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Wildfires are thought to be increasing in severity and frequency as aresult of climate
change'. Air pollution from landscape fires can negatively affect human health**,
but human exposure to landscape fire-sourced (LFS) air pollution has not been well

characterized at the global scale’ . Here, we estimate global daily LFS outdoor

fine particulate matter (PM, ;) and surface ozone concentrations at 0.25° x 0.25°
resolution during the period 2000-2019 with the help of machine learning and
chemical transport models. We found that overall population-weighted average

LFS PM,; and ozone concentrations were 2.5 pg m~ (6.1% of all-source PM, ;) and

3.2 ug m=(3.6% of all-source ozone), respectively, in 2010-2019, with a slight increase
for PM, 5, but not for ozone, compared with2000-2009. Central Africa, Southeast
Asia, South America and Siberia experienced the highest LFS PM, ;and ozone
concentrations. The concentrations of LFS PM, ; and ozone were about four times
higher inlow-income countries thanin high-income countries. During the period
2010-2019, 2.18 billion people were exposed to at least 1 day of substantial LFS air
pollution per year, with each personin the world having, on average, 9.9 days of
exposure per year. These two metrics increased by 6.8% and 2.1%, respectively,
compared with2000-2009. Overall, we find that the global population is increasingly
exposed to LFS air pollution, with socioeconomic disparities.

Thetermlandscape fires refers to any firesburningin naturaland cul-
tural landscapes, for example natural and planted forest, shrub, grass,
pastures, agricultural lands and peri-urban areas?. It includes both
planned or controlled fires (for example, prescribed burns, agricultural
fires) and wildfires (defined as uncontrolled or unplanned fires burning
in wildland vegetation®). There is evidence that wildfires are increas-
ingly frequent and severe as a result of climate change'>. Compared
with the direct exposure to the flames and heat of landscape fires, the
exposure to air pollution caused by landscape fire smoke travelling
hundreds, and sometimes even thousands, of kilometres* can affect
much larger populations, and cause much larger public health risks®.
Mapping and tracking population exposure to landscape fire-sourced
(LFS) air pollution (mainly including particulate matter withadiameter
of 2.5 um or less (PM, ;) and ozone (O,)) are essential for monitoring
and managing the healthimpacts of such fires, implementing targeted
prevention and interventions, and strengthening arguments for miti-
gation of climate change.

However, there are alack of accurate daily fire-sourced air pollution
datawith complete spatiotemporal coverage across the globe. Wildfires
often mainly threaten suburban, rural and remote areas where there
are few or no air quality monitoring stations®. In many low-income

countries, there are no air quality monitoring stations even in urban
areas. Therefore, the data gap cannot be addressed by using air quality
monitoring stations alone.

Our previous studies have estimated the daily fire-sourced PM, s for
Brazil” and 749 worldwide locations® during the period 2000-2016.
Many studies also estimated fire-related PM, s in the USA’® and
Europe®®?° using various approaches (for example, chemical trans-
port models, satellite-based fire smoke plume, machine learning).
However, there are still a lack of data in many other regions, particu-
larly sub-Saharan Africaand Southeast Asia where landscape fires are
frequent®.Two early studies attempted to address the datagap ata
global scale using chemical transport models; they estimated global
daily fire-sourced PM, s for1997-2006%* and 2016-2019%. However, the
accuracy of chemical transport model outputs could be problematic
without calibration against observations of air quality monitoring
stations'®, and these two global studies could not assess the long-term
trend of fire-sourced PM, ; given their short study periods. Further-
more, to our knowledge, no previous study has estimated global
LFS O,. This important fire-related pollutant has been estimated
only for the USA using chemical transport models without calibra-
tion against station observations®?, Last but not the least, all these
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previous studies focused mainly on data generation or health impact
assessment; little attention has been paid to population exposure
assessment.

This study estimated the daily fire-sourced PM, ; and O, concen-
trations at 0.25° x 0.25° (about 28 km x 28 km at the equator) spatial
resolution across the globe from 2000 to 2019. Through linking the
dataset with global population distribution data, we aimed to per-
forma comprehensive assessment of global population exposures to
fire-sourced PM, s and O, during the period 2000-2019.

Data validation

As detailed in Methods, Extended Data and Supplementary Informa-
tion, we validated our estimated all-source and fire-sourced PM, ;and
O;inseveral ways.

The spatial tenfold cross-validation (CV) (that is, by dividing all sta-
tions into ten approximately equal subsets, then performing validation
of the model estimates on each subset for the model trained in the
remaining nine subsets) demonstrated our machine learning models’
high level of accuracy in estimating both all-source daily average
PM, s (R*=0.89, root mean squared error (RMSE) = 9.24 ng m™) and
all-source daily maximum 8 h O, (R*=0.80, RMSE =19.24 pg m™) in
new locations not in the training data. As a further test of our model’s
ability to generalize to regions far from available training stations, we
clustered globally available PM, ;s and O stations into 75 and 99 con-
tiguous clusters, respectively, and used leave-one-out CV to evaluate
model performance on each cluster as it was temporarily excluded
from model training. As expected, performance was lower than the
spatial tenfold CV. In clusters in which the model was not trained, the
model estimates explained 69% and 67% of the overall variations in
all-source PM,;and O, respectively, and 41% and 52% of local temporal
daily variations (that is, after excluding variations across stations and
between years) of all-source PM, s and O,, respectively. This perfor-
mance, however, was still much higher than the performance of the
uncalibrated raw GEOS-Chem outputs, suggesting that our models
can predict the daily all-source PM, ;and O, inlarge remote areas with
no training data with an accuracy much higher than that of the raw
GEOS-Chem outputs alone.

Notably, in most regions of the world, we are able to evaluate our
model performancein predicting variation only in all-source, but not
fire-sourced, PM,and O,. We made two further efforts to validate our
estimated fire-sourced PM, ;and O, in some regions.

First, under astraightforward hypothesis that the station-observed
PM,;and O;during wildfire events are caused mainly by wildfire smoke,
we chose tenlarge wildfire events in Australia, the USA, Chile, Portugal
and South Africato validate our estimated all-source and fire-sourced
PM, ;and O,. For each wildfire event, we chose the most affected moni-
toring station (thatis, the nearby station showing the largestincrease
inobserved concentrations during the wildfire event, compared with
the pre-wildfire period) as the validation target. During the wildfire
eventand up to 60 days before and after the event, the observed daily
all-source PM, 5 or O, from the most affected station showed good
agreement with our estimated daily all-source PM, s (R*= 0.64 on aver-
age across events) and O, (R*= 0.78) based on a model trained in sta-
tions excluding all nearby stations, although our estimates tended to
substantially understate PM, s concentrations during some extreme
PM, s periods. Furthermore, we observed an expected increase in the
estimated concentrations and proportions (among all sources) of
fire-sourced PM, s and O; during the selected wildfire events, com-
pared with the pre-wildfire period, suggesting that our models can
reasonably capture the wildfires’ impacts on the daily PM, ;and O,
concentrations.

Second, we compared our estimated fire-sourced PM, ; with the
smoke PM,; (that is, PM, s concentrations attributable to fire smoke
overhead detected by satellite images) estimated by Childs et al.”
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inthe contiguous USA, and found a high agreement (Pearson correla-
tion coefficient r = 0.88). When further validated against the smoke
PM, s observed by 2,147 PurpleAir stations that were neither in our
training data nor in those of Childs et al., our estimated fire-sourced
PM, s (R*=0.51, RMSE =11.76 pg m~) showed lower accuracy than the
estimated smoke PM, ;of Childs etal.” (R*=0.66, RMSE =10.46 pg m™),
perhaps as aresult of our attempts to build a globally generalizable
model. However, our performance was stillmuch greater thanthe accu-
racy of the fire-sourced PM, s from raw GEOS-Chem outputs (R*=0.18,
RMSE =22.96 pgm™).

Onthe basis of our validated data, the global population exposures
to fire-sourced PM, ; and O, were described as follows.

Fire-sourced PM, ;and O, concentrations

The global spatial distributions of fire-sourced PM, ;and O, were gener-
ally similar in 2000-2009 and 2010-2019 (Fig. 1), with Central Africa
exposedto the highest levels of wildfire PM, ;and O,, followed by South-
east Asia, South America and North Asia (Siberia). There were also
some other regional hotspots, including north-western Australia, and
western USA and Canada. From 2000 to 2019, fire-sourced PM, ; showed
statistically significant increasing trends in central and northern Africa,
North America, Southeast Asia, Amazon areas in South America, Siberia
and northernIndia, whereas notable decreasing trends were found in
southern parts of Africaand South America, northwest ChinaandJapan.
Fire-sourced O;also showed similar statistically significant increasing
trends in Central Africa, Siberia, western USA and Canada, Mexico,
Southeast Asia and northern India, and similar decreasing trends in
northwest Chinaand southern parts of Africaand South America; how-
ever, its trends in Amazon areas, central and eastern USA, Northern
Africa,Japan and Indonesia were inthe opposite direction of the trends
of fire-sourced PM, 5 in those areas.

The population-weighted average fire-sourced PM, ;and O, across the
globe and six continents fluctuated substantially over the 2000-2019
period (Fig. 2), with different trends and seasonal patterns observed
ondifferent continents. The peak months of fire-sourced PM, ;and O,
wereJuneto September and December toJanuary for Africa, March to
April for Asia, July to August for Europe, April to May for North America,
November toJanuary for Oceania and August to October for South
America.

Globally, the annual population-weighted average fire-sourced
PM,and O, were 2.5 pg m~and 3.2 ug m~in 2010-2019, accounting
for 6.1% and 3.6% of all-source PM, s and O,, respectively (Extended
Data Table 1a). The annual population-weighted average wildfire
PM, s from 2000 to 2019 showed increasing trends over the globe
(0.11 pg m=3increase per decade, P=0.072 for trend) and in North
America (0.27 pg m~ increase per decade, P= 0.001 for trend), but
decreasing trends in Africa (-0.27 ug m~ per decade, P= 0.020 for
trend) and South America (-0.61 pg m~per decade, P= 0.012 for trend).
The annual population-weighted average wildfire O; also showed
decreasing trends in Africa (-0.45 pg m= per decade, P=0.043 for
trend) and South America (0.60 pg m~per decade, P= 0.012 for trend),
but the trend was not significant for the globe or other continents
(all P> 0.37 for trend).

