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Globally, 149 million children under 5 years of age are estimated to be stunted (length

more than 2 standard deviations below international growth standards)** Stunting,
aform oflinear growth faltering, increases therisk of illness, impaired cognitive
development and mortality. Global stunting estimates rely on cross-sectional
surveys, which cannot provide direct information about the timing of onset or
persistence of growth faltering—akey consideration for defining critical windows to
deliver preventive interventions. Here we completed a pooled analysis of longitudinal
studies in low- and middle-income countries (n =32 cohorts, 52,640 children, ages
0-24 months), allowing us to identify the typical age of onset of linear growth
faltering and to investigate recurrent faltering in early life. The highest incidence of
stunting onset occurred from birth to the age of 3 months, with substantially higher
stunting at birthin South Asia. From 0 to 15 months, stunting reversal was rare;
children who reversed their stunting status frequently relapsed, and relapse rates
were substantially higher among children born stunted. Early onset and low reversal
rates suggest thatimproving children’s linear growth will require life course
interventions for women of childbearing age and a greater emphasis on interventions
for children under 6 months of age.

In 2018, 149 million children under 5 years of age (22% globally) were
stunted (length-for-age z-score (LAZ) > 2 standard deviations below
the median of the growth standard for age and sex), with the largest
burdeninSouth Asiaand Africa* Early-life stunting is associated with
increased risk of mortality?, diarrhoea, pneumonia and measles in
childhood**and impaired cognitionand productivity in adulthood®®.
Global income would increase by an estimated US$176.8 billion per
year if linear growth faltering could be eliminated®. The World Health
Organization (WHO) 2025 global nutrition targets'® and Sustainable
Development Goal 2.2.1(ref. 11) propose to reduce stunting prevalence
among children under 5 years from 2012 levels by 40% by 2025.
Inlow-resource settings, the first thousand days of life—including the
prenatal period—is considered the critical window in whichto intervene
to prevent stunting'. Intrauterine growth restriction and preterm
birthare strongly associated with stunting at 24 months of age'®. Most
linear growth faltering occurs by the age of 2 years, and 70% of absolute
length deficits by the age of 5 years occur before the age of 2 years®.
Children who experience linear growth faltering before the age of 2
years can experience catch-up growth at older ages, particularly with

improvements to their nutrition, health and environment* 8, However,
the extent of catch-up growth depends on the timing and severity of
early-life linear growth faltering®.

Granular information about the age of linear growth faltering
onset and its persistence in early life will best inform when and how
to intervene with preventive measures. Yet, most studies of the
global epidemiology of stunting have used nationally representative,
cross-sectional surveys—predominantly Demographic and Health
Surveys (DHS)—to estimate age-specific stunting prevalence™*° %,
Analyses of cross-sectional studies cannot identify longitudinal pat-
terns of linear growth faltering or reversal. Further, they may be subject
to survivor bias and fail to include those children most vulnerable to
undernutrition. Few studies have estimated age-specific incidence
within the first 2 years of life”* .

Weestimated linear growth falteringincidence and reversal and linear
growth velocity in 32 longitudinal cohorts in low- and middle-income
countries (LMICs) with multiple, frequent measurements. The analy-
sis provides new insights into the timing of onset and duration of lin-
ear growth faltering, with important implications for interventions.
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We found that linear growth faltering occurs very early in the prenatal
and postnatal phase—before the age of 6 months when most postnatal
linear growthinterventions begin. Our findings confirm theimportance
of the first1,000 days as a critical window to intervene to prevent linear
growth faltering but motivate a renewed focus on prenatal and early
postnatal interventions.

Pooled longitudinal analyses

Here we report a pooled analysis of 32 longitudinal cohorts from 14
LMICs in South Asia, sub-Saharan Africa and Latin America followed
between 1987 and 2017. Our objective was to estimate age-specific
incidence and reversal of stunting and linear growth velocity from
0 to 24 months. Companion articles report results for child wasting
(weight-for-length z-score < 2 standard deviations below the reference
median)?® and household, maternal and child-level risk factors associ-
ated withlinear growth faltering®. These datawere aggregated by the
Bill & Melinda Gates Foundation Knowledge Integration (Ki) initiative
and comprise approximately 100 longitudinal studies on child birth,
growth and development. We included cohorts from the database
that met fiveinclusioncriteria: conductedin LMICs; had amedian year
of birthin1990 or later; enrolled children between birth and the age
of 24 months and measured their length and weight repeatedly over
time; did not restrict enrolment to acutely ill children; and collected
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anthropometry measurements at least every 3 months (Extended Data
Fig.1). These criteria ensured that we could rigorously evaluate the tim-
ingand onset of stuntingamong children who were broadly representa-
tive of general populations in LMICs. Thirty-two cohorts metinclusion
criteria, including 52,640 children and 412,458 total measurements
from 1987 to 2017 (Fig. 1 and Supplementary Tables 1and 2). Cohorts
were located in South Asia (n =17 cohortsin 4 countries), Africa(n=7
in 6 countries), Latin America (n = 7in 3 countries) and Eastern Europe
(n=1; Extended Data Fig. 2). Twenty-one cohorts measured children
at least monthly, and 11 measured children every 3 months. Cohort
sample ssizes varied from119 to 14,074 children. In most cohorts, more
than 80% of enrolled children had LAZ measurements at each age of
measurement (Extended Data Figs. 3 and 4).

