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Abstract

Generating maximally-fit biological sequences has the potential to transform CRISPR guide RNA
design as it has other areas of biomedicine. Here, we introduce model-directed exploration algo-
rithms (MEAs) for designing maximally-fit, artificial CRISPR-Cas13a guides—with multiple mis-
matches to any natural sequence—that are tailored for desired properties around nucleic acid diag-
nostics. We find that MEA-designed guides offer more sensitive detection of diverse pathogens and
discrimination of pathogen variants compared to guides derived directly from natural sequences,
and illuminate interpretable design principles that broaden Casl3a targeting.
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Main text

Machine learning methods are transforming the design of biological sequences' ®. Generative meth-
ods, in particular, have been extensively applied to designing proteins®'?, yet other uses of gener-
ative methods, such as designing CRISPR guide RNA sequences, remain relatively underexplored.
Current techniques™® ?? for guide RNA design select sequences directly from those in nature or from
a simple function of natural sequences, e.g., a consensus, according to machine-learned discrimi-
native models or heuristic rules. However, natural sequences may not perform the best in every
application. Generative design methods could yield artificial guide RNA sequences—that is, guides
that differ from any natural sequence, sometimes by 3 or more mismatches—and achieve superior
performance on particular tasks. To our knowledge, such techniques have not been applied to design
CRISPR guides.

Pathogen detection has been one promising use of CRISPR-based technologies. The extensive ge-
nomic diversity of pathogens motivates using generative methods to design guides that can optimally
detect them. For instance, if our goal were to detect all forms of a genetically diverse pathogen
(“multi-target detection”), and there are several polymorphisms in an otherwise efficacious target
region, an artificial guide could more sensitively detect all combinations of polymorphisms than any
guide that fully matches one particular combination (Fig. 1a). This would enable us to achieve
improved diagnostic sensitivity. Alternatively, if our goal were to distinguish between two highly
similar targets (“variant identification”), even those that differ by a single nucleotide polymorphism
(SNP), an artificial guide with optimally-positioned mismatches could achieve greater specificity
than a guide identical to one target (Fig. 1b). This would enable us to more accurately identify mu-
tation(s) in a pathogen or discriminate between pathogen lineages. Previous work”®?* has described
heuristic rules to introduce handcrafted specificity-enhancing mismatches into CRISPR guides, but
these strategies are bespoke and are limited by the degree of variation they can distinguish.

Designing artificial guides—here, 28-nt Casl3a guide RNA spacer sequences—necessitates exploring
a vast high-dimensional space of RNA sequences. Each guide has a fitness according to the task
at hand, such as multi-target detection (Fig. la) or variant identification (Fig. 1b). Selecting
a natural genomic sequence, as is typically done, amounts to exploring the very limited set of
observed sequences at a site; more thoroughly exploring the sequence space could yield artificial
guides with superior performance. Highly fit artificial guides should be nearby in sequence space to
the complements of their targets, but this region, with ~107-10° sequences (Supplementary Note 1),
is sufficiently large to motivate the development of algorithms that efficiently search the sequence
space.

Here, we develop model-directed exploration algorithms (MEAs) for CRISPR-Cas13a guide RNA
design. MEAs combine a machine-learned model—trained to predict the enzymatic activity that
results from a guide-target interaction—with search algorithms to explore a fitness landscape of
guides. Our model is a convolutional neural network (CNN) that we previously published®?. Tt pre-
dicts Casl3a’s enzymatic activity, a proxy of a given guide’s sensitivity for detecting a given target.
We evaluate two search algorithms: (i) a generative model that employs a conditional Wasser-
stein Generative Adversarial Network (WGAN) and activation maximization (AM) to explore a
continuous latent space of sequences® (Fig. 1c¢ and Supplementary Fig. 1); (ii) an evolutionary
algorithm that performs iterative rounds of random mutation, fitness evaluation, and selection to
explore the fitness landscape in discrete steps (Fig. 1d and Supplementary Fig. 2). Importantly, our
model-directed exploration process—including the predictive model, search algorithms, and fitness
functions—is conditioned on user-provided target sequences, making it broadly applicable to any
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Figure 1 — Designing optimal guides for two diagnostic objectives using model-directed exploration algorithms.
(a) Artificial guide sequences — i.e., those that differ from any naturally observed sequence — can increase detection
across sequence variation. In the example target set shown, there are two lineages. The consensus of the targets has two
mismatches with lineage 2 (in red), which could reduce enzymatic activity and thus sensitivity for that lineage. The artificial
guide sequence, which has only one mismatch with lineage 1 and one with lineage 2, could yield superior performance,
since Casl3a better tolerates a single mismatch than two mismatches in close proximity. (b) Artificial guide sequences
can increase the specificity of a guide designed to discriminate one target from another. A baseline approach is to design
a guide whose sequence is directly derived from the on-target sequence. Here, the baseline guide has only one mismatch
against the off-target sequence, and thus has substantial off-target activity and achieves poor specificity. An artificial guide
sequence that has an additional mismatch introduced could have a double mismatch to the off-target sequence, enabling
lower off-target activity and more robust specificity. (c) WGAN-AM algorithm for guide design. The generative model,
G(z|T), generates active guide sequences conditional on a given target set T. A latent variable z modulates the generator's
output, allowing for different guide sequences. To generate optimal guides, the algorithm starts at a random value of
z, computes the fitness of the generated guide f(g|T), and adjusts z in the direction of V,f(g|T). (d) Evolutionary
algorithm for guide design. The algorithm initializes a population of candidate guides, Gg, by extracting the guide-length
subsequences at the targeted genomic site. To form the population G, in each generation k, n parent guides are sampled
from the population Gx_; with probability proportional to their fitness f(g| 7). The n guides are randomly mutated, and
the resulting mutated child guides are added to the population. This process is repeated until L, the limit on the number
of guides whose fitness has been evaluated, is reached.
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input targets rather than being restricted to specific genomic sites.

First, we applied our methods to design guides, for use with Casl3a-based detection, that are
sensitive across a pathogen’s genomic variation, i.e., for multi-target detection. The fitness function
that we maximize is the average predicted activity across sequenced genomes (Fig. la, Methods).
We focus on five RNA viruses, chosen for their extensive diversity (enterovirus B, Lassa, dengue)
or public health relevance (influenza A, SARS-CoV-2). We employed the MEAs to design guides
and benchmarked them against algorithms representing current, state-of-the-art design approaches
(Methods). These include a simple, commonly-used algorithm that complements the consensus
sequence at the target site (“consensus”) and a more advanced algorithm that we term “model-
based choice” (MBC), which reflects a method we previously developed®?. MBC employs clustering
to compute a candidate set of guides and selects the guide with maximal fitness based on our
model’s predictions (Methods).

We computationally evaluated the multi-target detection performance of the different design meth-
ods across these five pathogens using the same predictive model of guide activity (Methods). MEA-
designed guides were predicted to detect more diversity than guides designed by baseline methods
across nearly all genomic regions of all five pathogens. In several regions within dengue, Lassa,
and influenza A viruses, the MEA-designed guides were predicted to detect 10-20% more sequence
variation (Fig. 2a and Supplementary Fig. 3). The MEA-designed guides also achieved a higher
mean fitness genome-wide (Fig. 2b and Supplementary Fig. 4). At most sites, the guides generated
by the MEAs are several mismatches away from any sequenced genomes, suggesting that the MEAS’
ability to search fitness landscapes and generate artificial sequences contributes to their superior
performance (Fig. 2c and Supplementary Fig. 5).

Computational predictions are inherently limited, so we set out to experimentally benchmark the
multi-target detection performance of the MEA-designed guides. We used a random sampling
strategy (Methods) to select three representative genomic sites from each of the five viruses we
considered (15 sites in total) and employed both the MEAs and baseline methods to design guides
for these sites. We tested these guides against multiple synthetic targets that represent the genomic
diversity of each virus (Methods), measuring the fluorescence readout over time. Casl3a is activated
through guide-mediated recognition of a target; once active, it engages in collateral cleavage of a
fluorescent reporter to generate the fluorescent readout, with greater fluorescent signal indicating
stronger guide-target affinity at a fixed target concentration. For all but one of the 15 tested
sites, the MEA-designed guides achieved higher activity across sequence diversity than the baseline
guides (Fig. 2d-g, Supplementary Fig. 6, and Supplementary Fig. 7) and often enabled a lower
limit of detection (LoD) as well (Fig. 2h and Supplementary Fig. 6). The MEAs provide the
greatest advantage in highly diverse viruses, e.g., Lassa virus; this advantage is less pronounced
at more conserved sites from less diverse viruses, e.g., SARS-CoV-2 (Supplementary Fig. 3 and
Supplementary Fig. 8).

We next applied the MEAs to our second diagnostic objective: to design guides that optimally
identify specific SNPs or distinguish between pathogen lineages, i.e., variant identification (Fig. 1b).
This objective can be conceptualized as designing a guide that achieves high activity on an on-target
sequence and minimal activity on an off-target sequence; the fitness function is approximately the
difference between these activities (Fig. 3a, Methods).