The proportions of fire-sourced PM, s and O; among all sources
showed similar spatial distributions for 2000-2009 and 2010-2019
(Extended Data Fig. 1a). The highest landscape fire contribution to
PM, ;s was observed in Central Africa (up to 70%), followed by South
America (approximately 40%), northern Australia (approximately
40%), Southeast Asia (approximately 30%), western USA and Canada
(approximately 20% in 2000-2009, increased to approximately 30%
in 2010-2019) and Northeast Asia (approximately 20%). The highest
landscape fire contribution to O, was also observed in Central Africa
(upto46%), followed by South America (approximately 30%), northern
Australia (up to 20%) and Southeast Asia (up to 20%).



a
CO T T T e pg m™
1 3 6 10 14 24
c Averaged fire-sourced PM, 5 during 2010-2019
S S —— — —— — s e
1 3 6 10 14 24
e Trend of fire-sourced PM,, 5 during 2000-2019

(changes per decade)
- 7. =
éf@ ofls G

,sl/ﬁr_ Fii A58
5 o =

>
p < 0. ] 1o
-2.50 -0.25 -0.10 0 0.50 1.50 5.00
Fig.1| Global maps of estimated concentrations. a-f, Maps of LFS PM, 5
(a,c,e) and O, (b,d,f) concentrationin the first (a,b) and second (c,d) decades
0f2000-2019, and the estimated trend (e,f) during the period. For each
0.25°x0.25°grid, the trend from2000 to 2019 was fitted using all annual

Socioeconomic disparities in concentrations

There were consistent socioeconomic disparities in the annual
average fire-sourced PM, s and O; concentrations (Fig. 3 and
Extended Data Table 1a). Countries with alow Human Develop-
mentIndex (HDI) score and low income had the greatest exposure
to fire-sourced air pollution, whereas countries with a very high
HDI score and high income had the least exposure. The annual
population-weighted average fire-sourced PM, s concentrations
in countries with low HDI scores were 2.9- to 4.2-fold (varied in dif-
ferent years) those of countries with very high HDI scores during
the period 2000-2019. These ratios for annual fire-sourced O; (low
HDI score versus very high HDI score) were 4.1to 7.8. Similarly,
annual fire-sourced PM,; and O; concentrations in low-income
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concentrations during the period (notjust 2000 and 2019 data) with alinear
regression. P (e,f) indicates the Pvalues for long-term trends, with P< 0.05
indicating a statistically significant trend.

countries were 4.5- to 6.2-fold, and 3.9- to 8.1-fold, respectively,
those in high-income countries.

Global population exposure to SFAP

We defined a substantial fire-sourced air pollution (SFAP) day as at least
one of the following scenarios: (1) the daily average PM, 5 (all-source
PM, ;) exceeded the 2021 daily guideline value (15 ug m™) of the World
Health Organization (WHO), and fire-sourced PM, ; accounted for at
least 50% of the daily PM, s; (2) the daily maximum 8 h O, (all-source
0,) exceeded the WHO’s 2021 daily guideline value (100 pg m™), and
fire-sourced O;accounted for atleast 50% of the daily O,. The popula-
tion exposures to SFAP were represented by three metrics, comprising
annual total person-days, annual average days per person and annual
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Fig.2|Global and continent-specific trends and seasonal patterns. a-i, The
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Oceania (f) and South America (g)) and seasonal pattern of population-weighted
average fire-sourced PM, 5 (h) and O; (i) from 2000 to 2019 for the globe and six

total number of people exposed to SFAP. One person-day refersto one
personexposed to1day of the SFAP; thus the total exposed person-days
can be viewed as the total population exposure level to SFAP.

The global total number of exposed person-days increased signif-
icantly from 63.2 billion per year during the period 2000-2009 to
72.8 billion per year during2010-2019 (P = 0.010 for trend, anincrease
of 8.6 billion person-days per decade) (Extended Data Table 1b and
Extended Data Fig. 2a). This increase was mainly due to population
growth, asthe average exposed days per person per year increased only
slightly from 9.7 days during 2000-2009 to 9.9 days during 2010-2019.
Ineachyear during2000-2009, 2.04 billion people, onaverage, were
exposedto atleast1day of SFAP acrossthe globe, and this number rose
to 2.18 billion people per year during 2010-2019 (P= 0.007 for trend,
a190.1 million-personincrease per decade).

There were notable disparities in the population exposures to
SFAP between different continents. Africa experienced the largest
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continents. The dashed linesina-gdenote point-estimates of fitted trend by
linear regression and the shaded areas denote the corresponding 95%
confidenceintervals.

proportion of exposed person-days (approximately 50% of global
total) over the period 2000-2019, followed by Asia (more than 25%)
(Extended Data Table 1b and Extended Data Fig. 2a). Africa experi-
enced the fastest increase in exposed person-days (an increase
of 6.0 billion person-days per decade, P < 0.001 for trend) from
2000 to 2019. North America also saw a significant increasing
trend (anincrease of 1.5 billion person-days per decade, P = 0.042
for trend).

Africahadthe highest average number of days exposed to SFAP per
person per year (32.5 days per person per year during 2010-2019),
despiteasignificant decrease (-2.5 days per decade, P= 0.029 for trend)
since 2000-2009. South America had the second highest average num-
ber of exposed days (23.1 days per person per year during 2010-2019),
whereas other continents were generally exposed to less than 10 days
per person per year, except for a few outliers (for example, 23 days
in 2019 for Oceania), and Europe had the lowest average number of
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Fig.3|Socioeconomicdisparities in exposure between countries.a-d, Annual
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exposed days (approximately 1 day per person per year) (Extended
Data Table 1b and Extended Data Fig. 2a).

Asia had the largest annual population size exposed to at least 1 day
of SFAP (803.1 million people per year during the period 2000-2019,
36.8% of the global total), followed by Africa (596.4 million, 27.4%),
South America (342.5 million, 15.7%) and North America (319.2 million,
14.7%) (Extended Data Table 1b and Extended Data Fig. 2a). The fast-
est increase in exposed population size was seen in North America
(a109.1 million-person increase per decade, P=0.001 for trend), then
Africa (an83.5 million-personincrease per decade, P < 0.001for trend)
and South America(a30.4 million-personincrease per decade, P= 0.096
for trend).

Most of the person-days exposed to SFAP were characterized by
substantial fire-sourced PM, s pollution only (approximately 50% glob-
ally) and substantial fire-sourced PM, ;and O, simultaneously (approxi-
mately 45% globally). Fire-sourced PM, s contributed to SFAP much
more than fire-sourced O5in all continents except North America and
Oceania, where around or more than 25% of total exposed person-days
were due to substantial fire-sourced O, only in some years (Extended
DataFig.2b).

Socioeconomic disparities in SFAP exposure

Overall, low- and middle-income countries shared more than 96% of
global total exposed person-days and over 86% of global total exposed
people (Extended Data Table 1b, Extended Data Fig. 2a). The annual
average number of days exposed to SFAP was three times greater for
countries withalow HDIscore and low income (30-45 days per person

population-weighted average fire-sourced PM, 5 (a,c) and O, (b,d) from 2000 to

per year) than for countries with other HDI scores and income groups
(generally <10 days per person per year).

Despite a decreasing trend of the annual exposed days per
person, the countries with low HDI scores saw the largest increasing
trends for both exposed person-days and exposed people (P < 0.001
for trends), whereas the countries with very high HDI scores had
the smallest increasing trends in these two metrics (Extended Data
Table 1b). This pattern was similar when comparing different income
groups.

Leading countries in exposure

Allleading countries (top ten) for five different exposure metrics were
low-and middle-income countries, except for the USA, Japan and Chile.

