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Abstract

The in vivo responses of dorsal raphe nucleus (DRN)
serotonin neurons to emotionally-salient stimuli are a puz-
zle. Existing theories centred on reward, surprise, or un-
certainty individually account for some aspects of sero-
tonergic activity but not others. Here we find a unifying
perspective in a biologically-constrained predictive code
for cumulative future reward, a quantity called state value
in reinforcement learning. Through simulations of trace
conditioning experiments common in the serotonin liter-
ature, we show that our theory, called value prediction,
intuitively explains phasic activation by both rewards and
punishments, preference for surprising rewards but ab-
sence of a corresponding preference for punishments,
and contextual modulation of tonic firing—observations
that currently form the basis of many and varied sero-
tonergic theories. Next, we re-analyzed data from a re-
cent experiment and found serotonin neurons with activity
patterns that are a surprisingly close match: our theory
predicts the marginal effect of reward history on popula-
tion activity with a precision <0.1 Hz neuron—". Finally,
we directly compared against quantitative formulations
of existing ideas and found that our theory best explains
both within-trial activity dynamics and trial-to-trial modu-
lations, offering performance usually several times better
than the closest alternative. Overall, our results show that
previous models are not wrong, but incomplete, and that
reward, surprise, salience, and uncertainty are simply dif-
ferent faces of a predictively-encoded value signal. By
unifying previous theories, our work represents an im-
portant step towards understanding the potentially het-
erogeneous computational roles of serotonin in learning,
behaviour, and beyond.
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Introduction

What do the activity patterns of serotonin neurons encode?
Over a quarter-century ago, Schultz, Dayan, and Montague
(1) persuasively argued that the phasic activity of dopamine
neurons might encode the reward prediction errors (RPEs)
of reinforcement learning (RL) theory (2). Given the deep

connections between the dopamine and serotonin systems,
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Fig. 1. Summary of qualitative tuning features of serotonin neurons captured by
predictive value coding model. Curves indicate the activity of serotonin neurons over
time, measured either as firing rate (11) or calcium fluorescence (5, 12, 13). A Phasic
activation by predicted rewards over short timescales (11) emerges gradually during
learning (5, 12, 13). Depending on the experiment, activity takes the form of a phasic
cue-associated peak followed by a plateau (left; 11, 13), or a ramp leading up to
reward (right; (12)). B Tonic activity modulated by reward or punishment context over
long timescales (11). C Stronger phasic activation by unpredicted (right) compared
with predicted (left) rewards (11, 13). D Phasic activation by punishments whether
predicted (left) or not (right) (5, 11, 13).

both of which are neuromodulatory systems with important
and well-studied roles in regulating mood, learning, and
behaviour (3), it is surprising that no single account of the
responses of serotonin neurons enjoys a similar level of
support.

There are several possible reasons for this lack of con-
sensus. One possibility is that the serotonin system is not a
monolith, but rather a heterogeneous collection of partially-
overlapping sub-systems with diverse coding features (4—
6). Another possibility, in no way mutually-exclusive, arises
from the fact that experimental and theoretical work in the
serotonin field, including our own, has been deeply shaped
by the potentially incorrect assumption that the activity pat-
terns of serotonin neurons can be divided into phasic and
tonic components that reflect essentially unrelated quan-
tities (3, 7—10). This separation of timescales is reflected
in the currently fragmented picture of the dominant tuning
features of serotonin neurons. Rejecting this assumption
could lead to more clarity about serotonergic function within
and across raphe sub-systems.
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Over the past decade, detailed experimental character-
izations of the diverse in vivo responses of genetically-
identified serotonin neurons to emotionally-salient stimuli
have revealed some common themes in their tuning fea-
tures, even if these patterns remain difficult to interpret. In
trace conditioning experiments, the activity patterns of sero-
tonin neurons are dominated by phasic bumps, plateaus,
or ramps preceding expected rewards that emerge over the
course of learning and diminish during reversals (Fig. 1A;
5, 11-13), modulation of tonic activity by reward or punish-
ment context (Fig. 1B; 11), a phasic preference for unpre-
dicted over predicted rewards (Fig. 1C; 11, 13), and phasic
activation by punishments whether predicted or not (Fig.
1D; 5, 11, 13). To explain aspects of these observations,
serotonin neurons have been proposed to encode current
or future reward [Fig. 1A (14) or, separately, B (11), but not
D], surprise [Fig. 1C but not D (13)], or salience [Figure 1D
but not C (5)]. The reward (14), surprise (13), uncertainty
(15), and salience (5) theories do not offer detailed predic-
tions about the dynamics of serotonin neuron activity, nor
can any of them individually account for all of their domi-
nant tuning features (Table 1). Other serotonergic theories
related to persistence (16), confidence (17), learning rate
(18), and discounting (19, 20) focus on explaining the ef-
fects of serotonergic manipulations on behaviour and do
not connect directly to the naturalistic tuning features of
these cells (but see 15). Even the best established tuning
features of serotonin neurons therefore lack a consistent
interpretation.