To computationally evaluate the performance of the MEAs in designing guides that identify SNPs,
we considered a set of 100 pairs of randomly-generated on-target and off-target sequences, each
differing by one nucleotide (Methods). We applied the MEASs to these target sets and also designed
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Figure 2 — MEAs design guides that are maximally sensitive across genomic variation. (a) Proportion of dengue
virus genomes detected by the diagnostic guides designed with model-based exploration algorithms (WGAN-AM and
evolutionary) and baseline methods (model-based choice (MBC) and consensus). Top, within fixed-size windows along
the genome; bottom, within genes and untranslated regions (UTRs). The MBC guides were designed by computing
a ground set of sequences and employing the predictive model to select the sequence with the highest fitness. The
consensus guides were designed by computing the consensus of the multiple sequence alignment at the targeted genomic
site. A guide is considered to detect a target if it meets the criteria described in the Methods. (b) Relative fitness of
the guides designed by MBC, WGAN-AM, and evolutionary algorithms at sites in the dengue virus genome. The relative
fitness is the difference between the fitness of the labeled algorithm's guide and the fitness of the consensus guide. The
distribution is across targetable genomic sites (see Methods). P values were computed using one-sided Wilcoxon signed-
rank tests. (c) Minimum Hamming distance between the guides designed by each algorithm and all target sequences at
a given genomic site. Distribution is shown across targetable genomic sites. (d—g) Normalized fluorescence for guides
detecting representative targets of genomic sites in influenza A (d), dengue virus (e), enterovirus B (f), and Lassa virus
(g) at one hour. Each column represents a target and has width proportional to the percentage of sequence diversity it
represents. Each row is a concentration of the target sequence in copies/pL (h) Normalized fluorescence, over the course
of the reaction, when detecting the five representative targets of Lassa virus at 10® copies/uL. Parentheticals indicate the
percentage of all genomes represented by the target. The MBC-designed guide and consensus guide were identical at this
site, and are represented by ‘MBC/consensus’.

guides using the canonical strategy®* for this problem: this strategy places the SNP at position 26
of the guide and introduces a synthetic mismatch, at position 24 of the guide, to both the on- and
off-target sequences (Methods). In silico, the MEA-designed guides exhibited similar predicted on-
target activity to those designed by this synthetic mismatch method, but achieved lower off-target
activity (Fig. 3b-d).

We benchmarked the MEAs’ variant identification performance experimentally, first by designing
guides for six clinically-relevant SNPs and comparing them to the baseline canonical synthetic mis-
match approach. The six SNPs include four associated with antimicrobial resistance in Plasmodium
falciparum (Pfert K76T, Pfdhps A437G, Pfk13 C580Y, Pfmdrl Y184F), one associated with micro-
cephaly in Zika virus (PrM S139N), and one associated with immune evasion in SARS-CoV-2’s Spike
protein (K417N/K417T)?% %2, Experimentally, across nearly all of these tasks, the MEA-designed
guides exhibited lower off-target activities while maintaining similar on-target activities to baseline
guides (Fig. 3e—f and Supplementary Fig. 9a-c). Several baseline guides (including those for the
S139, A437G, and K417T targets) had an off-target signal nearly identical to the on-target sig-
nal throughout the reaction, which complicates SNP identification; in contrast, the MEA-designed
guides achieved an on-target signal 2-3 times above the off-target signal (Fig. 3e-f).

We further benchmarked the MEAs’ variant discrimination performance experimentally for design-
ing guides that differentiate viral lineages, focusing on dengue virus (DENV) serotypes 1-4, and
seven key SARS-CoV-2 lineages (Methods). In the DENV task, one serotype is the on-target set
(e.g., DENV-1) and the other three serotypes comprise the off-target set (e.g., DENV-2, 3, 4).
Both the MEA and baseline guides differentiated the DENV subtypes with high specificity at a tar-
get concentration of 10® copies/uL, likely because there are DENV genomic regions with sufficient
dissimilarity across serotypes (Supplementary Fig. 9d). However, when tested at a lower target con-
centration of 10° copies/nL, the baseline guides exhibited low on-target fluorescence for serotypes 2
and 4, while the MEA-designed guides achieved, as desired, a high on-target fluorescence for those
serotypes (Fig. 3g). In the SARS-CoV-2 task, we designed guides that differentiate the ancestral
Wuhan lineage (i.e., Ref), Alpha, Beta, Delta, Gamma, Omicron/BA.1, and Omicron/BA.2 (Meth-
ods). The MEA-designed guides enabled robust lineage discrimination, while the baseline guides
for Alpha, Gamma, and Ref had off-target activities that were nearly as high as their on-target
activities throughout the reaction (Fig. 3h).
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Overall, the WGAN-AM and evolutionary algorithms performed similarly in our two tasks, despite
employing distinct techniques and creating different guides. On average, the evolutionary algorithm
designed guides that are more distinct from observed sequences than the WGAN-AM’s guides
(Figs. 2¢, 3d, and Supplementary Fig. 5).

Next, we sought to understand if the MEAs leverage known rules governing Casl3a activity to
enhance guide performance. Remarkably, we found that the MEAs implicitly learn Cas13a’s proto-
spacer and mismatch preferences, without having them explicitly encoded, and rationally apply this
biological understanding among our two design objectives to generate optimally-fit guides. For ex-
ample, guide-target mismatches in close proximity to one another are known to decrease enzymatic
activity®* . When applied to the first objective of multi-target detection, the MEA-designed artifi-
cial guides reduced the number of adjacent guide-target mismatches at mismatch-sensitive positions
relative to baseline guides, enabling superior sensitivity (Supplementary Fig. 10). In contrast, when
applied to the variant identification objective, the MEAs introduced artificial mismatches within
4 nt of the SNP for the majority of target sets (WGAN-AM, 61%; evolutionary, 81%), reducing
off-target activity (Fig. 3¢). Additionally, for nearly 75% of simulated targets, the MEAs further op-
timized guide specificity by placing the SNP between positions 18 to 23, a region where mismatches
are known®” to be highly deleterious to LwaCas13a activity (Fig. 3d).

Furthermore, we found that the MEAs take advantage of another biological property of Casl3a to
design guides optimally suited for both objectives. Previous work has found that Casl3a guides
exhibit reduced activity when targeting a genomic site with complementarity to Casl3a’s tag se-
quence, particularly targets with a G nucleotide at the position immediately 3’ to the protospacer
(the protospacer-flanking site, or PFS)*>3°, In the variant identification objective, when the tar-
geted SNP is a mutation from a non-G to a G nucleotide (as it is in the experimentally-tested S139N
and C580Y targets), the MEASs positioned the G at the PFS to design guides with minimal off-target
activity (schematized in Supplementary Fig. 11; experimental results in Fig. 3e and Supplementary
Fig. 9a). However, in the multi-target detection objective, the MEAs exhibited an unexpected
design decision. For genomic sites with a G at the PFS, the MEAs often introduced a mismatch
directly adjacent to the tag sequence at position 28 in the protospacer (the same as position 1 in the
spacer), which we term the tag-adjacent mismatch, or TAM. Intriguingly, among the genomic sites
with a G at the PFS, the TAM was present in 45.7% of guides designed by the WGAN-AM algorithm
and 76.2% of guides designed by the evolutionary algorithm (Supplementary Fig. 12).