In 2010-2019, the top five countries in population-weighted aver-
age fire-sourced PM, s concentrations were the Democratic Repub-
lic of the Congo (DR Congo), the Central African Republic, Angola,
Congo and Zambia (all greater than 12 pg m>); the top five countries
in population-weighted average fire-sourced O, concentrations were
Congo, DR Congo, the Central African Republic, Burundi and Rwanda
(all greater than 23 png m) (Fig. 4a,b). The list of countries with the
highest annual average number of days exposed to SFAP per person
was similar, with Angola, DR Congo, Zambia, Congo and Gabon as the
top five countries (all greater than 115 days per year during the period
2010-2019) (Fig. 4d). All top ten countries in these three exposure
metrics were sub-Saharan African countries (mostly Central African
countries), with three exceptions (Chile, Boliviaand Paraguay, in South
America).
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Low income Lower middle income Upper middle income High income
a
Fire-sourced PM, 5 Fire-sourced PM, 5 Change
Leading countries 2000-2009 2000-2009 (percentage Leading countries 2010-2019 2010-2019 (percentage per
of all-source PM, 5) of all-source PM, ¢) decade
1 DR Congo 16.8 (53.2) 1 DR Congo 16.5 (52.2) -0.6
2 Angola 16.8 (56.2) 2 Central African Republic 15.1 (41.2) 0.8
3 Zambia 16.1(52.3) 3 Angola 13.6 (52.2) -3.0"*
4 Central African Republic 14.2 (40.1) 4 Congo 13.4 (47.7) 0.8"
5 Namibia 14.1(39.3) 5 Zambia 12.3 (49.3) -3.6™"
6 Chile 12.8 (21.6) 6 Chile 11.3(21.4) =il2
7 Congo 12.4 (48.3) 7 Burundi 11.1 (40.5) e
8 Burundi 12.0 (43.8) 8 South Sudan 10.3 (28.6) 0.7
9 Bolivia (Plurinational State of) 10.8 (37.9) 9 Rwanda 10.3 (35.7) -0.9%
10 Rwanda 10.7 (38.4) 10 Bolivia (Plurinational State of) 10.1(38.6) -0.8
16 South Sudan 9.6 (27.7) 13 Namibia 9.5 (36.3) —4.5m
b Fire-sourced O, Fire-sourced O, Change
Leading countries 2000-2009 2000-2009 (percentage Leading countries 2010-2019 2010-2019 (percentage  per
of all-source Oy) of all-source O,) decade
1 Congo 24.8(30.1) 1 Congo 25.9(31.6) 03
2 DR Congo 24.8 (29.7) 2 DR Congo 24.5 (30.1) -0.9
3 Angola 21.8(22.7) 3 Central African Republic 22.9(26.9) 0.9
4 Central African Republic 21.5(24.2) 4 Burundi 20.3 (23.8) -0.4
5 Burundi 19.9 (22.6) 5 Rwanda 19.8 (23.1) -0.6
6 Rwanda 195 (22.1) 6 Angola 19.7 (22.2) —p.5
7 Gabon 18.4 (29.6) 7 Gabon 18.7 (30.4) -05
8 Equatorial Guinea 16.9 (27.4) 8 Equatorial Guinea 16.0 (27.1) —1.6™
9 Zambia 16.9 (18.9) 9 Zambia 15.6 (17.9) -1.3*
10 Sao Tomé and Principe 15.1 (25.3) 10 Sierra Leone 14.6 (20.6) -0.2
12 Sierra Leone 14.7 (20.0) 12 Sao Tomé and Principe 13.8(24.2) -1.8"*
c ' '
Billion person-days Billion person-days Change
Leading countries 2000-2009 2000-2009 (percentage Leading countries 2010-2019 2010-2019 (percentage  per
of global total) of global total) decade
1 DR Congo 8.7 (13.8) 1 DR Congo 11.6 (16.0) 2.6™
2 Indonesia 6.1(9.7) 2 Indonesia 7.2(9.8) 1.2
3 Brazil 4.4(7.0) 3 Brazil 49(6.7) 0.2
4 United Republic of Tanzania 3.5(5.5) 4 Angola 4.3 (5.8 0.9
5 Angola 3.3(5.2) 5 United Republic of Tanzania 4.1 (5.7) 0.6*
6 Mexico 2.1(3.3) 6 Vietnam 2.4(3.2) 0.7*
7 Russian Federation 2.0(3.2) 7 Zambia 2.3(3.1) 0.4***
8 Zambia 1.8 (2.9) 8 Mexico 2.2(3.0 0.2
9 China 1.8(2.8) 9 Mozambique 2.1(2.9) 0.4
10 Mozambique 1.7 (2.8) 10 Russian Federation 2.1(2.9 -0.3
13 Vietnam 1.4 (2.3) 15 China 1.4 (1.9) -0.3
d Annual exposed Annual exposed Change
Leading countries 2000-2009 days per person Leading countries 2010-2019 days per person per
2000-2009 2010-2019 decade
1 Angola 170.7 1 Angola 155.3 -16.5***
2 DR Congo 161.9 2 DR Congo 155.1 —11.1*
3 Zambia 156.5 3 Zambia 144.1 -13.6""
4 Congo 149.9 4 Congo 143.4 -7.3
5 Malawi 121.7 5 Gabon 115.6 5.0
6 Burundi 119.2 6 Burundi 1146 -8.6"
7 Namibia 117 7 Malawi 114.1 -6.6
8 Central African Republic 109.4 8 Central African Republic 112.2 0.1
9 Gabon 107.8 9 Namibia 99.2 -14.8"
10 Paraguay 96.9 10 S@o Tomé and Principe 97.3 6.1
15 Sao Tomé and Principe 88.1 17 Paraguay 722 -22.1%
e Million persons Million persons Change
Leading countries 2000-2009 2000-2009 (percentage Leading countries 2010-2019 2010-2019 (percentage per
of global total) of global total) decade
1 China 168.1(8.2) 1 Brazil 189.4 (8.7) 153
2 Brazil 168.0 (8.2) 2 USA 165.1 (7.6) 85.1
3 Indonesia 151.4 (7.4) 3 Indonesia 154.7 (7.1) 41
4 Russian Federation 107.8 (5.3) 4 China 139.0 (6.4) -4.6
5 Japan 94.4 (4.6) 5 Russian Federation 97.5 (4.5)
6 Mexico 82.7 (4.1) 6 Mexico 92.2 (4.2) 12.9
7 Vietnam 75.3 (3.7) 7 Vietnam 86.4 (4.0) 12.7*
8 USA 64.2 (3.2) 8 DR Congo 75.3 (3.5) 21.0
9 Nigeria 64.2(3.2) 9 Thailand 63.5 (2.9) -0.1
10 Thailand 62.7 (3.1) 10 Japan 59.4 (2.7) -36.1
11 DR Congo 54.3 (2.7) 12 Nigeria 53.5 (2.5) =28

Fig.4 |Leading countries with greatest exposures. a-e, Top ten countries
with greatest annual population exposure levelsto fire-sourced air pollution
in2000-2009 and 2010-2019, using five different exposure metrics: annual
population-weighted average fire-sourced PM, s concentration (ug m) (a);

By contrast, the leading countries in total person-days and people
exposed to SFAP were more dominated by several populous countries
(Fig.4c,e).In2010-2019, the top five countriesin terms of total exposed
person-days were DR Congo (11.6 billion person-days per year), Indo-
nesia (7.2 billion), Brazil (4.9 billion), Angola (4.3 billion) and Tanzania
(4.1billion); the top five countries in terms of total exposed people were
Brazil (189.4 million people per year), the USA (165.1 million), Indonesia
(154.7 million people), China (139.0 million) and the Russian Federation

526 | Nature | Vol 621 | 21 September 2023

annual population-weighted average fire-sourced O, concentration (ug m=)
(b); annual person-days exposed to SFAP (c); annual population average
number of days exposed to SFAP (d); and annual total persons exposed to at
least one day of SFAP (e). *P < 0.05 for long-term trend; **P < 0.01; ***P < 0.001.

(97.5 million). DR Congo had consistently been the country with the
largest total exposed person-daysin2000-2009 and 2010-2019, and
itshowed notable increasing trends in both exposed person-days (an
increase of 2.6 billion person-days per decade, P < 0.001for trend) and
exposed people (a21.0 million-personincrease per decade, P< 0.001
for trend).

The rankings of these exposure metrics changed over time. A nota-
ble change wasthe USA, whichranked only eighthin the total number



of exposed people in 2000-2009, but rose to second in 2010-2019
(an 85.1 million-personincrease per decade, P < 0.001 for trend).

Discussion

Through a validated machine learning approach with inputs from
chemical transport models, ground-based monitoring stations and
gridded weather data’®%, we estimated and mapped the global daily
LFSPM,sand O;ata0.25° x 0.25° spatial resolutionbetween 2000 and
2019. Thisfilled acritical datagap, particularly for areas without moni-
toring stations. With these data and high-resolution global population
distribution data, we made by far the most comprehensive assessment
of global population exposure to LFS air pollutionin the world, to the
best of our knowledge.

Our assessment highlighted the severity and scale of the fire-sourced
air pollutionand anotableincreasing trend in the population exposure.
Short-term exposure to fire-sourced air pollution has many adverse
health impacts, including increased mortality and exacerbations of
cardiorespiratory conditions®”%, The large quantity and increasing
trend of the population exposure to SFAP suggests that landscape
fire air pollution is an increasing public health concern. Addressing
this concernneeds multisectoral effortstoreduce landscape fires and
prevent adverse health impacts of landscape fire air pollution. Land-
scape fires can be partially reduced through effective evidence-based
fire management, as well as appropriate planning and design of natu-
ral and urban landscapes®. Policy change may help to reduce some
landscape fires caused directly by humans, such as agricultural waste
burning in Europe, India, eastern China and the USA (Extended Data
Fig.1b), and the fires deliberately set by humans to convert wildlands
to agricultural or commercial lands (common in South America and
South and Southeast Asia®*?*®).

However, unplanned wildfires are more difficult to control, as evi-
denced by the fact that aggressive fire suppressionactually contributed
to the extreme wildfires in western USA in recent decades because of
fuelaccumulation®. Wildfires are also an essential component of Earth’s
ecosystem and cannot be totally prevented*. Therefore, a considerable
proportion of human exposure to LFS air pollution seems to be unavoid-
able. This highlights the importance of health protection measures
against exposure. Unfortunately, existing measures that individu-
als can take to protect themselves from landscape air pollution, such
asrelocation, staying indoors, using air purifiers with effective filters
and wearing N95 or P100 face masks, all have limitations and are not
feasible for people with limited resources®; thusitis urgent to develop
more cost-effective health protection measures.

The observed increasing global trend of fire-sourced PM, 5, although
only marginally significant, seems to be inconsistent with the previ-
ously reported declineinglobal burned areas in previous decades®>".
However, the decreased global burned areas were mainly in savannas
and grasslands because of cropland and pasture expansion, whereas
burnedareasin forests increased*’>!. Forests provide much more fuels
per unit of burned area than savannas and grasslands™, and also have
amuch larger quantity of emissions per unit of dry biomass burned®.
Therefore, the increased PM, ;s emissions from forest fires tends to
exceed the declinein PM, ;emissions from savannas and grassland fires.
This could explain our observed increasing trend of global fire-sourced
PM, ; despite the decline in global burned areas.

It was expected that the temporal trend of fire-sourced O, was not
perfectly consistent with the trend of fire-sourced PM, 5. Ground-level or
tropospheric O,is asecondary pollutant generated from photochemi-
calreactions between volatile organic compounds (VOCs) and nitrogen
oxides (NO,) under sunlight®*?**, The generation of fire-sourced O, can
thus be affected by many non-fire factors, such as VOCs and NO, from
industrial and traffic sources, and weather conditions (for example,
reduced sunlight during smoky days)*?*. In particular, the impacts
of VOCs and NO, emissions on O, formation are nonlinear®; thus

whether the NO, and VOCs emitted from landscape fires can increase
the ground-level O; level is often uncertain. This uncertainty was sup-
ported by our results showing that the estimated fire-sourced O, could
even decrease during wildfire periods, compared with pre-wildfire
periods, in two out of the ten selected wildfire events (Extended Data
Fig. 6b). The relatively uncertain impacts of fires on surface O; could
explainwhy the global fire-sourced O, did not show asignificantincreas-
ing trend like the wildfire PM, .

