase of 3.6% 

and 19.6% in R2 compared to PRS-CSx and CT-SLEB, respectively, on non-EUR ancestries. 

 

GLGC data analysis with validation on UKBB individuals 

We apply the various methods to develop ancestry-specific PRS for four blood lipid traits, 

including HDL, LDL, total cholesterol (TC), and log of triglycerides (logTG)22, based on 

ancestry-specific GWAS summary data for EUR, AFR, AMR, EAS, and SAS, from the Global 
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Lipids Genetics Consortium (GLGC). We validate the performance of the various methods on 

UKBB individuals of AFR, EAS, and SAS origin separately, where the ancestry information of 

the UKBB validation individuals was determined based on an ancestry genetic component 

analysis (Supplementary Notes). 

 

Figure 4: Prediction R2 on UKBB validation individuals of EUR (17,457 – 19,030), AFR 
(7,954 – 8,598), EAS (1,752 – 1,921), and SAS (9,385 – 10,288) origin based on discovery 
GWAS from GLGC on EUR (NGWAS =842,660 – 930,671), AFR or admixed AFR (NGWAS 
=87,760 – 92,555), Hispanic/Latino (NGWAS =46,040 – 49,582), EAS (NGWAS =82,587 – 
146,492), and SAS (NGWAS =33,658 – 34,135). The LD reference data are from either (a) 1000 
Genomes Project (498 EUR, 659 AFR, 347 AMR, 503 EAS, 487 SAS), or (b) UKBB data (PRS-
CSx: default UKBB LD reference data which overlaps with our testing samples including 
375,120 EUR, 7,507 AFR, 687 AMR, 2,181 EAS, and 8,412 SAS; all other methods: UKBB 
tuning samples including 10,000 EUR, 4,585 AFR, 1,010 EAS, and 5,427 SAS). The ancestry of 
UKBB individuals were determined by a genetic ancestry prediction approach (Supplementary 
Notes). Due to the low prediction accuracy of genetic component analysis and extremely small 
validation sample size of UKBB AMR, prediction R2 on UKBB AMR is unreliable and thus is not 
reported here. All methods were evaluated on the ~2.0 million SNPs that are available in 
HapMap 3 + MEGA, except for PRS-CSx which is evaluated based on the HapMap 3 SNPs 
only, as implemented in their software. Ancestry- and trait-specific GWAS sample sizes, number 
of SNPs included, and validation sample sizes are summarized in Supplementary Table 4.1. A 
random half of the validation individuals is used as the tuning set to tune model parameters, as 
well as train the SL in CT-SLEB and ME-Bayes SL or the linear combination model in weighted 
LDpred2, PRS-CSx, and weighted ME-Bayes. The other half of the validation set is used as the 
testing set to report R2 values for each ancestry, after adjusting for age, sex, and the top 10 
genetic principal components. In (b), PRS-CSx and other methods do not have a fair 
comparison because the UKBB LD reference data provided by the PRS-CSx software 
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(UKBBPRS-CSx) is much larger than that for other methods, and thus the R2 of PRS-CSx PRS may 
be inflated due to a big overlap between UKBBPRS-CSx and the UKBB testing sample. 

 

We first use genotype data of the unrelated 1000 Genomes samples as the LD reference data21. 

We observe that ME-Bayes SL PRS performs the best or similarly to the best PRS (Figure 4(a), 

Supplementary Figure 12(a), and Supplementary Table 4).  We see a notable gain in R2 

comparing ME-Bayes SL PRS to weighted LDpred2 PRS (average increase: 50.7%). ME-Bayes 

SL outperforms CT-SLEB in most cases (average increase in R2: 27.1%). Although the relative 

performance between ME-Bayes SL and PRS-CSx varies by ancestry and trait, ME-Bayes SL 

PRS has a better overall performance, with an average increase of 19.9% in R2 compared to 

PRS-CSx PRS. Similar to the results from PAGE + UKBB + BBJ analysis, ME-Bayes SL 

improves on top of LDpred2 by both the Bayesian modeling step (<ME-Bayes= versus 

<LDpred2=, Supplementary Figure 12(a)) and the SL step (<ME-Bayes SL= versus <ME-Bayes=, 

Supplementary Figure 12(a)). The PRS generated by the alternative linear combination strategy 

has a similar or lower R2 than the PRS generated by our proposed SL strategy (<weighted ME-

Bayes= versus <ME-Bayes SL=, Supplementary Figure 12(a)). 

 

It has been shown that LDpred2 sometimes has suboptimal performance based on the widely 

implemented 1000 Genomes LD reference data23,24, which may be due to convergence issue in 

the presence of inadequate LD reference sample size and/or ancestry mismatch between 1000 

Genomes samples and the target population23. Implemented by an MCMC algorithm that utilizes 

similar computational tricks as LDpred2, ME-Bayes SL may likewise underperform with the 

1000 Genomes reference data. We therefore conduct a sensitivity analysis where we estimate LD 

based on UKBB tuning samples (10,000 EUR, 4,585 AFR, 687 AMR, 1,010 EAS, 5,427 SAS) 

instead of the 1000 Genomes samples. We observe that the R2 of ME-Bayes SL PRS improves 
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notably compared to using 1000 Genomes LD reference (Figure 4(b), Supplementary Table 4), 

especially on AFR (average increase: 33.8%). The R2 of PRS-CSx PRS has also increased but 

not as much as the R2 of ME-Bayes SL PRS. This is particularly noteworthy because PRS-CSx 

by default uses a much larger number of UKBB LD reference samples (375,120 EUR, 7,507 

AFR, 687 AMR, 2,181 EAS, and 8,412 SAS), which also overlap with our UKBB testing 

samples and thus lead to potentially inflated R2 estimates. The advantage of ME-Bayes SL now 

becomes more obvious: it outperforms the existing methods in all scenarios except for HDL in 

EAS, where it performs slightly worse than PRS-CSx PRS. ME-Bayes SL shows the most 

notable advantage on AFR, for which PRS are typically not powerful and hard to improve 

(average R2 increase compared to the best existing method: 38.6%). Interestingly, the alternative 

weighted ME-Bayes approach has a similar or slightly lower R2 than ME-Bayes SL, but it still 

outperforms PRS-CSx, which utilizes the same linear combination strategy, for almost all traits 

and ancestry groups (Supplementary Figure 12(b)). 

 

AoU data analysis with validation on UKBB individuals 

We also apply the various methods to develop ancestry-specific PRS for height and BMI based 

on the GWAS summary data we generated from the All of Us Research Program (AoU) for 

EUR, AFR, and AMR. The performance of the derived PRS is evaluated on UKBB validation 

samples of AFR ancestry. As in the GLGC data analysis, we first use genotype data of the 

unrelated 1000 Genomes samples as the LD reference data21 (Figure 5(a), Supplementary Table 

5). Although no method is uniformly the best on all traits and ancestry groups, ME-Bayes SL 

PRS on average has an R2 that is 67.5% higher than that of the PRS-CSx PRS and 53.4% higher 

than that of the CT-SLEB PRS. ME-Bayes SL PRS improves on top of the single-ancestry 
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method by both the Bayesian modeling step (ME-Bayes versus LDpred2, Figure 5(a)) and the SL 

step (ME-Bayes SL versus ME-Bayes, Supplementary Figure 13(a)). The weighted ME-Bayes 

PRS utilizing a linear combination strategy gives a lower R2 than the ME-Bayes SL PRS 

utilizing the SL strategy (weighted ME-Bayes versus ME-Bayes SL, Supplementary Figure 

13(a)). 