We hypothesized that the TAM could represent a novel design strategy discovered by the MEAs
that enables improved guide activity on targets with a G at the PFS, so we explored the TAM’s
significance further. Mechanistically, the TAM may disrupt base pairing between the G at the PFS
of the target and the C in the CRISPR RNA tag sequence, promoting the separation of the Casl13—
target complex and thereby increasing collateral cleavage activity and the resulting fluorescent
signal. To test our hypothesis, we designed a library of guides against targets having unfavorable
nucleotides (GN) and favorable nucleotides (AN, TN, or CN) for the first two positions of the anti-tag
region; the first nucleotide of the anti-tag region is the PFS (Methods; Fig. 3i). Guides with a
TAM targeting a sequence with a G at the PFS exhibited substantially greater activity than guides
without this TAM (Fig. 3i and Supplementary Fig. 13). Furthermore, the TAM conferred the
greatest benefit when the targeted sequence was GT in the anti-tag region. This is mechanistically
explainable: the first two nucleotides of Casl3a’s tag sequence complement GT, so the TAM’s
disruption of this double base pairing may enhance activity more than for targets with a non-GT
allele (Fig. 3i and Supplementary Fig. 13). As expected, introducing a TAM to guides targeting a
sequence with a non-G at the PF'S did not increase activity. To our knowledge, this design principle
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Figure 3 — MEAs design optimal guides for variant identification and propose a new mechanistic guide design
principle. (a) The objective of the variant identification task is to design a guide sequence that has maximal activity
across a set of on-target sequences T; and minimal activity across a set of off-target sequences T,. (b—d) Design features
of 28-nt guides that differentiate between 100 pairs of synthetic targets such that, in each pair, T, has a single nucleotide
difference (1 SNP) with T;. For each pair of targets, we applied the MEAs to design guides for each of the 28 possible SNP
placements along the guide, and chose the guide with the highest fitness among the 28 as best able to differentiate the two
targets. (b) Benchmarking predicted activities against a widely-used design approach that introduces a synthetic mismatch
between the guide and its targets (Baseline; Methods). Top, distributions of the difference in predicted on-target and
off-target activities (A(p|T1) — A(p| T2)) across the 100 target pairs. Bottom, break-down of the difference into predicted
on-target activity (A(p|T1); bottom left) and predicted off-target activity (A(p| T2); bottom right). (c) Additional guide
mismatches were introduced by the MEAs relative to the targets. Namely, plotted value is the percent of MEA-designed
guides that have a mismatch against both T; and T, at positions around the SNP. (Positive positions are 3’ to the SNP;
negative are 5'.) (d) Position of the SNP within the MEA-designed guides. For the majority of target pairs, the MEAs
place the SNP within Casl3a's mismatch-sensitive seed region. (e) Experimental results of guides designed with different
approaches for identifying the S139N SNP in Zika virus and A437G antimalarial resistance SNP in P. falciparum at a
target concentration of 108 copies/uL. The title of each plot indicates the target the guides were designed to detect as
the on-target. (f) Normalized fluorescence over time of guides designed to identify the K417N/T SNP in SARS-CoV-2
at 10® copies/pL. (g) Normalized fluorescence over time of guides designed to identify each of the four dengue virus
serotypes at 10° copies/pL. (h) Normalized fluorescence over time of guides designed to identify SARS-CoV-2 lineages at
108 copies/pL. For the Omicron BA.2 on-target, the WGAN-AM and baseline methods designed the same guide (purple).
For the Ref on-target, the WGAN-AM and evolutionary methods designed the same guide (green). In (f=h), there are
multiple off-targets for each discrimination task, so the dotted off-target curve shows the maximum fluorescence of the
guide across the off-targets computed at each time point (e.g., the off-target curves for K417 represent the fluorescence
for the higher of the K417N and K417T targets at each time point in the reaction). (i) Evaluation of the effect of
the tag-adjacent mismatch on rescuing guide activity when there are unfavorable (GN) nucleotides at the anti-tag region.
Curves show the normalized fluorescence of guides detecting targets that have different nucleotide pairs at the anti-tag
region, at 107 copies/pL. All guides are identical to the targets at positions 1-27 in the protospacer. The colored lines
represent guides with a terminal adjacent mismatch (at position 28), while the black dashed lines represent guides without
a mismatch to the target. The dinucleotide above each plot indicates the first two nucleotides of that target's anti-tag
region, and the guide sequences represented in the schematic are reverse-complemented.

of introducing a mismatch in the spacer to rescue the activity of guides with extended tag:anti-tag
complementarity has not been described before, suggesting that MEAs are capable of elucidating
new design principles.

In this work, we demonstrate that MEAs can generate maximally-fit guide sequences for pathogen
detection and surveillance, and can illuminate novel guide design rules. These algorithms leverage
a predictive model to explore a sequence landscape, only evaluating ~4,000 out of ~10'® potential
guides throughout their search process, yet are capable of designing artificial guides that outperform
those derived directly from nature (Supplementary Note 1). Crucially, our approach is not trained
on nor restricted to a specific design task, but rather can generate guides for any conditioned target
set. The machine-learned models of guide activity that steer our optimization process enable our
method to exploit features of Casl3a’s underlying biology (e.g., anti-tag and mismatch preferences)
to generate guides that optimize diagnostic performance. During the early 2022 surge in COVID-19
cases, we applied a prototype version of our method to design guides that distinguish SARS-CoV-2
variants, demonstrating that MEA-designed panels achieve high concordance with next-generation
sequencing in a clinical context®’. We note that while the MEA-designed guides in our study
achieved robust experimental performance, these methods rely upon predictive models of guide
activity, which may return inaccurate predictions for guide-target pairs outside of the training
domain. This is an area for further study. These methods can also reveal new, interpretable
guide design rules for CRISPR-based technologies. The TAM proposed by the MEAs may enable
Casl3a-based technologies to more efficiently target a broader range of sequences and improve our
understanding of the enzyme’s nuclease activation mechanisms.
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Our work suggests that MEAs can advance guide design for several technologies. In the realm of
pathogen diagnostics, to our knowledge, all current design methods for nucleic acid technologies
derive oligonucleotide sequences directly from pathogen genomes®® *!'. Artificial sequences stand to
optimize the design of diagnostic sequences beyond CRISPR guide RNAs, including the primers
and fluorescent probes employed in PCR, loop-mediated isothermal amplification (LAMP), and
recombinase polymerase amplification (RPA). Beyond diagnostics, MEAs could design rationally
mismatched guide RNAs for base editors to minimize bystander editing rates*®. For certain CRISPR
screens, where the objective is to introduce maximal sequence diversity into protein-coding genes,
these methods could design guides that maximize the number of distinct edits made at the tar-
geted sites*?. Furthermore, while high-fidelity variants of CRISPR enzymes have lowered off-target
editing rates*®, MEAs could optimize guide RNA sequences to minimize these off-target effects fur-
ther. Recent work has also highlighted the importance of accounting for human genetic diversity
when designing CRISPR therapeutics®**, and MEAs are poised to generate guide sequences that
optimally account for this diversity.

Generative methods are transforming the field of biological sequence design, with recent work fo-
cusing on generating long protein and DNA sequences” '™ !?. Here, we show that generative design
methods not only optimize shorter RNA sequences, such as CRISPR RNAs, but can simultaneously
elucidate new mechanistic design rules and serve needs in pathogen surveillance.
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Methods

The model-directed exploration algorithms developed in this work pair (1) a predictive model of
diagnostic guide activity with (2) exploration algorithms that search through a landscape of guide
sequences. Together, they design guides that optimize a well-defined objective function.

A guide sequence is a ~20 to 30 nucleotide (nt) nucleic acid sequence that binds to a target. In our
applications, the guide is the 28 nt CRISPR RNA (crRNA) spacer sequence for use with CRISPR-
Casl3a—based detection. It allows detection of a target by leading to a readout when the target is
present.

Predictive model of diagnostic guide activity

We previously developed the predictive models used in this work and they are described in detail in
ref. 22. The input into these models is a 28-nt guide sequence and a 48-nt target sequence (having
10 nt of context on each site of the guide’s binding region). The output of the classification model
C(g|t) € [0,1] can be interpreted as the probability that a given guide-target pair is active. The
output of the regression model R(g|t) € [—4,0] is the predicted activity of an active guide-target
pair. Higher values of C(g|t) may suggest that a guide is more likely to bind to a given target, and
higher values of R(g|t) may suggest that, after binding, a guide’s signal on a given target will grow
faster.

In this work, we combined the classifier and regression model’s predictions to define a weighted
activity metric, A, which follows from the law of total probability:

A(g|t) = P(g is active on t) x (activity of active g on t) +
(1 — P(g is active on t)) x (activity of inactive g on )

In our case, C(g|t) = P(gisactiveont), R(g|t) = activity of active g on ¢, and —4 =
activity of inactive g on t because guides that are inactive have a near-zero signal, which is rep-
resented in our dataset by an activity of —4, the lower bound of measured signal.

Thus, for a given guide-target pair, we computed A(g|t) as follows:

A(glt) = Clglt) x R(glt) + (1 = C(g[t)) x —4

Objective functions for diagnostic and surveillance applications
Model-directed exploration algorithms can design a guide sequence that optimizes a well-defined
objective function across a genome’s sequence variation.

We focus on designing guides that optimize two specific objective functions. These objectives have
applications in diagnostic testing and pathogen genomic surveillance.

Multi-target detection
In the first application (“multi-target detection”), our goal is to design guides that are maximally
active across genome sequence diversity. As such, the objective function for this application is:
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fr(g|T) = Eeer[A(gIT)] = > wi - A(g|T)

teT

where T is the set of genome sequence targets and ¢t € T is a single target.

Genome sequence diversity varies spatially and temporally, so the w; represents a prior probability
of encountering a target t € T'. We set a uniform prior distribution (assuming that all w; are equal
to ﬁ) over the target genome sequences, following the choice in ref. 22, but one could modify w;
as certain lineages of a pathogen become more or less prevalent in a geographic region of interest

or over time.

Additionally, one could also consider a defining more complex objective functions (such as the 10"
percentile of the distribution of activity across genomic diversity), although these functions may be
non-differentiable and more difficult for certain exploration algorithms to maximize.

Variant identification

In the second application (“variant identification”), our goal is to design a diagnostic guide g that
can optimally differentiate between closely related sequences, maximizing activity against one set
of targeted sequences (on-target) while minimizing activity against a separate but homologous set
of non-targeted sequences (off-target). In our notation, 77 represents the on-target sequences and
T, represents the off-target sequences.

Initially, we considered a simple objective function: the difference between the expected on-target
activity and expected off-target activity, Eier, [A(9|T)] — Eier,[A(g|T)]. Although many guides
designed using this objective had a large difference between the expected on-target activity and
expected off-target activity, they were often inactive or only marginally active on the on-target
sequences—making these guide designs unusable—because the function does not enforce that the
guide’s activity on the on-target set of sequences be sufficiently high for detection.