Our assessment highlighted the substantial geographical dispari-
ties in the population exposures to fire-sourced air pollution. There
were several hotspots, including Central Africa, Southeast Asia, South
Americaand Siberia, which experienced the most severe fire-sourced
air pollution during the years 2000-2019. North America saw the most
significant increases in fire-sourced PM, s concentrations and the
population size exposed to SFAP. The geographical distributions of
fire-sourced PM, s and O, in our study were generally consistent with
a previous map of global landscape fire density®, but were very dif-
ferent from the global map of meteorological fire danger, that is, the
fire weather index (FWI)*. For example, the FWIvalue was very highin
North Africa, but low in Central Africa and Siberia. This suggests that
the FWI may not be able to capture the actual landscape fire density
and the related air pollution, and thus should be used with caution in
monitoring and managing landscape fire impacts.

Our assessment also highlighted the socioeconomic disparities in
population exposures to fire-sourced air pollution. The disparity could
be partly explained by the fact that many low- and middle-income coun-
triesarelocated inhotand dry areas that are prone to landscape fires*.
The disparity could also be partly due to some other factors, such as that
lessindustrialized countries have more agricultural waste burning and
deliberate burning of forests for agricultural or other purposes, and
poorer management or control of wildfires**. More studies are war-
ranted to understand the underlying causes of the disparity, which will
help tonarrow the gaps. However, our finding does not mean that LFS
air pollutionis notserious or notimportantin high-income countries.
Infact, we alsoidentified regional hotspots of high levels of fire-sourced
air pollution in Australia, the USA and Canada, which were caused by
their catastrophicwildfire eventsin recent years®. The value of our study
isin highlighting that many low- and middle-income countries have
more serious fire-sourced air pollution than that of the high-income
countries (for example, the USA, Australia, Canada and western and
northern Europe) that attracted the most mediaand research attention.
More attention is needed for those neglected countries to mitigate
their fire-sourced air pollution and the related health consequences.

Because theincreasing severity and frequency of wildfires are related
to anthropogenic climate change'™*, our finding about the socioeco-
nomic disparities provides further evidence of climate injustice, that
is, those least responsible for climate change suffer the most from
its consequences®**. A vivid example in our study is the DR Congo, a
low-income country with the world’s highest fire-sourced PM, 5 con-
centrations. Itsanthropogenic carbon dioxide emission per capita was
among the lowest in the world (0.03 tons versus the world average of
4.76 tonsin 2019*°). The global socioeconomic disparities in population
exposure to fire-sourced air pollution are likely to lead to even larger
disparities in health consequences related to the exposure, as poorer
countries have more limited resources to protect health against this
hazard. This exemplifies how climate change is exacerbating global
health inequality. To address this climate injustice, more resources
should be allocated to low- and middle-income countries to prevent
the health risks from exposure to landscape fire air pollution.

Robust projections suggest that climate change will increase wildfire
frequency and intensity in future*>*"*3, Therefore, global fire-sourced
air pollutionislikely to continue to be anincreasingly important public
health concerninthe next decades.Immediate actions to limit the mag-
nitude of climate change are needed. A projection suggests that wildfire
frequency will substantially increase across 74% of the global lands by
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2100 under a scenario of high greenhouse gas emissions*. However,
if the global mean temperature increase could be limited to 2.0 °C or
1.5°C above pre-industrial levels, over 60% or 80%, respectively, of
theincrease in wildfire exposure could be avoided®. The 1.5 °C target
remains reachable, if the world can reduce annual carbon emissions
by an extra 28 gigatons of carbon dioxide equivalent (approximately
50% of current emission levels) by 2030*.

The mainstrength of our study, compared with previous studies of
population exposure assessment of landscape fires, is that we evalu-
ated the population exposure to fire-sourced air pollution, rather
thanjustdirect exposure to the flames and heat of landscape fires?*.
Fire-sourced air pollution can often travel hundreds (sometimes even
thousands) of kilometres and affect much larger populations, causing
greater health consequences*®. For example, previous data found
that 260,000 people suffered from direct exposure to landscape
fires in 2018*, but this number was only about 0.01% of the popu-
lation (2.15 billion in 2018) exposed to SFAP. The other data source
estimated the annual number of person-days exposed to landscape
fires (direct exposure) for each country in the world. Consistent with
our study to some extent, it found that DR Congo experienced the
largest number of person-days of direct exposure to landscape fires
(15,300 person-days per year during 2017-2020)*. Again, this number
was only about 0.001% of this country’s person-days exposed to SFAP
(12.0 billionin 2019).

Our study generated adatabase that can be used for evaluating and
tracking the population exposure to LFS air pollution (both PM, s and
0,) acrossthe globe, whichis superior to previous studies focusing on
fire-related PM, sin specific regions (the USA® 8, Europe'®?° and Brazil’).
Our estimated fire-sourced PM, s showed a high level of agreement
(Pearson correlation coefficient r= 0.88) with the estimated smoke
PM, s by Childs et al.”. The high level of agreement with Childs et al."”
issupported by another study, which found that the summer wildfire
smoke PM, s estimated by the satellite-based smoke plume approach
and the GEOS-Chem approach showed generally similar spatial and
temporal distributionin the USA over the period 2006-2016'®. However,
the smoke PM, s estimates of Childs et al.” covered only the contiguous
USAbecauseitrelied onasatellite-based smoke plume polygon product
(available only in the contiguous USA and Alaska*®) to define days and
locations covered by landscape fire smoke". The smoke PM, s tends to be
aconservative measure of fire-sourced PM, ; because of the limitations
ofthe satellite-based smoke polygon product, for example, undetected
plumes during night time and under cloud cover and in the scenarios
when the smoke is dilute and difficult to detect”. GEOS-Chem also has
some limitations, as we discuss later, so it is still not conclusive which
approachisbetterintermsofaccuracy, butthe GEOS-Chem approach
definitely has the advantage of global coverage.

Two previous studies also used chemical transport model simulations
to assess global exposure to fire-sourced PM, ; during 1997-2006 and
2016-2019%%, These two studies observed global spatial distribution
patterns of fire-sourced PM, s that were similar to those observed by
us, but our study has the advantage of further calibrating chemical
transport model outputs against air quality stations with a machine
learning approach. Accordingto our spatial CV and validation against
the smoke PM, ; by Childs et al.”, the calibration approach substan-
tiallyimproved the accuracy of the estimated all-source PM, s and O,,
as well as fire-sourced PM, s (Extended Data Figs. 4 and 7). With this
approach, wealso estimated the world’s first daily fire-sourced O, data
with global coverage. Moreover, we have a much longer study period
and have conducted more comprehensive analysis of the population
exposure levels using various metrics for both fire-sourced PM, s and
0,, at several spatial-temporal levels (global/regional/national, yearly/
monthly/daily). Overall, our study provides the most accurate and
comprehensive data at present for policymakers and the public to
manage and mitigate LFS air pollution at global scale. The generated
databasealso formsacritical basis for many future applications, such
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as evaluating various health impacts of this environmental hazard®,
and estimating corresponding attributable mortality, morbidity and
health-care costs*.

Several limitations of our study should be acknowledged. PM,, O,
and carbon monoxide (CO) are the main pollutants of public health
concernduring wildfire events*, but we did not quantify CO from land-
scape fires because of dataunavailability. Previous studies suggest that
the impacts of wildfires on CO are generally confined to the immedi-
ate fire areas®*8, which can be explained by the photochemical loss of
CO (thatis, photochemical oxidation of CO and hydrocarbons in the
presence of nitrogen oxides produces O,) during long-distance trans-
port of biomass plumes*. Therefore, the unavailability of COwould be
expected to have minimal impact on the estimation of the population
exposuretofire-related air pollution. Other limitations, including the
uncertainties of the fire emission inventory, the GEOS-Chem simula-
tions, and machine learning models, are discussed in detail in Methods.

In conclusion, we conducted acomprehensive assessment of global
population exposure to LFS air pollution. We found that billions of
people worldwide were exposed to substantial LFS air pollution, and
the exposure levels were particularly high in several hotspots (Central
Africa, Southeast Asia, South America and Siberia) and in the least
developed countries.
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Methods

Data collection

Monitoring station data. We collected global air quality monitor-
ing station data from several sources. Monitoring data for the USA
were downloaded from the US Environmental Protection Agency
(US EPA)*. Data for China were downloaded from the China National
Environmental Monitoring Centre (http://www.cnemc.cn/en/). Datafor
member countries of the European Economic Area were downloaded
from the European Environment Agency®'. Data for Australia were
sourced from the National Air Pollution Monitoring Database, which
integrated all available monitoring data from Australian state-specific
governmental agencies*>**. Data for New Zealand were downloaded
from Environment Canterbury (http://data.ecan.govt.nz/Catalogue/
Method?Methodld=98). Data for Chile were downloaded from its
National Air Quality Information System (https://sinca.mma.gob.cl/
index.php/region/index/id/Il). Datafor South Africa were downloaded
fromthe South African Air Quality Information System (https://saaqis.
environment.gov.za/). Data for two African countries (Algeria and
Nigeria) were downloaded from AirQo (https://www.airqo.net/, only
PM, ;dataavailable).

Data for other countries and territories were downloaded from
OpenAQ (https://openaq.org/). To ensure data quality, we used data
from reference-grade monitoring stations only.