Here we argue that existing qualitative serotonergic theo-
ries are incomplete, not incorrect, and that reward, surprise,
salience, and uncertainty are simply different aspects of a
single quantity encoded in the activity patterns of serotonin
neurons. To formulate a consistent interpretation of the
dominant reward and punishment tuning features of sero-
tonin neurons outlined above, we combine top-down ideas
from theories of RL (2) and predictive coding (21, 22) with
recent bottom-up insights into the computational features
of the DRN (10). We hypothesized that serotonin neurons
predictively encode a weighted average of future reward, a
quantity referred to as state value in RL, via the dominant
biophysical feature of this cell type: exceptionally strong
and long-lasting spike frequency adaptation. We formalize
this hypothesis in a quantitative model that we refer to as
as the value prediction theory of serotonin.

Harkin etal. | Serotonin predictively encodes value

To test our value prediction theory, we simulate trace con-
ditioning experiments common in the serotonin literature
(11-13, 15) and show that our model provides a consistent
account of the main established tuning features of these
cells. We also interpolate and extend previous results, pro-
viding intuitive mechanistic connections between seem-
ingly unrelated observations, resolving apparent conflicts
in the literature, and making experimentally testable pre-
dictions. Next, we re-analyze a recently-published dataset
from a trace conditioning experiment (23), finding activity
patterns consistent with our hypothesis. Finally, to counter
our own confirmation bias, we explicitly compare against
quantitative formulations of previous theories and find that
value prediction best explains the data by a large margin.
Our theoretical and empirical results reveal a surprisingly
precise quantitative code for value in the serotonin system.

Results

Predictive encoding of value signals

Reinforcement learning describes the process by which an
agent learns a policy for controlling the state of its envi-
ronment S, s in order to maximize reward R, r (Figure 2A;
2). For example, a mouse learning which lever to press to
obtain a food pellet in an operant conditioning experiment.
RL conceptualizes the reward estimate as a mapping from
states to future rewards referred to as a value function v(s)
(Figure 2B). For simplicity, here we focus on the state value
v(s) which is equivalent to the average ¢(s, a) value of ac-
tions a available in state s (Appendix A).

Value functions have been central to RL since the very
beginning (24). One particularly well-known use of value
functions is to compare the estimated rewards associated
with different hypothetical courses of action (for example,
pressing different levers) in order to select the action most
likely to lead to the greatest reward (Figure 2B right; 27, 28).
A lesser-known application is the evaluation of the current
state s; over time, yielding what we call a value signal
vy = v(s;) (Figure 2C). Such a value signal is time de-
pendent because the state is continually changing, a fea-
ture exploited by temporal difference learning to gradually
refine the estimated values of past states (29, 30). Apart
from value learning, value signals can be used to directly
reinforce recent actions (26, 31) or promote persistence
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Fig. 2. Computing future reward. A High-level overview of reinforcement learning (RL; 2). B A value function v(s) is a mapping from states to future rewards. The value
function can be used to drive decision-making (right): by comparing the values of future states, the agent can make choices that lead to rewards (24, 25). C A value signal v,
is the result of evaluating the value function v(s) at the current state s over time. The value signal can be used to drive learning (right): by increasing the probability of taking
an action in proportion to the value signal just after the action is taken, the agent can learn to take actions that lead to rewards (26). D Normative definition of a value function
as the expected sum of discounted future rewards, referred to as the true value v(s). E The estimated value function ©(s) approximates the true value on the basis of past
rewards. F Predictive value coding model. The dorsal raphe nucleus (DRN) receives a distributed value signal as input, summates its components, and predictively-encodes
the result. (Note that although a distributed value code is illustrated, similar to Fig. 2 in ref. 1, it is also possible that the value signal originates in a single upstream region.)
The predictively-encoded signal consists of a mixture of the original value signal and its time derivative f(v(t)) ~ « ‘;’; + v(t), a transformation implemented by strong
spike-frequency adaptation in serotonin neurons (10). Predictive coding can easily be reversed via leaky integration in downstream regions to recover the original value signal
(Appendix H). G Adaptation-based predictive coding model. See Methods.

