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Abstract
Polygenic risk scores (PRS) are now showing promising predictive performance on a wide
variety of complex traits and diseases, but there exists a substantial performance gap across
different populations. We propose ME-Bayes SL, a method for ancestry-specific polygenic
prediction that borrows information in the summary statistics from genome-wide association
studies (GWAS) across multiple ancestry groups. ME-Bayes SL conducts Bayesian hierarchical
modeling under a multivariate spike-and-slab model for effect-size distribution and incorporates
an ensemble learning step to combine information across different tuning parameter settings and
ancestry groups. In our simulation studies and data analyses of 16 traits across four distinct
studies, totaling 5.7 million participants with a substantial ancestral diversity, ME-Bayes SL
shows promising performance compared to alternatives. The method, for example, has an
average gain in prediction R? across 11 continuous traits of 40.2% and 49.3% compared to PRS-
CSx and CT-SLEB, respectively, in the African Ancestry population. The best-performing
method, however, varies by GWAS sample size, target ancestry, underlying trait architecture,
and the choice of reference samples for LD estimation, and thus ultimately, a combination of

methods may be needed to generate the most robust PRS across diverse populations.

Keywords: Bayesian hierarchical modeling, Effect-size distribution, Ensemble learning,

Genome-wide association studies, Multi-ancestry polygenic prediction, Polygenic architecture.
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Introduction

Polygenic models for predicting complex traits are widely developed utilizing summary-level
association statistics from genome-wide association studies (GWAS). While being on course to
translate GWAS results into clinical practice, polygenic risk scores (PRS) encounter obstacles
due to the poor predictive performance on underrepresented non-European (non-EUR) ancestry
populations, especially those with substantial African ancestry!*. As sample sizes for GWAS in
many non-EUR populations remain low for many traits, applications of PRS often rely on EUR-
based models, which underperform in other populations due in part to differences in allele

frequencies, SNP effect sizes, and linkage disequilibrium (LD)!-36,

To improve the poor performance of PRS on non-EUR populations, several multi-ancestry
methods have recently been developed to combine information from available GWAS summary
statistics and LD reference data across multiple ancestry groups. One simple approach is the
weighted PRS?, which trains a linear combination of the PRS developed using single-ancestry
methods (e.g., LD clumping and P-value thresholding, C+T) applied separately to available
GWAS data across different ancestry groups’. More recent methods attempt to borrow
information across ancestry at the level of individual SNPs based on Bayesian methods®?,

10.11 " or through the extension of C+T'2. However, applications show that

penalized regressions
no single method performs uniformly the best, and their performance depends on many aspects,
including the underlying genetic architecture of the trait, the absolute and relative sample sizes
across populations, and the algorithm for the estimation of LD based on the underlying reference

dataset!2.
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We propose ME-Bayes SL, a novel method for developing ancestry-specific PRS by jointly
modeling ancestry-specific GWAS summary data across diverse ancestries. ME-Bayes SL
consists of two steps, a Bayesian modeling step which specifically models the genetic correlation
in SNP effect size across ancestries via a multivariate spike and slab prior (“ME-Bayes”), and a
super learning (SL) step to seek an “optimal” combination of a series of PRS obtained from ME-
Bayes under different tuning parameter settings and across ancestries. We evaluate the proposed
method and benchmark it against a variety of alternatives through large-scale simulation studies
and analyses of 16 traits from four different studies: (1) the Population Architecture using
Genomics and Epidemiology (PAGE) Study supplemented with data from the Biobank Japan
(BBJ) and UK Biobank (UKBB), (2) Global Lipids Genetics Consortium (GLGC), (3) All of US
(AoU), and (4) 23andMe, Inc. These studies, with training data and additional validation samples
from the UKBB study, included a total of 3.4 million European (EUR), 226K Admixed African,
African, or African American (AFR), 437K Admixed Americans or Hispanic/Latino (AMR),
389K East Asian (EAS), and 56K South Asian (SAS). Results reveal the promising performance
of ME-Bayes SL for developing robust PRS in the multi-ancestry setting and identify a number

of practical considerations for implementations that are crucial to the performance of the method.

Results

ME-Bayes SL Overview

Considering that GWAS summary-level association statistics can be shared much more easily
among research teams than individual-level genotype and phenotype data, we will focus on PRS
methods that can use summary-statistics from the GWAS training samples. The implementation

of our proposed method ME-Bayes SL, as well as other multi-ancestry methods which we will
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compare ME-Bayes SL to, requires three (ancestry-specific) datasets from each training ancestry
group: (1) GWAS summary data, (2) LD reference data, and (3) a validation (tuning + testing)

dataset with genotype and phenotype data for an adequate number of individuals that are

independent of GWAS samples and LD reference samples.

Step 0: Single-ancestry analysis on each of the K training populations
Population 1

Population 2 Population K

GWAS
summary data

GWAS
summary data

GWAS
summary data

LD reference LD reference LD reference
data data data
Train LDpred2 Train LDpred2 Train LDpred2
A 4 A 4
| Tuning set | | Tuning set | Tuning set
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Figure 1: ME-Bayes SL Workflow. [Step 0] apply LDpred2 to each of the K training
populations (ancestry groups) to obtain estimated causal SNP proportions (py, k = 1, ...,K) and
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heritability (hZ, k = 1, ..., K) parameters based on the tuning set, these parameters will be used
to specify the prior distributions and tuning parameter settings for ME-Bayes. [Step 1] ME-
Bayes: jointly model across all training populations to obtain a total of (LxK) PRS models under
L different tuning parameter settings for Pr (84, ..., §k;) (functions of p,s) and py x,s across K

training populations. [Step 2] for the target population, apply the super learning (SL) algorithm
with 3 base learners (elastic net regression, ridge regression, and linear regression) to train an
“optimal” linear combination of the (LxK) PRS models, which we call the ME-Bayes SL PRS
model, based on the tuning set of the target population. The prediction performance of the final
ME-Bayes SL PRS model should be evaluated on an independent testing set.

We now introduce ME-Bayes SL, a novel method for enhanced ancestry-specific polygenic risk
prediction based on available GWAS summary-level association statistics and LD reference data
across multiple ancestry groups. ME-Bayes SL consists of two steps (Figure 1): (1) a Bayesian
modeling step (“ME-Bayes”) to model the genetic correlation structure in SNP effect size across
ancestry groups while accounting for ancestry-specific LD across SNPs, and (2) a super learning
(SL) step to construct an “optimal” linear combination of a series of PRS obtained from ME-
Bayes under different tuning parameter settings and across all ancestry groups. Additionally, a
step O was conducted before step 1 to obtain tuned causal SNP proportion and heritability
parameters for each training ancestry group from LDpred2. These parameters will be used to

specify the prior causal SNP proportions and heritability parameters in ME-Bayes.

Step 1: ME-Bayes: a Bayesian model for estimating ancestry-specific SNP effect sizes
ME-Bayes tailors effect size estimates for each ancestry group by incorporating data from other
ancestry groups via Bayesian hierarchical modeling with a multivariate spike and slab prior on
SNP effect sizes across ancestry groups. For population-specific SNPs, i.e., SNPs with minor
allele frequency (MAF)>0.01 in only one ancestry group, we assume a spike-and-slab prior as in
LDpred2. For SNPs that are polymorphic across multiple populations, the between-SNP

correlation is induced in two aspects: (1) we assume a SNP is causal in all those populations or
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none, and (2) the effect sizes for causal SNPs across populations are correlated (see Online
Methods for details). The prior specification is distinct compared to the recent method PRS-CSx?®
in two aspects: (1) the use of a multivariate spike-and-slab prior versus a continuous shrinkage
prior to perform shrinkage estimation; and (2) flexible specification of genetic correlation
structure across ancestry groups in ME-Bayes SL compared to PRS-CSx, which assumes a single
hyperparameter is shared across different ancestry groups and thus incorporates as fairly rigid

specification of the correlation structure.

We infer posterior estimates of LD-adjusted SNP effect sizes across different ancestries via an
efficient Markov chain Monte Carlo (MCMC) algorithm (Online Methods). Multiple PRS will
be developed for each ancestry under carefully designed settings of two sets of tuning
parameters, (1) the causal SNP proportion in each ancestry group, which will be used to specify
the correlated prior causal probabilities across ancestry groups (Online Methods), and (2) the
between-ancestry genetic correlation in SNP effect sizes. Ancestry-specific SNP effect sizes are
estimated based on MCMC with an approximation strategy previously implemented in the
LDpred? algorithm!3, which substantially reduces the number of iterations required to reach
convergence with a spike-and-slab type prior on a large number of correlated SNPs. Detailed

MCMC algorithm and estimation procedure are described in Online Methods.