We calculated LAZs using WHO 2006 growth standards®. We
dropped 859 of 413,317 measurements (0.2%) because LAZ was unre-
alistic (>6 or <-6 z), and we defined stunting as LAZ < -2 and severe
stuntingasLAZ < -3 (ref. 30). Unless otherwise indicated, estimates that
poolacross cohorts used random-effects models fitted with restricted
maximum-likelihood estimation®+2, Within each cohort, the monthly
mean LAZ ranged from -3.06 to +1.31, and the monthly proportion
stunted ranged from 0% to 91% (Fig. 1).

To assess Ki cohort representativeness, we compared LAZ from the
Kicohorts with contemporary population-based, cross-sectional DHS
datain the same countries. Ki cohorts and DHS z-score distributions
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were similar (Fig. 2a). The distribution of LAZ was shifted to the left
for Ki cohorts in South Asia compared to those in Latin America and
Africa. Mean LAZ by age was generally lower in Ki cohorts thanin DHS
surveys, especially in South Asia, but was slightly higher at certain ages
intwo Peruvian cohorts (Fig. 2b).

Growth faltering as a whole-population condition

In approximately half of cohorts, the 95th percentile of the LAZ dis-
tribution dropped below 0 by the age of 15 months (Extended Data
Fig. 5). This pattern is consistent with the characterization of linear
growth faltering as a ‘whole-population’ condition®. In most cohorts,
aschildrenaged, LAZ distributions shifted downwards (Extended Data
Fig.6),and standard deviations and skewness were similar across ages
(Extended DataFig. 7).

Onset of stunting in early life

To measure the timing of stunting onset, we classified a child as anew
incident case in three-month age periods if their LAZ dropped below
-2forthefirsttimeinthatage period. The percentage of children that
were stunted at birth ranged from 0.3% to 42% in each cohort and was
13% overall (Fig. 3a). The percentage that experienced incident stunting
onset between birth and 3 months ranged from 6% to 47% in each cohort
and was 16% overall. Children stunted between birth and 3 months
accounted for23% of all children who experienced stunting by the age
of 24 months (69% of children). Trends were similar for severe stunting
(Supplementary Note 1).

Early onset of stunting was consistent across geographic regions
and countries with different levels of health spending, poverty and
under-5mortality. Very early-life stunting onset was most commonin
South Asia, where 20% of children were stunted at birth, and another
18%became stunted by the age of 3 months (Fig. 3a). In Africaand Latin
America, the percentage stunted at birth was lower than the percent-
age that became stunted between birth and the age of 3 months. In all
regions, the rate of onset declined at subsequent ages. Overall, the
proportion stunted at birth or by the age of 3 months was higher, and
onset was lower at subsequent ages in countries with alower proportion
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quarterly measurement (coloured lines) estimated with cubic splines. Shaded
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was not conducted in Guinea-Bissau during the study period. Each panelincludes
n=125,046 childrenfrom DHS dataand n=52,640 children fromKicohorts.

of gross domestic product devoted to health spending, higher child
mortality and a higher percentage of the populationliving onless than
US$1.90 per day (Extended Data Figs. 8-10).

We summarized age trendsin LAZ stratified by geographicregionand
timing of stunting onset (Fig. 3b and Extended DataFig.11). Among chil-
drenstunted atbirth, LAZ differed markedly between geographicregions:
mean LAZ rosein the first month of lifein all regions and then remained
close to —0.5in Latin America, close to -2 in Africa and close to -2.5in
South Asia. Regional differences were less pronounced among children
stunted at later ages, although children in South Asian cohorts had con-
sistently lower mean LAZ than childrenfrom African and Latin American
cohorts. Children who became stunted between birth and the age of 6
months started at low birth LAZ (mean =-2.7) and had moderate rates
of decline, whereas children who became stunted between ages 6 and
15monthsstarted at higher birth LAZ (mean =-1.4) but had much faster
ratesof declinein LAZ, from above -1 zatbirthtobelow -2 zby the age of
15months. Children who were never stunted still experienced a drop of
approximately 0.5 zinmean LAZ frombirth to the age of 15monthsinall
regions, showingthat even children not classified as ‘stunted’ on average
experienced substantial, postnatal linear growth faltering.

Stuntingreversal and relapse

We reasoned that: lower than average linear growth (LAZ < 0) would
persistamong childrenwho experienced stunting reversal (thatis, LAZ
increased from below -2 to above -2); and children who experienced
stunting reversal would experience stunting relapse at later ages. To
test these hypotheses, we classified a child’s change in stunting status
frombirth to the age of 15 months among monthly measured cohorts.
New incidence of stunting was highest at birth and declined steadily
to 3.3% per month by the age of 4 months (Fig. 4a), a pattern that was
most marked in South Asia (Extended Data Fig.12). Incidence rates of
new and relapse stunting exceeded rates of reversal at all ages, new
resultsthatillustrate the underlying dynamics of agradually accumu-
lating stunting burden as children age: by the age of 15 months, 34.0%
of children were stunted, 50.5% had ever been stunted, and 16.5% had
experienced stunting reversal and were no longer stunted (Fig. 4a).
Incident stunting relapse following reversal ranged from 2.0 to 3.5%
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(IQR=79-96) in South Asia.b, Mean LAZ stratified by age of incident stunting

per month from ages 6 to 15 months, and patterns were similar across
regions (Extended DataFig.12).In South Asia, stunting reversal declined
as children aged, but rates were stable across ages in Africa and Latin
America; overall reversal was slightly less common in Latin America
(Extended DataFig.12).