 

Figure 5: Prediction R2 on UKBB validation individuals of AFR (N=9,026 – 9,042) origin 
based on discovery GWAS from AoU on EUR (NGWAS =48,229 – 48,332), AFR (NGWAS 
=21,514 – 21,550), and Hispanic/Latino (NGWAS =15,364 – 15,413). The LD reference data is 
either (a) 1000 Genomes Project (498 EUR, 659 AFR, 347 AMR, 503 EAS, 487 SAS), or (b) 
UKBB data (PRS-CSx: default UKBB LD reference data which overlap with our testing samples 
including 375,120 EUR, 7,507 AFR, 687 AMR, 2,181 EAS, and 8,412 SAS; all other methods: 
UKBB tuning samples including 10,000 EUR, 4,585 AFR, 1,010 EAS, and 5,427 SAS). The 
ancestry of UKBB individuals were determined by a genetic ancestry prediction approach 
(Supplementary Notes). Due to the low prediction accuracy of genetic component analysis and 
extremely small validation sample size of UKBB AMR, prediction R2 on UKBB AMR is unreliable 
and thus is not reported here. All methods were evaluated on the ~2.0 million SNPs that are 
available in HapMap3 + MEGA, except for PRS-CSx which is evaluated based on the HapMap 
3 SNPs only, as implemented in their software. Ancestry- and trait-specific sample sizes of 
GWAS, number of SNPs included, and validation sample sizes are summarized in 
Supplementary Table 5.1. A random half of the validation individuals is used as the tuning set to 
tune model parameters, as well as train the SL in CT-SLEB and ME-Bayes SL or the linear 
combination model in weighted LDpred2, PRS-CSx, and weighted ME-Bayes. The other half of 
the validation set is used as the testing set to report R2 values for each ancestry, after adjusting 
for age, sex, and the top 10 genetic principal components. In (b), PRS-CSx and other methods 
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do not have a fair comparison because the UKBB LD reference data provided by the PRS-CSx 
software (UKBBPRS-CSx) is much larger than that for other methods, and thus the R2 of PRS-CSx 
may be inflated due to a big overlap between UKBBPRS-CSx and the UKBB testing sample. 

 

Similar to the GLGC data analysis, we also conduct a sensitivity analysis where we estimate LD 

using the UKBB tuning samples (10,000 EUR, 4,585 AFR, 1,010 EAS, 5,427 SAS) instead of 

the 1000 Genomes data. Different from the results from GLGC data analysis, no PRS has 

noticeably improved predictive power, even though there is a better ancestry match between the 

LD reference population and the target population (Figure 5(b), Supplementary Figure 13(b)). 

Such results from the GLGC data analysis and the AoU data analysis suggest that for ME-Bayes 

SL, 1000 Genomes LD reference dataset may be adequate for building PRS models with 

relatively small discovery GWAS, such as the AoU GWAS (N = 15,364 – 48,332), but not so 

with much larger discovery GWAS, such as the GLGC GWAS (N up to 0.89 million). In other 

words, the ratio of the sample size of the LD reference dataset to the GWAS sample size may 

matter more than the sample size of the LD reference data itself or the population/ancestry match 

between datasets. 

 

23andMe data analysis 

We have collaborated with 23andMe, Inc. to develop and validate PRS for seven traits for EUR, 

African American (AFR), Latino (AMR), EAS, and SAS based on a large-scale dataset from 

23andMe, Inc. We analyze two continuous traits: (1) heart metabolic disease burden, (2) height, 

and five binary traits: (3) any cardiovascular disease (any CVD), (4) depression, (5) migraine 

diagnosis, (6) morning person, and (7) sing back musical note (SBMN). Results are summarized 

in Figure 6 and Supplementary Table 6. For the two continuous traits, ME-Bayes SL shows a 

major advantage over the existing methods on AFR and AMR: for example, ME-Bayes SL has a 
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remarkable improvement over two recently proposed advanced methods that perform the best 

among the existing methods, PRS-CSx (average increase in R2: 49.8%) and CT-SLEB (average 

increase in R2: 47.5%). For EAS and SAS, ME-Bayes SL performs better than all existing 

methods considered in all scenarios, except for heart metabolic disease burden in SAS, which has 

the smallest discovery GWAS (N = 20,062), where ME-Bayes SL PRS has an R2 slightly lower 

than that of CT-SLEB PRS but higher than the R2 of all other PRS. 

Figure 6: Prediction results on 23andMe validation individuals based on discovery GWAS 
from 23andMe on EUR, African American (AFR), Latino (AMR), EAS, and SAS. The 
performance of the various methods is evaluated by (a) residual R2 for two continuous traits, 
heart Metabolic Disease Burden and height, and (b) residual AUC for five binary traits, any 
CVD, depression, migraine diagnosis, morning person, and SBMN. The LD reference data is 
from the 1000 Genomes Project (498 EUR, 659 AFR, 347 AMR, 503 EAS, 487 SAS). The 
dataset is randomly split into 70%, 20%, 10% for training GWAS, model tuning (tuning model 
parameters and training the SL in CT-SLEB and ME-Bayes SL or the linear combination model 
in weighted LDpred2 and PRS-CSx), and testing (to report residual R2 or AUC values after 
adjusting for the top 5 genetic principal components, sex, and age), respectively. All methods 
were evaluated on the ~2.0 million SNPs that are available in HapMap3 + MEGA, except for 
PRS-CSx which is evaluated based on the HapMap 3 SNPs only, as implemented in their 
software. Ancestry- and trait-specific sample sizes of GWAS, number of SNPs included, and 
validation sample sizes are summarized in Supplementary Table 6.1. 

 

For the five binary traits, we observe a similar pattern as for continuous traits, where ME-Bayes 

SL generally performs better than or similarly to the best of the existing methods, and it shows 
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the biggest improvement in (AUC – 0.5) over existing methods on AFR (average improvement: 

14.4%, Figure 6(b), Supplementary Table 6). Averaged across all five traits and four non-EUR 

ancestry groups, ME-Bayes SL PRS gives an (AUC – 0.5) that is 13.8% higher than that of the 

PRS-CSx PRS and 9.0% higher than that of the CT-SLEB PRS. 

 

Discussion 

We propose ME-Bayes SL, a powerful method for constructing enhanced ancestry-specific PRS 

integrating information from GWAS summary statistics and LD reference data across multiple 

ancestry groups. Built based on an extension of spike-and-slab type prior13, ME-Bayes SL 

enhances the ancestry-specific polygenic prediction by (1) borrowing information from GWAS 

of other ancestries via specification of a between-ancestry covariance structure in SNP effect 

sizes, (2) incorporating heterogeneity in LD and MAF distribution across ancestries, and (3) an 

SL algorithm combining ancestry-specific PRS developed under various possible genetic 

architectures of the trait. We benchmark our method against a wide variety of alternatives, 

including multiple state-of-the-art multi-ancestry methods7,8,12, using extensive simulation 

studies and data analyses. Results show that while no method is uniformly the best, ME-Bayes 

SL is generally a robust method that shows close to optimal performance across a wide range of 

scenarios and have the potential to notably improve PRS performance in the AFR population 

compared to the alternative methods. 

 

One important observation from the data applications is that the advantage of ME-Bayes SL over 

existing methods tends to be more notable with larger GWAS accompanied by larger LD 

reference dataset. In the GLGC data analysis and 23andMe data analysis where the discovery 
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GWAS sample sizes are relatively large, especially for the non-EUR populations, we can clearly 

observe that ME-Bayes SL performs almost uniformly better than the existing methods. In 

contrast, in the PAGE + UKBB + BBJ data analysis, where the GWAS sample sizes for AFR and 

AMR are relatively small, ME-Bayes SL sometimes shows a suboptimal performance. Such 

trend of having more notable advantages with larger GWAS sample sizes and larger LD 

reference datasets exists not only when comparing ME-Bayes SL to existing methods, but also 

when comparing the more advanced methods, such as ME-Bayes SL and PRS-CSx, to simpler 

alternatives, such as the weighted PRS method. 