Step 2: Super Learning (SL)
Research has shown that combining multiple C+T PRS under different p-value thresholds'* or
combining the best ancestry-specific PRS across multiple ancestry groups’? can significantly

improve predictive performances. Thus, as a second step of ME-Bayes SL, we consider
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combining PRS obtained from the ME-Bayes step both across different tuning parameter settings
and across ancestry groups via an SL model trained on the tuning dataset. SL is an ensemble
learning method for seeking an “optimal” linear combination of various base learners for
prediction'>. In our analyses, we consider three linear base learners, including linear regression,
elastic net regression!®, and ridge regression!’. A similar SL procedure was also implemented
recently in another multi-ancestry method CT-SLEB'2. In our simulation studies and real data
examples, we will show explicitly how much improvement in predictive power can be obtained
separately through the Bayesian modeling step and the SL step. Considering that both weighted
PRS and PRS-CSx construct a linear combination of the best PRS for each ancestry group, we
tried the same approach on our Bayesian model (ME-Bayes) and called this alternative method
“weighted ME-Bayes”. We observe on both simulated data and real data that the gain in
predictive power by this linear combination strategy is mostly lower than, and sometimes
comparable to, the gain by our proposed SL strategy. (Supplementary Figures 1-13, “weighted

ME-Bayes” versus “ME-Bayes SL”).

Simulation Settings

We first investigate the performance of ME-Bayes SL and a series of existing methods under
various simulated scenarios of the genetic architecture of a continuous trait and absolute and
relative GWAS sample sizes across ancestry groups. This large-scale dataset, including
simulated genotype and phenotype data for a total of 600,000 individuals across EUR, AFR,
AMR, EAS, and SAS, was recently released by our group!?. Detailed simulation setup is
described in Zhang et al. (2022)!? and briefly summarized in the Supplementary Notes. We apply

eight existing approaches for comparison, which include two single-ancestry methods applied to
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GWAS and LD reference data from the target population: (1) C+T, (2) LDpred2; the same
single-ancestry methods applied to GWAS and LD reference data for EUR: (3) EUR C+T, (4)
EUR LDpred2; and three existing multi-ancestry methods applied to ancestry-specific GWAS
and LD reference data for all ancestry groups: (5) weighted C+T (weighted PRS using C+T as
the base method), (6) weighted LDpred2 (weighted PRS using LDpred2 as the base method), (7)
PRS-CSx®, and (8) CT-SLEB'2. Results from another two recently proposed multi-ancestry
methods, PolyPred+'® and XPASS®, on the same simulated dataset are reported in Zhang et al.
(2022)'2. Taking into account both ancestral diversity and computational efficiency, throughout
the text, we restrict all our analyses to the SNPs among approximately 2.0 million SNPs in
HapMap 3'° plus Multi-Ethnic Genotyping Array (MEGA)?° that are also available in the
discovery GWAS, LD reference panel, and validation (tuning + testing) samples. We assess the
predictive performance of a PRS by prediction R?, i.e., the proportion of variance of the trait
explained by the PRS. Results of the various methods are compared in five simulation settings:
(1) fixed common SNP heritability, strong negative selection, with a genetic correlation set to

p = 0.8 between any two ancestry groups (Figure 2, Supplementary Figures 1-2), (2) fixed per-
SNP heritability, strong negative selection, p = 0.8 (Supplementary Figures 3-4), (3) fixed per-
SNP heritability, strong negative selection, with a weaker between-ancestry genetic correlation
p = 0.6 (Supplementary Figures 5-6), (4) fixed common SNP heritability, no negative selection,
p = 0.8 (Supplementary Figures 7-8), and (5) fixed common SNP heritability, mild negative

selection, p = 0.8 (Supplementary Figures 9-10).

10
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Figure 2: Simulation results showing performance of the PRS constructed by ME-Bayes
SL and various existing methods, assuming a fixed common SNP heritability (0.4) across
ancestries under a strong negative selection model for the relationship between SNP
effect size and allele frequency. The genetic correlation in SNP effect size is set to 0.8 across
all pairs of populations. The causal SNP proportion (degree of polygenicity) is set to 1.0%,
0.1%, or 0.05% (~192K, 19.2K, or 9.6K causal SNPs). We generate data for ~19 million
common SNPs (MAF>1%) across the five ancestries but conduct analyses only on the ~2.0
million SNPs in HapMap 3 + MEGA. The PRS-CSx software only considers approximately 1.2
million HapMap 3 SNPs and therefore we report the performance of PRS-CSx PRS only based
on the HapMap 3 SNPs. The discovery GWAS sample size is set to (a) 15,000 or (b) 80,000 for
each non-EUR ancestry, and 100,000 for EUR. A tuning set consisting of 10,000 individuals is
used for parameter tuning and training the SL in CT-SLEB and ME-Bayes SL or the linear
combination model in weighted C+T, weighted LDpred2, and PRS-CSx. The reported R? values
are calculated on an independent testing set of 10,000 individuals for each ancestry group.

Simulation results

The multi-ancestry methods tend to outperform the single-ancestry methods, except for weighted
C+T, which performs worse than LDpred2 when GWAS sample size of the non-EUR target
population becomes adequately large (Figure 2, Supplementary Figures 1-10). When the
discovery GWAS sample size of the target non-EUR population is relatively small (N=15,000)
compared to EUR GWAS (N=100,000), EUR PRS tends to outperform PRS generated based on
training data from the target non-EUR population; but as GWAS sample size of the target non-
EUR population increases, the prediction R? of LDpred2 eventually becomes substantially higher
than that of EUR C+T and EUR LDpred2. Among the existing multi-ancestry methods, weighted
LDpred2, PRS-CSx, and CT-SLEB perform similarly but show advantages over others in
different settings: weighted LDpred2 performs well in the scenario of a large causal SNP
proportion, CT-SLEB performs similarly as PRS-CSx but shows some advantages when there is
a small causal SNP proportion (0.05%) and when GWAS sample size for target non-EUR
population is small. Overall, the proposed ME-Bayes SL method outperforms these existing
methods in almost all settings. This is expected given that the SNP effect sizes were simulated

under a multivariate spike-and-slab distribution as assumed in the ME-Bayes model. The

12
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proposed SL step (in ME-Bayes SL) and the alternative linear combination step (in weighted
ME-Bayes) only provide minimal improvement in R? on top of ME-Bayes (Supplementary
Figures 1-10). This may be because when the specified distribution of SNP effect sizes
approximates the true distribution well, the best PRS trained for each ancestry by ME-Bayes can
already provide a high predictive power, and an additional step of combining PRS across tuning

parameter settings and ancestry groups is unnecessary.

We also checked computation intensity of ME-Bayes SL in comparison with PRS-CSx. A
comparison of computation time between PRS-CSx and CT-SLEB on the same simulation
dataset was reported in Zhang et al. (2022)'2. With AMD EPYC 7702 64-Core Processors
running at 2.0 GHz using a single core, on chromosome 22 and with a total of 5 X (K+1) tuning
parameter settings, ME-Bayes SL has an average runtime of approximately 75.9 minutes
combining K=3 ancestry groups with a total of 17,192 SNPs, 127.2 minutes combining K=4
ancestry groups with 17,721 SNPs, and 237.4 minutes across K=5 ancestry groups with 17,722
SNPs. Although not as fast as simpler methods such as CT-SLEB and XPASS, ME-Bayes SL is
computationally more efficient than PRS-CSx (K=3: 3.8-fold, K=4: 3.2-fold, K=5: 2.5-fold) and
thus is easier to implement than PRS-CSx especially when four or more training populations are

available to be combined.

PAGE + UKBB + BBJ data analysis with validation on non-EUR individuals from PAGE
We evaluate the performance of the various methods on predicting the polygenic risk of inverse-
rank normal transformed BMI (IRNT BMI), high-density lipoprotein (HDL), and low-density

lipoprotein (LDL) separately for AFR, AMR, and EAS. We collected ancestry-specific training

13
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GWAS summary data for AFR and AMR from PAGE, GWAS summary data for EAS from
BBJ, and EUR GWAS summary data from UKBB. The PRS developed by the various methods
are evaluated on validation individuals of AFR, AMR, and EAS populations from PAGE. We
use genotype data for 498 EUR, 659 AFR, 347 AMR, 503 EAS, and 487 SAS individuals from

the 1000 Genomes project as the LD reference data?®!.
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Figure 3: Prediction R? on validation individuals of AFR (N=2,015-3,428), EAS (N=2,316-
4,647), and AMR ancestries (N=3,479-4,397) in PAGE based on discovery GWAS from
PAGE (AFR Ngwas=7,775 — 13,699, AMR Ngwas=13,894 — 17,558), BBJ (EAS Nowas=70,657 —
158,284), and UKBB (EUR Ngwas=315,133 — 355,983). We used genotype data from 1000
Genomes Project (498 EUR, 659 AFR, 347 AMR, 503 EAS, 487 SAS) as the LD reference
dataset. All methods were evaluated on the ~2.0 million SNPs that are available in HapMap 3 +
MEGA, except for PRS-CSx which is evaluated based on the HapMap 3 SNPs only, as
implemented in their software. Ancestry- and trait-specific GWAS sample sizes, number of
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SNPs included, and validation sample sizes are summarized in Supplementary Table 3.1. A
random half of the validation individuals is used as the tuning set to tune model parameters, as
well as train the SL in CT-SLEB and ME-Bayes SL or the linear combination model in weighted
C+T, weighted LDpred2, and PRS-CSx. The other half of the validation set is used as the
testing set to report R?values for PRS on each ancestry, after adjusting for whether or not the
sample is from BioMe and the top 10 genetic principal components for BMI, and additionally the
age at lipid measurement and sex.