To assess whether a child’s birth length influenced their propensity
to recover from stunting, we summarized incident stunting, relapse
and reversal rates stratified by birth LAZ subgroup in monthly meas-
ured cohorts (Fig.4b). Eighty-six per cent of children who ever became
stunted had LAZ < 0 at birth. Rates of stunting relapse increased with
age and were generally higher among children who were bornstunted.
Stunting reversal was more common at young ages for children born
with LAZ < -2, which probably reflects regression to the mean. After
the age of 6 months, stunting reversal rates were similarly low among
childrenwith birth LAZ < -2 (<7% per month) and birth LAZ -2to 0 (<5%
per month). Theseresults indicate that linear growth faltering at birth
isakey determinantof children’slinear growth trajectoriesin early life,
recovery is rare among all children who become stunted by the age of
15 months, and children who are stunted at birth are more prone to
transient stunting reversal followed by stunting relapse.

We nextstudied the distribution ofimprovement in LAZ by age of stunt-
ing reversal to assess whether reversal at different ages was associated
withmore sustainedimprovementin LAZ. For childrenwho experienced
stunting reversal, we summarized the LAZ distribution at subsequent
ages and estimated the mean difference in LAZ measured at older ages
compared to whenstunting was reversed. At the time of stunting reversal,

15 0 3 6 9
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12 15

Child age (months)

frombirth to the age of 15months (n=21cohorts that measured children at
least monthly between birth and the age of 15months, n =11,243 children).
Horizontal blacklines indicate stunting the cutoff of -2 LAZ.‘Never stunted’
includes children who did not become stunted by the age of 15 months. Pooled
results were derived from random-effects models with restricted maximum-
likelihood estimation. Thinner lines indicate cohort-specific estimates. The
median /*statistic measuring heterogeneity in each meta-analysis was 91

(IQR =83-96) overall, 85 (IQR = 63-94) in Africa, 94 (IQR =88-96) in Latin
Americaand 85 (IQR=78-92)in South Asia. Extended Data Fig.11 contains
pooled means from b with 95% confidenceintervals.

the LAZ distribution mode was close to the -2 cutoff (Fig. 5aand Extended
DataFig.13). Aschildrenaged, LAZ distributions gradually shifted down-
wards, illustrating that linear growth deficits continued toaccumulate.
Among children who experienced stunting reversal before the age of 6
months, mean difference in LAZ 9 months later was —0.69 (95% confi-
denceinterval -0.84,-0.55; cohort-specific range: -1.04,-0.22; Fig. 5b).
Children who were older at the time of reversal experienced a larger
declineinsubsequent LAZ comparedto that of younger children (Fig.5b).
Overall, improvements in LAZ following stunting reversal were neither
sustained nor large enough to erase linear growth deficits and did not
resemble a biological recovery process for most children.

Growthvelocity by age and sex

We defined linear growth velocity asachild’s change in length between
two time points divided by the number of months between the time
points (cm per month). From O to 3 months, cohort-specific length
velocity ranged from below the 1st percentile of the WHO standard to
above the 50thfor boys and above the 75th percentile for girls (Fig. 6a).
Atsubsequentages, length velocity in each cohort was mostly between
the15thand 50th percentiles of the WHO standard, exceptinone cohort
in Belarus, which had a higher length velocity. Larger deficits at the
youngest ages were consistent with highestincidence of stunting from
birth to the age of 3 months (Fig. 3a). From the ages of 3 to 24 months,
on average, children’s change in length was between 0.75and 1.25 cm
per month. We also estimated within-child rates of LAZ change per
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Asiaand Africa (Extended Data Fig. 14).
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Discussion

This large-scale analysis of 32 longitudinal cohorts from LMICs
revealed new insights into the timing, persistence and recurrence
of linear growth faltering from birth to the age of 2 years. Previous
cross-sectional studies found that stunting prevalence increased gradu-
ally with age™*° %2, By contrast, we found that incident stunting onset
was highest between birthand the age of 3months, a pattern consistent
across geographicregions, and was most pronounced in countries with
alower proportion of gross domestic product devoted to health spend-
ing, higher under-5 mortality rates and higher poverty levels (Fig. 3a
and Extended Data Figs. 8-10). Stunting at birth was akey predictor of
children’s linear growth trajectories to the age of 15 months: stunting
relapseinthe first year of life was substantially higher among children
who were stunted at birth compared to those who were not bornstunted
(Fig. 4b). The burden and persistence of very early-life linear growth
faltering was most stark in South Asia, where 20% of children were
stunted at birth (Fig. 3a) and children who were stunted at birth had a
mean LAZ of approximately —2.5 at all subsequent ages, substantially
lower than that for children in other regions (Fig. 3b). Most children
who experienced stunting reversal continued to experience linear
growth deficits, and more than 20% who achieved reversal were stunted
againat later measurements (Fig. 5a). Evenamong children who never
met criteria for stunting, mean LAZ steadily declined by over 0.5 zby
the age of 15 months (Fig. 3b)—a result that shows that linear growth
falteringamong childrenin LMICsis a whole-population phenomenon,
with both stunted and not stunted children experiencing suboptimal
growth trajectories in early life?.

b, Within-child difference in LAZ per month by age and sex. Smaller partially
transparent points indicate cohort-specific estimates. The median /* statistic
measuring heterogeneity in each meta-analysis was 89 (IQR = 78-92). Both panels
include 32Kicohortsin14 countries that measured children atleast quarterly
(n=52,640 children) pooled using random-effects models fitted with restricted
maximum-likelihood estimation. Vertical bars indicate 95% confidenceintervals.