 

One key factor in implementing ME-Bayes SL is the LD reference data. The analyses of the 

GLGC and AoU datasets illustrates that the sample size of the LD reference data should be 

sufficiently large relative to the discovery GWAS sample size to give ME-Bayes SL an optimal 

performance (Figure 4, Supplementary Table 4). The performance of ME-Bayes SL depends on 

estimated causal SNP proportion parameters from single-ancestry LDpred2 analysis. LDpred2 

has previously been shown to underperform sometimes when using 1000G LD reference data24 

and thus could in turn affect the performance of ME-Bayes SL. Thus, as sample sizes of the 

training GWAS increase, building a larger LD reference dataset than the widely used 1000 

Genomes reference dataset will lead to more optimal performance. 

 

We have compared ME-Bayes SL with a series of recent multi-ancestry methods including PRS-

CSx and CT-SLEB, but there are other recently proposed methods that are worth. In fact, we 

have implemented two other multi-ancestry methods named XPASS and PolyPred+ in our 

simulation study as well as GLGC, AoU, and 23andMe data analyses, with detailed results 
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reported in Zhang et al. (2022)12. Although computationally super-fast, XPASS, which uses a 

bivariate normal prior under an infinitesimal model, can only combine up to two ancestry groups, 

and it is always outperformed by ME-Bayes SL (Supplementary Tables 3-6). This shows the 

importance of including sparsity components in modeling effect-size distribution for Bayesian 

polygenic prediction. PolyPred+ implements a linear combination of SBayesR25 trained 

separately on EUR and the target population and a Polyfun26 PRS on EUR that additionally 

incorporates information from external functional annotations, and thus it is not directly 

comparable to the other methods. Even so, it performs worse than ME-Bayes SL most of the 

time (Supplementary Tables 3-6). 

 

Our study also has several limitations. First, ME-Bayes requires two sets of tuning parameters: 

causal SNP proportion in each ancestry and between-ancestry correlation in effect sizes, the 

specification of which is relatively complex compared to other methods such as PRS-CSx. In the 

default setting of ME-Bayes, the candidate values for genetic correlation between a pair of 

ancestry groups only lie between 0.7 and 0.95, while for some traits, the estimated correlation 

can be lower8,22. But given the high computational scalability of ME-Bayes, when the number of 

ancestry groups is not too large (ă f 5), prior information on genetic correlation can used to 

specify additional genetic correlation parameter settings to cover a wider range of potential 

genetic architectures of the trait. 

 

The spike-and-slab type prior in ME-Bayes can be sub-optimal for effect-size distribution of 

some traits. For example, in GLGC GWAS, we detect several top SNPs with extremely large 

association coefficients for all four blood lipid traits, each contributing to 0.6% - 3.9% of the 
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estimated total heritability. In this case, ME-Bayes induces the same amount of shrinking on all 

SNPs, resulting in over-shrinkage on the few large-effect SNPs. We have considered a simple 

alternative approach to compensate such over-shrinkage27,28, where for each target ancestry 

group, we first construct a <top-SNP PRS= using GWAS association coefficients of the few top 

SNPs for the ancestry, then combine it with the ME-Bayes SL PRS constructed based on the rest 

of the SNPs. This approach, however, does not provide a more powerful PRS. PRS-CSx, which 

allows a heavy-tail Strawderman-Berger prior, while theoretically expected to be advantageous 

for handling such large-effect SNPs, does not show much advantage either. In the future, other 

heavy-tail type priors such as the Bayesian Lasso (i.e., Laplacian)29, Horseshoe30, and Bayesian 

Bridge31, are worth investigating. Another potential limitation of the method originates in the SL 

step: when the tuning sample is small (e.g., <1000), the prediction algorithms utilized in SL may 

be overfit in the presence of a large number of tuning parameters, ultimately leading to low 

predictive power in an independent sample. 

 

In our data examples, different methods show advantages in different scenarios in terms of 

GWAS sample size, LD reference data, the type of trait, and target ancestry. It is thus natural to 

consider extending our SL step from combining a series of PRS trained within a specific type of 

method, such as ME-Bayes, to those generated across different methods. ME-Bayes SL can also 

be modified to enhance performance of PRS by borrowing information simultaneously across 

traits and genetically correlated traits. Two recent studies, both using simple weighting methods, 

have shown significant potential for cross-trait borrowing to improve PRS performance for 

individual traits32,33.  There is, however, likely to be scope for additional improvement by 
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developing formal Bayesian methods that can utilize flexible models for effect-size distribution 

simultaneously across ancestries and traits. 

 

In summary, we propose a powerful method for constructing enhanced ancestry-specific PRS 

combining GWAS summary data and LD reference data across multiple ancestry groups. As 

sample sizes of the multi-ancestry GWAS and LD reference datasets continue to increase, more 

advanced methods, such as ME-Bayes SL and PRS-CSx8, are expected to show more and more 

advantages over simpler alternatives, such as the weighted methods7. Our large-scale simulation 

study and four unique data examples illustrate the relative performance of a variety of single- 

and multi-ancestry methods across various settings of ancestry groups, GWAS sample sizes, 

genetic architecture of the trait, and LD reference panel, which can serve as a guidance for 

method implementation in future applications. 
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Data and code availability 

The simulated genotype data for 600K subjects of EUR, AFR, AMR, EAS, or SAS ancestry can 

be accessed at 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/COXHAP. The EUR 

GWAS summary data for BMI34, HDL35, and LDL35 based on UKBB samples (GWAS round 2) 

published by the Neale Laboratory can be downloaded at http://www.nealelab.is/uk-biobank.  

The EAS GWAS summary data from BBJ for BMI36, HDL37, and LDL37 were downloaded from 

http://jenger.riken.jp/en/result. Split GWAS summary data from PAGE for BMI, HDL, and LDL 

stratified for AFR and AMR, as used in the training sets in our data analysis, are available upon 
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request (email to Jin.Jin@Pennmedicine.upenn.edu). Stratified GWAS summary data from 

PAGE for BMI, HDL and LDL for AFR and AMR (not split for training/validation sets) is 

available on LDHub (https://ldsc.broadinstitute.org). GWAS summary data from GLGC for 

HDL, LDL, TC, and logTG stratified for EUR, AFR, AMR, EAS, and SAS can be downloaded 

at http://csg.sph.umich.edu/willer/public/glgc-lipids2021/results/ancestry_specific/. GWAS 

summary data from AoU for BMI and height stratified for EUR, AFR, and AMR are available 

upon request (email to Jin.Jin@Pennmedicine.upenn.edu). GWAS summary data from 23andMe 

Inc. for heart metabolic disease burden, height, any CVD, depression, migraine diagnosis, 

morning person, and SBMN stratified for EUR, AFR, AMR, EAS, and SAS can be requested 

through 23andMe, Inc. to qualified researchers under an agreement with 23andMe, Inc. that 

protects the privacy of the 23andMe participants. Please visit 

https://research.23andme.com/collaborate/#dataset-access/ to request data access. Participants 

included in our 23andMe data analysis provided informed consent and participated in the 

research online, under a protocol approved by the external AAHRPP-accredited IRB, Ethical & 

Independent Review Services. 1000 Genomes Phase 3 reference data can be downloaded from 

https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html. Our estimated LD block matrices 

for EUR, AFR, AMR, EAS, and SAS for approximately 2.0 million SNPs in HapMap 3 plus 

MEGA that are also available in 1000 Genomes Project can be downloaded from 

https://github.com/Jin93/ME-Bayes-SL. LD block information, including the start and end 

positions of each block, are extracted from the <lassosum= R package and can be downloaded 

from https://github.com/tshmak/lassosum.  
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PLINK 1.9: https://www.cog-genomics.org/plink. PLINK 2.0: https://www.cog-

genomics.org/plink/2.0/. LDpred2: https://privefl.github.io/bigsnpr/articles/LDpred2.html. The R 

package <bigsnpr= used in the LDpred2 pipeline is available for download on Github at 

https://github.com/privefl/bigsnpr. PRS-CSx: https://github.com/getian107/PRScsx. CT-SLEB: 

https://github.com/andrewhaoyu/CTSLEB. LD score regression: https://github.com/bulik/ldsc. 