In this set of analyses, we observe that the multi-ancestry methods tend to outperform single-
ancestry methods for EUR, AFR, and AMR (Figure 3, Supplementary Figure 11, Supplementary
Table 3). For EAS, LDpred2 can reach an R? similar to or higher than that of EUR LDpred2 and
multi-ancestry methods, which is possibly because the BB] GWAS sample sizes for EAS are
relatively large (N=70,657 — 158,284). For the proposed method ME-Bayes SL, we observe
potential improvement in R? from both the Bayesian modeling step (“ME-Bayes” versus
“LDpred2”) and the SL step (“ME-Bayes SL” versus “ME-Bayes”). The linear combination
strategy (“weighted ME-Bayes”, Supplementary Figure 11) provides a smaller or similar gain in
R? compared to our SL strategy (“ME-Bayes SL”). The relative performance of the various
multi-ancestry methods varies by trait and ancestry, and no method is uniformly better than
others. In some settings, ME-Bayes SL PRS gives a lower R? than the PRS trained by weighted
LDpred2 and PRS-CSx in some settings, such as for BMI on AFR and LDL on EAS. But in
general, ME-Bayes SL PRS has the best overall performance, with an average increase of 3.6%

and 19.6% in R? compared to PRS-CSx and CT-SLEB, respectively, on non-EUR ancestries.

GLGC data analysis with validation on UKBB individuals
We apply the various methods to develop ancestry-specific PRS for four blood lipid traits,
including HDL, LDL, total cholesterol (TC), and log of triglycerides (1o0gTG)?2, based on

ancestry-specific GWAS summary data for EUR, AFR, AMR, EAS, and SAS, from the Global
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Lipids Genetics Consortium (GLGC). We validate the performance of the various methods on
UKBB individuals of AFR, EAS, and SAS origin separately, where the ancestry information of
the UKBB validation individuals was determined based on an ancestry genetic component

analysis (Supplementary Notes).
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Figure 4: Prediction R2 on UKBB validation individuals of EUR (17,457 — 19,030), AFR
(7,954 — 8,598), EAS (1,752 — 1,921), and SAS (9,385 — 10,288) origin based on discovery
GWAS from GLGC on EUR (Ngwas =842,660 — 930,671), AFR or admixed AFR (Ngwas
=87,760 — 92,555), Hispanic/Latino (Newas =46,040 — 49,582), EAS (Ngwas =82,587 —
146,492), and SAS (Ncwas =33,658 — 34,135). The LD reference data are from either (a) 1000
Genomes Project (498 EUR, 659 AFR, 347 AMR, 503 EAS, 487 SAS), or (b) UKBB data (PRS-
CSx: default UKBB LD reference data which overlaps with our testing samples including
375,120 EUR, 7,507 AFR, 687 AMR, 2,181 EAS, and 8,412 SAS; all other methods: UKBB
tuning samples including 10,000 EUR, 4,585 AFR, 1,010 EAS, and 5,427 SAS). The ancestry of
UKBB individuals were determined by a genetic ancestry prediction approach (Supplementary
Notes). Due to the low prediction accuracy of genetic component analysis and extremely small
validation sample size of UKBB AMR, prediction R?2 on UKBB AMR is unreliable and thus is not
reported here. All methods were evaluated on the ~2.0 million SNPs that are available in
HapMap 3 + MEGA, except for PRS-CSx which is evaluated based on the HapMap 3 SNPs
only, as implemented in their software. Ancestry- and trait-specific GWAS sample sizes, number
of SNPs included, and validation sample sizes are summarized in Supplementary Table 4.1. A
random half of the validation individuals is used as the tuning set to tune model parameters, as
well as train the SL in CT-SLEB and ME-Bayes SL or the linear combination model in weighted
LDpred2, PRS-CSx, and weighted ME-Bayes. The other half of the validation set is used as the
testing set to report R2 values for each ancestry, after adjusting for age, sex, and the top 10
genetic principal components. In (b), PRS-CSx and other methods do not have a fair
comparison because the UKBB LD reference data provided by the PRS-CSx software
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(UKBBprs-csx) is much larger than that for other methods, and thus the R? of PRS-CSx PRS may
be inflated due to a big overlap between UKBBeprs.csx and the UKBB testing sample.

We first use genotype data of the unrelated 1000 Genomes samples as the LD reference data?!.
We observe that ME-Bayes SL PRS performs the best or similarly to the best PRS (Figure 4(a),
Supplementary Figure 12(a), and Supplementary Table 4). We see a notable gain in R?
comparing ME-Bayes SL PRS to weighted LDpred2 PRS (average increase: 50.7%). ME-Bayes
SL outperforms CT-SLEB in most cases (average increase in R?: 27.1%). Although the relative
performance between ME-Bayes SL and PRS-CSx varies by ancestry and trait, ME-Bayes SL
PRS has a better overall performance, with an average increase of 19.9% in R? compared to
PRS-CSx PRS. Similar to the results from PAGE + UKBB + BBJ analysis, ME-Bayes SL
improves on top of LDpred2 by both the Bayesian modeling step (“ME-Bayes” versus
“LDpred2”, Supplementary Figure 12(a)) and the SL step (“ME-Bayes SL” versus “ME-Bayes”,
Supplementary Figure 12(a)). The PRS generated by the alternative linear combination strategy
has a similar or lower R? than the PRS generated by our proposed SL strategy (“weighted ME-

Bayes” versus “ME-Bayes SL”, Supplementary Figure 12(a)).

It has been shown that LDpred2 sometimes has suboptimal performance based on the widely
implemented 1000 Genomes LD reference data>>*, which may be due to convergence issue in
the presence of inadequate LD reference sample size and/or ancestry mismatch between 1000
Genomes samples and the target population?. Implemented by an MCMC algorithm that utilizes
similar computational tricks as LDpred2, ME-Bayes SL may likewise underperform with the
1000 Genomes reference data. We therefore conduct a sensitivity analysis where we estimate LD
based on UKBB tuning samples (10,000 EUR, 4,585 AFR, 687 AMR, 1,010 EAS, 5,427 SAS)

instead of the 1000 Genomes samples. We observe that the R? of ME-Bayes SL PRS improves
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notably compared to using 1000 Genomes LD reference (Figure 4(b), Supplementary Table 4),
especially on AFR (average increase: 33.8%). The R? of PRS-CSx PRS has also increased but
not as much as the R? of ME-Bayes SL PRS. This is particularly noteworthy because PRS-CSx
by default uses a much larger number of UKBB LD reference samples (375,120 EUR, 7,507
AFR, 687 AMR, 2,181 EAS, and 8,412 SAS), which also overlap with our UKBB testing
samples and thus lead to potentially inflated R? estimates. The advantage of ME-Bayes SL now
becomes more obvious: it outperforms the existing methods in all scenarios except for HDL in
EAS, where it performs slightly worse than PRS-CSx PRS. ME-Bayes SL shows the most
notable advantage on AFR, for which PRS are typically not powerful and hard to improve
(average R? increase compared to the best existing method: 38.6%). Interestingly, the alternative
weighted ME-Bayes approach has a similar or slightly lower R? than ME-Bayes SL, but it still
outperforms PRS-CSx, which utilizes the same linear combination strategy, for almost all traits

and ancestry groups (Supplementary Figure 12(b)).

AoU data analysis with validation on UKBB individuals

We also apply the various methods to develop ancestry-specific PRS for height and BMI based
on the GWAS summary data we generated from the All of Us Research Program (AoU) for
EUR, AFR, and AMR. The performance of the derived PRS is evaluated on UKBB validation
samples of AFR ancestry. As in the GLGC data analysis, we first use genotype data of the
unrelated 1000 Genomes samples as the LD reference data?! (Figure 5(a), Supplementary Table
5). Although no method is uniformly the best on all traits and ancestry groups, ME-Bayes SL
PRS on average has an R? that is 67.5% higher than that of the PRS-CSx PRS and 53.4% higher

than that of the CT-SLEB PRS. ME-Bayes SL PRS improves on top of the single-ancestry
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method by both the Bayesian modeling step (ME-Bayes versus LDpred2, Figure 5(a)) and the SL
step (ME-Bayes SL versus ME-Bayes, Supplementary Figure 13(a)). The weighted ME-Bayes
PRS utilizing a linear combination strategy gives a lower R? than the ME-Bayes SL PRS

utilizing the SL strategy (weighted ME-Bayes versus ME-Bayes SL, Supplementary Figure

13(a)).
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Figure 5: Prediction R2 on UKBB validation individuals of AFR (N=9,026 — 9,042) origin
based on discovery GWAS from AoU on EUR (Ngcwas =48,229 — 48,332), AFR (Ngwas
=21,514 - 21,550), and Hispanic/Latino (Necwas =15,364 — 15,413). The LD reference data is
either (a) 1000 Genomes Project (498 EUR, 659 AFR, 347 AMR, 503 EAS, 487 SAS), or (b)
UKBB data (PRS-CSx: default UKBB LD reference data which overlap with our testing samples
including 375,120 EUR, 7,507 AFR, 687 AMR, 2,181 EAS, and 8,412 SAS; all other methods:
UKBB tuning samples including 10,000 EUR, 4,585 AFR, 1,010 EAS, and 5,427 SAS). The
ancestry of UKBB individuals were determined by a genetic ancestry prediction approach
(Supplementary Notes). Due to the low prediction accuracy of genetic component analysis and
extremely small validation sample size of UKBB AMR, prediction R2 on UKBB AMR is unreliable
and thus is not reported here. All methods were evaluated on the ~2.0 million SNPs that are
available in HapMap3 + MEGA, except for PRS-CSx which is evaluated based on the HapMap
3 SNPs only, as implemented in their software. Ancestry- and trait-specific sample sizes of
GWAS, number of SNPs included, and validation sample sizes are summarized in
Supplementary Table 5.1. A random half of the validation individuals is used as the tuning set to
tune model parameters, as well as train the SL in CT-SLEB and ME-Bayes SL or the linear
combination model in weighted LDpred2, PRS-CSx, and weighted ME-Bayes. The other half of
the validation set is used as the testing set to report R? values for each ancestry, after adjusting
for age, sex, and the top 10 genetic principal components. In (b), PRS-CSx and other methods
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do not have a fair comparison because the UKBB LD reference data provided by the PRS-CSx
software (UKBBprs.csx) is much larger than that for other methods, and thus the R? of PRS-CSx
may be inflated due to a big overlap between UKBBprs.csx and the UKBB testing sample.

