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Abstract

Cell-based tissue simulations require not only the ability to write new code in
a simulation framework, but also an understanding of underlying mathematical
models, background biology, and parameters for each behavior of an agent. This
can entail a steep learning curve for interdisciplinary researchers joining compu-
tational biology research. We have created a suite of cloud-hosted open-source
tools to separately explore and learn key components of an agent-based cellular
simulation framework. This creates an self-contained environment to learn and
test functions of cells and the micro-environment in a modular fashion before
creating more detailed, research-focused simulation models.

Keywords: training; education; agent-based modeling; cloud hosted apps;open source,

systems biology;cell based models

1 Introduction

Multicellular systems biology is an interdisciplinary field. It requires knowledge of
basic biology, physics, and mathematical modeling to transform domain knowledge
into a mathematical format. To facilitate this transformation, the open source scien-
tific community has developed modeling frameworks (e.g. Chaste[1], CompuCell3D[2],
BioDynaMo[3], and HAL[4]) in a variety of programming languages. Once these
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frameworks’ generalized code bases are developed, specific models can be efficiently
developed–often without understanding all the knowledge and code behind it. Many
system modeling researchers join the field from technically diverse backgrounds, rang-
ing from biology and informatics to engineering and mathematics. While simulation
software packages are essential tools for working work in systems biology and computa-
tional biology, they may present a steep learning curve for scientists entering the field
from diverse backgrounds. There are ongoing academic discussions seeking better ways
to train researchers in computational modeling field. Madamanchi et al. [5] focused
on challenges for natural science students as they venture into the computational
modeling world. They identified that most such students seek to use computational
modeling to answer domain-specific research questions that cannot be answered in wet
labs. It shows that many scientists with the minimum computational background are
potential users of computational modeling and simulation tools.Madamanchi et al. [6]
discussed the need for user-friendly tools in computational modeling training, along
with the potential of using focused web applications (“microapps”) for education and
training. In this report, we demonstrate a suite of microapps to address the training
needs of new multidisciplinary users of biological simulation software.

Agent-based simulation software (e.g.,PhysiCell[7], Chaste[1], and
CompuCell3D[2]) is widely used for creating cell based simulations. (See Metzcar
et al. [8] for a review of cell-based models.) These models can be more intuitive
to understand than differential equation-based models due to rule-based nature of
assigning interpretable biological behaviors to cell agents. Each cell of same cell type
behaves independently even though they share the same point with same rules and
initial conditions; due to stochasticity (both biological and introduced in code), they
soon desynchronize and follow individual trajectories. Cell-based models generally
simulate the tissue (micro)environment for these agents/cells by integrating diffusion
solvers in the background, thus modeling the secretion, movement, and consumption
of chemical substrates. Thus, agent-based modeling frameworks provide rich, built-in
capabilities, but can require extensive training and exploration to master.

2 Statement of Need

Many complex simulation software packages used in academia are open source and
are managed by small research teams. For such small teams, training new people out-
side their labs can become a bottleneck to dissemination and adoption. One common
solution is to arrange workshops to train new people, such as PhysiCell’s 2021 Virtual
Woprkshop and Hackathon [9], recent CompuCell3D workshops [10], and the overall
Software Carpentry approach [11]. There have been many efforts to create interactive
materials for systems biology simulations. One earlier example of such training mate-
rials is bugbox [12]; this desktop-based predator-prey simulation application must be
downloaded and installed before students can explore model parameters. In recent
years, there have been efforts to create training materials more tailored to specific
simulation software packages. In recent BrainIAK tutorials [13], the authors created
learning materials for functional MRI analysis. They created Jupyter notebooks for
users to run on their own to learn different concepts with open source data. They also
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created training materials around these notebooks to explain the concepts in fuller
detail.