The ME-Bayes SL pipeline, along with the R code for simulation studies and data analyses in 

this paper can be accessed at https://github.com/Jin93/ME-Bayes-SL. 
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Online Methods 

Details of ME-Bayes SL Step 1: ME-Bayes 

ME-Bayes conducts Bayesian modeling to generate ancestry-specific ME-Bayes PRS models 

through joint modeling of GWAS summary data across all available ancestry groups. This step 

models the genetic correlation structure in SNP effect size across ancestry groups while accounting 

for ancestry-specific LD and allele frequency information. 

 

Suppose we are interested in predicting the polygenic risk of some trait � based on genotype {ÿĀ , Ā = 1,& ,ýā}, for an individual of ancestry ā = 1,2,& ,ă, with ýā denoting the number of 

SNPs with a minor allele frequency (MAF) > 0.01 in ancestry ā. For demonstration purposes, we 

assume the trait is continuous, but the results can be directly applied to GWAS summary-level 

association statistics for discrete traits in the same manner. We assume all SNPs included are 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2023. ; https://doi.org/10.1101/2023.04.12.536510doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.12.536510
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

biallelic, i.e., each SNP only has two alleles observed in the population. For each ancestry group ā , we assume a true additive model for genetic variation, �ā = ∑ ÿĀĀāĀ(ý)�ĀĀ=1 + �ā , where ĀāĀ(ý) 
denotes the underlying joint effect size of ÿĀ , Ā = 1,2,& ,ýā, i.e., effect size after adjusting for the 

effect of other SNPs, for an individual of ancestry ā, and �ā denotes a zero-mean random error 

term that includes effects of risk factors other than SNPs. Suppose we have ancestry-specific 

GWAS summary data, {(Ā̂āĀ , ÿ̂āĀ2 ), Ā = 1,2,& ,ýā , ā = 1,2,& , ă} , specifically, the marginal 

effect sizes of the SNPs (Ā̂āĀs) and their corresponding standard errors (ÿ̂āĀ2 s) from one-SNP-at-a-

time regressions, �āÿ = ÿĀÿĀāĀ + �āÿ , ÿ = 1,& , þā , for Ā = 1, & ,ýā  and ā = 1,& , ă. Here, ÿ , Ā 
and ā are the indices of GWAS sample, SNP, and ancestry, respectively, �āÿ denotes a zero-mean 

random error term that includes effects of other risk factors and all other SNPs, ĀāĀ, ýā and þā 

are the true marginal SNP effect sizes, total number of SNPs, and GWAS sample size, respectively, 

for ancestry ā. Our goal is to obtain an estimate of the joint SNP effect sizes, Āā�� (ý)
s, to construct 

polygenic risk model �ýþā = ∑ ÿĀ Āā�� (ý)�ĀĀ=1  for each ancestry group ā. 

 

Our analysis is conducted on the standardized scale, where ÿāĀs are assumed to be standardized to 

have a zero mean and unit variance and �ās are assumed to have a unit variance (for continuous 

traits). This is reflected by rescaling the GWAS summary statistics so that the variance is equal to 

the inverse of the GWAS sample size. For computational scalability, we divide the whole genome 

into a series of independent LD blocks1, each containing hundreds of (up to ~2900) SNPs, and 

only consider the between-SNP correlation within each LD block. Such block structure for LD 

matrices is considered because it yields similar predictive power as the banded-structure LD 

matrices accounting for LD within a 3cM genetic distance suggested by LDpred22, but it is 
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computationally more efficient and requires less memory. We estimate LD matrices for SNPs 

within each LD block using PLINK 2.03 based on LD block segmentation in Berisa and Pickrell 

(2015)1. LD block information was extracted from the R package <lassosum=4. Note that the LD 

block information is available for EUR (1747 blocks, median number of SNPs per block: 816), 

AFR (2626 blocks, median number of SNPs per block: 716), and EAS (1489 blocks, median 

number of SNPs per block: 815), but not currently available for AMR and SAS, and thus we apply 

the EUR LD information on AMR and SAS for now. 

 

We denote by �ĂĀ(ý) and ��ĂĀ the vector of true joint effect sizes and marginal effect sizes estimated 

from GWAS, respectively, for SNPs within a specific LD block Ăā in ancestry ā = 1,2,& , ă. To 

conduct analyses on the standardized scale, we first divide each raw effect size estimate Ā̂āĀ by 

√þāĀÿ̂āĀ2 + Ā̂āĀ2 . We can then write down the likelihood of the GWAS summary statistics, ��ĂĀ ∼
þ(�ĂĀ�ĂĀ(ý), �ĂĀ1/2�ĂĀ�ĂĀ1/2), where �ĂĀ  denotes the LD matrix of the SNPs within the LD block Ăā, 

and �ĂĀ is a diagonal matrix with diagonal entries being the corresponding GWAS sample sizes 

for SNPs within the LD block. For population-specific SNPs, i.e., SNPs with an MAF > 0.01 in 

only one ancestry ā, we assume a spike-and-slab prior as in LDpred2, ĀāĀ(ý) ∼ þ(0, �āĀ/ā2), �āĀ ∼Ber(�ā), where /ā2 ⁡denotes the per-SNP heritability, �āĀ  is the indicator of whether SNP Ā  is 

causal in ancestry ā, i.e., �āĀ = 1 if �ĂĀÿ(ý) b 0 and 0 otherwise, and �ā is the proportion of causal 

SNPs in ancestry ā. For SNPs that have MAF>0.01 in all ancestry groups, we induce a prior 

correlation structure between ĀāĀ(ý) and Āā2Ā(ý)
 for ā, ā2 * {1,2,& , ă}. The prior distribution of the 

joint effect size ĀāĀ(ý)s given �āĀs is then specified as follows, 
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(Ā1Ā(ý)&ĀþĀ(ý)) |�1Ā , & , �þĀ ∼ þ(�,�j�j⁡�j), 
where �j = diag(�1Ā , & , �þĀ) , and (�j)ā,ā2 = ÿā,ā2/ā/ā2 , with ÿā,ā2  denoting the genetic 

correlation between ancestry groups ā and ā2. For SNPs that have an MAF>0.01 in only a subset 

of ancestries � ⊂ {1,& , ă}, similar prior distributions can be specified for SNP effect sizes within 

the set of ancestry groups �. 