Two key conclusions fromarecent series on child maternal and child
undernutrition® were that improving children’s linear growth will
requirealife course approach with an emphasis onwomen’s health and
that targeting interventions by age and geography may yield greater
benefits than one-size-fits-all approaches. Our results provide new
quantitative evidence that strengthens these conclusions and enables
more precise statements about the extent of the whole-population
burden, age windows for preventive interventions, and the uniquely
highincidence and low reversal rates among children in South Asia
compared with those in other geographic regions.

Highest stunting onsetin the first 3 months of life and greater stunt-
ing relapse among children who were born stunted underscore the
importance of pre-pregnancy and prenatal interventions to reduce
stunting. These interventions include maternal micronutrient and
macronutrientsupplementation®**, increasing women’sautonomy and
education®, reducing adolescent pregnancies in LMICs by delaying the
age of marriage and first pregnancy®, and promoting family planning?®.
Interventions to prevent prenatalinfections, such asintermittent pre-
ventive treatment for malaria, may also increase fetal linear growthin
regions where suchinfections co-occur with linear growth faltering®.
Our finding that stunting incidence at birth was lower in countries with
agreater level of national health expenditures suggests that overall
investments in healthcare systems may also improve linear growth.

InSouth Asiain particular, where stunting at birth was highest, inter-
vening to improve the health of women of childbearing age may be
critical toimproving children’s linear growth. Previous work has identi-
fied South Asianwomen’s nutrition before and during pregnancy and
poor sanitation conditions as key contributors to stunting at birth*°.
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Regardingsanitation, in 2020 the prevalence of open defaecation was
18%in sub-Saharan Africa, 12%in South Asiaand 2% in Latin America, and
access to basic sanitation was lower in sub-Saharan Africathanin South
Asia*’. Recent trials found that improving household-level sanitation
didnotimprove children’slinear growth, but studies did not measure
impacts on mothers*. A more likely explanation for higher stunting
atbirthin South Asia is women’s nutritional status. Prevalence of low
body mass index in women is highest in South Asia (24%), with much
higher prevalence in some geographic hotspots®. Inaddition, 40-70%
of women in South Asia are less than 150 cm tall*}, and the prevalence
of infants born small for gestational age is 34% in South Asiacompared
to 17% in sub-Saharan Africa and 9% in Latin America**. Our analysis
of risk factors for stunting in acompanion paper in this series reports
that maternal height, weight and body mass index were the strongest
predictors of stunting at birth and child linear growth trajectories®.
These findings point to the need to tailor interventions to the unique
factorsinfluencing women'’s nutrition and prenatal health in South Asia.

Inthis study, 25% of childrenbecame stunted betweenbirth and the
age of 6 months, yet few child nutritioninterventions are recommended
by the WHO in this age range. In the neonatal period, those interven-
tions include delayed cord clamping, neonatal vitamin K administra-
tion and kangaroo mother care®. Beyond the neonatal period, the
sole recommended intervention is exclusive breastfeeding®, which
substantially reduces the risk of mortality and morbidity but has not
been foundtoreduce infant stunting**¢*°, Further researchis needed
toidentify interventions that preventlinear growth faltering between
birth and the age of 6 months, including nutritional support of the
lactating parent and the vulnerable infant®. Interventions may need
to focus on upstream risk factors, such as maternal pre-conception
and prenatal health and nutrition, and microbiota.

We found that 31% of children became stunted during the comple-
mentary feeding phase (age of 6-24 months). Meta-analyses evalu-
ating the effectiveness of interventions during this phase on linear
growth have reported modest impacts of lipid-based nutrient sup-
plements®, modest or no impact of micronutrient supplementation®?,
and no impact of water and sanitation improvements, deworming or
maternal education®. The dearth of effective postnatal interventions
toimprove linear growth motivates renewed efforts toidentify alterna-
tive, possibly multisectoral, interventions and to improve intervention
targeting and implementation®>*,

There were several limitations to the analyses. First, length estimates
may be subject to measurement error; stunting reversal and relapse
analyses that rely on thresholds are more sensitive to such errors.
However, detailed assessments of measurement quality indicated that
measurement quality was high across cohorts (Supplementary Note 2).
Second, estimates of LAZ at birth using the WHO child growth stand-
ards overestimate stunting in preterm infants®. Accurate estimates of
gestational age were not available in included cohorts; seven cohorts
measured gestational age by recall of last menstrual period or newborn
examination, and one cohort measured gestational age by ultrasound.
In a sensitivity analysis adjusting for gestational age pooling across
cohorts that measured it, stunting prevalence at birth was 1% lower
(Extended Data Fig. 15). Third, included cohorts were not inclusive of
all countriesinthe regions presented here, and linear growth faltering
was more common in included African and South Asian cohorts than
in corresponding contemporary representative surveys. The consist-
ency between attained linear growth patterns in this and nationally
representative DHS surveys (Fig. 2) suggests that overall, our results
have reasonably good external validity. For growth velocity, the cohorts
represented populations close to the 25th percentile of international
standards (Fig. 5a). Fourth, the included cohorts measured child length
every 1-3months, and ages of measurement varied, so different num-
bers of children and cohorts contributed to each estimate. However,
when we repeated analyses in cohorts with monthly measurements
frombirthto24 months (n =18 cohortsin10 countries, 10,830 children),