Although R is not frequently used to build simulation models, the Shiny package
[14] can be used to transform R-based models into web applications for user-friendly
sharing. For example, Handel [15] used R/Shiny to create an online, interactive sys-
tems immunology model. Their small, lightweight app allows users to explore different
parameters in a model of infection and immune response. In “A virtual lab for teaching
physiology” [16], David Granjon created an R/shiny app to dynamically explore the
effects of different genes on calcium and phosphate homeostasis in rats and humans.

Generally, there are fewer such platforms for transforming Python-, JavaScript-,
and C++-based computational models to shareable web applications. Artistoo [17] is a
framework based on JavaScript that lets users build interactive, explorable simulation
models of cells and tissues in a web browser, using a cellular Potts model [18] to
simulate cells. Heiland et al. [19] developed xml2jupyter as a general framework to
automatically create Jupypter-based graphical user interfaces (GUIs) for PhysiCell
models built in C++, which can subsequently be shared as cloud-based web models on
the nanoHub platform [20]. Similarly, CompuCell3D was recently adapted to hosting
on nanoHUB [21]. Most of these applications provide specific examples for users to
explore as a learning project. QUBES [22] also hosts a collection of training materials
for qualitative biology. NetLogo[23] is another example for exploring mathematical
models online by adjusting different parameters; however, NetLogo is not specifically
tailored to biology.

Most of these applications do not explicitly link theoretical biological knowledge
with programmable application. Instead, they generally assume that the user is already
knowledgeable in those concepts or frameworks. Moreover, most of these frameworks
are not physics-based (and instead restrict cells to non-realistic lattice positions with
uniform size), while the cellular Potts-based models (e.g., CompuCell3D and Artistoo)
are framed around interpreting biological behaviors as energy terms, which can be
non-intuitive. There are unmet needs for online simulation frameworks where the cell
behaviors are grounded in more realistic physics, cell behaviors can readily be asso-
ciated with biologically meaningful parameters, and the models (and the underlying
biology) can be taught through online interactive models that do not require software
installation and additional coding.

3 Training Applications

We filled these unmet needs in training materials by creating a suite of small standalone
applications that each focus on a different feature of cell-based models. A critical
feature of our cloud-hosted interactive applications is that they are accompanied by
training material to help the user understand the biological concept that each app
presents. We have also designed our applications such that all parameters unrelated
to a particular concept are fixed. This divide-and-conquer approach helps the user
focus on the function of one parameter at a time. This way, we have divided the
basic modeling framework into seven applications. Students will train on each aspect
in each app and then see how all of these concepts work in relation to each other in
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a final simulation. This effectively provides scaffolding for new learners as they gain
familiarity with the biological and modeling underpinnings.

The suite serves both to introduce key biological concepts of cell-based modeling
while also specifically training users to run PhysiCell [7]: an open-source physics-
based cell simulation framework.PhysiCell provides key cell functions (particularly cell
cycling, death, mechanics, migration, secretion/uptake, as well as newer immune func-
tions) that can be used to write complex simulations of cells in their environment.
PhysiCell provides support to run these simulations on desktops as well as on clus-
ters and high performance computing (HPC) resources. The core code of Physicell
is written in C++, with input files provided in extensible markup language (XML),
and output files stored as XML and MATLAB files. Beyond the core framework is
a growing software ecosystem, including packages like xml2jupyter [19] that that can
help run the compiled models in a Python-based Jupyter Notebook, PhysiBoSS [cite]
(integrated Boolean signal networks), PhysiCool [cite] (), and PhysiCell [cite] (HPC
extension of PhysiCell). With its wide array of programming languages, file formats,
and packages, PhysiCell can present a steep learning curve not only for students new
to systems biology, but also those who are experienced with systems biology but
unfamiliar with this specific software.

Our training applications are hosted and available without charge on NanoHUB:
an online platform to host simulations and other software tools [20]We selected seven
applications because they capture the core functionality of PhysiCell. While these
introductory applications do not completely capture the breadth of functionality
offered by PhysiCell, they are sufficient to train a user to create complex multi-
cellular simulations. Moreover, after learning these key core behaviors, learners are
well-equipped to learn new features.