 

Recall that we introduce variables {�ā = Pr(�āĀ = 1) , ∀Ā, ā = 1,& , ă}  to denote ancestry-

specific causal SNP proportions, and for ancestry-specific SNPs, we assume �āĀ ∼ Ber(�ā). Now 

we generalize this Bernoulli prior to a multinomial prior on (�1Ā , & , �þĀ)ÿ for SNPs that exist in 

a subset of ancestry groups � ⊂ {1,& , ă}, with probabilities {Pr(�1Ā,Ā*þÿ = 1, �1Ā,Ā+þÿ = 0) , þĀ ⊂�} being defined as functions of �ā , ā = 1,& , ă. We first focus on SNPs that only exist in two 

ancestry groups � = {ā1, ā2}: we set Pr(�ā1Ā = 1, �ā2Ā = 1) ⁡= min(�ā1 , �ā2), which reflects our 

assumption that if a SNP is causal in one ancestry group, it is also causal in another. We can then 

obtain Pr(�ā1Ā = 1, �ā2Ā = 0) ⁡= �ā1 2min(�ā1 , �ā2) , Pr(�ā1Ā = 0, �ā2Ā = 1) ⁡= �ā2 2min(�ā1 , �ā2), and Pr(�ā1Ā = 0, �ā2Ā = 0) ⁡= 1 2 �ā1 2 �ā2 +min(�ā1 , �ā2). After constructing Pr(�ā1Ā , �ā2Ā)s, we then construct priors for SNPs that exist in three ancestry groups: by specifying Pr(�ā1Ā = 1, �ā2Ā = 1, �ā3Ā = 1) ⁡= min(�ā1 , �ā2 , �ā3), we can obtain the rest of the probabilities {{Pr(�ā1Ā = �1, �ā2Ā = �2, �ā3Ā = �3) , �1, �2, �3 * {0,1}, 1 f ā1 < ā2 < ā3 f ă}}.⁡  Such 

specifications can be easily extended to apply to SNPs that exist in four ancestry groups, five 

ancestry groups, etc. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2023. ; https://doi.org/10.1101/2023.04.12.536510doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.12.536510
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

 

We estimate Āā�� (ý)
s based on MCMC with an approximation strategy previously implemented in 

the LDpred2 algorithm2, which substantially reduces computation time of the algorithm. There are 

two sets of tuning parameters which will be estimated by grid search using a tuning dataset 

independent from the testing samples on which we report R2: (1) the ancestry-specific causal SNP 

proportions (�1, & , �þ): we fix (�1, & , �þ) to either (�̃1, & , �̃þ), the estimated ancestry-specific 

causal SNP proportions obtained from LDpred2 separately on GWAS summary data of each 

ancestry, or (�̃Ā, & , �̃Ā), Ā = 1,& , ă, i.e., the values of all �ās are set to the LDpred2 estimate of 

the causal SNP proportion in ancestry Ā; (2) the between-ancestry correlation parameters ÿāā2s: 

we consider two settings, i.e., either set ÿāā’s to all equal to ÿ = 0.7, 0.8, 0.9, or 0.95, or set ÿāā’ 
to 0.75 for any pair of ancestry groups that include AFR and 0.9 otherwise, given that correlation 

with AFR tends to be weaker than that among other ancestry groups. Prior to the implementation 

of MCMC, we further estimate the ancestry-specific heritability Āā2s based on GWAS summary 

data and LD reference data using LD score regression5. 

 

We now describe the detailed MCMC algorithm and estimation procedure. For SNPs that only 

exist (MAF>0.01) in one ancestry group, the Gibbs sampler in Vilhj�́lmsson et al. (2015)6 was 

implemented. For each SNP Ā that exists in all ă ancestry groups, we sample �Ā = (�1Ā , & , �þĀ)ÿ 

and �Ā = (Ā1Ā , & , ĀþĀ)ÿ from ÿ(�Ā , �Ā|��,�2Ā) j ÿ(�Ā|��Ā , �2Ā)ÿ(�Ā|�Ā , ��Ā , �2Ā), 
where �2Ā denotes the joint effect sizes for the SNPs within the LD block which SNP Ā is in, ĂāĀ , ā * {1,& , ă}. 
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We first sample �Ā from ÿ(�Ā|��Ā , �2Ā). Here note that obtaining ÿ(�Ā|��,�2Ā) analytically is hard, 

and thus we approximate it by ÿ(�Ā|��Ā , �2Ā). For a realization of �Ā, � = (ÿ1, & , ÿþ)ÿ where ÿā *{0,1}, ∀ā, we first derive 

ÿ(�Ā = �|��Ā , �2Ā) = ÿ(��Ā|�Ā = �, �2Ā) Pr(�Ā = �)∑ (��Ā|�Ā = �2, �2Ā) Pr(�Ā = �2)�2 . 
We denote the numerator by Ă� = ⁡ÿ(��Ā|�Ā = �,�2Ā) Pr(�Ā = �), which can be derived as follows: 

Ă� = Pr(�Ā = �)∫ÿ(��Ā|�Ā = �,�2Ā , �Ā)ÿ(�Ā|�Ā = �)��Ā = Pr(�1Ā = ÿ1, & , �þĀ
= ÿþ)∫þ(��Ā| ( ∑ �Ă1ÿ,ĀĀ2Ā2≠Ā,Ā2*Ă1ÿ Ā1Ā2 + Ā1Āÿ1&∑ �Ă�ÿ ,ĀĀ2Ā2≠Ā,Ā2*Ă�ÿ ĀþĀ2 + ĀþĀÿþ) , �ÿ�Ā ( 1þ1Ā , & , 1þþĀ))þ((Ā1Āÿ1&ĀþĀÿþ) |�,�j�j⁡�j)��Ā 
= Pr(�1Ā = ÿ1, & , �þĀ = ÿþ) × þ ((��1Ā,ÿ2 , & , ��þĀ,ÿ2)ÿ , �ÿ�Ā ( 1þ1Ā , & , 1þþĀ) + �j,ÿ2�j⁡�j,ÿ2), 

where ��āĀ,ÿ2 = Ā̂āĀ 2 ∑ �ĂĀÿ,ĀĀ2Ā2≠Ā,Ā2*ĂĀÿ ĀāĀ2 + ĀāĀÿā , 
�ĂĀÿ ,ĀĀ2 denotes the entry in �ĂĀÿ  that corresponds to the correlation between SNPs Ā and Ā2, ā� = 1 

if � b 0 and 0 otherwise, �j,ÿ2 = diag(ÿ12, & , ÿþ2 ), and (�j)ā,ā2 = ÿā,ā2/ā/ā2. After deriving Ă�s, 

we can then sample from ÿ(�Ā = �|��Ā , �2Ā) = Ă�/(∑ Ă�2ÿ2 ). 
 

We obtain the marginal posterior mean of �Ā after integrating out �Ā:  �(�Ā|��Ā , �2Ā) =∑�(�Ā|�Ā = ÿ2, ��Ā , �2Ā)ÿ2 Pr(�Ā = ÿ2|��Ā , �2Ā), 
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where ÿ(�Ā|�Ā = ÿ2, ��Ā , �2Ā) ∝ ÿ(��Ā|�Ā = ÿ2, �Ā , �2Ā)ÿ(�Ā|�Ā = ÿ2). 
We can easily derive that �Ā|�Ā = ÿ2, ��Ā , �2Ā follows þ(�Ā,ÿ2 , �Ā,ÿ2), where 

�Ā,ÿ2 = (�ÿ�Ā(þ1Ā , & , þþĀ) + (�j,ÿ2�j⁡�j,ÿ2)21)21, 
�Ā,ÿ2 = �Ā,ÿ2 (þ1ĀĀ�1Ā,ÿ2&þ1ĀĀ�þĀ,ÿ2). 

For SNPs that have an MAF>0.01 in a subset of ancestry groups � ⊂ {1,& , ă}, similar sampling 

strategy can be conducted but only among ancestry groups �. In each MCMC iteration, the prior 

per-SNP heritability parameter is set to /ā2 = �Ā2ăĀ, where ăā denotes the number of causal SNPs 

(∑ �āĀ�ĀĀ=1 ) estimated from this iteration. The posterior estimate of �Ā is obtained by taking the 

average of �(�Ā|��Ā , �2Ā) obtained from 100(K-1) MCMC iterations after a burn-in stage of 100 

iterations. 