(27, 32). Here we present evidence of a close match be-
tween the activity patterns of serotonin neurons and value,
leaving the question of how value might be used to drive
learning and behaviour for future work.

Specifically, we focus on a value signal defined as the
expected total discounted future reward in the present state

)
D 7 Regigr | Se=se (1)
=0

where R; is the random reward obtained at time ¢, 0 <
v < 1 is a discrete time discounting factor that controls the
relative weighting of imminent and distant rewards (immi-
nent rewards are weighted more heavily when ~ is closer
to zero), and E [ XY = y] denotes conditional expectation.
Intuitively, it represents a weighted average of future re-
wards, with closer rewards being weighted more heavily
depending on the degree of discounting (Figure 2D). The
size of the window within which future rewards are summed
to calculate the value can be quantified with the discount-
ing timescale 7, defined as 7 = —dt/ ln~y, where dt is the
duration of a discrete time step.

The above definition of a value signal in terms of future
reward is precise, extremely general (Appendix A), and con-
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ceptually simple, but unrealistic: animals do not generally
have perfect knowledge of future rewards. We therefore dis-
tinguish between signals calculated on the basis of future
rewards, which we refer to as true value (Figure 2D), and
more realistic ones learned from past experience, which
we refer to as estimated value (Figure 2E).

We propose that the firing rates of serotonin neurons
present a predictive code for an estimated value signal (Fig-
ure 2F). Recently, we showed that potent spike-frequency
adapation dominates the signal processing features of the
DRN (10). This removes the part of the signal that is similar
to past output, a redundancy-reduction scheme sometimes
called predictive coding (21, 22, see 33 for review). In a sim-
plification of this previous work, here we model the firing
rate output of the DRN as

=ReLU[(1+ A) vy — Auyl,

where ReLU][z] is the rectified linear function used to en-
sure the firing rate is non-negative, A is a parameter con-
troling the strength of adaptation, and w; is the adaptation
variable, which has a subtractive effect on the output firing
rate. We model adaptation as an exponential moving aver-
age of past activity (Figure 2G and methods). To build an
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intuition for this model, consider that, from a computational
perspective, adaptation can be seen as implementing tem-
poral differentiation (10, 34). As a consequence, the firing
rates of serotonin neurons reflect a mixture of value and its
rate of change.

Our main result is that this predictive coding process in-
duces a qualitative change in the value signal. Adaptation
has the effect of exaggerating sharp transients, often lead-
ing the encoded signal to over- or under-shoot its apparent
target (illustrated schematically in Figure 2G, simulations
in the next section), and hiding the connection between
serotonergic activity patterns and value.

Value prediction during trace conditioning

To examine the temporal evolution of this signal in an ex-
perimental setup common in the serotonin literature, we
simulated our model under trace conditioning. Trace condi-
tioning experiments consist of a series of trials that begin
with a sensory cue (e.g., an auditory tone or an odour) and
end in a reward (typically a drop of water) with a short de-
lay (~2s) separating the two (11-13). In this experimental
paradigm, true value signals take four distinct phases (see
Methods): 1) jumping to a higher value upon receiving the
cue since the cue indicates a reward is coming, 2) ramp-
ing upward between the time of the sensory cue and the
reward delivery due to the effects of time discounting, 3)
falling during the reward epoch as the future reward left to
collect disappears, and 4) staying at a constant non-zero
value during the inter-trial interval as the animal waits for
the next randomly-timed trial to begin (black line in Fig-
ure 3A).