Each training app has an graphical user interface (GUI), as depicted in Figure
1. In the About tab, we describe the biological and mathematical background of the
app, along with some suggested parameter sets for exploration. This is followed by the
Config Basics, Microenvironment, and User Parameters tabs. These three tabs
provide different customization options to users, including parameters that can be
modified to explore in the app’s simulation model. We have minimized the number of
changeable parameters to help focus the learner’s attention on the selected modeling
aspect for each app. Details about the theory and application of these applications
are described below.

3.1 Chemical Diffusion

Extracellular diffusion and decay are critical to cell-cell communication (through
secreted chemical factors) [cite 10.1007/978-3-319-42023-3 12], as well as drug trans-
port in tissues. Therefore, it is critical that modelers explore and understand the
relationships between diffusion, decay, secretion, uptake, boundary conditions, and
penetration distance. PhysiCell [7] uses BioFVM [24] to simulate the chemical envi-
ronment of cells. BioFVM [24] is a diffusion transport solver that allows substrate
diffusion models to be run on modern desktop computers as well as supercomputers. In
this app, we demonstrate the chemical environment using two substrates: oxygen and
ChemicalA. Users can modify the diffusion and decay rates of each substrate to obtain
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(a) About (b) Config Basics (c) Microenvironment

(d) User Parameters (e) Output plots (f) Animate

Fig. 1: User Interface of each Training App (a) The About tab includes an
introduction to the app and some suggested scenarios for the user to get familiar
with app and its educational concepts. (b) The Config Basics tab is where the
user can set the domain size of simulation and how often data is being stored and
displayed. (c) The Microenvironment tab displays chemical substances present in the
environment along with their diffusion and decay rates. Users can also set different
boundary conditions for these substrates. (d) The User Parameters tab is the main
focus point for most applications. Users can set parameters related to the module
under discussion and then run the model by clicking on “Run” button. (e) In Plots,
the user can observe the behavior of cells and substrate diffusion in the environment
over time. (f) In Animate tab, users can make small animation of all outputs for rapid
dynamic visualization.

different diffusion length scales (
√

D/λ). Users can also set the boundary conditions
for each substrate conditions to either von Neumann (zero flux) boundary conditions
or Dirichlet (fixed value) boundary conditions. Within the Dirichlet boundary parame-
ters, there is an option to fine-tune the values for individual boundaries. Users can also
add one Dirichlet node (a location where the substrate value is held fixed, similarly to
a boundary condition) anywhere in the domain. Figure 2a shows the distribution of
oxygen in the microenvironment after 6 hours and 30 minutes of simulated time, with
Dirichlet conditions of 100 on the positive x-axis and 0 on the negative x-axis, and zero
flux (von Neuman) conditions on the remaining boundaries. There is also a Dirichlet
node present in the domain at (100,100) with a concentration of 100 on it. No chemical
is being absorbed by any cell in the environment in this demonstration app, allowing
users to focus solely on the impact of diffusion, decay, and boundary conditions. The
Chemical Diffusion app is accessible at https://nanohub.org/resources/microenvnmtr.
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3.2 Cell Division