 

Existing Methods 

Single-Ancestry Methods  

LD Clumping and Thresholding (C+T) 

C+T first constructs a series of PRS by applying an LD clumping step followed by a p-value 

filtering step with varying p-value cutoffs, then selects the best performing PRS on the tuning 

dataset. Specifically, an LD clumping step is first conducted to exclude variants that have an 

absolute pairwise correlation stronger than r2 =0.1 within a genetic distance (500kb) based on an 

LD reference dataset. The remaining variants are then filtered by excluding the ones that have a p-

value larger than a significance threshold, which, in our analysis, were set to �ā =5 × 1028, 1 ×1027, 
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5 × 1027, 1 × 1026, 5 × 1026, 1 × 1025, 5 × 1025, 1 × 1024, 5 × 1024, 1 × 1023, 5 × 1023, 1 × 1022, 

5 × 1022, 1 × 1021, 5 × 1021, or 1. These 16 scores were created based on these 16 different 

significance thresholds �ās by calculating a weighted sum of the number of effect alleles of the 

selected SNPs, with weights being the effect size estimates from the discovery GWAS. C+T then 

selects the score with the <optimal= p-value thresholds via parameter tuning with respect to the 

residual R2 (for continuous traits) or residual AUC (for binary traits) on a tuning dataset that is 

independent of the training and testing samples. C+T was implemented using PLINK 1.907,8. 

LDpred2 

LDpred2 is an LD-based Bayesian modeling approach which leverages information from GWAS 

summary statistics and explicitly models LD correlation structure with correlation matrices being 

estimated based on an external reference panel6,9. LDpred2 assumes a spike-and-slab prior on SNP 

effect sizes, i.e., each SNP has a probability � to have a non-zero causal effect ĀĀ(ý) ∼ þ(0, /�2), 
and a probability (1 2 �) to have no contribution to the phenotypic variation (ĀĀ(ý) = 0). Here � 

and /�2 are treated as tuning parameters and estimated via grid search on a tuning dataset. We ran 

LDpred2 on each chromosome and GWAS of each ancestry group separately using R packages 

<bigstatsr= and <bigsnpr=. Two tuning parameters were considered: (1) causal SNP proportion �, 

with default candidate values 1.0×10-4, 1.8×10-4, 3.2×10-4, 5.6×10-4, 1.0×10-3, 1.8×10-3, 3.2×10-

3, 5.6×10-3, 1.0×10-2, 1.8×10-2, 3.2×10-2, 5.6×10-2, 1.0×10-1, 1.8×10-1, 3.2×10-1, 5.6×10-1, and 

1.0; (2) total heritability, which is set to the heritability estimated by LD score regression5 

multiplied by 0.7, 1, or 1.4. The <sparse= option was not considered. 

 

Multi-Ancestry Methods 

Weighted PRS 
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A simple multi-ancestry method is weighted PRS, which trains an <optimal= linear combination 

of the effect size estimates obtained based on training data from each single ancestry. Weighted 

PRS was first proposed in Marquez-Luna et al. (2017)10 to improve the performance of single 

ancestry C+T PRS. Suppose we have constructed C+T PRS, �ýþýĀý, �ýþ�þý , �ýþ��ý, �ýþý�þ, 

and �ýþþ�þ, separately based on GWAS and LD reference panel of each corresponding ancestry 

group. The weighted C+T PRS is then constructed as �ýþ��+ÿ = ÿ1⁡�ýþýĀý + ÿ2⁡�ýþ�þý +ÿ3⁡�ýþ��ý + ÿ4⁡�ýþý�þ ⁡+ ÿ5⁡�ýþþ�þ where ÿās are obtained by fitting a regression model on 

the tuning dataset. Here we apply the weighted PRS approach on either C+T (<weighted C+T=) or 

LDpred2 (<weighted LDpred2=). 

PRS-CSx 

<PRS-CSx=11 is proposed as the multi-ancestry version of PRS-CS12 which conducts Bayesian 

modeling followed by an additional step of constructing a linear combination of the best 

performing PRS trained for each ancestry. PRS-CSx assumes a continuous shrinkage prior named 

Strawderman-Berger prior on the ancestry-specific effect sizes. For SNPs available in more than 

one population, this prior induces information sharing across ancestry groups. After the Bayesian 

modeling step, PRS-CSx further trains a linear combination of the ancestry-specific PRS obtained 

from the previous step based on the tuning dataset. In all our analyses, we ran PRS-CSx with the 

default candidate values for the tuning parameter � (1.0, 10-2, 10-4, and 10-6), which is the global 

shrinkage parameter shared by all SNPs and all ancestries that controls the overall causal SNP 

proportion. The PRS-CSx software only considers approximately 1.2 million HapMap 3 SNPs and 

therefore we only report the performance of PRS-CSx PRS based on the HapMap 3 SNPs. We 

have also tried to apply PRS-CSx to HapMap 3 SNPs plus an additional 0.8 million MEGA SNPs 

that are also available in the 1000 Genomes reference data. But we found that, on our simulated 
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dataset, the performance of PRS-CSx PRS using the extended HapMap 3 + MEGA SNP set is 

significantly worse than PRS-CSx using the HapMap 3 SNPs, and in our real data analyses, results 

from PRS-CSx on the two SNP sets are similar. We therefore stick to the default setting with 1.2 

million HapMap 3 SNPs provided by the PRS-CSx software. 

CT-SLEB 

CT-SLEB is a recently proposed method for multi-ancestry PRS construction13. It first conducts a 

two-dimensional C+T between EUR GWAS and GWAS of the target population to select SNPs 

to be included in the target population PRS, then uses an Empirical Bayesian approach to account 

for genetic correlation across populations, and finally implements an SL algorithm to combine 

PRS generated under different p-value thresholds in the C+T step. In our analyses, we 

implemented CT-SLEB with the default setting for p-value threshold, �ā =5 × 1028, 5 × 1027, 

5 × 1026, 5 × 1025, 5 × 1024, 5 × 1023, 5 × 1022, 5 × 1021, or 1, and a genetic distance � =50/ÿ2 or 

100/ÿ2, where ÿ2 =0.01, 0.05, 0.1, 0.2, 0.5, or 0.8. 

 

Runtimes and memory usage 

We compare the computation time and memory usage of ME-Bayes SL and PRS-CSx on 

chromosome 22 based on the simulated dataset (comparison between PRS-CSx and CT-SLEB on 

the same dataset has been reported in Zhang et al., 202213). Results from ME-Bayes SL and PRS-

CSx combining three ancestry groups (EUR, AFR, and AMR), four ancestry groups (EUR, AFR, 

AMR, and EAS), and five ancestry groups (EUR, AFR, AMR, EAS, and SAS) are summarized in 

Supplementary Table 2. The training GWAS sample size is 15,000 for each non-EUR population 

and 100,000 for EUR population. The tuning and validation dataset each contains 10,000 

individuals. All analyses were performed with AMD EPYC 7702 64-Core Processors running at 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2023. ; https://doi.org/10.1101/2023.04.12.536510doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.12.536510
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

2.0 GHz. Other than the LDpred2 step which uses parallel computing with 17 cores, all other 

analyses were conducted using a single core. The reported computation time and memory usage 

are averaged over 10 replicates. 