Thus, we defined an objective function for the variant identification application that is maximized
only when the designed guide has high activity on the on-target sequences and low activity on the off-
target sequences. We based this objective function upon the logistic function so it is differentiable.
The objective is defined below:

1 —1
<1 + qek(—logsumexp(—A(g|T1))—o) o 1) +r- (1 + aek(logsumexp(A(ng))o))

fp(g|Th, Ts) =

where o, a, k, and r are all parameters that modulate the slope and curvature of the objective
function. The values of these parameters were determined through a random search procedure
described in the hyperparameter search section of the Methods. We use logsumexp(A(g|T;)) as
shorthand for logsumexp({A(g|t) ¥V t € T;}), where logsumexp(xy,...,x,) = log(exp(z1) + -+ +
exp(z,)) is a smooth approximation to the maximum.

The value of fp(g|71,T5) increases as the minimum activity of the guide across the on-target set
increases and the maximum activity of the guide across the off-target set decreases. A visualization
of this objective function is included in Supplementary Fig. 14.
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Exploration algorithms

The above objective functions define the fitness of a guide for two types of detection tasks. Our
goal is to design maximally-fit guide sequences—those that maximize the value of these objective
functions. We developed two algorithms, a Wasserstein generative adversarial network—activation
maximization (WGAN-AM) approach and an evolutionary algorithm, that search over a landscape
of guide sequences to generate these maximally-fit guides.

Conditional generative adversarial network with activation maximization (WGAN-
AM)

A generative adversarial network (GAN) is an unsupervised deep learning framework that approxi-
mates an underlying data-generating distribution®. A well-trained GAN can generate new samples
of data (e.g., photographs or genomic sequences) that have properties similar to those of the training
set.

We use a Wasserstein GAN (WGAN) inspired by the application in ref. 25, but with one key
difference. Our WGAN uses a conditional GAN, in particular conditional on a given target set’S.
The generator network, G(z|T), generates a guide sequence for the given target set. This difference
allows our method to generalize well across different target sets, which contrasts to using a GAN
that has been fit to data derived from a single target set. The WGAN uses a latent variable z as an
input, and z can be modulated to explore the sequence space and generate different guide sequences
for a given target set.

The generator network of the WGAN proceeds in five stages. First, the input latent vector z
is upsampled to a vector of |z| x guide length. In our implementation, the latent vector is 10-
dimensional and the guide has a length of 28, so the resulting upsampled vector has length 280.
Second, this vector is reshaped into a matrix with dimensions guide length x latent channels (28
by 10). Third, this matrix is padded with a 10 by 10 matrix of zeros on each side such that the
dimensions of the resulting padded matrix is 48 by 10. Fourth, the 48 by 10 padded matrix is
appended to the one-hot-encoded consensus of a 48-nt region of the target, which has dimensions
of 48 by 4. The resulting matrix has dimensions 48 by 14. This makes the generator conditional
a given set of targets, because a representative sequence (the consensus) is directly concatenated
in this operation. Fifth, this matrix is passed through three residual blocks and 4 convolutional
filters with stride 1 and width 2 to create a 48 by 4 matrix. Finally, a softmax is applied such that
the resulting matrix represents the probability of having a base at each position, and the 10 by
4 context is removed from either side. The resulting 28 by 4 matrix represents the 28 nucleotide
guide sequence, which is the guide that we sought to design. Supplementary Fig. 15a schematizes
the architecture of the generative network of our WGAN.

We trained the WGAN on the same set of active guide-target pairs that our previously-developed
CNN regression model was trained on??. These guide-target pairs were experimentally demonstrated
to be active via the CARMEN-Cas13 system??. Thus, the generator outputs guides with measurable
activity against the conditioned target. We trained the WGAN via the WGAN-gradient penalty
method in ref. 47. We used a batch size of 32 and trained the critic 5 times for each batch on
which the generator was trained. We used the following hyperparameters for the Adam optimizer®®:
a = 0.0001, B; = 0.9, B = 0.999, and € = 1077,

The generator network G(z|T") captures the high-level features that make a guide active against a
given target set, and is capable of generating an artificial guide sequence given a target set. To
generate maximally fit diagnostic guides, we employed a joint activation maximization framework®’.
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In this joint framework, the WGAN’s generator, G(z|T), transforms the latent vector z into a
candidate guide sequence g, and the objective function, f(g|7"), computes the guide’s fitness.

To generate optimal guides, we compute the gradient of the guide’s fitness with respect to the latent
vector z, and use the Adam optimizer*® to take steps in the direction of this gradient:

LD — () 4 (step size) - V. f(g|T),

where V_f(g|T) = ¥, 29D . 924 314 d is one of the 10 dimensions of the latent vector.

Oxg 0z

This procedure allows us to perform a continuous search over the latent space to generate guide
sequences that have optimal fitness. To more thoroughly explore the fitness landscape and account
for the fact that several local minima may exist in the fitness landscape, we perform multiple searches
over the latent space with each search starting at a different random starting point (sampled from
a normal distribution) in the latent space. A pseudocode overview of the WGAN-AM algorithm is
available in Supplementary Fig. 1 and a high-level schematic is presented in Fig. 1lc.

The WGAN-AM algorithm’s generated guide sequences are implicitly constrained. Since the WGAN’s
generator network approximates the conditional probability distribution P(g|7T’) of the guide-target
pairs in the training set, the guide sequences output by the WGAN’s generator network have simi-
lar properties (e.g., mismatch positions and mismatch types) to the guide sequences used to train
the regression model. Thus, the WGAN-AM algorithm searches regions of the fitness landscape in
which the regression model is likely to accurately predict guide activity. Because of the generator
network’s structure, it is unlikely that the WGAN-AM algorithm will design guides that are so
different than the guide sequences in the training set that the regression model’s predictions are
no longer accurate and the model behaves pathologically. For example, we would not expect the
WGAN-AM algorithm to generate guides that have a much higher number of mismatches against
their target sets than those in the training data for the predictive models.

Evolutionary algorithm

We also tested an unconstrained search algorithm that could reach any region of the fitness landscape—
an evolutionary algorithm. Evolutionary algorithms are biologically-inspired optimization algo-
rithms that are widely used in computer science to search across a domain of candidate solutions.
They have been applied to design biological sequences that exhibit a desired property, such as
peptide sequences that have maximal antimicrobial activity®** !

We build upon this work to develop an evolutionary algorithm that searches over our fitness land-
scape of guide sequences by performing iterative rounds of fitness evaluation, selection, and muta-
tion®!.

First, we initialize a population of guide sequences G, by extracting all of the guide-length se-
quences at the genomic site of interest. Then, we use the objective function f(g|T) to evaluate the
fitness of each of these candidate guides. We sample S parent guides from this population with

a probability ¢; = %, where 3 represents the selection intensity”. We then mutate the

randomly-sampled gulf(ies with a mutation frequency ~. Specifically, for each position in the guide,
we randomly sample a value from the standard uniform distribution, x; ~ Uniform(0,1). If z; < ~,
we mutate the nucleotide at that position (e.g., ‘A’) to one of the other nucleotides (e.g., ‘C’, ‘G’, or
‘U’) with uniform probability. Finally, we add the resulting child guides to the guide population.
We repeat these rounds of fitness evaluation, selection, and mutation for several generations until
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the limit on the number of calls to the objective function, L, is exceeded. We return the guide
sequences in the final population.

Throughout the search process, the MEAs are capable of efficiently recognizing the positions at
which fitness increases if the guide diverges from the consensus sequence, but they don’t explicitly
evaluate each possible nucleotide at those positions. Thus, after the last generation (of the evolu-
tionary algorithm) and after the last outer round (of the WGAN-AM algorithm), the algorithms
perform a local search, where they identify positions at which the generated guide differs from the
consensus, mutate the guide to the other possible nucleotides at each of these positions, and then
select the resulting guide with the best fitness.

A pseudocode overview of the evolutionary algorithm is available in Supplementary Fig. 2, and a
high-level schematic is presented in Fig. 1d.

We implemented and tested all models using TensorFlow 2.8.0°? and FLEXS 0.2.8% in Python
3.7.10.

Hyperparameter Search

We implemented a random search procedure to determine the optimal hyperparameters for our
design algorithms. Because we developed two model-directed exploration algorithms (WGAN-AM
and evolutionary) and we have two objective functions (fy(g|T") and fp(g|T3,T5)), four sets of
hyperparameters were determined by random search.

Multi-target detection objective function

For the multi-target detection objective function, fy;(g|7"), we constructed a random search dataset
of genomes from NCBI’s GenBank database™. We randomly sampled ten viral families from a
list of all viral families that have at least one vertebrate-infecting species. Then, within each of
these ten families, we randomly sampled one vertebrate-infecting species that has at least 100
complete genomes. The ten selected viral species were Primate T-lymphotropic virus 1 (NCBI
taxonomic identifier (taxid): 194440), avian orthoreovirus (taxid: 38170), alphapapillomavirus 10
(taxid: 333754), yellow fever virus (taxid: 11089), eastern equine encephalitis virus (taxid: 11021),
pigeon circovirus (taxid: 1414603), SFTS phlebovirus (taxid: 1933190), human respovirus 3 (taxid:
11216), human metapneumovirus (taxid: 162145), and Betacoronavirus 1 (taxid: 694003). For each
of these ten viral species, we used ADAPT?? to compile and curate complete genomes and used
MAFFT" create an alignment of the curated genomes. We randomly selected ten guide-length
sites from each of the ten alignments, and extracted all of the sequences at each genomic site to
create a target set 1. In summary, we constructed 100 target sets from 100 genomic sites across ten
different viral species—allowing our hyperparameter search process to reflect viral diversity.