Similar to the GLGC data analysis, we also conduct a sensitivity analysis where we estimate LD
using the UKBB tuning samples (10,000 EUR, 4,585 AFR, 1,010 EAS, 5,427 SAS) instead of
the 1000 Genomes data. Different from the results from GLGC data analysis, no PRS has
noticeably improved predictive power, even though there is a better ancestry match between the
LD reference population and the target population (Figure 5(b), Supplementary Figure 13(b)).
Such results from the GLGC data analysis and the AoU data analysis suggest that for ME-Bayes
SL, 1000 Genomes LD reference dataset may be adequate for building PRS models with
relatively small discovery GWAS, such as the AoU GWAS (N = 15,364 — 48,332), but not so
with much larger discovery GWAS, such as the GLGC GWAS (N up to 0.89 million). In other
words, the ratio of the sample size of the LD reference dataset to the GWAS sample size may
matter more than the sample size of the LD reference data itself or the population/ancestry match

between datasets.

23andMe data analysis

We have collaborated with 23andMe, Inc. to develop and validate PRS for seven traits for EUR,
African American (AFR), Latino (AMR), EAS, and SAS based on a large-scale dataset from
23andMe, Inc. We analyze two continuous traits: (1) heart metabolic disease burden, (2) height,
and five binary traits: (3) any cardiovascular disease (any CVD), (4) depression, (5) migraine
diagnosis, (6) morning person, and (7) sing back musical note (SBMN). Results are summarized
in Figure 6 and Supplementary Table 6. For the two continuous traits, ME-Bayes SL shows a

major advantage over the existing methods on AFR and AMR: for example, ME-Bayes SL has a
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remarkable improvement over two recently proposed advanced methods that perform the best
among the existing methods, PRS-CSx (average increase in R%: 49.8%) and CT-SLEB (average
increase in R%: 47.5%). For EAS and SAS, ME-Bayes SL performs better than all existing
methods considered in all scenarios, except for heart metabolic disease burden in SAS, which has
the smallest discovery GWAS (N = 20,062), where ME-Bayes SL PRS has an R? slightly lower

than that of CT-SLEB PRS but higher than the R? of all other PRS.
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Figure 6: Prediction results on 23andMe validation individuals based on discovery GWAS
from 23andMe on EUR, African American (AFR), Latino (AMR), EAS, and SAS. The
performance of the various methods is evaluated by (a) residual R? for two continuous traits,
heart Metabolic Disease Burden and height, and (b) residual AUC for five binary traits, any
CVD, depression, migraine diagnosis, morning person, and SBMN. The LD reference data is
from the 1000 Genomes Project (498 EUR, 659 AFR, 347 AMR, 503 EAS, 487 SAS). The
dataset is randomly split into 70%, 20%, 10% for training GWAS, model tuning (tuning model
parameters and training the SL in CT-SLEB and ME-Bayes SL or the linear combination model
in weighted LDpred2 and PRS-CSx), and testing (to report residual R2 or AUC values after
adjusting for the top 5 genetic principal components, sex, and age), respectively. All methods
were evaluated on the ~2.0 million SNPs that are available in HapMap3 + MEGA, except for
PRS-CSx which is evaluated based on the HapMap 3 SNPs only, as implemented in their
software. Ancestry- and trait-specific sample sizes of GWAS, number of SNPs included, and
validation sample sizes are summarized in Supplementary Table 6.1.
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For the five binary traits, we observe a similar pattern as for continuous traits, where ME-Bayes

SL generally performs better than or similarly to the best of the existing methods, and it shows
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the biggest improvement in (AUC — 0.5) over existing methods on AFR (average improvement:
14.4%, Figure 6(b), Supplementary Table 6). Averaged across all five traits and four non-EUR
ancestry groups, ME-Bayes SL PRS gives an (AUC — 0.5) that is 13.8% higher than that of the

PRS-CSx PRS and 9.0% higher than that of the CT-SLEB PRS.

Discussion

We propose ME-Bayes SL, a powerful method for constructing enhanced ancestry-specific PRS
integrating information from GWAS summary statistics and LD reference data across multiple
ancestry groups. Built based on an extension of spike-and-slab type prior!?, ME-Bayes SL
enhances the ancestry-specific polygenic prediction by (1) borrowing information from GWAS
of other ancestries via specification of a between-ancestry covariance structure in SNP effect
sizes, (2) incorporating heterogeneity in LD and MAF distribution across ancestries, and (3) an
SL algorithm combining ancestry-specific PRS developed under various possible genetic
architectures of the trait. We benchmark our method against a wide variety of alternatives,
including multiple state-of-the-art multi-ancestry methods’®!2, using extensive simulation
studies and data analyses. Results show that while no method is uniformly the best, ME-Bayes
SL is generally a robust method that shows close to optimal performance across a wide range of
scenarios and have the potential to notably improve PRS performance in the AFR population

compared to the alternative methods.

One important observation from the data applications is that the advantage of ME-Bayes SL over

existing methods tends to be more notable with larger GWAS accompanied by larger LD

reference dataset. In the GLGC data analysis and 23andMe data analysis where the discovery
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GWAS sample sizes are relatively large, especially for the non-EUR populations, we can clearly
observe that ME-Bayes SL performs almost uniformly better than the existing methods. In
contrast, in the PAGE + UKBB + BBJ data analysis, where the GWAS sample sizes for AFR and
AMR are relatively small, ME-Bayes SL sometimes shows a suboptimal performance. Such
trend of having more notable advantages with larger GWAS sample sizes and larger LD
reference datasets exists not only when comparing ME-Bayes SL to existing methods, but also
when comparing the more advanced methods, such as ME-Bayes SL and PRS-CSx, to simpler

alternatives, such as the weighted PRS method.

One key factor in implementing ME-Bayes SL is the LD reference data. The analyses of the
GLGC and AoU datasets illustrates that the sample size of the LD reference data should be
sufficiently large relative to the discovery GWAS sample size to give ME-Bayes SL an optimal
performance (Figure 4, Supplementary Table 4). The performance of ME-Bayes SL depends on
estimated causal SNP proportion parameters from single-ancestry LDpred2 analysis. LDpred2
has previously been shown to underperform sometimes when using 1000G LD reference data®*
and thus could in turn affect the performance of ME-Bayes SL. Thus, as sample sizes of the
training GWAS increase, building a larger LD reference dataset than the widely used 1000

Genomes reference dataset will lead to more optimal performance.

We have compared ME-Bayes SL with a series of recent multi-ancestry methods including PRS-
CSx and CT-SLEB, but there are other recently proposed methods that are worth. In fact, we
have implemented two other multi-ancestry methods named XPASS and PolyPred+ in our

simulation study as well as GLGC, AoU, and 23andMe data analyses, with detailed results
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reported in Zhang et al. (2022)'?. Although computationally super-fast, XPASS, which uses a
bivariate normal prior under an infinitesimal model, can only combine up to two ancestry groups,
and it is always outperformed by ME-Bayes SL (Supplementary Tables 3-6). This shows the
importance of including sparsity components in modeling effect-size distribution for Bayesian
polygenic prediction. PolyPred+ implements a linear combination of SBayesR?’ trained
separately on EUR and the target population and a Polyfun®® PRS on EUR that additionally
incorporates information from external functional annotations, and thus it is not directly
comparable to the other methods. Even so, it performs worse than ME-Bayes SL most of the

time (Supplementary Tables 3-6).

Our study also has several limitations. First, ME-Bayes requires two sets of tuning parameters:
causal SNP proportion in each ancestry and between-ancestry correlation in effect sizes, the
specification of which is relatively complex compared to other methods such as PRS-CSx. In the
default setting of ME-Bayes, the candidate values for genetic correlation between a pair of
ancestry groups only lie between 0.7 and 0.95, while for some traits, the estimated correlation
can be lower®?2, But given the high computational scalability of ME-Bayes, when the number of
ancestry groups is not too large (K < 5), prior information on genetic correlation can used to
specify additional genetic correlation parameter settings to cover a wider range of potential

genetic architectures of the trait.