 

PAGE + UKBB + BBJ data analysis with validation on non-EUR individuals from PAGE 

Three traits, including IRNT BMI, HDL, and LDL, that were available across PAGE, UKBB, and 

BBJ GWAS for EUR, AFR, AMR (Hispanic), and EAS are analyzed. Ancestry- and trait-specific 

GWAS sample sizes, validation sample sizes, and number of SNPs analyzed are reported in 

Supplementary Table 3.1. The training GWAS datasets consist of PAGE, contributing data for 

AFR and AMR, UKBB, contributing data for EUR, and BBJ, contributing data for EAS. The 

validation datasets consist of PAGE, contributing data for the three non-EUR ancestry groups, and 

UKBB, contributing data for EUR. Specifically, we first collect data for a total of 43,769 PAGE 

individuals of AFR (N=17,127), AMR (N=21,995), or EAS (N=4,647) ancestry that have data 

available for at least one of the three traits. For AFR and AMR that have relatively large sample 

sizes in PAGE, we randomly divide the samples within each ancestry group into a training dataset 

(80%) for conducting GWAS, a tuning dataset (10%) for tuning model parameters, and training 

SL in CT-SLEB and ME-Bayes SL or the linear combination model in weighted PRS and PRS-

CSx, and a testing dataset (10%) for evaluating PRS performance. For EAS which has a limited 

sample size in PAGE, we use all PAGE samples for external validation (tuning + testing) and 

obtain GWAS summary data from BBJ, which has a much larger sample size. To borrow 

information from large EUR GWAS, we further collect EUR GWAS summary data from UKBB14 

(N= 315,133 – 360,388) released by the Neale Lab. Finally, to tune the causal SNP proportion for 

EUR, which is required for specifying the prior causal probabilities for non-EUR ancestry groups, 
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we further randomly select a sample of 20,000 random individuals from UKBB that do not overlap 

with samples in the EUR UKBB GWAS. Here the ancestry information for individuals from PAGE 

and UKBB is determined based on self-identified race/ethnicity. 

 

For AFR and AMR, we conduct GWAS on individuals from the PAGE study to obtain the GWAS 

summary data. Specifically, we first collect a total of 17,127 AFR and 21,995 AMR from PAGE, 

then randomly divide the samples in each ancestry into a training set (80%) to conduct GWAS and 

a validation set (20%), of which 10% is used for selecting tuning parameters and training SL 

(tuning set), and the other 10% is used for reporting PRS performance (testing set). There was no 

significant difference between training and validation datasets in the distribution of the covariates 

adjusted for in GWAS. PAGE GWAS: (1) IRNT BMI. For ancestry-specific GWAS analysis on 

AFR and AMR, measurements of BMI outside of 6 standard deviations from the mean (based on 

sex and race) were removed. We first created sex-specific residuals for BMI adjusted for age, then 

inverse normally transformed these residuals. These inverse-normally-transformed residuals were 

then used in the final analysis where they were further adjusted for self-identified race/ethnicity, 

study, study center (for MEC and SOL only), and the top 10 genetic principal components (PCs). 

(2) HDL. For ancestry-specific GWAS analysis on AFR and AMR, untransformed HDL 

measurements were reported in mg/dL, and were adjusted for each individual’s medication use by 

adding a constant based on the type of medication used. Details of the adjustment are described in 

the Supplementary Information in Wojcik et al. (2019)15. Finally, models were adjusted by age at 

lipid measurement, sex, study, study center (for MEC and SOL only), self-identified race/ethnicity, 

and top 10 genetic PCs. (3) LDL. For ancestry-specific GWAS analysis on AFR and AMR, 

untransformed HDL measurements were calculated using the Friedewald Equation16 and reported 
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in mg/dL. The measurements were adjusted for individuals’ medication use by adding a constant 

based on the type of medication used. Details of the calculation and adjustment are described in 

the Supplementary Information in Wojcik et al. (2019)15. Participants who were pregnant at blood 

draw or had fasted less than 8 hours prior to lipid blood draw were excluded. Finally, models were 

adjusted by age at lipid measurement, sex, study, study center (for MEC and SOL only), self-

identified race/ethnicity, and top 10 genetic PCs. 

 

The PAGE individuals included in our analyses are part of the PAGE participant cohort, which 

were collected from Hispanic Community Health Study/Study of Latinos (HCHS/SOL), Women’s 

Health Initiative (WHI), Multiethnic Cohort (MEC), and the Icahn School of Medicine at Mount 

Sinai BioMe biobank in New York City (BioMe)15. Due to the extensive degree of admixture 

within and between PAGE self-identified racial/ethnic groups, individuals were not reassigned 

based on their genetic ancestry but remained categorized by their self-identified race/ethnicity. 

However, we have assigned them to ancestry groupings based on an approximation of mappings 

to continental-level regions for consistency with other external studies in this manuscript. Written 

informed consent was obtained for all participants in this study at the relevant recruitment sites. 

Due to the extensive degree of admixture within and between PAGE self-identified racial/ethnic 

groups, individuals were not reassigned based on their genetic ancestry but remained categorized 

by their self-identified race/ethnicity. Detailed information about genotyping, data quality control 

and imputation, selection of unrelated individuals, genetic principal component analysis, and 

phenotype harmonization are provided in the Supplementary Information in Wojcik et al. (2019)15. 
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Since PAGE has a limited sample size for EAS (4,647), and thus we further collect publicly 

available GWAS summary data from BBJ (data availability) and use all PAGE individuals for 

validation on EAS. For BMI, the GWAS analysis included age, age2, sex, status of a series of 

diseases, and the top 10 genetic PCs as covariates17. For HDL and LDL, the GWAS analyses 

included age, sex, status of a series of diseases, and the top 10 genetic PCs as covariates18.  

 

PAGE does not have individuals of EUR ancestry. To borrow information from the much larger 

EUR GWAS, we further download publicly available EUR GWAS summary data from UKBB 

(Data and code availability). For all three traits, the UKBB GWAS analyses include age, age2, 

inferred sex, an interaction term between age and inferred sex, an interaction term between age2 

and inferred sex, and the top 20 genetic PCs as covariates.  One thing to note is that for HDL and 

LDL, measurements are untransformed and reported in mmol/L in UKBB, untransformed and 

reported in mg/dL in PAGE, and reported in mg/dL then standardized to Z-score in BBJ. Although 

not on the same scale, the correlation in SNP effect size estimates remain the same, allowing the 

various GWAS summary data to be analyzed jointly. For EUR, we construct a validation dataset 

of 20,000 independent samples from UKBB that do not overlap with the UKBB GWAS samples. 

Specifically, we use the genotyping plate and well codes, which are published in the file 

ukb_sqc_v2.txt by UKBB and are consistent across different project applications, to identify and 

exclude the individuals included in the UKBB GWAS analysis by Neale Lab, and then randomly 

select 20,000 independent individuals from the remaining UKBB samples to conduct parameter 

tuning (10,000) and testing (10,000). For each ancestry group, we use unrelated samples of the 

same ancestry from 1000 Genomes Project as the LD reference data. For EUR, the reported 

prediction R2 are adjusted for age, sex, and top 10 genetic PCs. For AFR, AMR and EAS, the R2 
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for BMI are adjusted for age, sex, top 10 genetic PCs, and whether the individual is from the 

BioMe Biobank, and for HDL and LDL the R2 are adjusted for age at lipid measurement, sex, top 

10 genetic PCs, and whether the individual is from the BioMe Biobank. 

 

We conduct the following quality control steps for the GWAS summary-level association statistics: 

(1) consistent with the procedure in our simulation study and other data analyses, we restrict our 

analysis to approximately 1.6 million SNPs in HapMap 3 plus MEGA that are also available in 

LD reference panel and validation sample; (2) we remove SNPs that have duplicated positions in 

GWAS or LD reference panel; (3) for EUR, we remove SNPs that have alleles <AT=,  <TA=,  

<CG=, or <GC= to avoid undetectable flipping strands when matching with UKBB validation data; 

(4) for the implementation of single-ancestry methods, we only keep common SNPs, i.e., SNPs 

that have ancestry-specific MAF > 0.01 in that ancestry group, and for the implementation of 

multi-ancestry methods we keep all SNPs that have ancestry-specific MAF > 0.01 in at least one 

ancestry group. The Manhattan plots and QQ plots for GWAS are reported in Supplementary 

Figures 14-16. No inflation is observed based on the genomic inflation factor. We estimate 

heritability of the three traits for EUR using LD score regression5 based on the 1000 Genomes LD 

reference data for EUR (Supplementary Table 7). 