We created 100 sets of hyperparameters for the WGAN-AM algorithm and the evolutionary algo-
rithm by randomly sampling from the distributions listed below. For each set of hyperparameters,
we ran the WGAN-AM and evolutionary algorithms across all 100 target sets, and computed the
mean fitness of the guides across the target sets (155 212 far(9]7;), for a set of targets T; at each site).

We ultimately selected the set of hyperparameters that the maximized mean guide fitness.

Variant identification objective function
For the variant identification objective function, fp(g|T1,T5), we created a synthetic random search
dataset. We randomly generated 50 DNA sequences of length 150 to form the on-target sets
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T}, ..., T°. For each of these DNA sequences, we mutated the base in the center of the sequence
(position 75) to another randomly-selected base. These mutated DNA sequences comprised the
off-target sets, Ty,...,T5°. These pairs of on-target and off-target sets (T},7%),..., (7%, T5°)
represent two different sequences, one with a single nucleotide mutation and one without a single
nucleotide mutation.

We created 100 sets of hyperparameters for the WGAN-AM algorithm and the evolutionary algo-
rithm by randomly sampling from the distributions listed below. Furthermore, since the variant
identification objective function fp(g|T7,7T,) has hyperparameters as well, we created 100 sets of
objective function hyperparameters by randomly sampling from the distributions also listed be-
low.

For each set of hyperparameters, we ran the WGAN-AM and evolutionary algorithms across the
50 pairs of on-target and off-target sets (T},73), ..., (T7°,T5°) in a sliding window fashion so that
we would examine a guide placing the SNP at each position of the guide (window length = 28
nt, window stride = 1 nt; selecting the optimal of the 28 guides) to design 50 diagnostic guides.
Because the objective function fp(g|71,T2) has its own hyperparameters k, o, a, and r, it would
not be appropriate to directly compare the fitness of the generated guides across the different
hyperparameter sets. Since our goal is to design guides that have high on-target activity and
low off-target activity, we selected the set of hyperparameters that maximized the mean difference
between predicted on-target and off-target activity (2 352, [A(g|T7 — A(g|T43)]) while simultaneously
generating guides with a high predicted on-target activity (A(g|T}), ..., A(g|T?°) > —1.7).

List of hyperparameters and search intervals
WGAN-AM algorithm parameters determined through random search:

o Number of starting points, 7oyt ~ uniform in [5,35] for multi-target detection objective,
Touter ~ Uniform in [5, 15] for variant identification objective

« Number of steps in each search of the latent space, 7iner ~ uniform in [50, 325] for multi-target
detection objective, 7iper ~ uniform in [50, 230] for variant identification objective

o optimizer learning rate, o ~ log-uniform in [1072,10?|
Evolutionary algorithm parameters determined through random search:

o Selection intensity, 8 ~ log-uniform in [107!? 10%?] for multi-target detection objective, 3 ~

log-uniform in [1072, 10%] for variant identification objective

20—8, %] for multi-target detection objective, v ~ uniform in

| for variant identification objective

o Mutation rate, v ~ uniform in |
0 2
257 2
 Fraction of children in new generation, j ~ uniform in [0.1,0.9]

« Population size, S ~ uniform in [50, 300] for multi-target detection objective, S ~ uniform in
[50, 250] for variant identification objective

o Limit on number of calls to the objective function, L = 1500 to control the runtime of the
algorithm

Variant identification objective function parameters determined through random search:

e a ~ uniform in [0.1,9.1]
e k ~ uniform in [—4, —1]

e r ~ uniform in [0.1, 10.1]
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e 0~ uniform in [—4.5, —1]
Random search-determined hyperparameter values
The hyperparameters determined through these random search procedures are as follows:

Multi-target detection:
WGAN-AM algorithm

* Touter = 28
* Tinner = 275
e « = 1.540127

Evolutionary algorithm

« 3=0077373 . 5=87
e 7 =0.003362 « L =1500
. j =0.794996

Variant identification:
WGAN-AM algorithm

* Touter =8 e k= —3.833902
* Tinner = 144 o 1 =2.973052

o a = 0.632998 e 0= —2.134395
e a=3.769183

Evolutionary algorithm

o« 3 =2.201796 e a=5.897292
o v =0.029049 o k= —2.857755
o j = 0.893401 o r=1.736507
« S=119 e 0= —2.510856

Computational benchmarking of model-directed exploration algorithms

To characterize the ability of the WGAN’s generator network to introduce mismatches at different
positions in the guide and between different alleles, we ran a simulation. We computed the consensus
sequence at each of the 100 genomic sites used in the multi-target detection random search. For
each consensus sequence (1, ..., Cg, we randomly sampled 500 latent variables z ~ N(0,1) and
generated 500 guides conditioned on that consensus sequence using the generator network G(z|C;).
We computed the Euclidean norm of the latent variable as well as the the Hamming distance between
the WGAN-AM generated guide and the consensus sequence, which is the number of positions at
which the two guides have different nucleotides.

We found that that as the Euclidean norm of the latent variable z increases, the guide generated
by the WGAN’s generator network has a higher Hamming distance from the sequence that it was
conditioned upon. In other words, as the latent variable z gets farther from the origin, the generator
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introduces more mutations into the generated guide. This property is illustrated in Supplementary
Fig. 15b. Thus, the latent space z has an interpretable biological meaning.

Additionally, to benchmark the algorithms’ ability to design guides for the variant identification
objective, we created a synthetic benchmarking dataset. In order to avoid biasing the sequence
composition towards a limited set of pathogen genomes and evaluate the performance of the methods
across a large distribution of sequences, we randomly generated 100 pairs of DNA sequences, each
pair consisting of targets that differ by one nucleotide. The MEAs were run on this dataset and
the results are shown in Fig. 3b-d.

Designing diagnostic guides for experiments

We applied our model-directed exploration algorithms to design diagnostic guides for both the
multi-target detection and variant identification applications.

Multi-target detection experiments

For the multi-target detection application, we selected five RNA viruses that are of public health
interest and cause significant morbidity and mortality globally. We used ADAPT?? to download
and curate complete genomes for dengue virus (taxid: 12637), influenza A virus (segment 2, taxid:
138949), and enterovirus B (taxid: 138949) on August 30, 2021 from NCBI’s GenBank™. For SARS-
CoV-2, we downloaded all complete genomes available on GISAID®® on June 28, 2021, removed the
sequences flagged as ‘low quality’, and randomly sampled 10,000 of the genomes. For Lassa virus
(segment S, taxid: 11620), we directly downloaded complete genomes from GenBank® using the
following search criteria: ‘txid11620[Organism:exp] AND “segment S” AND “complete sequence”’
on August 31, 2021. We used MAFFT to generate alignments for these five viral species™.

The predictive models (R(g|T) and C(g|T)) employed in this work require an input of a 48 nt
target sequence (a 28 nt guide-binding target sequence plus 10 nt of context on each side). Thus,
we extracted 48 nt sliding windows along the genome and considered the target set T at that
genomic site. We removed the genomic sites with less than 10 valid sequences (sequences that are a
contiguous 48 nt and have no ambiguity or gaps). Both of the model-based exploration algorithms
were run on all of these target sets using the multi-target objective function, fj;(g|T"), to design
guides for these genomic sites.

To benchmark the performance of our model-based exploration algorithms against current
methods, we used ADAPT to design guides at each of these genomic sites. ADAPT is
software suite that employs machine learning and combinatorial optimization to design di-
agnostic guides and is a state-of-the-art in the field®>. When running ADAPT, we used
the arguments ‘-w 28 -gl 28 --predict-casl3a-activity-model --obj maximize-activity
-hgc 1 --cluster-threshold 0.3" with SEARCH-TYPE set to sliding-window, such that the
CNN-based predictive model was used and ADAPT was restricted to designing one guide at each
site. We refer to this usage of ADAPT as “model-based choice” (MBC), since the predictive model
is being used to select a maximally fit sequence present in the ground set.

Furthermore, we computed the consensus of the sequence alignment at each of these genomic sites to
represent a simple baseline approach to guide sequence design. These guides are called “consensus
guides” throughout the text.

We sought to appropriately compare the performance of the guides designed by the baseline methods
(MBC and the consensus) with the performance of the guides designed by our model-directed

19


https://doi.org/10.1101/2023.09.20.557569
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.20.557569; this version posted September 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

exploration algorithms (WGAN-AM and evolutionary). It is not tractable to experimentally test
the tens of thousands of diagnostic guides designed. Thus, for every genomic site, we computed a
relative performance metric, RP;, the summed fitness of the guides designed by the model-directed
exploration algorithms subtracted by the summed fitness of the guides designed by the baseline
methods.

RPz - (f(gWGANujz) + f(.gevolutionaryu—’i)) - (f(gconsensusu—%) + f(gMBC'ﬂ))

Previous studies?>?* have shown that LwaCasl3a exhibits reduced activity when targeting a ge-
nomic sites with a G at the PFS, so we only considered genomic sites with a non-G at the PFS for
experimental testing. For each viral species, all genomic sites with a non-G at the PFS were sorted
into quantiles by their respective RP;, so genomic sites with the highest RP; were in the fourth
quartile. We randomly sampled two sites from the fourth quartile, and randomly sampled one site
from the first quartile for each viral species. This method for selecting genomic sites allows us to
experimentally test sites at which the guides designed by the model-directed exploration algorithms
were likely to have superior performance than the guides designed by previous methods, as well
as sites at which guides designed by previous methods were likely to have similar or better per-
formance than the guides designed by the model-directed exploration algorithms. Each panel with
experimental multi-target detection results shows one such site.