Because cell division is crucial to cancer biology, developmental biology, and selective
pressures in multicellular ecosystems, modelers should understand the structure and
behavior of common cell cycle models, and how they manifest in cell-based models.
Cell division is modeled in PhysiCell through different cell cycle models. Each cell
cycle model consists of several phases (e.g., G0/G1, S, G2, M), and cells transition
from one phase to the next based on user-provided transition rates. These rates can
be coupled with some external factors to control the cell cycle. PhysiCell also provides
some arrest functions that can lock the cell in a particular phase. At the end of the final
stage, the cell divides into two daughter cells. In this app, we use PhysiCell’s built-in
flow cytometry separated cycle model (where cells transition from G0/G1 to S to
G2 and finally to M phase) to explore cell division. In the app, four factors control the
four transition rates between cell cycle phases in the model. Users can control target
concentrations of substrates, volume, and pressure to control transition from one phase
to the next. Figure 2b shows the output of the cell cycle app, where cells are prevented
from transitioning from G0/G1 to S if the local oxygen value is less than 25 mmHg.
We can see that cells in the left half of the domain with oxygen concentration higher
than 25 mmHg continue to progress through the cell cycle phases and dividing, while
cells on the right are arrested in G0/G1. Also notice that the cells present on left side
are of the same type, yet they are not synchronously progressing through the cycle
transitions. This is due to stochastic behavior introduced in the code to observe more
realistic behavior. It is important to note that diffusion is not enabled for this app,
so substrate gradients are not responsible for the observed variation in cell behaviors.
The Cell Division app is accessible at https://nanohub.org/resources/trcycle.

3.3 Cell Death

Cells can undergo a broad range of types of death, including apoptosis (controlled
cell death, and generally not inflammatory), necrosis (the prototypical uncontrolled
death due to injury or energy collapse, typically driving inflammatory responses), and
other death processes as described in [25]. These can drive a broad range of changes
in multicellular systems. PhysiCell includes built-in models of two of these forms of
cell death: apoptosis and necrosis. Apoptosis is programmed cell death, which helps
maintain regular tissue growth and function. In contrast, necrosis is un-programmed
cell death due to injury or disease. The apoptosis model has only a single “apoptotic”
phase, primarily characterized by cell shrinkage. The necrosis model has 2 phases: the
swelling phase and the lysed phase. The cell enters the swelling phase and grows in size
until it reaches a specific “bursting”volume, after which it lyses (bursts) and slowly
shrinks (and potentially calcifies). Figure 2c shows cell death with the apoptosis model.
Brown cells are going through apoptosis. They swell before rupture. Green cells have
not yet undergone apoptosis. This also shows the stochastic behavior in the model,
since cells do not go through phases of apoptosis all at once. We also provide option
to simulate necrosis death in Cell Death training application. Users can control death
rate and biomass change rate to visualize both death models. The Cell Death app is
accessible at https://nanohub.org/resources/trdeath.
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3.4 Cell Motility

As opposed to motion under the influence of adhesive and repulsive forces, cell motility
referes to active cell locomotion or migration, either randomly or in response to some
external stimulus (e.g., via chemotaxis). In PhysiCell (as well as many other cell-based
models), motility is modeled via a biased random walk: a cell chooses a direction
(either along a migration bias direction, randomly, or a combination based on its bias),
move along that direction for a duration governed by its migration persistence time,
and then choose a new direction of travel. Because cell motility is a key driving factor
in cancer invasion, tissue morphogenesis, and immune cell interactions, it is crucial
that learners can model and explore these functions. Biased random migration–and
its parameters–can be difficult and abstract to understand, thus motivating a need
for interactive training and exploration. In this app, users can control cell motility
by setting the migration bias, migration speed, migration bias angle, and persistence
time. We display each cell’s path in this training app using a trail of a non-diffusing
chemical “tracer” in the microenvironment. At the end of the simulation, the effect
of different parameters on cell movement can be observed by studying the cell paths.
Figure 2d shows the path of three cells in the domain when they move toward a
30-degree x-axis gradient with a bias of 0.6. The Cell motility app is accessible at
https://nanohub.org/resources/trmotility.