556 | Nature | Vol 621 | 21 September 2023

results were similar (Supplementary Note 3). Finally, ourinferences are
limited to the first2 years of life as very few included studies measured
childrenatolder ages. Other studies, however, have found that stunting
status in early life is associated with health outcomes later in life, and
the timing and extent of early-life linear growth faltering is associated
with the magnitude of later catch-up growth® 816471,

Conclusion

Current WHO 2025 global nutrition targets and Sustainable Develop-
ment Goal 2.2.1aim to reduce stunting prevalence among children
under 5 years by 2025. Our findings suggest that defining stunting
targets at earlier ages (for example, stunting by 3 or 6 months) would
help focus attention on the period when interventions may be most
impactful. Inaddition, our results motivate alife course approach that
targetsinterventions to women of childbearing age and includesinter-
ventions for children during their first months of life.
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Methods

The analysis was pre-specified at https://www.synapse.org/#!Synapse:
syn11855121/wiki/513724.

Study designs and inclusion criteria
We included all longitudinal observational studies and randomized
trials available through theKiproject on April 2018 that met five inclusion
criteria (Extended Data Fig.1) as follows: studies that were conductedin
LMICs (childreninthese countries have thelargest burdenlinear growth
faltering and are the key target population for preventive interventions);
studies that had amedian year of birthin 1990 or later (this restriction
resulted in a set of studies spanning the period from 1987 to 2017 and
excluded older studies that are less applicable to current policy dia-
logues); studies thatenrolled children between birth and age 24 months
and measured their length and weight repeatedly over time (we were
principally interested in growth faltering during the first 1,000 days
(including gestation), thought to be the key window for linear growth
faltering); studies that did not restrict enrolment to acutely ill children
(ourfocusondescriptive analysesled us to target, to the extent possible,
the general population; we thus excluded some studies that exclusively
enrolled acutely ill children, such as children who presented to hospi-
tal with acute diarrhoea or who were severely malnourished); studies
that collected anthropometry measurements at least every 3 months
(toensure that we adequately captured incidentepisodes and recovery).
Thirty-two longitudinal cohorts in 14 countries followed between
1987 and 2017 met inclusion criteria. All children from each eligible
cohort were included in the study. There was no evidence of secular
trends in LAZ (Supplementary Note 4). We calculated cohort meas-
urement frequency as the median days between measurements. If
randomized trials found effects on growth within the intervention
arms, the analyses were limited to the control arm. We included all
measurements under 24 months of age, assuming months were 30.4167
days. We excluded extreme measurements of LAZ > 6 or LAZ < -6 fol-
lowing WHO growth standard recommendations®’. In many studies,
investigators measured length shortly after birth because deliveries
were athome, but most measurements were within the first 7 days of life
(Supplementary Note 5); for this reason, we grouped measurements in
thefirst 7 days as birth measurements. Gestational age was measured
in only five cohorts that measured birth length (three cohorts meas-
ured it by recall of last menstrual period; one measured it by newborn
examination; one measured it by ultrasound); thus, we did not attempt
to exclude preterm infants from the analyses.

Quality assurance

The Ki datateam assessed the quality of individual cohort datasets by
checking the range of each variable for outliers and values that were
not consistent with expectation. z-scores were calculated using the
median of replicate measurements and the 2006 WHO child growth
standards®. Inasmall number of cases, a child had two anthropometry
records atthe same age, in which case we used the mean of the records.
Analysts reviewed bivariate scatter plots to check for expected correla-
tions (for example, length by height; length, height or weight by age;
length, height or weight by corresponding z-score). Once the individual
cohort data were mapped to a single harmonized dataset, analysts
conducted aninternal peer review of published articles for complete-
ness and accuracy. Analysts contacted contributing investigators to
seek clarification about potentially erroneous values in the data and
revised the data as needed.

Outcome definitions
We used the following summary measures in the analysis.

Incident stunting episodes. Incident stunting episodes were defined
as achangein LAZ from above -2 zin the previous measurement to

below -2 zin the current measurement. Similarly, we defined severe
stunting episodes using the cutoff of -3 z. Children were considered
at risk of stunting at birth, so children born stunted were considered
to have an incident episode of stunting at birth. Children were also
assumed to be atrisk of stunting at the first measurementin non-birth
cohorts and trials. Children whose first measurement occurred after
birth were assumed to have experienced stunting onset at the age half-
way between birth and the first measurement. Most children were less
than 5 days of age at their first measurement (Supplementary Note 5).

Incidence proportion. We calculated the incidence proportion of
stunting during a defined age range (for example, 3-6 months) as the
proportion of children at risk of becoming stunted who became stunted
during the age range (the onset of new episodes).