After a data cleaning and quality control process (Supplementary

Information), we kept 9,528,179 valid daily average PM, s observations
of 5,661 stations from 73 countries and territories and 21,097,834 valid
daily 8 hmaximum O, observations of 6,851 stations from 58 countries
andterritories (Supplementary Tables1and 2 and Extended DataFig. 3).
Both PM, ;and O, station data covered the whole period between 2000
and 2019, although the data period varied by country and stations. We
unified all units of PM, ; and O, as pg m™, consistent with the latest
WHO air quality guidelines 2021%. For O, 1 part per billion (ppb) was
approximated as 1.96 pg m=, assuming a standard air pressure and
temperature (25.5 °C and 101.325 kPa)*.
Chemical transport model simulations. As described previously”?¢,
we used the three-dimensional chemical transport model GEOS-Chem
(v.12.0.0) based on O;-NO,~hydrocarbon-aerosol chemical mecha-
nisms to estimate daily total (that s, all-source) and fire-sourced PM, 5
and O, concentrations at 2.0° latitude by 2.5° longitude horizontal
resolution (about 220 km x 280 km) during years 2000-2019 across
the globe. Daily fire-sourced PM, s and O, concentrations were esti-
mated as the differences between GEOS-Chem simulations with and
those without fire emissions. The fire emission data came from the
Global Fire Emissions Database (v.4.1with small fires, GFED4.1s)*, which
captured aerosol emissions from six fire sources (boreal forest fires;
tropical forest fires; savanna, grassland and shrubland fires; temperate
forest fires; peatland fires; and agricultural waste burning) according
to satellite retrieval of burned areas and active fire information®. On
the basis of the GFED4.1s data, the relative contributions of different
fire types to the fire-emitted PM, s varied by continent (for example,
North Americaand Asia are characterized by high proportions of boreal
forest fires; Oceania and Africa by savanna, grassland and shrubland
fires; South Americaby tropical forest fires; and Europe by agricultural
fires) (Extended DataFig.1c). We also provide the dominant landscape
fire type burned during the period 2000-2019 at 0.25° x 0.25° spatial
resolution across the globe in Extended Data Fig. 1b, which suggests
that the peatland fires burned mainly in Southeast Asia.

Meteorological data. We derived hourly meteorological data at
0.25° x 0.25° spatial resolution from the fifth-generation European
Centre for Medium-Range Weather Forecasts Reanalysis (ERA5)*. ERAS
combines model results with worldwide weather observations into a
globally complete and consistent dataset using the laws of physics.

Hourly records were used to calculate daily metrological parameters
accordingto thelocal time zone of each grid. These daily metrological
parameters included daily mean/minimum/maximum 2 m (that is, at
2 mabovethe surface of the earth) ambient temperature (T;can, Tminand
Tax all calculated from 24-hourly records of 2 mambient temperature),
daily temperature variability (TV, standard deviations of 24-hourly 2 m
temperatures), daily mean2 m dew point temperature (Tyey mean), daily
mean eastward component of 10 m wind (Wind_u, 10 mrefers to10 m
above the surface of the earth), daily mean northward component
of 10 m wind (Wind_v), daily total precipitation (Precip), daily mean
surface air pressure (Pressure) and daily mean downward ultraviolet
radiation at the surface (UV). Daily mean relative humidity (RH) was
calculated from T;,cop and Tye, mean USiNG the humidity R package®.

Population data. We collected annual population count data at
30 arcseconds (about 1 km?) spatial resolution across the globe during
the years 2000-2019 from the WorldPop project®. Specifically, we
downloaded the unconstrained global mosaics data (approximately
1km x 1km spatial resolution). This dataset was generated using the
top-down unconstrained approach to disaggregate administrative
unit-based census and projection counts for each year to grid cell-based
population counts, by using a set of detailed geospatial predictors
and arandom forest machine learning model®’. We aggregated the
gridded population counts to 0.25° x 0.25° spatial resolution to match
the air pollution data. For each country or territory in each year, all
grid-specific population counts within its boundary were further mul-
tiplied by an adjustment coefficient (that is, the population size of
that country or territory reported by the United Nations/sum of all
grid-specific population counts within the boundary). This adjustment
ensured that the country-specific population counts were consistent
with data from the United Nations®.

Socioeconomic data. Countries were classified as low-income
countries (gross nationalincome (GNI) per capita < US$1,035), lower-
middle-income countries (US$1,035 < GNIper capita <US$4,045), upper-
middle-income countries (US$4,045 < GNI per capita < US$12,535)
and high-income countries (GNI per capita > US$12,535) according
to the World Bank’s 2019 criteria®. Country-level HDI data in 2019
were downloaded from the United Nations Development Programme
(UNDP). HDlis aunified measure of average achievement in key dimen-
sions of human development, including along and healthy life, being
knowledgeable (educated) and having a decent standard of living.
HDI scores range from O to 1, and can be divided into four tiers: very
high (0.8 t01.0), high (0.70 to 0.79), medium (0.55 to 0.69) and low
(less than 0.55)%,

Estimating fire-sourced PM, ;and O,

We estimated global fire-sourced PM, s and O; at 0.25° x 0.25° spatial
resolution with three steps. In step one, we downscaled daily total
and fire-sourced PM, s and O, derived from GEOS-Chem to 0.25° x
0.25° spatial resolution using the inverse distance weighted spatial
interpolation®%*,

In step two, downscaled GEOS-Chem outputs were further cali-
brated to match ground monitoring station observations based
on arandom forest machine learning algorithm. Briefly, the down-
scaled GEOS-Chem outputs and gridded meteorological data were
linked to ground monitoring stations based on longitude and
latitude, which generated the model training datasets. Then we
trained two random forest models to predict station-observed total
PM, 5 (PMy5 station) and O3 (O3 gaiion) Separately, with the following
equations:

PMZ.S_station = f(PMZ.S_chem_total'Tmean'Tmax'Tmin' TV,RH,
Wind_u, Wind_v, Precip, Pressure, UV, Year, 1)
Month, DOW, DOY, Lon, Lat)


http://www.cnemc.cn/en/
http://data.ecan.govt.nz/Catalogue/Method?MethodId=98
http://data.ecan.govt.nz/Catalogue/Method?MethodId=98
https://sinca.mma.gob.cl/index.php/region/index/id/II
https://sinca.mma.gob.cl/index.php/region/index/id/II
https://saaqis.environment.gov.za/
https://saaqis.environment.gov.za/
https://www.airqo.net/
https://openaq.org/

O3_station =f(o3_chem_totalr 7-mean' Tmax'Tmin' TV' RH, Wind-u 4
Wind_v, Precip, Pressure, UV, Year, Month, DOW, 2)
DOY, Lon, Lat)

PM, 5 chem_total AN O3 chem rora WETE dOownscaled daily total (all-source)
PM,;and O, derived from GEOS-Chem. T,,.,,to UV were ERA5 meteoro-
logical variables, as mentioned above. DOW was day of week (Monday
to Sunday). DOY was day of year (1to 366). Lon and Lat were longitude
and latitude, respectively. freferred to the random forest algorithm
fitted with the ranger R package®.

In step three, the daily total (all-source) PM, s (PMy s e tora) and O;
(O3 et torar) fOr €ach 0.25° x 0.25° grid (regardless of whether close to or
faraway fromthe training stations) across global lands were estimated
using the trained random forest models (that is, machine learning
calibration or bias correction algorithms found where training stations
existed) and global seamless predictor data. Then the final estimated
fire-sourced PM, s (PM, 5 e fire) @aNd O3 (O, 5 e, ire) Were calculated as
follows™*;

PMZ.S_est_ﬁre = PMZ.S_est_total x (PMZ.S_Chem_ﬁre /PMZ.S_chem_total) (3)

02.5_est_ﬁre = OS_est_total x (03_chem_ﬁre /03_chem_t0tal) (4)

The PM, schem fire aNd O3 chem fire Tefer to the downscaled fire-sourced
PM,;and O; from GEOS-Chem.

Model performance evaluation

We used tenfold CV to test the performance of the random forest
models and to find the optimal model parameters. Specifically, the
whole model training dataset was randomly divided into ten approxi-
mately equal subsets. Each subset was then treated as a validation
set to test the performance of the model trained in the remaining
nine subsets (this was repeated ten times)®. We also used a spatial
tenfold CV (that is, dividing all stations, rather than the dataset, into
tenapproximate equal subsets, then performing CVinamanner similar
to that described above) to test the model’s prediction ability in new
locations notinthe training data (that is, spatial generalization ability
of the model).

We tested the spatial generalization ability of the models further
using aspatial cluster-based CV approach. Specifically, we conducted
ak-means cluster analysis®” based on the Euclidean distances between
stations based on their longitude and latitude, and the optimal num-
ber of spatial clusters was determined by selecting the minimum
sum-of-squares distances within groups. As a result, we identified
75 spatial clusters for PM, ; stations and 99 spatial clusters for O sta-
tions across the globe. We then used each cluster as a testing dataset
and theremaining clusters asthe training dataset to train and test our
random forest model 75 and 99 times for PM, s and O;, respectively.
Compared with spatial tenfold CV, in which the nearby stations could
beallocated to training and testing datasets simultaneously, the spatial
cluster-based CVincreases the difficulty of the prediction task®® but is
amorerealistic test of the models’ prediction abilities in large remote
areas with essentially no training stations (for example, many areasin
Africa and South America; Extended Data Fig. 3a,b).

The model reached a high level of accuracy in estimating both daily
average PM, ; (tenfold CV, R*=0.91, RMSE = 8.47 ug m) and daily maxi-
mum 8 h O, (tenfold CV, R>=0.82, RMSE =18.96 pg m) (Extended
DataFig.3e). Themodel also showed asimilarly high level of accuracy
in the spatial tenfold CV for both PM, s (R*=0.89, RMSE =9.24 pg m™)
and O, (R?=0.80, RMSE =19.64 ng m>) (Extended Data Fig. 3f), sug-
gesting good spatial generalization abilities of the trained random
forest models.