3.5 Cell Secretion And Uptake

Cell secretion and uptake of diffusable substrates mesh with diffusion and decay (see
above) in driving intracellular chemical communication. Thus, multicellular biologists
stand to benefit from exploring the parameters driving these key processes and their
impact on extracellular substrate concentration fields, as well as changes in intracel-
lular substrate values. This app demonstrates the secretion and uptake functionality
of cells in the PhysiCell environment. Cells remove (or consume or uptake) chemicals
from the microenvironment based on their uptake rates, or secrete them. PhysiCell
tracks the total amount of intracellular substrates in each cell; conservation of mass
dictates that any secreted substrate is balanced by a corresponding reduction in intra-
cellular substrate, whereas and uptake from the microenvironment is balanced by a
corresponding increase in the intracellular substrate. Taken together, mass conser-
vation is guaranteed to keep the total sum of chemical within the cell and in the
microenvironment constant. It is challenging to visually show the amount of chemi-
cals in cells and outside due to difference in scales of the amount present inside and
outside of cells. We have solved this difficulty by separately plotting the amount of
chemicals inside cells and outside in the environment. Figure 2e shows a sample out-
put of the application. There are three cells in the simulation. The left cell uptakes
Chemical A from the environment, the middle cell secretes Chemical B, and the right
cell secretes Chemical C. Three graphs show the amount of chemicals present in each
cell and the microenvironment. We can see that the total amount of chemicals remains
constant due to mass conservation. Parameter values used for this output can be seen
in scenario 2 of the app About page. The cell Secretion application is accessible at
https://nanohub.org/resources/trsecretion.
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(a) Diffusion (b) Cell Division (c) Cell Death (d) Cell Motility

(e) Cell Secretion (f) Cell Mechanics

Fig. 2:Typical Outputs for the Applications (a) Chemical Diffusion shows bands
of chemical gradient formed by introducing Dirichlet boundary Conditions on the x-
axis. (b) Cell Division displays cells going through different color coded-cell cycle
phases according to their microenvironment (c) Cell Death shows an apoptosis cell
death model introduced on a blob of cells (d) Cell Motility shows the biased random
path of three motile cells (e) Cell Secretion displays three cells with their relative
chemical secretion and absorption. Graphs display the amount of chemicals inside and
outside the cell for each one (f) Cell Mechanics shows four pairs of cells placed at
different distances resulting in different adhesive and repulsive forces for each pair.

3.6 Cell Mechanics

A defining feature of cell-based models is that they track the movement of individual
cells, often by tracking the net balance of adhesive and “repulsive” forces acting upon
each cell to determine their resulting velocities [cite Metzcar et al review]. Multicel-
lular biologists who are switching from cell population kinetics to spatial modeling
for the first time should therefore explore how individual cell mechanical parame-
ters contribute to overall cell movement. Cell mechanics in Physicell is modeled by
simulating adhesive and repulsive forces (which model mechanical resistance to defor-
mation), similarly to to the Leonard-Jones potential in atomic and particle physics.
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The range and strength of these forces ultimately create an equilibrium position for
a cell at a certain distance from its neighbors, at which attractive adhesive forces
between the two cells balance with repulsive forces to yield a net zero displacement
velocity. In the training app, we created four pair of cells seeded at different distances
from each other. Users can modify the adhesive and repulsive forces as well as the
maximum interaction distance of these forces to explore their impact of the emergent
cell velocities and positions. The interaction radius of each cell is displayed using a
blue field around it, while the (parameter-dependent) equilibrium distance is denoted
by red circles. Any cell pairs that are within their interaction radii (i.e., their blue cir-
cles overlap) will pull each other towards the equilibrium spacing, while any cell pair
beyond that interaction distance will not. When two cells have reached equilibrium,
their red circles will just touch but not overlap. Notice that if any two cells are closer
than their equilibrium spacing, they will push each other apart. After just 9 min-
utes of simulation, two right pair of cells are pushing each other; see Figure 2f. The
third pair from right is getting attracted, while the leftmost pair is not moving since
both are beyond the interaction distance. Cell Mechanics application is accessible at
https://nanohub.org/resources/trmechanics.