Changes in stunting status. Changesin stunting status were classified
using the following categories—never stunted: childrenwith LAZ > -2
at previous ages and the current age; no longer stunted: children who
previously reversed their stunting status with LAZ > -2 at the current
age; stunting reversal: children with LAZ < -2 at the previous age and
LAZ > -2 at the current age; newly stunted: children whose LAZ was
previously always > -2 and with LAZ < -2 at the current age; stunting
relapse: children who were previously stunted with LAZ > -2 at the
previous age and LAZ < -2 at the current age; still stunted: children
whose LAZ was <-2 at the previous and current age.

Growth velocity. Growth velocity was calculated as the change in
lengthin centimetres between two time points divided by the number
of months between the time points. We compared measurements of
change in length in centimetres per month to the WHO child growth
standards for linear growth velocity*. We also estimated within-child
rates of change in LAZ per month.

Measurement frequency

Analyses of incidence and growth velocity (Figs. 3 and 5) included
cohorts with at least quarterly measurements to include as many
cohortsaspossible. Analyses of stunting reversal (Fig. 4) were restricted
to cohorts withatleast monthly measurements to allow evaluation of
changes in stunting status with higher resolution.

Subgroups of interest

We stratified the above outcomes within the following subgroups:
child age, grouped into one- or three-month intervals (depending on
the analysis); the region of the world (Asia, sub-Saharan Africa, Latin
America); sex of child; and the combinations of those categories. We
obtained country-level dataonthe percentage of gross domestic prod-
uctdevotedto healthcare goods and spending from the United Nations
Development Programme® and the percentage of the country livingon
less than US$1.90 per day and under-5 mortality rates from the World
Bank®. Inyears without available data, we linearly interpolated values
from the nearest years with available data and extrapolated values
within 5 years of available data using linear regression models based
onallavailableyears of data. We also considered additional subgroups,
including decadeinwhich datawere collected, gross domestic product™®,
gender development index”, gender inequality index”’, coefficient of
humaninequality® and the Gini coefficient®®, However, for these vari-
ables, subgroup levels were strongly correlated with geographicregion,
making itimpossible to separate the effects of each (Supplementary
Table3). Thus, we did not conduct subgroup analyses for these variables.

Statistical analysis
All analyses were conducted in R version 3.4.2 (ref. 59).

Estimation of mean LAZ by age in DHS and Ki cohorts. We down-
loaded standard DHS individual recode files for each country fromthe
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DHS Program website (https://dhsprogram.com/). We used the most
recent standard DHS datasets for theindividual women'’s, household,
and height and weight datasets from each country. We obtained vari-
ables for country code, sample weight, cluster number, primary sam-
pling unit and design stratification from the women’s individual survey
recode files. From the height and weight dataset, we used standard
recode variables corresponding to the 2006 WHO growth standards
for height-for-age.

After excluding missing observations, restricting to measurements
of children of 0-24 months of age and restricting to z-scores within
WHO-defined plausible values, surveys were collected from 1996 to
2018 in countries that overlapped with Ki cohorts with the exception
of Guinea-Bissau because the DHS survey was not conducted there
during the study period (Extended Data Table 1).

We classified countries into regions (South Asia, Latin America
and Africa) using the WHO regional designations with the exception
of the classification for Pakistan, which we included in South Asia to
be consistent with previous linear growth studies using DHS?. One
included cohort was from Belarus, and we chose to exclude it from
region-stratified analyses as it was the only European study.

We estimated the age-stratified mean from ages of 0 to 24 months
within each DHS survey, accounting for the complex survey design
and sampling weights. We then pooled estimates of mean LAZ for each
ageinmonths across countries using a fixed-effects estimator (details
below). We compared DHS estimates with mean LAZ by age in the Ki
study cohorts, whichwe estimated using penalized cubic splines with
bandwidth chosen using generalized cross-validation®®. We used splines
toestimate age-dependent mean LAZ in the Ki study cohorts to smooth
any age-dependent variation in the mean caused by less frequently
measured cohorts.

Distribution models. Toinvestigate how the mean, standard deviation
and skewness of LAZ distributions varied by age, we fitted linear models
with skew-elliptical error terms using maximum-likelihood estimation.
We fitted models separately by cohort.

Fixed- and random-effects models. Several analyses pooled results
across study cohorts. We estimated each age-specific mean using a
separate estimation and pooling step. We first estimated the meanin
eachcohort, and then pooled age-specific means across cohorts, while
allowing for a cohort-level random effect. This approach enabled us
to include the most information possible for each age-specific mean,
whileaccommodating slightly different measurement schedules across
the cohorts. Each cohort’s data contributed only to LAZ or stunting
incidence estimates at the ages for which it contributed data.

The primary method of pooling was using random-effects models.
This modelling approach assumes that studies are randomly drawn
fromahypothetical population of longitudinal studies that could have
been conducted on children’s linear growth in the past or future. We
also fitted fixed-effects models as a sensitivity analysis (Supplemen-
tary Note 6); inferences about estimates from fixed-effects models are
restricted to only the included studies®.