To computationally characterize guide performance, we computed the coverage of the guides de-
signed by the MEAs and baseline methods across different genomic windows in the viral pathogens,
as shown in Fig. 2a and Supplementary Fig. 3.

A guide g was considered to detect a target if it was predicted to be active by the classification
model (C(g|t) > 0.577467) and was predicted to be in the top quartile of activity by the regression
model (R(g|t) > —1.2801363), based on the “highly active” criterion used in ref. 22. The coverage
was computed by determining the percentage of targets a guide detects in the given target set.

We computed the predicted guide activity across all targetable genomic sites in these pathogens, as
shown in Fig. 2b and Supplementary Fig. 4. Targetable genomic sites are defined as sites at which
the baseline methods had meaningful activity (A(g“’“s"'“s“s@JFA(gMBdT) > —2.5; in practice, it would
not make sense to target sites that fall below this minimal threshold). In these figures and in all
boxplots throughout the manuscript, the box represents the first and third quartiles (Q1 and @3)
and the whiskers extend to from Q1 —1.5- IQR to Q@3+ 1.5- IQR.

Variant identification experiments

For the variant identification application, we sought to design diagnostic guides that could differen-
tiate between dengue virus (DENV) serotypes 1-4 and the SARS-CoV-2 WHO-designated variants
of concern. For DENV, we downloaded all available complete genomes for serotypes 1-4 from the
Virus Pathogen Database and Analysis Resource (ViPR)?° on February 1, 2022. We used MAFFT"*
to generate an alignment of the genomes.

For SARS-CoV-2, we downloaded the ‘full length variant alignment’ from GISAID on Jan-
uary 22, 2022. This alignment contains representative sequences for the targeted SARS-CoV-
2 lineages: Wuhan reference, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2),
Omicron (BA.1), and Omicron (BA.2). The GISAID accessions for these reference genomes
are EPI_ISL 402124, EPI_ISL_ 674612, EPI_ISL 940877, EPI_ISL_ 2777382, EPI_ISL_1758376,
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EPI_ISL_ 6914029, and EPI_ISL_7190366, respectively. We referenced analyses on the CoVariants®’
and outbreak.info’® websites to confirm that the insertions, deletions, and mutations targeted by
our guides were highly conserved and were present in at least 85% of genomic sequences of each
variant.

The model-directed exploration algorithms were run on the DENV and SARS-CoV-2 alignments
described above to design guides that were specific to each serotype/genotype/lineage.

To benchmark the performance of the model-directed exploration algorithms for variant identifica-
tion of lineages (beyond a single SNP), we implemented a baseline approach. This baseline approach
designs guide sequences by finding the 28-nt subsequence of the on-target consensus that has the
highest Hamming distance from the off-target consensus and has an average nucleotide identity of
at least 90% across the on-target genomes. This approach mimics the strategy (usually performed
by hand) of identifying regions that are conserved among the on-target genomes but divergent from
the off-targets.

For the antimalarial resistance panel, we downloaded reference sequences for the P. falciparum genes
Pfmdri, Pfert, Pfk13, Pfdhps from GenBank accessions HQ215532.1, LC498250.1, KT328114.1,
and KE123491.1, respectively. For the K417N/T identification task, we used the same SARS-
CoV-2 sequences that we previously downloaded from GISAID, as described above. For the Zika
virus S139N identification task, we downloaded the reference sequence from GenBank accession
MT483911.1. We extracted the 250 nt genomic regions encapsulating the sites of interest in each
gene and used them as the target sequences.

The model-directed exploration algorithms were run to design guides for each of the 4 single nu-
cleotide polymorphisms (SNPs) of interest in the P. falciparum genome, the K417N/T SNP in
SARS-CoV-2, and the S139N SNP in Zika virus. We also sought to benchmark our algorithms
against a baseline. The “synthetic mismatch” strategy (where the SNP is placed at position 26 of
the protospacer and a mismatch at position 24 is introduced against both the derived and ancestral
targets) is currently the standard approach for designing Casl3a guides that identify SNPs*%%9,
The synthetic mismatch creates a double mismatch against the off-target sequence (positions 24
and 26), but only one mismatch against the on-target (position 24). We employed the synthetic
mismatch strategy to design guides that target these 4 SNPs of interest, enabling us to benchmark
the performance of our methods against the current standard.

Tag-adjacent mismatch experiments

As discussed in the main text, the model-directed exploration algorithms often introduce a mismatch
at position 28 in the guide when targeting a genomic site with G nucleotide at the protospacer-
flanking site (Fig. 3). We refer to this mismatch the “tag-adjacent mismatch” (TAM) and hypoth-
esized that it may enhance guide-target activity.

To determine if this was the case, we designed an experimental library consisting of targets that
were representative of viral sequence diversity. We randomly sampled four viral families from a list
of all viral families that have at least one vertebrate-infecting species. Then, within each of these
four families, we randomly sampled one vertebrate-infecting species that has at least 100 complete
genomes. The four selected viral species were primate tick-borne encephalitis virus (NCBI taxid:
11084), human mastadenovirus D (taxid: 130310), hepatitis B virus (taxid: 10407), and Zaire
ebolavirus (taxid: 186538). For each of these viral species, we downloaded all available complete
genomes from GenBank® on February 15, 2022 and used MAFFT"* to create an alignment. We
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randomly selected a genomic site with a G nucleotide at the PF'S in each of the four alignments and
used this as our target sequence. We mutated the G nucleotide at the PFS in the original target
sequence to create three additional targets with a non-G nucleotide at the PFS. Furthermore, since
the nucleotide directly 3’ of a site with a G at the PFS also impacts activity??, we additionally
mutated the original target sequence to create targets that have an anti-tag region of GC, GG, GA,
and GT.

For each of the four species, we designed the guide sequence without a TAM by simply extracting
the 28 nt protospacer-binding region from the original target sequence. We also designed three
guide sequences with the TAM by mutating the nucleotide at position 28 of the guide’s protospacer
to the other three possible bases at that position.

Preparing target sequences for experiments

To experimentally test the performance of our guides, we first designed target sequences against
which we would test guides. We designed these targets to be representative of viral genomic di-
versity. We ran ADAPT’s pick test_targets.py program developed in ref. 22, with the following
arguments: --num-representative-targets 5 --min-target-len 250. This script extracts a
region of the alignment that encapsulates the guide-binding sites and is at least 250 nt long. Then,
it clusters the resulting sequences and determines the medoid of each cluster, which are used as the
representative target sequences. At all of the genomic sites we experimentally tested, the targets
represented at least 95% of the total genomic diversity.

We added a T7 promoter sequence (5°-GAAATTAATACGACTCACTATAGGG-3’) followed by a
positive control sequence (5’-CACTATAGGGGCTCTAGCGACTTCTTTAAATAGTGGCTTAAAATAAC-3’) to
the 5 end of every target sequence. In each experiment, we included a crRNA
with a protospacer that was complementary to this positive control sequence (5°-
GCTCTAGCGACTTCTTTAAATAGTGGCT-3’).  This positive control enabled us to verify that the
target sequences were synthesized correctly. P. falciparum’s genome may pose DNA syn-
thesis challenges because it is GC-poor, so we added a second positive control sequence
(5 ?~GAATGGAAGCACCGAGAGTATATGAAGATCTTCATGTGTGCAAAAGAATGGTAAAGCAGAGAAGGAGC-3’) to the
3" end of all the P. falciparum target sequences. In each experiment that had P. falciparum
targets, we included crRNA with a protospacer that was complementary to this positive control
(5 ?-TTCTTTTGCACACATGAAGATCTTCATAT-3’ )

Preparing guide sequences for experiments

All of the methods developed and used in this work (including the model-based exploration algo-
rithms and the baseline methods) output guide sequences in the frame of Casl3’s protospacer. To
prepare the guide sequences for experiments, we took the reverse complement of them to trans-
form them to the frame of the CRISPR-Cas13 spacer and added the LwaCas13 direct repeat (5°-
GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAAC-3?) to the 5 end of the crRNA sequence.

Experimentally evaluating diagnostic guide designs

Experimental methods

We used the mCARMEN?" platform to experimentally test the performance of diagnostic guides.
Brieflyy, mCARMEN is a CRISPR-based diagnostic technology that uses a Fluidigm microfluidic
chip to enable highly multiplexed testing of dozens of diagnostic guides against dozens of RNA
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targets. We followed the protocol described in the “General mCARMEN procedures” section of
ref. 37, with the following modifications:

All DNA targets were ordered as gBlocks from Integrated DNA Technologies. All crRNAs and the
quenched synthetic fluorescent RNA reporter (FAM/rUrUrUrUrUrUrU/3IABKFQ/) were also ordered
from Integrated DNA Technologies.