3.7 Cell Volume

Cell volume in PhysiCell is used to capture liquid and solid fractions in the cytoplasm
and cell nucleus. The cell will grow or shrink towards its steady-state (or “target”)
volume, based on its individual stored parameters; its current volume is stored as a
state. This also includes parameters to control biomass change rate in both nucleus and
cytoplasm. Each cell has a target value for these parameters, which can be achieved
at a given biomass change rate. Within this application, we have divided the data
members of cell volume into two main categories: Parameters and State Variables.
Parameters of the cell are those data members that define the steady-state volumes
and biomass change rates. State Variables are used to store transitory values for the
cell over time. In the time course, the cell will always try to return to its steady state.
In this application, we have used a red circle to denote the cell’s steady-state size
as determined by its parameters. Cells are color-coded according to a fluid fraction
of cell cytoplasm and cell nucleus. Users can perturb the cell’s state and watch it
evolve back towards its steady state, or adjust parameters to change the steady state
and thus direct the dynamics. Even if you change the state variables and set them
to inconsistent values, the cell will reach its steady state sooner or later. Cell volume
represents a single cell and its nucleus. It is color-coded according to the fluid fraction
of the cell cytoplasm and cell nucleus. Its behavior is more dynamic, showing how the
cell goes to its target values from wherever its state variables are. The Cell Volume
application is accessible at https://nanohub.org/resources/volumetr.

4 Results

Our goal for this work was to create user-friendly modules to train novice researchers
on a cell-based modeling framework. We created this suite of seven open-source and
made them broadly accessible with cloud hosting. Each app can be run independently,
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allowing users to select and focus on a single topic. We endeavored to make these appli-
cations faster by removing any functionality unrelated to the topic under discussion.
Thus, these applications run fast, and we can see results almost instantly. We also pro-
vide a guide for the exploration on the front page of all applications, directing users
to explore and outlining what they can expect from changing different parameters.

During the development of these applications, we worked in close collaboration with
the principal developer of the software and the principal developer of user a interface
for cloud-hosted applications. This close in-house collaboration resulted in improving
not only training applications but also the underlying software. We identified the need
in the software to quickly set Dirichlet conditions of each boundary, which was then
implemented and added to the next release of PhysiCell. During the development and
testing of these applications, we found and reported bugs in PhysiCell’s implementa-
tion of older function definitions, thus showing the integral role that the development
of training software can play in quality control. We also worked with the developers
of the Jupyter interface, which led to the addition of extra usability-focused features,
such as adding separation tabs to separate different sets of parameters, adding an ani-
mate tab, and showing cell paths. We shared our initial versions of applications in our
weekly lab meetings. Feedback from other lab members led us to explore some features
in color template selection for applications. It is essential for applications like the cell
cycle, where around half a dozen colors represent different stages in the cell cycle. Feed-
back from lab members led us to refine the usability and explore colorblind-friendly
color schemes. We decided to go with color palettes described in [26] for these applica-
tions. This showed the power of integrating the development of training applications
and user interfaces directly with day-to-day lab operations.

Our initial development of these applications began as a side project with the
aim of creating some basic training materials for the first-ever PhysiCell workshop.
However, the scope and scale of the project soon expanded, providing us with an
opportunity to learn how to decouple a complex software system into manageable
pieces, as well as how to select appropriate parameter sets and models to represent
those components. Additionally, we incorporated customized visualizations into each
application to highlight their specific points. This endeavor required significantly more
time and resources than we had initially anticipated, which raises the issue of the need
for appropriate funding resources. As we have previously mentioned, training materials
are an essential component of the scientific software ecosystem, and it is imperative to
provide adequate funding avenues to develop such tools and training materials, rather
than treating them as an afterthought.