The spike-and-slab type prior in ME-Bayes can be sub-optimal for effect-size distribution of

some traits. For example, in GLGC GWAS, we detect several top SNPs with extremely large

association coefficients for all four blood lipid traits, each contributing to 0.6% - 3.9% of the
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estimated total heritability. In this case, ME-Bayes induces the same amount of shrinking on all
SNPs, resulting in over-shrinkage on the few large-effect SNPs. We have considered a simple
alternative approach to compensate such over-shrinkage?’-?8, where for each target ancestry
group, we first construct a “top-SNP PRS” using GWAS association coefficients of the few top
SNPs for the ancestry, then combine it with the ME-Bayes SL PRS constructed based on the rest
of the SNPs. This approach, however, does not provide a more powerful PRS. PRS-CSx, which
allows a heavy-tail Strawderman-Berger prior, while theoretically expected to be advantageous
for handling such large-effect SNPs, does not show much advantage either. In the future, other
heavy-tail type priors such as the Bayesian Lasso (i.e., Laplacian)®®, Horseshoe®®, and Bayesian
Bridge?!, are worth investigating. Another potential limitation of the method originates in the SL
step: when the tuning sample is small (e.g., <1000), the prediction algorithms utilized in SL may
be overfit in the presence of a large number of tuning parameters, ultimately leading to low

predictive power in an independent sample.

In our data examples, different methods show advantages in different scenarios in terms of
GWAS sample size, LD reference data, the type of trait, and target ancestry. It is thus natural to
consider extending our SL step from combining a series of PRS trained within a specific type of
method, such as ME-Bayes, to those generated across different methods. ME-Bayes SL can also
be modified to enhance performance of PRS by borrowing information simultaneously across
traits and genetically correlated traits. Two recent studies, both using simple weighting methods,
have shown significant potential for cross-trait borrowing to improve PRS performance for

individual traits*>3. There is, however, likely to be scope for additional improvement by
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developing formal Bayesian methods that can utilize flexible models for effect-size distribution

simultaneously across ancestries and traits.

In summary, we propose a powerful method for constructing enhanced ancestry-specific PRS
combining GWAS summary data and LD reference data across multiple ancestry groups. As
sample sizes of the multi-ancestry GWAS and LD reference datasets continue to increase, more
advanced methods, such as ME-Bayes SL and PRS-CSx8, are expected to show more and more
advantages over simpler alternatives, such as the weighted methods’. Our large-scale simulation
study and four unique data examples illustrate the relative performance of a variety of single-
and multi-ancestry methods across various settings of ancestry groups, GWAS sample sizes,
genetic architecture of the trait, and LD reference panel, which can serve as a guidance for

method implementation in future applications.
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MEGA that are also available in 1000 Genomes Project can be downloaded from

https://github.com/Jin93/ME-Bayes-SL. LD block information, including the start and end

positions of each block, are extracted from the “lassosum” R package and can be downloaded
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PLINK 1.9: https://www.cog-genomics.org/plink. PLINK 2.0: https://www.cog-

genomics.org/plink/2.0/. LDpred?2: https://privefl.github.io/bigsnpr/articles/L.Dpred2.html. The R

package “bigsnpr” used in the LDpred2 pipeline is available for download on Github at

https://github.com/privefl/bigsnpr. PRS-CSx: https://github.com/getian107/PRScsx. CT-SLEB:

https://github.com/andrewhaoyu/CTSLEB. LD score regression: https://github.com/bulik/Idsc.

The ME-Bayes SL pipeline, along with the R code for simulation studies and data analyses in

this paper can be accessed at https://github.com/Jin93/ME-Bayes-SL.
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Online Methods

Details of ME-Bayes SL Step 1: ME-Bayes

ME-Bayes conducts Bayesian modeling to generate ancestry-specific ME-Bayes PRS models

through joint modeling of GWAS summary data across all available ancestry groups. This step

models the genetic correlation structure in SNP effect size across ancestry groups while accounting

for ancestry-specific LD and allele frequency information.

Suppose we are interested in predicting the polygenic risk of some trait Y based on genotype

{G;,j =

1, ...,Mk}, for an individual of ancestry k = 1,2,..., K, with M, denoting the number of

SNPs with a minor allele frequency (MAF) > 0.01 in ancestry k. For demonstration purposes, we

assume the trait is continuous, but the results can be directly applied to GWAS summary-level

association statistics for discrete traits in the same manner. We assume all SNPs included are
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biallelic, i.e., each SNP only has two alleles observed in the population. For each ancestry group
k, we assume a true additive model for genetic variation, Y}, = Z;/Iz"l Gjﬁ,g.) + €, where ﬁ,g.)
denotes the underlying joint effect size of G;,j = 1,2, ..., M, i.e., effect size after adjusting for the
effect of other SNPs, for an individual of ancestry k, and €, denotes a zero-mean random error
term that includes effects of risk factors other than SNPs. Suppose we have ancestry-specific
GWAS summary data, {(ﬁ’kj,ﬁ,fj),j =12,...M, k=12, ...,K} , specifically, the marginal
effect sizes of the SNPs (3 ;9) and their corresponding standard errors (6,?1-5) from one-SNP-at-a-
time regressions, Yx; = Gjifxj + Vi, L = 1,..., Ny, forj=1,..,M; and k = 1, ..., K. Here, i, j
and k are the indices of GWAS sample, SNP, and ancestry, respectively, v,; denotes a zero-mean

random error term that includes effects of other risk factors and all other SNPs, By ;, M), and Ny

are the true marginal SNP effect sizes, total number of SNPs, and GWAS sample size, respectively,

for ancestry k. Our goal is to obtain an estimate of the joint SNP effect sizes, ﬁ/\,q(])s, to construct

polygenic risk model PRS,;, = Z;llz"l Gj ,[?,:]U) for each ancestry group k.

Our analysis is conducted on the standardized scale, where G, ;S are assumed to be standardized to

have a zero mean and unit variance and Y} s are assumed to have a unit variance (for continuous
traits). This is reflected by rescaling the GWAS summary statistics so that the variance is equal to
the inverse of the GWAS sample size. For computational scalability, we divide the whole genome
into a series of independent LD blocks!, each containing hundreds of (up to ~2900) SNPs, and
only consider the between-SNP correlation within each LD block. Such block structure for LD
matrices is considered because it yields similar predictive power as the banded-structure LD

matrices accounting for LD within a 3cM genetic distance suggested by LDpred2?, but it is
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computationally more efficient and requires less memory. We estimate LD matrices for SNPs
within each LD block using PLINK 2.0% based on LD block segmentation in Berisa and Pickrell
(2015)'. LD block information was extracted from the R package “lassosum™. Note that the LD
block information is available for EUR (1747 blocks, median number of SNPs per block: 816),
AFR (2626 blocks, median number of SNPs per block: 716), and EAS (1489 blocks, median
number of SNPs per block: 815), but not currently available for AMR and SAS, and thus we apply

the EUR LD information on AMR and SAS for now.

We denote by 8 gi ) and B 1, the vector of true joint effect sizes and marginal effect sizes estimated

from GWAS, respectively, for SNPs within a specific LD block [;, in ancestry k = 1,2, ..., K. To

conduct analyses on the standardized scale, we first divide each raw effect size estimate B i by

’Nk jﬁ,fj + [?,f ;- We can then write down the likelihood of the GWAS summary statistics, B e~

Ik Ik

N(leﬂg), Nl/lekNl/Z), where R;, denotes the LD matrix of the SNPs within the LD block [,
and N;, is a diagonal matrix with diagonal entries being the corresponding GWAS sample sizes
for SNPs within the LD block. For population-specific SNPs, 1.e., SNPs with an MAF > 0.01 in
only one ancestry k, we assume a spike-and-slab prior as in LDpred?2, ﬁ,g.) ~N (O, Ox jhi), Okj ~
Ber(py), where hi denotes the per-SNP heritability, & j 1s the indicator of whether SNP j is

causal in ancestry k, i.e., §;; = 1if B gi 3 # 0 and 0 otherwise, and pj, is the proportion of causal

SNPs in ancestry k. For SNPs that have MAF>0.01 in all ancestry groups, we induce a prior

correlation structure between ,6’,8.) and Bg; for k, k' € {1,2,...,K}. The prior distribution of the

joint effect size ﬂ,g-)s given Gy ;s is then specified as follows,
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181, ., 8k ~ N(0,A;9 A)),

where A; = diag(6,j,...,6k;) » and (Qj)k,k' = prx'hihy . with py ./ denoting the genetic

correlation between ancestry groups k and k’. For SNPs that have an MAF>0.01 in only a subset
of ancestries A C {1, ..., K}, similar prior distributions can be specified for SNP effect sizes within

the set of ancestry groups A.