The DNA targets were serially diluted to the concentrations of 10'°,10° and 10® copies/pL, and
1.43puLL of each target served as input to each sample mix. The quenched synthetic fluorescent
reporter was included in the sample mix at a concentration of 500 nM. The crRNAs were included
in the assay mixes at a concentration of 212.5 nM, and LwaCas13 from GenScript was included in
the assay mix at a concentration of 42.5 nM.

After chip loading, the Fluidigm Biomark HD was set to a constant temperature of 37 °C and was
used to image the IFC on the FAM and ROX channels every five minutes for three hours.

Analysis of experimental data

In order to robustly characterize the performance of each of the guide-target pairs, we com-
puted reference-normalized background-subtracted fluorescence values, as was done in refs. 37
and 22.

. Sy — So
reference-normalized fluorescence = ———

Ry — Ry

where S; is guide-target pair’s FAM signal at time point ¢, Sy is the guide-target pair’s FAM signal
at time point 0, R, is guide-target pair’s reference ROX signal at time point ¢, and Ry is the
guide-target pair’s reference ROX signal at time point 0.

To compute the reference-normalized background-subtracted fluorescence of each guide-target pair
at time ¢, we subtracted the reference-normalized fluorescence of the no-template control at time
t from the reference-normalized fluorescence of the guide-target pair at time t. Thus, if a guide-
target pair has a reference-normalized background-subtracted fluorescence greater than 0, it has a
fluorescence that is higher than the no-template control signal.

In the heatmaps of fluorescence, we plotted the reference-normalized background-subtracted flu-
orescence at the one hour timepoint. In the kinetic curves of fluorescence, we plotted all the
reference-normalized background-subtracted fluorescence values collected throughout the course of
the reaction (¢ = 0 to 180 minutes).

Code availability

The MEA algorithms are available under the MIT license at https://github.com/broadinstitute/
mea-casl13. The repository contains detailed instructions on how to run the MEAs on any input
genomic sequences.

The code used to run the analyses in this manuscript is available at https://github.com/broadinstitute/
mea-casl3-analysis.
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Supplementary Note 1

This note estimates the size of the sequence landscape that must be searched over to generate
artificial guides.

The total number of possible 28-nt guides is 42® ~ 7 x 1016,

Optimally fit guide sequences would be nearby in sequence space to the complement of their target
sequence. If M is the upper limit on the number of mismatches an optimal guide can have to this
sequence, there are Zf‘i 0 (2;3) - 3" in this target-adjacent guide set. This totals to ~2.5 x 107 and
~2.9 x 10° for M =5 and M = 7, respectively. In many applications, we would explore this space
not just once, but at every site in a targeted genome (tens to hundreds of thousands of sites for a
typical viral genome); moreover, if a set of targets has high variation, we would explore the space
around many observed alleles of the target. It would be inefficient to explore this vast space of

potential guide sequences with an exhaustive, brute-force search.
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Supplementary Figures

Algorithm 1 WGAN-AM algorithm for guide design.

Input

T target set

f(g|T")  objective function that returns the fitness of a guide g against T

G(z|T) pre-trained generator (from WGAN) function that generates a guide given the latent
variable z and T

Touter number of randomly-selected starting points for the latent space search

Tinner number of steps taken by the Adam optimizer in each latent space search

Adam(V.f(¢|T),«) Adam optimizer function that uses information about the gradient to
‘step’ the latent variable in the direction that increases fitness, where « is its learning rate
Output

set of generated guide sequences

1 function WGAN-DESIGN-GUIDE(f, T, G, Touter, Tinner, Q)

2 Q<0

3 for i < 1 to ryyzer dO

4 2z ~N(0,1) > Sample from normal dist. to obtain latent variable
5 for j < 1 to rjpner do
6
7
8
9

g G(%]|T) > Use WGAN to generate guide g
zjy1 < Adam(V_, f(g|T), )

Q<+ QU {G(zrinner+1 |T)}

return Q

Supplementary Figure 1 — Pseudocode of the WGAN-AM algorithm.
The WGAN-AM algorithm is further described in the Methods section.
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Algorithm 2 Evolutionary algorithm for guide design.

Input
T target set
f(g|T)  objective function that returns the fitness of a guide g against T
I5; selection intensity
I initial set of diagnostic guides, generally the sequences extracted at the targeted
genomic site in the multiple sequence alignment
0 mutation rate
S population size
L limit on number of calls of the objective function, f(g|T")
Ji proportion of each generation composed of children
Output

set of generated guide sequences

1 function EVOLUTIONARY-DESIGN-GUIDE(f, 3, v, S, L, I, T, j)

2 @ < Sample S guides (ay,...,as) from I with probability ¢f T )

Z\_I\ eB-F(a;|T)
=1

3. 2+ [Ql-j

4 M <0

5 while M < L do

6 G < Sample z guides (b1, ...,b,) from @ with probability %

7 Q) + Sort(Q) > Sort guides in @) by their fitness, highest to lowest
8 Q<+ Q0:5—72] > Remove z lowest-fitness guide sequences from @)
9 for g; € G do

10 ¢; < Mutate(g;, ) > Introduce random mutations to guide with frequency
11 Q + QU{c}

12 M <+ M+1

13 return Q

Supplementary Figure 2 — Pseudocode of the evolutionary algorithm.
The evolutionary algorithm is further described in the Methods section.
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Supplementary Figure 3 — Coverage of guides designed by the MEAs and baseline methods. Proportion of
genomes predicted to be detected by the guides designed with MEAs (purple and green) and baseline methods (light and
dark gray) for (a) enterovirus B, (b) Lassa virus segment S, (c) influenza A virus segment 2, and (d) SARS-CoV-2. A
guide is considered to detect a target if it meets the criteria described in the Methods.
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Supplementary Figure 4 — Relative fitness of guides designed by the MEAs and baseline methods. The relative
fitness of the guides designed by MBC, WGAN-AM, and evolutionary algorithms at sites in the (a) enterovirus B, (b) Lassa
virus segment S, (c) influenza A virus segment 2, and (d) SARS-CoV-2 genomes. The relative fitness is the difference
between the fitness of the labeled algorithm's guide and the fitness of the consensus sequence guide (by definition,
consensus guides have a fitness of 0, so positive plotted values indicate fitnesses exceeding the consensus guide's fitness).
The distribution is across targetable genomic sites (see Methods).
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Supplementary Figure 5 — Divergence of the MEA-designed guides from observed sequences. Histograms

representing the minimum Hamming distance between the guides designed by the MEA and baseline algorithms compared
to all target sequences at a given genomic site—that is, the Hamming distance between a guide and the target sequence
most similar to that guide. Shown for (@) enterovirus B, (b) Lassa virus segment S, (c) influenza A virus segment 2, and
(d) SARS-CoV-2. The WGAN-AM (purple) and, especially, the evolutionary (green) algorithms tend to produce guides
that are more dissimilar to any of the target sequences (that is, more artificial) than the baseline algorithms (light and
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Supplementary Figure 6 — Kinetic curves for multi-target detection tasks. Normalized fluorescence over the course
of the reaction for the guides targeting the genomic sites whose heatmaps are shown in Fig. 2. Parentheticals indicate the
percentage of all genomes represented by the target and concentrations of targets are indicated above each plot with units
of copies/pL. (a) Kinetic curves for a site in dengue virus (heatmap in Fig. 2e). (b) Kinetic curves for a site in enterovirus
B (heatmap in Fig. 2f). (c) Kinetic curves for a site in Lassa virus segment S (heatmap in Fig. 2g). (d) Kinetic curves
for a site in influenza A virus segment 2 (heatmap in Fig. 2d).
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Supplementary Figure 7 — Experimental performance of multi-target detection guides. Each panel in this figure
shows the experimental performance of guides designed for a specific genomic site. Panels (a—f) represent genomic sites
in the top quartile of relative performance, while panels (g—k) represent genomic sites in the bottom quartile of relative
performance (RP; see Methods for definition). The experimental data for the other four genomic sites in the top quartile
of relative performance is shown in Fig. 2 and Supplementary Fig. 6. The left side of each panel is a heatmap representing
fluorescence at 1 hour. Each column represents a target and has width proportional to the percentage of sequence diversity
it represents, while each row is a concentration of the target sequence in copies/pL. The right side of each panel is a set
of curves representing the normalized fluorescence of the guides against the specified targets. The color of these curves
matches the color of the design method used to label each heatmap. Parentheticals indicate the percentage of all genomes
represented by the target. (a) Site in dengue virus (top quartile of RP). (b) Site in enterovirus B (top quartile of RP).
(c) Site in Lassa virus segment S (top quartile of RP). (d) Site in influenza A virus segment 2 (top quartile of RP). (e)
Site in SARS-CoV-2 (top quartile of RP). (f) Site in SARS-CoV-2 (top quartile of RP). (g) Site in dengue virus (bottom
quartile of RP). (h) Site in influenza A (bottom quartile of RP). (i) Site in enterovirus B (bottom quartile of RP). (j)
Site in SARS-CoV-2 (bottom quartile of RP). (k) Site in Lassa virus (bottom quartile of RP).
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Supplementary Figure 8 — Improvement of the MEAs over baseline methods when targeting variably diverse