Randome-effects models assume that the true population outcomes
6 are normally distributed (6 - N(u, %)), in which N indicates a normal
distribution and 6 has mean y and variance 7°. To estimate outcomes
in this study, the random-effects model is defined as follows for each
studyinthesetofi=1, ..., kstudies:

y=ptute 6))

inwhichy;is the observed outcome in study i, u;is the random effect
for study i, uis the estimated outcome for study i, and e; is the sam-
pling error within study i. The model assumes that u; ~ N(O, 7*) and
e;~N(0, v;), in which v, is the study-specific sampling variance. We fit-
ted random-effects models using the restricted maximum-likelihood

estimator®*2 Ifamodel failed to converge, we attempted to fit models
with amaximume-likelihood estimator. If random-effects models failed
to converge owing to the number of stunting cases being zero, we used
afixed-effects estimator. The quantity u is the estimated mean out-
comeinthe hypothetical population of studies (that is, the estimated
outcome pooling across study cohorts).

We also fitted inverse-variance-weighted fixed-effects models
defined as follows:

¢ zlewi

inwhich 8, is the weighted mean outcome in the set of kincluded stud-
ies, and w; is a study-specific weight, defined as the inverse of the
study-specific sampling variance v,. 6;is the estimate from study i.

Forboth types of outcome, we pooled binary outcomes on the logit
scale and then back-transformed estimates after pooling to constrain
confidenceintervals between 0 and 1. Although the probit transforma-
tion more closely resembles common distributions for physiologic
variables, in practice thelogit transformation produces nearly identical
estimates and is more convenient for estimation. For cohort-stratified
analyses, which did not pool across studies, we estimated 95% con-
fidence intervals using the normal approximation (Supplementary
Note 7).

Estimation of incidence. We estimated incidence as defined above in
3-month age intervals within specific cohorts and pooled withinregion
and across all studies (Fig. 3). Pooled analyses used random-effects
models for the primary analysis and fixed-effects models for sensitivity
analyses as described above.

Estimation of changes in stunting status. To assess fluctuations in
stuntingstatus over time, we conducted an analysis among cohorts with
atleast monthly measurements frombirth tothe age of 15 monthsto pro-
vide sufficient granularity to capture changes in stunting status. We es-
timated the proportion of childrenin each stunting category defined in
the section‘Changes instunting status’at each month frombirthtothe
age of 15months. To ensure that percentages summed to100%, we pre-
sentresults that were not pooled using random effects. Analyses using
random effects produced similar results (Supplementary Note 6.3).

To examine the distribution of LAZ among children with stunting
reversal, we created subgroups of childrenwho experienced stunting
reversal at ages 3, 6,9 and 12 months and then summarized the distri-
butionofthe children’sLAZ atages 6, 9,12 and 15 months. Withineach
age interval, we estimated the mean difference in LAZ at older ages
compared to the age of stunting reversal and estimated 95% confidence
intervals for the mean difference. Pooled analyses used random-effects
models for the primary analysis and fixed-effects models for sensitivity
analyses as described above.

Linear growth velocity. We estimated linear growth velocity within
3-month age intervals stratified by sex, pooling across study cohorts
(Fig.5) aswell as stratified by geographic region (Extended DataFig.10)
and study cohort (Supplementary Note 7.4). Analyses included cohorts
that measured children at least quarterly. Weincluded measurements
within a 2-week window around each age in months to account for
variation in the age of each length measurement. Pooled analyses
used random-effects models for the primary analysis and fixed-effects
models for sensitivity analyses as described above (Supplementary
Note 6.4).

Sensitivity analyses

We conducted three sensitivity analyses. First, to assess whether inclu-
sion of PROBIT, the single European cohort, influenced our overall
pooledinference, we repeated analyses excluding the PROBIT cohort.


https://dhsprogram.com/

Article

Results were very similar with and without the PROBIT cohort (Supple-
mentary Note 8).Second, to explore the influence of differing numbers
of cohorts contributing data at different ages, we conducted asensitivity
analysisin which we subset datato cohortsthat measured anthropom-
etry monthly from birth to the age of 24 months (n =21 cohorts in 10
countries, 11,424 children; Supplementary Note 3). Third, we compared
estimates pooled using random-effects models presented in the main
text with estimates pooled using fixed-effectsinverse-variance-weighted
models. The random-effects approach was more conservative in the
presence of study heterogeneity (Supplementary Note 6).

Inclusion and ethics

This study analysed data that were collected in 14 LMICs that were
assembled by the Bill & Melinda Gates Foundation Kiinitiative. Datasets
are owned by the original investigators that collected the data. Mem-
bers of the Ki Child Growth Consortium were nominated by each study’s
leadership team to be representative of the country and study teams
that originally collected the data. Consortium members reviewed their
cohort’s datawithin the Ki database to ensure external and internal con-
sistency of cohort-level estimates. Consortium members provided sub-
stantial input on the statistical analysis plan, interpretation of results
and manuscript writing. Per the request of consortium members, the
manuscriptincludes cohort-level and regional results to maximize the
utility of the study findings for local investigators and public health
agencies. Analysis code has been published with the manuscript to
promote transparency and extensions of our research by local and
global investigators.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The data that support the findings of this analysis are a combina-
tion of data from multiple principal investigators and institutions.
The data are available, upon reasonable request, to the requestor
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Extended DataFig. 1| kicohortselection. Analyses focused onlongitudinal
cohortstoenable the estimation of prospective incidence ratesand growth
velocity. In April 2018, there were 97 longitudinal studies on GHAP. From this
set, we appliedfiveinclusioncriteriatoselect cohorts for analysis. Our
rationale for each criterion follows. (1) Studies were conducted in lower income
ormiddle-income countries. (2) Studies had amedianyear of birthin 1990 or