Recall that we introduce variables {pk =Pr(6x;=1),Vj,k=1,..,.K } to denote ancestry-

specific causal SNP proportions, and for ancestry-specific SNPs, we assume &y ; ~ Ber(py). Now
we generalize this Bernoulli prior to a multinomial prior on (61 o Ok j)T for SNPs that exist in
a subset of ancestry groups A c {1, ..., K}, with probabilities {Pl’(51j,jesj =1, 51]-,]-55]. =0),5 c
A} being defined as functions of py, k = 1, ..., K. We first focus on SNPs that only exist in two

ancestry groups A = {k;, k;}: we set Pr(8y ; = 1,6;,; = 1) = min(pkl, pkz), which reflects our
assumption that if a SNP is causal in one ancestry group, it is also causal in another. We can then
obtain  Pr(6y,; = 1,0y,; =0) =py, — min(pkl,pkz) » Pr(6y,j=0,6,;=1) =pg, —
min(pkl,pkz), and Pr(6y,; =0,6k,; =0) =1—py, —pi, + min(pkl,pkz). After constructing
Pr(6y, j, 6k, ;)s, we then construct priors for SNPs that exist in three ancestry groups: by specifying
Pr(by,j =1,6k,j =10k, =1) = min(pkl, Pk, pk3), we can obtain the rest of the probabilities
{{Pr(6i,j = a1, 81 = @5, 8, = @3) ,a1,02,05 € {01}, 1 < ky <y < ks < K}, Such

specifications can be easily extended to apply to SNPs that exist in four ancestry groups, five

ancestry groups, etc.

35


https://doi.org/10.1101/2023.04.12.536510
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.12.536510; this version posted April 13, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We estimate B\k](])s based on MCMC with an approximation strategy previously implemented in
the LDpred?2 algorithm?, which substantially reduces computation time of the algorithm. There are
two sets of tuning parameters which will be estimated by grid search using a tuning dataset
independent from the testing samples on which we report R?: (1) the ancestry-specific causal SNP
proportions (py, ..., pg): we fix (p4, ..., px) to either (P4, ..., Px), the estimated ancestry-specific
causal SNP proportions obtained from LDpred2 separately on GWAS summary data of each
ancestry, or (P, ..., Ps), S = 1, ..., K, i.e., the values of all p;s are set to the LDpred2 estimate of
the causal SNP proportion in ancestry s; (2) the between-ancestry correlation parameters pj’s:
we consider two settings, i.e., either set py's to all equal to p = 0.7, 0.8, 0.9, or 0.95, or set py’
to 0.75 for any pair of ancestry groups that include AFR and 0.9 otherwise, given that correlation
with AFR tends to be weaker than that among other ancestry groups. Prior to the implementation
of MCMC, we further estimate the ancestry-specific heritability HZs based on GWAS summary

data and LD reference data using LD score regression’.

We now describe the detailed MCMC algorithm and estimation procedure. For SNPs that only

exist (MAF>0.01) in one ancestry group, the Gibbs sampler in Vilhjdlmsson et al. (2015)° was

implemented. For each SNP j that exists in all K ancestry groups, we sample §; = (51 jrer Ok j)T

T
and B; = (Blj, ...,,BK]-) from
f(B;,81B.B-;) ~ f(8;1B;.B-;)f(B;18;, B}, B-)),
where B_; denotes the joint effect sizes for the SNPs within the LD block which SNP j is in,

lLj, k €{1,..,K}.
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We first sample §; from f (8 i B B- j). Here note that obtaining f (6 J 1B, B- j) analytically is hard,
and thus we approximate it by f(6j Iﬁj,ﬂ_j). For a realization of §;, r = (1, ..., 1) where r}, €

{0,1}, Vk, we first derive

f(Bj|6; =7.B_;) Pr(8; =)
Y (Bj|6; =71, B_;) Pr(8;=1")

f(8; =7IB;B-;) =
We denote the numerator by /. = f (f? i |6 i =T1,B- j) Pr(é'j = r), which can be derived as follows:

Jy = Pr(8; = 1) ] F(B,18;, =7.8_;,8,)f(B;15; = T)dB,

| [ Zirzisren; Ruyir Byt + Buma 1 1 Bijmi
= TK)-]-N Bj ,diag (W”W> N |0,A]-Q]- A]-
Zj’:tj,j’ell(j Rsz,jj'ﬁKj’ + Bk Tk J J Bk Tk
_ o (1 1
= Pr((Sl] =T, ""5Kj = TK) XN ((ﬂlj,r" ""ﬂKj,T") , dlag <_, ,_> + A]',T’ﬂ]' A]-,r’>,
Nlj NK]-

where

ﬁkj,r’ - ﬂki le-.jj’ﬂkj’ I ﬁkj’k'
j
J'#j i€l

R i f! denotes the entry in lej that corresponds to the correlation between SNPs j and j', 1, = 1

if a # 0 and O otherwise, A, = diag(ry, ..., %), and (ﬂj)k,k’ = Py k' hihy. After deriving J,s,

we can then sample from f(Sj = r|ﬁj, B_j) = 1./t ).

We obtain the marginal posterior mean of B; after integrating out §;:

E(BjIB; B-j) = Z E(Bj|6;=1",B;,B-;)Pr(8; =1'|B;.B-;),
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where
f(Bj1&;=1".B;.B-;) < f(B;|6;=7"B;,B-;)f(B|I8; =1").
We can easily derive that §]6; = r’,ﬁj, B _; follows N(Mj,r'. Vj‘rr), where
. -1\71
Vj,T' = (dlag(Nlj, . NK]) + (A]"TIQ]' A]"rl ) ,
Nljﬁlj,r’
”j,r’ = Vj,r’ e
NljBKj,r’
For SNPs that have an MAF>0.01 in a subset of ancestry groups A c {1, ..., K}, similar sampling

strategy can be conducted but only among ancestry groups A. In each MCMC iteration, the prior

o . Hf
per-SNP heritability parameter is set to hZ = m—k, where m;, denotes the number of causal SNPs
k

(222(1 Oy ;) estimated from this iteration. The posterior estimate of B is obtained by taking the

average of E (B il B B- j) obtained from 100(K-1) MCMC iterations after a burn-in stage of 100

iterations.

Existing Methods

Single-Ancestry Methods

LD Clumping and Thresholding (C+T)

C+T first constructs a series of PRS by applying an LD clumping step followed by a p-value
filtering step with varying p-value cutoffs, then selects the best performing PRS on the tuning
dataset. Specifically, an LD clumping step is first conducted to exclude variants that have an
absolute pairwise correlation stronger than 2 =0.1 within a genetic distance (500kb) based on an
LD reference dataset. The remaining variants are then filtered by excluding the ones that have a p-

value larger than a significance threshold, which, in our analysis, were set to p; =5 X 1078, 1 x107,
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55107, 1x107% 5x1076 1x1073, 5x107°, 1x107%, 5x 1074 1x1073, 5x1073, 1x1072
5x1072, 1x107", 5x 107!, or 1. These 16 scores were created based on these 16 different
significance thresholds p,s by calculating a weighted sum of the number of effect alleles of the
selected SNPs, with weights being the effect size estimates from the discovery GWAS. C+T then
selects the score with the “optimal” p-value thresholds via parameter tuning with respect to the
residual R? (for continuous traits) or residual AUC (for binary traits) on a tuning dataset that is
independent of the training and testing samples. C+T was implemented using PLINK 1.9078,
LDpred2

LDpred2 is an LD-based Bayesian modeling approach which leverages information from GWAS
summary statistics and explicitly models LD correlation structure with correlation matrices being

estimated based on an external reference panel®®. LDpred2 assumes a spike-and-slab prior on SNP

effect sizes, i.e., each SNP has a probability p to have a non-zero causal effect ,6’]-(] )~ N (0, hf]),

and a probability (1 — p) to have no contribution to the phenotypic variation (ﬁj(] ) = 0). Here p

and hé are treated as tuning parameters and estimated via grid search on a tuning dataset. We ran
LDpred2 on each chromosome and GWAS of each ancestry group separately using R packages
“bigstatsr” and “bigsnpr”. Two tuning parameters were considered: (1) causal SNP proportion p,
with default candidate values 1.0x10%, 1.8x104, 3.2x10*%, 5.6x10%, 1.0x103, 1.8x10°3, 3.2x10-
3,5.6x1073, 1.0x102, 1.8x102, 3.2x1072, 5.6x102, 1.0x10!, 1.8x10!, 3.2x10°!, 5.6%10"!, and
1.0; (2) total heritability, which is set to the heritability estimated by LD score regression’

multiplied by 0.7, 1, or 1.4. The “sparse” option was not considered.

Multi-Ancestry Methods

Weighted PRS
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A simple multi-ancestry method is weighted PRS, which trains an “optimal” linear combination
of the effect size estimates obtained based on training data from each single ancestry. Weighted
PRS was first proposed in Marquez-Luna et al. (2017)'° to improve the performance of single
ancestry C+T PRS. Suppose we have constructed C+T PRS, PRSgyr, PRSsrr, PRSsmR, PRSE 45,
and PRS; s, separately based on GWAS and LD reference panel of each corresponding ancestry
group. The weighted C+T PRS is then constructed as PRS,,p,r = a1 PRSgyr + @y, PRS pr +
az PRS g + @4 PRSg4s + a5 PRSg,s where ag s are obtained by fitting a regression model on
the tuning dataset. Here we apply the weighted PRS approach on either C+T (“weighted C+T”) or
LDpred2 (“weighted LDpred2”).