We calculated station-specific R? based on the spatial tenfold CV.
The median station-specific model performance among stations was
comparable to overallmodel performance (median station-specific R?,

0.80 for PM, s and 0.72 for O5), with 90% of station-specific R? values
above 0.38 for PM, s and above 0.53 for O,. There were notable spatial
variations of the station-specific model performance (Extended Data
Fig.3c,d). Although the model estimates showed a high level of agree-
ment with station observations in most stations, a low level of agree-
ment between model estimates and station observations was found
insome PM, s stations in the middle and southwestern USA, Hawaiian
islands, southern Europe, Africa, and westernand inland Australia, and
some O, stations in Chile, South Africaand New Zealand.

We also estimated the within-R? value of the spatial tenfold and
cluster-based CV. The within-R? value was calculated by regressing
station observations on model estimates while controlling for the
station and year fixed effects. As calculated by the fixest R package®’,
the within-R? value of spatial tenfold CV was 0.81and 0.74 for PM, 5
and O,, respectively (Extended Data Fig. 4a). This suggests that our
random forest models can predict, on average, 81% and 74% of local
temporal daily variations of all-source PM, ;and O,, respectively, within
ayear, not just variations in average PM, ; and O, across locations
and years.

As expected, the model performance of spatial cluster-based CV
(PM,5, R*=0.69, RMSE =14.79 pg m™; 0,, R*= 0.67, RMSE = 18.14 pg m™)
was lower than spatial tenfold CV, but still much higher than the
performance of the raw GEOS-Chem outputs (PM,s, R?=0.48,
RMSE =31.00 pg m=; 05, R>=0.47, RMSE = 46.81 pg m™>) across the
globe andinall continents. This suggests that our models can predict
the daily all-source PM, s and O, in large remote areas with no train-
ing data with an accuracy that is much higher than that of the raw
GEOS-Chem outputs alone. Similarly, the within-R* values for spatial
cluster-based CV suggest that the model estimates can explain 41%
and 52% of local temporal daily variations of all-source PM, s and O,,
respectively, in spatial clusters not in the training data.

Validation against smoke PM, ;

Childs et al.” trained a machine learning model to predict the
station-based smoke PM, ; using meteorological factors, fire variables,
aerosol measurements, and land use and elevation data, and the model
was used to estimate daily smoke PM, ; across the USA at 0.1° x 0.1°
spatial resolution during the period 2006-2020. In their study, the
station-based observed smoke PM, ;s was calculated through two steps:
(1) days when smoke was overhead were defined as ‘smoke days’ based
on satellite imagery-based plume classification (or simulated air tra-
jectories originating at fires when clouds may be obscuring plumes),
and days without smoke overhead were ‘non-smoke days’; (2) for each
station on each smoke day, the observed smoke PM, s concentration was
calculated as the station-observed all-source PM, s on the smoke day
minus the background PM, ;, which was defined as the 3-year (previous
year, current year and the next year) station-and month-specific median
PM, s on non-smoke days. For example, if a smoke day was 10 January
2018 for station A, then its corresponding background PM, ; was the
median value of all daily PM, s observations of station A on non-smoke
daysintheJanuary of eachyear during 2017-2019. The smoke PM, s on
non-smoke days was assumed to be O.

Because most of the training stations used by Childs et al."” were also
our training stations, directly validating our estimated fire-sourced
PM, s against the observed smoke PM, ; by the training stations of
Childs et al.” may have overfitting issues (that is, may overestimate
our accuracy). To avoid this problem, we chose the observed smoke
PM, s of PurpleAir stations (a kind of low-cost sensor) as our valida-
tion target. The PurpleAir stations were not included in our training
stations nor in those of Childs et al.”, and thus could give a fair compa-
rison of the accuracy of our estimated fire-sourced PM, s and the esti-
mated smoke PM, s of Childs et al.”. The PurpleAir station data were
collected and cleaned as detailed previously”, and its measured daily
PM, s had been calibrated against US EPA reference-grade stations by
Childs et al.” before calculating its station-observed smoke PM, 5.
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When validated against the PurpleAir station-observed smoke
PM,;, our estimates’ accuracy (R*=0.51, RMSE =11.76 ug m) was
lower than the accuracy of the estimates of Childs et al.”” (R*=0.66,
RMSE =10.46 pg m™®), but much higher than the accuracy of
the fire-sourced PM, s from raw GEOS-Chem outputs (R*>=0.18,
RMSE =22.96 ug m=) (Extended Data Fig. 4b). Our estimated fire-
sourced PM, s values were highly correlated with the estimated
smoke PM, ; by Childs et al.” (Pearson correlation coefficient r=0.88)
(Extended Data Fig. 4c).

Wealso calculated with-block R? by regressing station observations on
model estimates while controlling for the block (that is, the 2.0° x 2.5°
grid box of GEOS-Chem simulations) and date fixed effects. We found
that our estimated fire-sourced PM, ; could account for 10% (within-block
R*=0.10) of the spatial variations of the PurpleAir station-observed
smoke PM, s withinthe 2.0° x 2.5° grid box for each day. Although thisis
lower than the within-block spatial variations accounted for by the esti-
mates of Childs et al.” (within-block R* = 0.32), it suggests that our model
can explainsome spatial variations of fire-sourced PM, ;at aresolution
higher than theresolution of GEOS-Chem simulations, after downscaling
of the GEOS-Chem outputs, machinelearning calibrationand including
meteorological datainputs at 0.25° x 0.25° spatial resolution.

Validation against wildfire events

Asdetailedinthe Supplementary Information, we chose ten large wild-
fire events in Australia, the USA, Chile, Portugal and South Africa to
validate our estimated all-source and fire-sourced PM, ;and O, (Supple-
mentary Table 3). Accordingto theresults (Extended DataFigs. 5and 6),
during the wildfire event and up to 60 days before and after the event,
the observed daily all-source PM, s or O, from the most affected moni-
toring stations (that is, a nearby station showing the largest increase
inobserved concentrations during the wildfire event, compared with
the pre-wildfire period, for each event) showed moderate to strong
correlation with our estimated daily all-source PM, 5 (r, 0.44-0.85;
pooled R? across wildfire events = 0.64) and O, (r, 0.54-0.92; pooled
R?=0.78), based on the model trained in the data excluding nearby sta-
tions. Furthermore, these was anincrease in the estimated concentra-
tions and proportions (among all sources) of fire-sourced PM, s during
allthe selected wildfire events, compared with the pre-wildfire period
(Extended Data Fig. 5b). There was also an increase in the estimated
concentrations and proportions (amongall sources) of fire-sourced O,
duringeight of the ten selected wildfire events (Extended Data Fig. 6b);
the two exceptions in which there was decreased fire-sourced O, dur-
ing the wildfire period could be explained by the uncertainimpacts of
wildfires onambient O; (Discussion). Overall, theresultsindicate that
our models can reasonably capture the wildfires’ contribution to the
all-source and fire-sourced PM, s and O,.

Mapping population exposure
The estimated global fire-sourced PM, sand O, during the period 2000-
2019 were linked with global population distribution data to map the
global population exposure to daily LFS air pollution. The population
exposure was measured by four metrics: (1) population-weighted aver-
age fire-sourced PM, s and O; concentrations (that is, average of all
grids weighted by population count of each grid); (2) annual number of
person-days exposed to SFAP, with 1 person-day referring to one person
exposed to1day of SFAP; (3) annual average number of days per person
exposed to SFAP, equal to the metric 2 divided by total population size;
and (4) annual total number of people exposed to at least 1 day of SFAP.
A day with SFAP should consist of at least one of the following sce-
narios: (1) the daily average PM, ; (all-source PM, ;) exceeded the WHO’s
2021 daily guideline value (15 pug m™), and fire-sourced PM, saccounted
foratleast 50% of the daily all-source PM, 5, and (2) the daily maximum
8 h O, (all-source O,) exceeded the WHO’s 2021 daily guideline value
(100 pg m2), and fire-sourced O; accounted for at least 50% of the
daily all-source O,.

Alldescriptive analyses were at global scale, and by continent (Africa,
Asia, Europe, North America, South Americaand Oceania), country or
territory, HDIgroup andincome group, for eachyear from 2000 to 2019.
Our analysesincluded 206 countries or territories covered by the ERAS
land grids. We tested the long-term trend of each metric using linear
regressions, with the annual metrics during the period 2000-2019
as the dependent variable and year (numeric) as the only predictor.

Sensitivity analyses

In our primary analyses, we used the GFED4.1s as the fire emission
inventory of the GEOS-Chem simulations. However, previous studies
in North America found that chemical transport model simulations
based on different fire emission inventories generated very differ-
ent estimates of fire-sourced PM, s and 0,’>”. Therefore, apart from
the GFED4.1s%, we also collected data from three other widely used
global fire emission inventories: the Fire INventory from the National
Center for Atmospheric Research (NCAR) v.1.6 (FINN1.6)7%, the Quick
Fire Emission Dataset v.2.5 (QFED2.5)”® and the Global Fire Assimila-
tion System v.1.2 (GFAS1.2)™. Each inventory has its own advantages
and disadvantages; thus we cannot decide which one is best without
validation against real-world observations, although the GFED4.1s is
the one with the best data availability (Supplementary Table 4).

Because a previous study suggested that the largest difference of
population-weighted fire-sourced PM, s estimates in North America
between four different fire emission inventories was observedin 20127°,
we ran GEOS-Chem simulations for 2012 using GFED, FINN, QFED and
GFAS separately, and performed the aforementioned machinelearning
calibrations against air quality station data. To ensure comparability,
we used the same station and linked predictor data that were available
in2012in model training and tenfold spatial CV for all four fire emission
inventories. We also validated the estimated fire-sourced PM, ; based
on different inventories against the station-observed smoke PM, ; in
2012 provided by Childs et al.”.