5 Discussion

We used these applications as teaching aids in an introductory class to systems biol-
ogy modeling, and to introduce agent-based modeling to undergraduate researchers.
These applications helped in translating theoretical concepts into tools that could
drive hands-on exploration by students. These applications were also included as teach-
ing materials for the PhysiCell workshop [9], and they helped accelerate the learning
curve for participants in the one-week program. These applications were heavily used
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in training sessions about microenvironment setup and cell phenotype. All the par-
ticipants of the workshop were able to create their own PhysiCell models by the end
of the workshop. These applications can also be used in multiple settings, such as
high school-level biology classes to introduce concepts like diffusion, chemotaxis, and
mechanical forces. We note that such applications could present an additional resource
to include with documentation of other scientific software user guides, particularly for
interdisciplinary fields where ideas from different disciplines intersect in one model.

Although these applications encompass the basic modules of a small cellular sim-
ulation, they cannot fully capture some of the more advanced features in PhysiCell
that are used to write complex multi-scale simulations. While it is difficult to write
narrowly tailored training applications for these features, intermediate-level users
(after having learned the essential features in this training suite) can continue learn-
ing from numerous intermediate-level and advanced projects available on nanoHUB.
We recommend using cancer bio-robots [27] and PhysiCell invader-scout-attacker sys-
tem simulation [28] on nanohub for intermediate-level exploration of capabilities of
PhysiCell. Three-Type Multicellular Simulation Lab [29] shows a very detailed and
customized simulation in which almost all the parts are available to customize. Thus,
this provides an advanced-level application for exploration. applications presented in
this paper will serve as fundamental building blocks to move towards more complex
simulations using PhysiCell platform.

The principle of accessibility is a fundamental principle in MathCancer lab. Our
efforts have been concentrated on ensuring cross-platform and backward compatibil-
ity, as well as ever-evolving user interface design, to facilitate ease of use for a diverse
community of PhysiCell users. These efforts have resulted in the creation of PhysiCell
Studio[30], as well as the recent addition of a rule-based modeling language in Physi-
Cell release 1.11.0 [31]. PhysiCell Studio is a graphical user interface (GUI) application
to create and edit a PhysiCell model, run a simulation, and visualize results. The
rule-based modeling language is a simple API that facilitates the building of models
using cell signals and cell behaviors without any programming requirements. These
developments raise a valid concern regarding the potential benefits of creating such
applications for user training. Our answer is affirmative, as the inclusion of user inter-
faces on top of the core code introduces a level of abstraction. As users become more
separated from the core library, it becomes increasingly important to provide them
with the tools to comprehend the inner workings of the code, and to make informed
modeling decisions. While an improved user interface may facilitate more efficient
model implementation, the most critical aspect of modeling is always the design of
the model. Without adequate training in the underlying assumptions and workings
of the code base, mistakes are prone to arise. Therefore, the importance of creating
standalone applications that are specifically designed to teach the inner workings of
the code base cannot be overstated.

It should also be noted that training applications can be tailored to educational
needs, with features such as focused views to block out distractions and prevent learner
overwhelm. They provide a designed scaffolding that includes the first investigation by
using default parameters followed by suggested exploration that is provided with each
application. We also provide tailored visualization that is not general-purpose, but
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specific to the lessons of the training application. These specialized applications can
serve distinct and complementary pedagogical goals, above and beyond the general
aim of making the software accessible and easy to use.

6 Future Work

PhysiCell is constantly evolving with the addition of new features, such as advanced
chemo-taxis, spring attachments, cell-cell contact, signals, and behaviors, since the
development of these applications. This necessitates the creation of new training
applications to introduce these concepts. With the release of PhysiCell version
1.10.4, new and complex functions were introduced, such as immune and interac-
tion functions, phagocytosis, fusion, and transformation. These functions are highly
intricate and require tailored training programs to comprehend. For example, mod-
eling immune response involves defining effector attack and damage response, as
well as vectors of attack rates and immunogenicity. Another recently added API,
signal-behavior-response, can also benefit from customized training applications

As integrated biology becomes increasingly complex, the need for focused training
materials becomes more apparent and important. The usability and training of the
software drive its use, which in turn leads to a greater demand for more features.
Nevertheless, the incorporation of more features requires a concurrent improvement
in usability and training.
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