PRS-CSx

“PRS-CSx”!! is proposed as the multi-ancestry version of PRS-CS'? which conducts Bayesian
modeling followed by an additional step of constructing a linear combination of the best
performing PRS trained for each ancestry. PRS-CSx assumes a continuous shrinkage prior named
Strawderman-Berger prior on the ancestry-specific effect sizes. For SNPs available in more than
one population, this prior induces information sharing across ancestry groups. After the Bayesian
modeling step, PRS-CSx further trains a linear combination of the ancestry-specific PRS obtained
from the previous step based on the tuning dataset. In all our analyses, we ran PRS-CSx with the
default candidate values for the tuning parameter ¢ (1.0, 102, 10, and 10°%), which is the global
shrinkage parameter shared by all SNPs and all ancestries that controls the overall causal SNP
proportion. The PRS-CSx software only considers approximately 1.2 million HapMap 3 SNPs and
therefore we only report the performance of PRS-CSx PRS based on the HapMap 3 SNPs. We
have also tried to apply PRS-CSx to HapMap 3 SNPs plus an additional 0.8 million MEGA SNPs

that are also available in the 1000 Genomes reference data. But we found that, on our simulated
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dataset, the performance of PRS-CSx PRS using the extended HapMap 3 + MEGA SNP set is
significantly worse than PRS-CSx using the HapMap 3 SNPs, and in our real data analyses, results
from PRS-CSx on the two SNP sets are similar. We therefore stick to the default setting with 1.2
million HapMap 3 SNPs provided by the PRS-CSx software.

CT-SLEB

CT-SLEB is a recently proposed method for multi-ancestry PRS construction'. It first conducts a
two-dimensional C+T between EUR GWAS and GWAS of the target population to select SNPs
to be included in the target population PRS, then uses an Empirical Bayesian approach to account
for genetic correlation across populations, and finally implements an SL algorithm to combine
PRS generated under different p-value thresholds in the C+T step. In our analyses, we
implemented CT-SLEB with the default setting for p-value threshold, p, =5 x 1078, 5x 1077,
5x107°,5x107, 5x10%, 5x1073, 5%x1072, 5x 107!, or 1, and a genetic distance d =50/r? or

100/r?, where % =0.01, 0.05, 0.1, 0.2, 0.5, or 0.8.

Runtimes and memory usage

We compare the computation time and memory usage of ME-Bayes SL and PRS-CSx on
chromosome 22 based on the simulated dataset (comparison between PRS-CSx and CT-SLEB on
the same dataset has been reported in Zhang et al., 2022'3). Results from ME-Bayes SL and PRS-
CSx combining three ancestry groups (EUR, AFR, and AMR), four ancestry groups (EUR, AFR,
AMR, and EAS), and five ancestry groups (EUR, AFR, AMR, EAS, and SAS) are summarized in
Supplementary Table 2. The training GWAS sample size is 15,000 for each non-EUR population
and 100,000 for EUR population. The tuning and validation dataset each contains 10,000

individuals. All analyses were performed with AMD EPYC 7702 64-Core Processors running at
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2.0 GHz. Other than the LDpred2 step which uses parallel computing with 17 cores, all other
analyses were conducted using a single core. The reported computation time and memory usage

are averaged over 10 replicates.

PAGE + UKBB + BBJ data analysis with validation on non-EUR individuals from PAGE

Three traits, including IRNT BMI, HDL, and LDL, that were available across PAGE, UKBB, and
BBJ GWAS for EUR, AFR, AMR (Hispanic), and EAS are analyzed. Ancestry- and trait-specific
GWAS sample sizes, validation sample sizes, and number of SNPs analyzed are reported in
Supplementary Table 3.1. The training GWAS datasets consist of PAGE, contributing data for
AFR and AMR, UKBB, contributing data for EUR, and BBJ, contributing data for EAS. The
validation datasets consist of PAGE, contributing data for the three non-EUR ancestry groups, and
UKBB, contributing data for EUR. Specifically, we first collect data for a total of 43,769 PAGE
individuals of AFR (N=17,127), AMR (N=21,995), or EAS (N=4,647) ancestry that have data
available for at least one of the three traits. For AFR and AMR that have relatively large sample
sizes in PAGE, we randomly divide the samples within each ancestry group into a training dataset
(80%) for conducting GWAS, a tuning dataset (10%) for tuning model parameters, and training
SL in CT-SLEB and ME-Bayes SL or the linear combination model in weighted PRS and PRS-
CSx, and a testing dataset (10%) for evaluating PRS performance. For EAS which has a limited
sample size in PAGE, we use all PAGE samples for external validation (tuning + testing) and
obtain GWAS summary data from BBJ, which has a much larger sample size. To borrow
information from large EUR GWAS, we further collect EUR GWAS summary data from UKBB'4
(N=1315,133 - 360,388) released by the Neale Lab. Finally, to tune the causal SNP proportion for

EUR, which is required for specifying the prior causal probabilities for non-EUR ancestry groups,
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we further randomly select a sample of 20,000 random individuals from UKBB that do not overlap
with samples in the EUR UKBB GWAS. Here the ancestry information for individuals from PAGE

and UKBB is determined based on self-identified race/ethnicity.

For AFR and AMR, we conduct GWAS on individuals from the PAGE study to obtain the GWAS
summary data. Specifically, we first collect a total of 17,127 AFR and 21,995 AMR from PAGE,
then randomly divide the samples in each ancestry into a training set (80%) to conduct GWAS and
a validation set (20%), of which 10% is used for selecting tuning parameters and training SL
(tuning set), and the other 10% is used for reporting PRS performance (testing set). There was no
significant difference between training and validation datasets in the distribution of the covariates
adjusted for in GWAS. PAGE GWAS: (1) IRNT BMI. For ancestry-specific GWAS analysis on
AFR and AMR, measurements of BMI outside of 6 standard deviations from the mean (based on
sex and race) were removed. We first created sex-specific residuals for BMI adjusted for age, then
inverse normally transformed these residuals. These inverse-normally-transformed residuals were
then used in the final analysis where they were further adjusted for self-identified race/ethnicity,
study, study center (for MEC and SOL only), and the top 10 genetic principal components (PCs).
(2) HDL. For ancestry-specific GWAS analysis on AFR and AMR, untransformed HDL
measurements were reported in mg/dL, and were adjusted for each individual’s medication use by
adding a constant based on the type of medication used. Details of the adjustment are described in
the Supplementary Information in Wojcik et al. (2019)'5. Finally, models were adjusted by age at
lipid measurement, sex, study, study center (for MEC and SOL only), self-identified race/ethnicity,
and top 10 genetic PCs. (3) LDL. For ancestry-specific GWAS analysis on AFR and AMR,

untransformed HDL measurements were calculated using the Friedewald Equation'¢ and reported
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in mg/dL. The measurements were adjusted for individuals’ medication use by adding a constant
based on the type of medication used. Details of the calculation and adjustment are described in
the Supplementary Information in Wojcik et al. (2019)"°. Participants who were pregnant at blood
draw or had fasted less than 8 hours prior to lipid blood draw were excluded. Finally, models were
adjusted by age at lipid measurement, sex, study, study center (for MEC and SOL only), self-

identified race/ethnicity, and top 10 genetic PCs.

The PAGE individuals included in our analyses are part of the PAGE participant cohort, which
were collected from Hispanic Community Health Study/Study of Latinos (HCHS/SOL), Women’s
Health Initiative (WHI), Multiethnic Cohort (MEC), and the Icahn School of Medicine at Mount
Sinai BioMe biobank in New York City (BioMe)'">. Due to the extensive degree of admixture
within and between PAGE self-identified racial/ethnic groups, individuals were not reassigned
based on their genetic ancestry but remained categorized by their self-identified race/ethnicity.
However, we have assigned them to ancestry groupings based on an approximation of mappings
to continental-level regions for consistency with other external studies in this manuscript. Written
informed consent was obtained for all participants in this study at the relevant recruitment sites.
Due to the extensive degree of admixture within and between PAGE self-identified racial/ethnic
groups, individuals were not reassigned based on their genetic ancestry but remained categorized
by their self-identified race/ethnicity. Detailed information about genotyping, data quality control
and imputation, selection of unrelated individuals, genetic principal component analysis, and

phenotype harmonization are provided in the Supplementary Information in Wojcik et al. (2019)!>.
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Since PAGE has a limited sample size for EAS (4,647), and thus we further collect publicly
available GWAS summary data from BBJ (data availability) and use all PAGE individuals for
validation on EAS. For BMI, the GWAS analysis included age, age?, sex, status of a series of
diseases, and the top 10 genetic PCs as covariates!”. For HDL and LDL, the GWAS analyses

included age, sex, status of a series of diseases, and the top 10 genetic PCs as covariates's.