Accordingto the validationresults, the estimated all-source PM, sand
0, based on different fire emissioninventories were highly consistent
with each other (r,0.99 or above), and they showed very similar accu-
racy in validation against station observations (spatial tenfold CV R?
for differentinventories, 0.75-0.76 for PM, ;and all 0.82 for O;; RMSE,
5.65-5.72 pg m~ for PM, s and all 12.52 pg m~ for O5) (Extended Data
Fig.7). When validated against the station-observed smoke PM, ;, the
GFED-, GFAS- and QFED-based fire-sourced PM, s values showed similar
accuracy (spatial tenfold CV R?, 0.27-0.30; RMSE, 8.35-8.75 ug m™),
whereas the FINN-based estimates showed the least accuracy (R*=0.19,
RMSE =9.83 pg m). The GFED-based fire-sourced PM, s showed good
agreement with FINN-, GFAS- and QFED-based estimates (r, 0.73, 0.81
and 0.83, respectively). The GFED-based fire-sourced O, showed
moderate agreement with FINN-based estimates (r, 0.57), good agree-
ment with GFAS-based estimates (r, 0.72) and poor agreement with
QFED-based estimates (r,0.30); the QFED-based fire-sourced O, showed
even poorer agreement with FINN- and GFAS-based estimates (r, 0.18
and 0.16, respectively).

Because FINN showed least agreement with the GFED-based esti-
mates of fire-sourced PM, 5 (the main contributor to SFAP), we per-
formed sensitivity analyses by running GEOS-Chem simulations based
onFINN for allits available years (2002-2017), and generated the daily
FINN-based estimates of fire-sourced PM, ;and O, at 0.25° x 0.25° spa-
tial resolution using the same machine learning calibration procedures
asinour primary analyses. Compared with GFED-based estimates dur-
ing the period 2002-2017, the FINN-based estimates of fire-sourced
PM, ;and O, showed very similar spatial distribution (GFED versus FINN
agreementingrid-specific16-year average concentrations, r=0.93 for
fire-sourced PM, s, r = 0.92 for fire-sourced O5), temporal trends (GFED
versus FINN agreement in grid-specific change in concentrations per
year, r=0.80 for both fire-sourced PM, s and O;), continent-specific
long-termtrends and seasonal patterns (Extended Data Figs.8 and 9).



Uncertainties of our estimates

There were some uncertainties or potential errors in the processes
of estimating fire-sourced PM, ;s and O. First, the GFED4.1s used for
GEOS-Chem simulations has some uncertainties and limitations, such
as uncertainties in the emission factor and the estimation of burned
areas based on satellite images®. Studies suggest that GEOS-Chem
simulations based on different fire emission inventories may gener-
atevery different estimates of fire-sourced PM, sin North America’"".
However, according to our validation results (Extended Data Fig. 7
and Supplementary Table 4), the GFED4.1s was the best inventory of
the four widely used inventories considering both accuracy (that is,
agreement with ground station observations and the smoke PM, ;of
Childs et al.”) and data availability, and it is also the most widely used
oneatpresent’™. Our results also suggest that the estimates of all-source
and fire-sourced PM, s and O, based on three alternative inventories
were mostly highly consistent with GFED-based estimates, and the con-
sistency improved after machine learning calibrations (Extended Data
Fig.7).Furthermore, evenbased on FINN (the inventory that showed the
least agreement with GFED-based estimates of fire-sourced PM, 5), the
generated estimates of fire-sourced PM, ;and O; showed spatial distri-
bution, temporal trends and seasonal patterns that were very similar
to GFED-based estimates (Extended DataFigs. 8 and 9). Therefore, our
assessment of population exposure to fire-sourced air pollution was
robust against the choice of fire emission inventory.

Second, our GEOS-Chem simulations did not account for plumerise
and assumed thatall fire emissions were emitted at the surface, because
there are large uncertainties in the fire plume height data””¢, and a
recent study found that including the fire plume rise did not always
improve the accuracy of simulated PM, ;and O,”’. GEOS-Chem simula-
tions without considering plume rise can overestimate the contribution
of fire emissions to surface PM, s and O, in fire source regions while
underestimating the impacts of fire emissions in regions downwind
from the fire source”””. Given that fire source regions (for example,
wildlands or agricultural lands) tend to have smaller population den-
sities than other regions, our GEOS-Chem approach is likely to cause
anunderestimation of global population exposure to fire-sourced air
pollution. Further studies are warranted to quantify and correct the
bias caused by omitting plumerise.

Third, the GEOS-Chem was run at a coarse spatial resolution
(2.0° x 2.5°), which may cause errors in population exposure assess-
ment at high spatial resolution. However, we have performed downs-
caling of the GEOS-Chem and added higher-resolution meteorological
dataasextrapredictorsin the machine learning model. The validation
against observed smoke PM, ;in PurpleAir stations suggested that our
estimated fire-sourced PM,; can explain about 10% of spatial varia-
tions of the observed smoke PM, s within the large 2.0° x 2.5° grid box
(Extended DataFig.4b), which was abigimprovement compared with
the raw GEOS-Chem outputs. Moreover, there was almost no correlation
between grid-specific population counts and the annual fire-sourced
PM, (r=-0.02) and O, (r=0.001) concentrations in our data, sug-
gesting that the bias in concentration caused by coarse-resolution
of GEOS-Chem tend to be distributed to 0.25° x 0.25° grid boxes with
high or low population counts randomly and cause random errors,
rather than systematic errors of population exposure assessment.
Nevertheless, cautions should be taken if our data are used to perform
individual-level exposure assessment in epidemiological studies.

Finally, the machine learning models were trained against station
observations dominated by several regions (Europe, the USA and
China), which may not apply to regions with few or no stations. How-
ever, according to our spatial-cluster CV that mimics this situation,
our models showed good accuracy in predicting observations far away
from the training stations (overall R?, 0.69 for PM, sand 0.67 for O,), and
the accuracy was still much higher than the raw GEOS-Chem outputs
even in continents (Africa, South America and Oceania) with a small

number of stations (Extended Data Fig. 4a), suggesting that our trained
machine learning model can also add accuracy to the GEOS-Chem in
regions with limited or no training stations.

We performed the downscaling of GEOS-Chem outputs using
ArcGlIS desktop (v.10.1); all other data analyses were performed using
Rsoftware (v.4.0.2).

Data availability

Data of air quality stations are available for free or with certain condi-
tions from the US Environmental Protection Agency (https://ags.epa.
gov/aqsweb/airdata/download_files.html), the China National Environ-
mental Monitoring Centre (http://www.cnemc.cn/en/), the European
Environment Agency (https://www.eea.europa.eu/data-and-maps/
data/agereporting-9), the Australian National Air Pollution Monitor
Database (http://cardat.github.io/), New Zealand’s Environment Can-
terbury (http://data.ecan.govt.nz/Catalogue/Method?Methodld=98),
the Chilean National Air Quality Information System (https://sinca.
mma.gob.cl/index.php/region/index/id/Il), the South African Air
Quality Information System (https://saaqis.environment.gov.za/),
AirQo (https://www.airqo.net/) and OpenAQ (https://openaq.org/). The
cleaned air quality station data used for this study were deposited at
https://doi.org/10.17605/0SF.I0/DN7YA. Data of weather predictors are
openaccess and areavailable from https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview. Popu-
lation exposure estimates globally, for different continents, HDI and
income groups, and for 206 countries and territories were shared on
https://github.com/Rongbin553/wildfire_population. The GEOS-Chem
simulation outputs and estimated all-source and fire-sourced air pollu-
tion dataare available from the corresponding authors on request, and
will be made open access at https://doi.org/10.17605/0SF.I0/DN7YA
after the paperis published. Source data are provided with this paper.

Code availability

Analysis codes are available from the corresponding authors on
request, and will be shared on https://github.com/Rongbin553/wild-
fire_population.
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Extended DataFig.1|Landscapefires’ relative contributions to air pollution
and the global distribution and relative contributions of different fire types.
a,Maps showing the proportions of fire-sourced PM, ;and O, (among all-source
PM,sand O;, respectively) during2000-2009 and 2010-2019 across the globe.
b, Map showing the dominant landscape fire type burned during2000-2019
at0.25°x 0.25°spatial resolution across the globe according to Global Fire
Emissions Database (version 4.1 with small fires, GFED4.1s). The dominant fire

typeineachgrid was determined based on highest proportion of dry matter
burned for this grid during the period 2000-2019. Those white grids were grids
without any landscape fire burned during the period. ¢, Stacked bar chart
showing the relative contributions of different fire types to the fire-emitted
PM, sacrossthe globe andineach continentaccording to GFED4.1s. Here we
only calculated therelative contribution to primary PM, semitted from fires,
without considering the secondary PM, s generated from fire emissions.
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Extended DataFig. 3 |Locations of model training stations and model
performance of cross-validations. aand b, Maps showing the geographical
distribution of air quality monitoring stations of PM, 5 (a) and O, (b) used for
machinelearning model training, the mean PM, sor O, refers to the average
value of all available valid observations for each station. cand d, Maps showing
the station-specific R?in the spatial 10-fold cross-validation of the random
forest models for estimating all-source daily average PM, 5 (c) and daily

maximum 8-hour average O, (d). e, Density scatter plots showing the overall
performance of the machine learning models for estimating all-source daily
average PM, ; (left) and daily maximum 8-hour average O, (right) based on
general 10-fold cross-validation. RMSE, root mean squared error. f, Density
scatter plots showing the overall performance of the machine learning models
for estimating all-source daily average PM, ; (left) and daily maximum 8-hour
average O, (right) based on spatial 10-fold cross-validation.
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Extended DataFig. 4| Overall cross-validation performance for estimating
all-source PM, ;and O; and the accuracy of fire-sourced PM, s in validation
against Childs et al. a, Table showing the global and continent-specific
performance of the machine learning models estimating all-source daily PM, s
and O, based on spatial 10-fold and cluster-based cross-validation (CV), in
comparisonwith the performance of the raw GEOS-Chem outputs. Some spatial
cluster could bein two continents; this is why the global total cluster number is
smaller than the sum of continent-specific cluster number. The unit of the root
meansquared error (RMSE) is pg/m?for both PM, sand O,. The continent-specific
CVresultswas calculated by extracting each continent’s CV datafromthe
global spatial 10-fold CV or global cluster-based CV. b, Density scatter plots
showing the performance of our estimated fire-sourced PM, 5, GEOS-Chem