Located in low- or middle income countries (n=83)
Enroliment ot restricted to acutely ill children (n=75)
Children born after 1990 (n=86)

Enrolled children between ages 0-2 (n=78)
Quarterly growth measurements (n=32)
Monthly growth measurements (n=21)

Sample size

'Y

eIy

eousWY une]

adoin3 § EoUBLY YON

Reas:

o

40 80
Total Observations (x1000)

120

later. (3) Studies measured length and weight between birthand age 24 months.
(4) Studies did not restrict enrollment to acutely ill children. (5) Studies collected
anthropometry measurements at least every 3 months. Each colored cell
indicatesacriterionthat was met. For studies that metallinclusion criteria, all
cellsintheir row are colored. The bars at the top of the plot show the number of
observationsin each study that meteachinclusion criterion by region.
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expenditures as a percentage of gross domestic product. Proportion of
children experiencingincident stunting onset by national health expenditures
asapercentage of gross domestic product (1-3%: N = 6-9 studies, N=2,039~
12,076 children; 3-5%: N =11-19 studies, N = 4,467-16,030 children; 5-42%:

N=5-8studies, N =5,423-15,578 children). “0-3" includes age 2 days up to

3 months. Analysesinclude cohorts with at least quarterly measurements;
vertical barsindicate 95% confidence intervals. Gray points indicate cohort-
specific estimates. Pooled results were derived from random effects models
withrestricted maximum likelihood estimation.
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Extended DataFig. 9 | Incidence of stunting by age and national percentage
ofindividuals living on less than $1.90 US per day. Proportion of children
experiencingincident stunting onset by national percentage of individuals
living on less than $1.90 US per day (0-18%: N = 9-14 studies, N = 6,156-23,493
children; 18-28%: N = 7-10 studies, N =1,602-14,639 children; 28-100%: N = 5-11

studies, N =2,333-7,622 children). “0-3" includes age 2 days up to 3 months.
Analysesinclude cohorts with atleast quarterly measurements; vertical bars
indicate 95% confidence intervals. Gray points indicate cohort-specific
estimates. Pooled results were derived from random effects models with
restricted maximum likelihood estimation.
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Extended DataFig.10 | Incidence of stunting by age and nationalunder-5
mortality rate. Proportion of children experiencingincident stunting onset by
national under-5mortality rate (<50 per100,000: N =10-13 studies, N = 4,170~
17,997 children; 50-95 per100,000: N =9-18 studies, N=3,244-12,296
children;>95per100,000: N =3-7studies, N = 4,450-15,177 children). “0-3"

includes age 2 days up to 3months. Analysesinclude cohorts withat least
quarterly measurements; vertical barsindicate 95% confidence intervals. Gray
pointsindicate cohort-specific estimates. Pooled results were derived from
random effects models with restricted maximum likelihood estimation.
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Extended DataFig.11|Mean LAZ by age and region with 95% confidence who did not become stunted by age 15 months. Shaded ribbons indicate 95%
intervals. Mean length-for-age Z-score (LAZ) stratified by age frombirthtoage = confidenceintervals. Pooled results were derived from random effects models
15months (N =21cohorts that measured children atleast monthly between withrestricted maximum likelihood estimation. Thinner linesindicate cohort-
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Extended DataFig.12|Stunting reversaland relapse by region. Incidence estimates. Vertical black error barsindicate 95% confidence intervals.
proportion of new stunting, stunting relapse, and stunting reversal by age. Estimatesinclude datafrom 21 cohortsin10 countries with at least monthly

Theblackline presents estimates pooled using random effects with restricted measurement (N =11,435) and are presented through age 15 months becausein
maximum likelihood estimation. Colored lines indicate cohort-specific most cohorts, measurements were less frequent above 15 months.
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Extended DataFig.15| Comparison of stunting prevalence at birthwithand
without gestational age correction. This figureincludes the results from
correcting at-birth Z-scores in the ki cohorts that measured gestational age (GA)
for37,218 measurementsin 5 cohorts. The numberin the parentheses following
each cohortnameindicates the prevalence of pre-termbirthineachcohort. The
correctionsare using the Intergrowth standards and areimplemented using the
Rgrowthstandards package (https://ki-tools.github.io/growthstandards/).
Overall, the stunting prevalence at birth decreased slightly after correcting for

gestational age, but the cohort-specific results areinconsistent. Observations
with GA outside of the Intergrowth standards range (<168 or >300 days) were
dropped forboththe corrected and uncorrected data. Prevalence increased
after GA correctioninsome cohorts dueto high rates of late-term births based
onreported GA. Gestational age was estimated based on mother’srecall of the
last menstrual period in the Jivita-3,IRC,and CMC-V-BCS-2002 cohorts, was
based onthe Dubowitzmethod (newborn exam) in the Kenebacohortand was
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Extended Data Table 1| Countries and survey years included
in the analysis of DHS data

Africa

Gambia 2013
Malawi 2015-2016
Tanzania 2015-2016
South Africa 2016
Zimbabwe 2015
South Asia

Bangladesh 2014

India 2015-2016
Nepal 2016
Pakistan 2017-2018
Latin America

Brazil 1996
Guatemala 2014-2015
Peru 2012
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