PAGE does not have individuals of EUR ancestry. To borrow information from the much larger
EUR GWAS, we further download publicly available EUR GWAS summary data from UKBB
(Data and code availability). For all three traits, the UKBB GWAS analyses include age, age?,
inferred sex, an interaction term between age and inferred sex, an interaction term between age2
and inferred sex, and the top 20 genetic PCs as covariates. One thing to note is that for HDL and
LDL, measurements are untransformed and reported in mmol/L in UKBB, untransformed and
reported in mg/dL in PAGE, and reported in mg/dL then standardized to Z-score in BBJ. Although
not on the same scale, the correlation in SNP effect size estimates remain the same, allowing the
various GWAS summary data to be analyzed jointly. For EUR, we construct a validation dataset
of 20,000 independent samples from UKBB that do not overlap with the UKBB GWAS samples.
Specifically, we use the genotyping plate and well codes, which are published in the file
ukb_sqc_v2.txt by UKBB and are consistent across different project applications, to identify and
exclude the individuals included in the UKBB GWAS analysis by Neale Lab, and then randomly
select 20,000 independent individuals from the remaining UKBB samples to conduct parameter
tuning (10,000) and testing (10,000). For each ancestry group, we use unrelated samples of the
same ancestry from 1000 Genomes Project as the LD reference data. For EUR, the reported

prediction R? are adjusted for age, sex, and top 10 genetic PCs. For AFR, AMR and EAS, the R?
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for BMI are adjusted for age, sex, top 10 genetic PCs, and whether the individual is from the
BioMe Biobank, and for HDL and LDL the R? are adjusted for age at lipid measurement, sex, top

10 genetic PCs, and whether the individual is from the BioMe Biobank.

We conduct the following quality control steps for the GWAS summary-level association statistics:
(1) consistent with the procedure in our simulation study and other data analyses, we restrict our
analysis to approximately 1.6 million SNPs in HapMap 3 plus MEGA that are also available in
LD reference panel and validation sample; (2) we remove SNPs that have duplicated positions in
GWAS or LD reference panel; (3) for EUR, we remove SNPs that have alleles “AT”, “TA”,
“CG”, or “GC” to avoid undetectable flipping strands when matching with UKBB validation data;
(4) for the implementation of single-ancestry methods, we only keep common SNPs, i.e., SNPs
that have ancestry-specific MAF > 0.01 in that ancestry group, and for the implementation of
multi-ancestry methods we keep all SNPs that have ancestry-specific MAF > 0.01 in at least one
ancestry group. The Manhattan plots and QQ plots for GWAS are reported in Supplementary
Figures 14-16. No inflation is observed based on the genomic inflation factor. We estimate
heritability of the three traits for EUR using LD score regression’ based on the 1000 Genomes LD

reference data for EUR (Supplementary Table 7).

GLGC data analysis with validation on UKBB individuals

We obtain GWAS summary data from the Global Lipids Genetics Consortium (GLGC) for four
blood lipid traits including HDL, LDL, TC , and logTG' on five ancestry groups including EUR
(Nowas =840,018 —927,975), AFR or admixed AFR (Nowas =87,759 — 92,554), Hispanic (NGwas

=33,989 —48,056), EAS (Ncowas =80,676 — 145,512), and SAS (NGwas =33,658 —34,135). Details
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of the study design, genotyping, quality control and GWAS are previously described'®. We
validate performance of the various methods on UKBB individuals. Specifically, we select a
random set of 20,000 individuals that are of EUR origin and extracted all individuals that are of
AFR (N = 9,169), EAS (N=2,019), SAS (N=10,853), or Hispanic/Latino (N=785) origin. The
origin of the UKBB individuals were determined by a genetic component analysis (Supplementary
Notes). We used 50% of the UKBB samples to tune model parameters and train the SL in CT-
SLEB and ME-Bayes SL or the linear combination model in weighted PRS and PRS-CS (tuning
set), and the remaining 50% to evaluate PRS performance (testing set). The prediction of the
genetic component has a low accuracy for AMR, and given the small number of identified AMR
individuals (N=785), we do not report prediction R> on UKBB AMR. We use genotype data of
unrelated individuals from 1000 Genomes project or tuning samples from UKBB as the LD
reference data?®. Ancestry- and trait-specific GWAS sample sizes, validation sample sizes, and
number of SNPs analyzed are reported in Supplementary Table 4.1. Based on the genomic inflation
factor, no inflation is observed for the various ancestry-specific GWAS. The Manhattan plots and
QQ plots are reported in Zhang et al. (2022)!3. No inflation is observed given the genomic inflation
factor. Heritability of the four traits in EUR is estimated using LD score regression (Supplementary
Table 7). All GWAS summary statistics went through the same quality control steps as in PAGE
+ UKBB + BBJ data analysis as well as one more step, where we further remove SNPs with a
GWAS sample size less than 90% of the total GWAS sample size. The GWAS summary data from
GLGC does not have information on ancestry-specific MAF, and thus we use the 1000G LD
reference genotype data to calculate ancestry-specific MAF for the step where we filter out all
SNPs that have MAF < 0.01 in all ancestry groups. The R? are adjusted for age, sex, and top 10

genetic PCs.
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AoU data analysis with validation on UKBB individuals

The individuals included in our analyses are part of the All of Us participant cohort with
information collected according to the All of Us Research Program Operational Protocol

(https://allofus.nih.gov/sites/default/files/aou_operational protocol v1.7 mar 2018.pdf).

Detailed information on genotyping, ancestry determination, quality control, removal of related
individuals is provided in the All Of Us Research Program Genomic Research Data Quality Report

(https://www.researchallofus.org/wp-content/themes/research-hub-wordpress-

theme/media/2022/06/Al1%2001{%20Us%200Q2%202022%20Release %20Genomic %20Quality

%20Report.pdf).

On the All of Us platform, we conduct GWAS for BMI and height separately on unrelated
individuals of three ancestry groups including EUR (Ncwas =48,229 — 48,332), admixed AFR or
AFR (Ngwas =21,514 —21,550), and Hispanic/Latino (Newas =15,364 — 15,413). The GWAS are
adjusted for age, sex, and top 16 genetic PCs. There are only about 0.9 million SNPs in HapMap
3 + MEGA that are included in our analyses, which is due to the small number of the overlapping
samples across the filtered WGS data, array data, and phenotype data. Similar to the GLGC data
analysis, we validate performance of the various methods on UKBB individuals, i.e., 20,000 EUR
individuals and individuals of AFR (N = 9,169) origin that are identified based on a genetic
component analysis (Supplementary Notes). Again, the genetic ancestry prediction accuracy for
AMR is low, and considering the small number of identified AMR (N=785), we do not report
validation results on UKBB AMR. We use genotype data of unrelated individuals from 1000

Genomes project or tuning samples from UKBB as the LD reference data. Ancestry- and trait-
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specific GWAS sample sizes, validation sample sizes, and number of SNPs analyzed are reported
in Supplementary Table 5.1. Based on the genomic inflation factor, no inflation is observed other
than height for Hispanic/Latino. The Manhattan plots and QQ plots are reported in Zhang et al.
(2022)'3. Heritability of the two traits in EUR was estimated using LD score regression’
(Supplementary Table 7). All GWAS summary statistics went through the same quality control

steps as in the GLGC data analysis. The R? are adjusted for age, sex, and top 10 genetic PCs.

23andMe Data Analysis

We develop and validate PRS for seven traits, including (1) heart metabolic disease burden, (2)
height, (3) any cardiovascular disease (any CVD), (4) depression, (5) migraine diagnosis, (6)
morning person, and (7) sing back musical note (SBMN) for EUR, African American (AFR),
Latino (AMR), EAS, and SAS based on a large-scale dataset from 23andMe, Inc. We first conduct
GWAS separately on the training dataset (70% samples) for each of the five ancestry groups, then
apply the various methods to the generated GWAS summary-level association statistics and LD
reference data from the 1000 Genomes Project. Within the remaining 30% of the samples, we use
20% to tune model parameters, train the SL in CT-SLEB and ME-Bayes SL, and the linear
combination model in weighted PRS and PRS-CSx, then validate the predictive performance of
the constructed PRS on the remaining 10% samples. We observe from our analyses on the other
three datasets that ME-Bayes SL almost always outperforms the two alternative methods, ME-
Bayes and weighted ME-Bayes, and thus for 23andMe data analysis, we only implement ME-

Bayes SL but not the two alternative methods.
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All GWAS analyses on the training data from 23andMe, Inc. were performed adjusting for age,
sex, and the top 5 genetic PCs. Genotype data of unrelated individuals from 1000 Genomes project
was used to estimate LD matrices. Detailed information on participant inclusion, genotyping,
phenotyping, data imputation and quality control, removing related individuals, ancestry
determination, and GWAS analysis is provided in Zhang et al. (2022)!3. Ancestry- and trait-
specific GWAS sample sizes, validation (tuning + testing) sample sizes, and the number of SNPs
analyzed are reported in Supplementary Table 6.1. Based on the genomic inflation factor, no
inflation is observed for the various ancestry-specific GWAS. The Manhattan plots and QQ plots
are reported in Zhang et al. (2022)'3. No inflation is observed given the genomic inflation factor.
Heritability of the four traits in EUR is estimated using LD score regression (Zhang et al., 2022)'3.
All GWAS summary statistics went through the same quality control steps as in PAGE + UKBB
+ BBJ data analysis as well as one more step where we further remove SNPs with a GWAS sample
size less than 90% of the total GWAS sample size. The residual R? for the two continuous traits
were calculated by first regressing each trait on covariates including age, sex, and the top 5 genetic
PCs, and then calculating the proportion of variation of the residual explained by the PRS. The
residual AUC for the five binary traits were calculated using the “roc.binary” function in the R
package RISCA version 1.0171 adjusting for the same set of covariates adjusted for the continuous

traits.
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