simulated fire-sourced PM, s, Childs et al’s estimated smoke PM, sin validation
against smoke PM, s;observed by PurpleAir stations. In this analysis, we included
68041 observations during 2016-2019 linked to 2147 PurpleAir stationsin the
contiguous US based ondate, longitude and latitude. The smoke PM, s dataand
PurpleAir datawere sourced from Childs et al.””. The within-block R*could be
interpreted as how much spatial variations of smoke PM, s withinthe 2.0° x 2.5°
gridbox can the model estimates (our estimated fire-sourced PM, s or Childs
etal’s estimated smoke PM, ;) account for. ¢, Correlation matrix showing the
Pearson correlations between our estimated fire-sourced PM, 5, GEOS-Chem
simulated fire-sourced PM, 5, Childs et al’s estimated smoke PM, 5, and the
smoke PM, sobserved by PurpleAir station. The data used for panel cis the
same as the dataused for panelb.
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Extended DataFig. 6 | Validation of all-source and fire-sourced O, against
large wildfire events. a, Line plots showing the time-series trend of daily
all-sourced and fire-sourced O, concentrations before, during, and after ten
large wildfire events. The two vertical solid lines represent the start date and
the end date of the wildfire event. The end date of the 2019 Black Summer
Bushfires was not thereal end date of the bushfire event, but the last date that

our model can cover. b, Scatter plots comparing the average daily fire-sourced
0, concentrations (left) and the proportions of fire-sourced O;amongall-source
0, (right) during and before the ten selected large wildfire events. The period
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Extended DataFig.7|See next page for caption.
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Extended DataFig.7 | Comparisons between four fire emission inventories.
a, Correlation matrix showing the Pearson correlations between station
observedall-source daily PM, 5, and GEOS-Chem simulated and machine
learning (ML) estimated all-source PM, ;based on different fire emission
inventoriesin2012.b, Correlation matrix showing the Pearson correlations
between GEOS-Chem simulated and ML estimated fire-sourced PM, sbased
ondifferent fire emissioninventoriesin2012. ¢, Correlation matrix showing
the Pearson correlations between station observed all-source daily O, and
GEOS-Chemsimulated and ML estimated all-source O, based on different

fire emissioninventoriesin 2012.d, Correlation matrix showing the Pearson
correlations between GEOS-Chem simulated and ML estimated fire-sourced O,

based ondifferent fire emissioninventoriesin2012. e, Table showing the
performance of GEOS-Chem outputs and machine learning estimates based on
different fire emissioninventoriesin2012invalidation against station observed
daily all-source PM, 5, all-source O; and smoke PM, 5. RMSE, root mean squared
error, inpug/m?>. Forall the panelsin this figure, the ML estimates were based on
the ML model trained in out-of-sample stations (according to the 10-fold spatial
cross-validation). For each specific fire emissioninventory (e.g., FINN), the ML
predictorsinclude corresponding GEOS-Chem simulated all-source PM, s0r O,
(e.g., the FINN GEOS-Chema all-source PM, 5) and other predictors mentionedin
equation1(or2)inthe Methodssection.
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Extended DataFig. 8 | Overallagreements between GFED- and FINN-based simulations plus machine learning model calibration approach, as detailed in
estimates in global spatial distribution and temporal trends. a, Density the Methodssection. FINN data were only available from 2002 t02017,so here
scatter plots showing the agreements between GFED and FINN in the overall thel6-yearaverage and the change per year were estimated for this period. The
spatial distribution (left) and temporal trend (right) of estimated fire-sourced countreferstothe count of 0.25°x 0.25°land grids, and all the 394,899 grids
PM, s during 2002-2017. b, Density scatter plots showing the agreements acrossthegloballand wereincluded in the analyses. For each grid, the temporal
between GFED and FINN in the overall spatial distribution (left) and temporal trend from 2002 to 2017 was fitted using all annual concentrations during the
trend (right) of estimated fire-sourced O;during 2002-2017.In panelaandb, period withalinear regression.

the daily fire-sourced PM, s or O; were estimated using the GEOS-Chem
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Extended DataFig.9 | Continent-specificagreements between GFED-and
FINN-based estimates of daily fire-sourced PM, ;and O;. a, Line plots
showingthe agreements between GFED and FINN in the continent-specific
daily population-weighted average fire-sourced PM, s estimates during
2002-2017.b, Line plots showing the agreements between GFED and FINN

2005 2010

2015

inthe continent-specific daily population-weighted average fire-sourced O,
estimates during2002-2017.Inboth panels, the fire-sourced PM, sor O, were
estimated using the GEOS-Chem simulations plus machine learning model
calibration approach, asdetailed in the Methods section. The dashed lines
refer to trend lines fitted using linear regressions.
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Extended Data Table 1| Tables of decadal average exposures for the globe and main subgroups

a
Fire-sourced PM2s Trend of fire- Fire-sourced O3 Trend of
(% of all-source PM2 ) sourced PM2s (% of all-source O3) fire-sourced O3
2000-09 2010-19 C'Laencgedge' t’: ef:é 2000-09 2010-19 C'Lae"cgzge’ t’: ef;’(;
Continent
Africa 53(17.7%) 5.1 (16.5%) -0.27 0.020 9.1(104%) 8.8(10.3%) -045 0.024
Asia 1.9 (3.9%) 2.0 (3.8%) 0.15 0.163 2.0 (2.1%) 1.9 (2.1%) -0.01  0.901
Europe 0.8 (3.6%) 0.8 (4.1%) -0.01 0.881 1.7 (2.2%) 1.6 (1.9%) -0.12  0.376
North America 1.3(9.8%) 1.6 (13.6%) 0.27 0.001 2.5(2.8%) 2.4 (2.8%) 0.08 0.613
Oceania 1.9 (20.5%) 1.7 (20.2%) -0.02 0.947 3.1 (5.2%) 2.8 (4.7%) -0.20 0.527
South America 5.2 (20.5%) 4.5(19.4%) -0.61 0.012 6.1 (9.3%) 5.4 (8.4%) -0.60 0.050
HDI group
Low HDI 56 (17.4%) 5.4 (16.1%) -0.28 0.026 9.9 (11.5%) 9.5(11.3%) -0.56 0.013
Medium HDI 2.0 (4.0%) 2.1 (3.6%) 0.08 0.420 2.5 (2.5%) 2.4 (2.4%) -0.04 0.587
High HDI 2.3 (5.8%) 2.4 (6.1%) 0.19 0.138 3.0 (3.4%) 2.9 (3.4%) -0.04 0.787
Very high HDI 1.6 (7.1%) 1.6 (7.4%) -0.07 0.156 1.8 (2.2%) 1.7 (2.0%) -0.08 0.479
Income group
Low income 57 (17.2%) 5.6 (16.5%) -0.12 0.291 8.8(10.0%) 8.8 (10.3%) -0.16  0.429
Lower middle income 2.3 (5.0%) 2.3 (4.5%) 0.10 0.197 3.2 (3.3%) 3.1(3.2%) -0.07 0.335
Upper middle income 2.4 (6.1%) 2.5 (6.2%) 0.11 0.382 3.0 (3.5%) 2.9 (3.5%) -0.04 0.772
High income 1.1 (5.5%) 1.1 (6.0%) -0.03 0.426 1.6 (1.9%) 1.5 (1.8%) -0.03 0.782
Global 2.4 (6.2%) 2.5 (6.1%) 0.11 0.072 3.2 (3.6%) 3.2 (3.6%) 0.02  0.840
b
Annual person days exposed to Annual days exposed to SFAP per Annual persons exposed to SFAP
SFAP (x108) person (x109)
2000-09 2010-19 Ch;i:rge Dot 200009 2010-19 Ch;:rge pror 200009 2010-19 Ch::rge ot
decade decade decade
Continent
Africa 310.8 379.7 60.3 <0.001 34.2 325 -2.5 0.029 512.4 596.4 83.5 <0.001
Asia 178.4 195.5 15.9 0.593 45 44 -0.1  0.895 873.7 803.1 -19.2 0.777
Europe 9.8 6.3 -4.1  0.169 14 0.9 -0.6 0.158 128.0 976 -154 0.576
North America 36.9 50.1 149 0.042 7.2 8.9 1.9 0.153 197.2 319.2  109.1 0.001
Oceania 21 1.9 0.2 0.828 7.2 54 -0.8 0.739 17.8 17.8 1.8 0.456
South America 94.2 94.7 -0.9 0.938 25.5 231 -2.7 0.359 308.2 3425 304 0.096
HDI group
Low HDI 221.2 273.5 44.8 <0.001 36.0 33.7 -34 0.012 349.5 404.4 55.8 <0.001
Medium HDI 120.5 138.8 18.1  0.001 6.8 6.7 -0.1 0.811 311.2 341.9 491 0.127
High HDI 217.0 239.4 226 0.365 8.3 8.4 0.1 0.907 929.4 942.2 46.4 0.307
Very high HDI 729 76.4 1.1 0.843 54 5.0 -0.3 0.518 432.7 482.2 459 0.107
Income group
Low income 178.0 226.8 42.4 <0.001 39.1 38.1 -2.2 0.089 230.2 277.3 47.9 <0.001
Lower middle income ~ 187.7 217.0 269 0.010 8.0 8.0 -0.2 0.657 593.6 620.6 60.1  0.165
Upper middle income ~ 245.0 256.5 11.0 0.647 9.5 9.2 -0.3 0.707 963.7 976.8 422 0.275
High income 214 28.0 6.1 0.150 1.9 2.3 04 0.305 249.5 301.2 39.7 0.135
Global 632.1 728.2 86.3 0.010 9.7 9.9 0.1 0.856 2037.2 2176.6  190.1  0.007

a, Table showing the global annual population-weighted average landscape fire-sourced PM, s and O, during 2000-2019, by continent, human development index (HDI) group and income
group. The units of PM, s and O, concentrations are both ug/m®. b, Table showing the population exposure to substantial fire-sourced air pollution (SFAP) during 2000-2019, by continent,
HDI group and income group.