 

GLGC data analysis with validation on UKBB individuals 

We obtain GWAS summary data from the Global Lipids Genetics Consortium (GLGC) for four 

blood lipid traits including HDL, LDL, TC , and logTG19 on five ancestry groups including EUR 

(NGWAS =840,018 – 927,975), AFR or admixed AFR (NGWAS =87,759 – 92,554), Hispanic (NGWAS 

=33,989 – 48,056), EAS (NGWAS =80,676 – 145,512), and SAS (NGWAS =33,658 – 34,135). Details 
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of the study design, genotyping, quality control and GWAS are previously described19. We 

validate performance of the various methods on UKBB individuals. Specifically, we select a 

random set of 20,000 individuals that are of EUR origin and extracted all individuals that are of 

AFR (N = 9,169), EAS (N=2,019), SAS (N=10,853), or Hispanic/Latino (N=785) origin. The 

origin of the UKBB individuals were determined by a genetic component analysis (Supplementary 

Notes). We used 50% of the UKBB samples to tune model parameters and train the SL in CT-

SLEB and ME-Bayes SL or the linear combination model in weighted PRS and PRS-CS (tuning 

set), and the remaining 50% to evaluate PRS performance (testing set). The prediction of the 

genetic component has a low accuracy for AMR, and given the small number of identified AMR 

individuals (N=785), we do not report prediction R2 on UKBB AMR. We use genotype data of 

unrelated individuals from 1000 Genomes project or tuning samples from UKBB as the LD 

reference data20. Ancestry- and trait-specific GWAS sample sizes, validation sample sizes, and 

number of SNPs analyzed are reported in Supplementary Table 4.1. Based on the genomic inflation 

factor, no inflation is observed for the various ancestry-specific GWAS. The Manhattan plots and 

QQ plots are reported in Zhang et al. (2022)13. No inflation is observed given the genomic inflation 

factor. Heritability of the four traits in EUR is estimated using LD score regression (Supplementary 

Table 7). All GWAS summary statistics went through the same quality control steps as in PAGE 

+ UKBB + BBJ data analysis as well as one more step, where we further remove SNPs with a 

GWAS sample size less than 90% of the total GWAS sample size. The GWAS summary data from 

GLGC does not have information on ancestry-specific MAF, and thus we use the 1000G LD 

reference genotype data to calculate ancestry-specific MAF for the step where we filter out all 

SNPs that have MAF < 0.01 in all ancestry groups. The R2 are adjusted for age, sex, and top 10 

genetic PCs. 
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AoU data analysis with validation on UKBB individuals 

The individuals included in our analyses are part of the All of Us participant cohort with 

information collected according to the All of Us Research Program Operational Protocol 

(https://allofus.nih.gov/sites/default/files/aou_operational_protocol_v1.7_mar_2018.pdf). 

Detailed information on genotyping, ancestry determination, quality control, removal of related 

individuals is provided in the All Of Us Research Program Genomic Research Data Quality Report 

(https://www.researchallofus.org/wp-content/themes/research-hub-wordpress-

theme/media/2022/06/All%20Of%20Us%20Q2%202022%20Release%20Genomic%20Quality

%20Report.pdf). 

 

On the All of Us platform, we conduct GWAS for BMI and height separately on unrelated 

individuals of three ancestry groups including EUR (NGWAS =48,229 – 48,332), admixed AFR or 

AFR (NGWAS =21,514 – 21,550), and Hispanic/Latino (NGWAS =15,364 – 15,413). The GWAS are 

adjusted for age, sex, and top 16 genetic PCs. There are only about 0.9 million SNPs in HapMap 

3 + MEGA that are included in our analyses, which is due to the small number of the overlapping 

samples across the filtered WGS data, array data, and phenotype data. Similar to the GLGC data 

analysis, we validate performance of the various methods on UKBB individuals, i.e., 20,000 EUR 

individuals and individuals of AFR (N = 9,169) origin that are identified based on a genetic 

component analysis (Supplementary Notes). Again, the genetic ancestry prediction accuracy for 

AMR is low, and considering the small number of identified AMR (N=785), we do not report 

validation results on UKBB AMR. We use genotype data of unrelated individuals from 1000 

Genomes project or tuning samples from UKBB as the LD reference data. Ancestry- and trait-
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specific GWAS sample sizes, validation sample sizes, and number of SNPs analyzed are reported 

in Supplementary Table 5.1. Based on the genomic inflation factor, no inflation is observed other 

than height for Hispanic/Latino. The Manhattan plots and QQ plots are reported in Zhang et al. 

(2022)13. Heritability of the two traits in EUR was estimated using LD score regression5 

(Supplementary Table 7). All GWAS summary statistics went through the same quality control 

steps as in the GLGC data analysis. The R2 are adjusted for age, sex, and top 10 genetic PCs. 

 

23andMe Data Analysis 

We develop and validate PRS for seven traits, including (1) heart metabolic disease burden, (2) 

height, (3) any cardiovascular disease (any CVD), (4) depression, (5) migraine diagnosis, (6) 

morning person, and (7) sing back musical note (SBMN) for EUR, African American (AFR), 

Latino (AMR), EAS, and SAS based on a large-scale dataset from 23andMe, Inc. We first conduct 

GWAS separately on the training dataset (70% samples) for each of the five ancestry groups, then 

apply the various methods to the generated GWAS summary-level association statistics and LD 

reference data from the 1000 Genomes Project. Within the remaining 30% of the samples, we use 

20% to tune model parameters, train the SL in CT-SLEB and ME-Bayes SL, and the linear 

combination model in weighted PRS and PRS-CSx, then validate the predictive performance of 

the constructed PRS on the remaining 10% samples. We observe from our analyses on the other 

three datasets that ME-Bayes SL almost always outperforms the two alternative methods, ME-

Bayes and weighted ME-Bayes, and thus for 23andMe data analysis, we only implement ME-

Bayes SL but not the two alternative methods. 
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All GWAS analyses on the training data from 23andMe, Inc. were performed adjusting for age, 

sex, and the top 5 genetic PCs. Genotype data of unrelated individuals from 1000 Genomes project 

was used to estimate LD matrices. Detailed information on participant inclusion, genotyping, 

phenotyping, data imputation and quality control, removing related individuals, ancestry 

determination, and GWAS analysis is provided in Zhang et al. (2022)13. Ancestry- and trait-

specific GWAS sample sizes, validation (tuning + testing) sample sizes, and the number of SNPs 

analyzed are reported in Supplementary Table 6.1. Based on the genomic inflation factor, no 

inflation is observed for the various ancestry-specific GWAS. The Manhattan plots and QQ plots 

are reported in Zhang et al. (2022)13. No inflation is observed given the genomic inflation factor. 

Heritability of the four traits in EUR is estimated using LD score regression (Zhang et al., 2022)13. 

All GWAS summary statistics went through the same quality control steps as in PAGE + UKBB 

+ BBJ data analysis as well as one more step where we further remove SNPs with a GWAS sample 

size less than 90% of the total GWAS sample size. The residual R2 for the two continuous traits 

were calculated by first regressing each trait on covariates including age, sex, and the top 5 genetic 

PCs, and then calculating the proportion of variation of the residual explained by the PRS. The 

residual AUC for the five binary traits were calculated using the <roc.binary= function in the R 

package RISCA version 1.0171 adjusting for the same set of covariates adjusted for the continuous 

traits. 
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