genomic sites. Relative improvement of MEA-designed guides over the consensus guides grouped by the Shannon
entropies of the genomic sites. The distribution is across all genomic sites in the 5 viral species considered for the multi-
target detection objective (dengue virus, influenza A virus, enterovirus B, Lassa virus, and SARS-CoV-2). Relative fitness
is defined as the fitness of the guide subtracted by the fitness of the consensus guide at that genomic site. By definition,
if a guide has a relative fitness greater than zero, it is more fit than the consensus guide. The dots in the center of each
violin represent the mean relative fitness for that decile. (@) Distribution of relative fitness for guides designed by the
WGAN-AM algorithm. (b) Distribution of relative fitness for guides designed by the evolutionary algorithm.
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Supplementary Figure 9 — Experimental performance of guides designed for SNP and variant identification
tasks. Normalized fluorescence over time is shown for (a) C580Y in Pfk13, (b) K76T in Pfcrt, (c) Y184F in Pfmdrl,
and (d) dengue virus serotypes 1-4. The title of each plot indicates the target the guides were designed to detect as the
on-target. On-target solid curves represent the fluorescence of the guide for its on-target and the dotted curves represent
the fluorescence of the guide against its off-target. In (d), there are multiple off-targets for each discrimination task, so
the dotted off-target curve shows the maximum fluorescence of the guide across the off-targets computed at each time
point (e.g., the off-target curves for DENV1 represent the maximal fluorescence across the DENV2, DENV3, and DENV4
targets at each time point in the reaction). All targets were present at a concentration of 108 copies/pL.
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Supplementary Figure 10 — Visualization of guide-target mismatches in guides designed for the multi-target
detection objective. Each panel shows guide sequences and representative target sequences for one experimentally-tested
genomic site in each of the five viral pathogens considered. The guides are reverse-complemented, from their sequence in
a crRNA, to be in the same frame as the target sequences, and both the guides and targets are shown as DNA sequences
(with T replacing U). The black blocks indicate that there is no mismatch between the guide and target, while the blue,
green, yellow, and red blocks represent A-B, G-H, T-V, and C-D mismatches respectively. The blocks in purple represent
G-U wobble RNA base pairing. Parentheticals next to target names indicate the percent of sequence variation represented
by that target. (a) A site in dengue virus. The baseline guides have mismatches with target 2 at positions 10 and 11 and
also have mismatches with target 3 at positions 10, 11, and 12. The MEAs mutate the guide at position 10 to remove
a mismatch at this position with targets 2 and 3, but introduce a mismatch at this position with targets 1, 4, and 5.
Experimentally, the baseline guides have nearly no fluorescence on targets 2 and 3; in contrast, the MEA-designed guides
achieve strong fluorescence on targets 2 and 3, while retaining similar performance on targets 1, 4, and 5 (Fig. 2e). Thus,
the MEA-designed guides can detect nearly 44% more sequence diversity. (Legend continued on the subsequent page.)
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Supplementary Figure 10 — (b) A site in enterovirus B. Here, the guides designed by the baseline approaches have three
mismatches in close proximity of one another (at positions 10, 13, and 16) with target 1, the target most representative
of sequence variation. The MEAs mutate the nucleotide at position 10 and avoid the deleterious effect of this triple
mismatch, but do introduce a mismatch with target 2 at this position. The baseline guides achieve nearly no fluorescence
on target 1, while the MEA-designed guides are highly active on target 1, and still retain robust activity on target 2
(Fig. 2f). (c) A site in influenza A virus segment 2. The baseline guides have mismatches with target 2 at positions 6
and 10. The MEAs eliminate the position 6 mismatch against target 2 while not introducing mismatches to other targets
(e.g., target 1) by employing G-U wobble base pairing between the RNAs. The MEAs also mutate the nucleotide at
position 10 to remove the mismatch against target 2, but by doing this, they introduce a mismatch at position 10 against
target 1. These sequence changes enable the MEA-designed guides to nearly triple the fluorescence against target 2 as
the baseline guides. However, because they do introduce a mismatch to target 1, they have slightly lower fluorescence at
the initial timepoints against this target but still achieve saturating fluorescence by the later timepoints of the reaction
(Fig. 2d). (d) A site in Lassa virus segment S. At this site, MEA-designed guides achieve substantially greater fluorescence
on both targets 2 and 4 (Fig. 2g). From the pattern of guide-target mismatches, it is not clear why the MEA-designed
guides perform better. As one hypothesis, the close proximity of the instances of G-U wobble base pairing at positions
16 and 19 of the baseline guides might be deleterious to activity; here, the MEAs might be exploiting features of Casl3a
targeting that are not currently well-characterized. (e) A site in SARS-CoV-2. Previous work (Fig. 2e in ref. 22) has
shown that a T-V guide-target mismatch at position 1 is strongly associated with increased guide activity. Both the
WGAN-AM and evolutionary algorithms introduce this mismatch. Experimentally, the evolutionary and WGAN-AM guides
both achieve slightly greater fluorescence than the baseline (MBC and consensus) guides, likely due to their position 1
mismatch (Supplementary Fig. 7e).

Protospacer region of CRISPR RNA

WGAN-AM guide IACTATATGTACTTGGACAGAAGTGATGCI
Evolutionary guide ACTATATGTACTTGGACAGACGCAATGC
S139N target - TGGGAGTGCATACTATATGTACTTGGACAGAAACGA:-
S139 target - TGGGAGTGCATACTATATGTACTTGGACAGAAGCGA:-

Protospacer region of CRISPR RRMtospacer-flanking site
5 3

Supplementary Figure 11 — MEAs exploit Casl3a’s protospacer context preferences to design optimal variant
identification guides. When targeting a SNP from a non-G nucleotide a G nucleotide, the MEAs often place the G
nucleotide in the off-target at the PFS for optimal SNP discrimination. In this schematized example, the guides were
designed to achieve high activity on the S139N target and low activity on the S139 target. Both the WGAN-AM and
evolutionary algorithm positioned the guides such that the G nucleotide in the S139 off-target sequence is located at the
PFS, thus lowering off-target activity, as is experimentally observed (Fig. 3e).
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Supplementary Figure 12 — Divergence of MEA-designed guides from the consensus sequence. Fraction of MEA-
designed guides for the multi-target detection objective that have a mismatch against the consensus genome sequence, at
each position in the guide-target pairing. (@) Fractions taken across all genomic sites from all of the five viral pathogens
considered (dengue virus, influenza A virus, enterovirus B, Lassa virus, and SARS-CoV-2). (b) Fractions taken across only
the genomic sites with a G nucleotide at the PFS, again across all of the five viral pathogens considered. On this subset of
sites, the MEA-designed guides are relatively likely to have a terminal mismatch in the protospacer, suggesting the benefit
of such a mismatch when there is a G nucleotide at the PFS.
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Supplementary Figure 13 — Evaluation of the ability of the tag-adjacent mismatch to rescue guide activity

for different target sets. Normalized fluorescence curves are shown for the target sets where the tag-adjacent position
(TAM position) in the target is a (a) G nucleotide, (b) A nucleotide, or (c) C nucleotide. All guides are identical to the
targets at positions 1-27 in the protospacer. The colored lines represent guides with a tag-adjacent mismatch (at position
28), while the black dashed lines represent guides without a mismatch to the target. The dinucleotide above each plot
indicates the first two nucleotides of that target’s anti-tag region, and the guide sequences represented in the schematic
are reverse-complemented compared to the spacer sequence in the CRISPR RNA. The same curves for the target set with
a T nucleotide at the tag-adjacent position are shown in Fig. 3i.
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Supplementary Figure 14 — Visualization of the fitness function for the variant identification objective. Colors
represent the value of the variant identification fitness function according to on-target (T;) and off-target (T) activities
(see Methods for the function). A maximally-fit guide g has a low maximum activity across the off-target set T,
max:c7,A(g|t), and a high minimum activity across the on-target set T3, min;e7; A(g|t). (@) Using hyperparameters
determined by the WGAN-AM random search. (b) Using hyperparameters determined by the evolutionary algorithm
random search.
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Supplementary Figure 15 — Properties of WGAN-AM algorithm. (a) Architecture of generative model of Wasserstein
generative adversarial network (WGAN) for generating guides, inspired by that of ref. 25. The input into the generative
model, the latent vector z, is a 10-dimensional vector sampled from the standard normal distribution. z is upsampled
through a linear layer and reshaped and padded to create a 48 by 10 matrix. In the concat operation, the one-hot-encoded
consensus sequence of the target set T (with dimensions 48 by 4) is concatenated with the output of the previous layer to
create a 48 by 14 matrix. This matrix is passed through three residual blocks. Each residual block (resblock) consists of
two layers, with each layer containing a 1D convolutional layer with 14 filters of stride 1 and width 3. Next, in the conv
operation, a convolutional layer with 4 filters of width 1 and stride 1 is applied to the output of the resblock to create
4-channel encoded guide sequence. Finally, the matrix is cropped to remove the 10 by 4 context on each side of the guide
protospacer sequence, and the resulting 28 by 4 matrix is passed through a softmax layer so that each element in the
matrix represents the probability of having a certain base at that position. The guide sequence contains the base at each
position with the greatest probability. (b) Relationship between the Euclidean norm of the latent variable input to the
WGAN's generator network and the number of mutations introduced into the guide relative to the consensus sequence.
All guides with a Hamming distance < 10 are shown, and the computational experiment was performed as described in
the Methods.
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