These four phases are altered by predictive coding, es-
pecially phase 2) where the ramping upward is preceded
by the adaptation from the cue-triggered jump and phase 3)
where the return to baseline is accompanied by an under-
shoot (blue line in Figure 3A). Multiple research groups
have shown that serotonin neurons are transiently acti-
vated by reward-predicting cues in vivo (11-13; e.g., Fig-
ure 3B inset; schematized in Figure 1A). Previous value
and reward-based serotonergic theories cannot explain this
phasic activity (black line in Figure 3A), leading to propos-
als that serotonin might encode some other quantity (e.g.
surprise 13). In value prediction, phasic cue-associated fir-
ing emerges naturally as a result of adaptation (blue line in

Harkin etal. | Serotonin predictively encodes value

Figure 3A). Unlike previous models, our theory further pre-
dicts a subtle, counter-intuitive drop in activity during the
reward epoch to complement phasic activation by the cue.
Interestingly, this phenomenon is visible in raw experimen-
tal data presented in the literature (11-13), but is generally
not quantified. In short, value prediction through adaptation
explains why serotonin neurons are phasically activated by
reward-predicting cues (Figure 1A) and predicts that sero-
tonin neurons should exhibit decreasing/below baseline ac-
tivity during reward consumption.

Value prediction captures response to pun-
ishments

A significant problem for value and reward-based seroton-
ergic theories is that serotonin neurons are often activated
by both rewards and punishments (5, 11, 13). Since punish-
ments can be seen as negative rewards R; < 0, and value
represents an estimate of future reward (Figure 2D), then
serotonin neurons should be inhibited by punishments —
not activated — if they encode a simple value signal (black
line in Figure 3B).

In contrast, activation by punishments is expected un-
der the value prediction theory. This is because predictive
coding through adaptation (Figure 2G) creates an over-
shoot in the level of activity as the punishment ends (blue
line in Figure 3B). To understand why this happens, recall
that the effect of predictive coding through adaptation is to
exaggerate positive (and negative) transients in the under-
lying value signal. The value signal during a punishment
trial is the mirror image of the value during a reward trial
(black lines in Figure 3A and B), increasing as the punish-
ment ends just as the reward trial value signal decreases
when the reward is consumed (3s to 4s post-cue in Fig-
ure 3A and B). Through predictive coding, the fast increase
in value during the punishment epoch is enhanced, causing
the encoded signal to briefly overshoot its baseline (~4s
post-cue in Figure 3B).

The idea that predictively encoding a value signal cre-
ates a punishment withdrawal-induced overshoot explains
1) why serotonin neurons are activated by punishments as
well as rewards (5, 11, 13), 2) why these seemingly op-
posite response features are positively correlated across
cells (11), and 3) why this activation occurs at the end of a
punishment rather than the beginning (4).
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Fig. 3. Value prediction signals reward and punishment over multiple timescales.

A,B True value signals (black) and their predictively-encoded counterparts (blue) for
trace conditioning trials terminating in either a reward (A) or punishment (B). Signals
are shifted up by 0.5 AU to capture background firing. Note resemblance between
value prediction theory and firing rate of a genetically-identified serotonin neuron
from Cohen et al. (11) (B inset; modified from ref. Fig. 3A2; scale bar 5 Hz, 1s). C
ITI value reflects reward or punishment context. Simulated block length of 10 trials,
normalized reward and punishment sizes of 1 and —1, respectively, and all other
parameters as in D1 below. Note resemblance with the tonic firing rate of a serotonin

neuron (right; modified from ref. 11 Fig. 3B1; scale bar 3 Hz, 10 min). D Analytically-

derived true value of the inter-trial interval (ITl) is proportional to peak within-trial
value. Heatmap shows ITI value as a function of experimental design parameters
(mean ITI duration / trial duration; vertical axis; ribbons are to scale, gray represents
ITI duration and colours represent trial epochs) and agent parameters (trial duration /
discounting 7; horizontal axis). ITI value is presented as a fraction of the peak value
during the trial (i.e., value just before reward). Numbered panels at right illustrate
the within-trial dynamics of the true (black) and predictively-encoded (blue) value
signals for various combinations of experimental and agent parameters indicated
on the heatmap. Note that predictive coding has no effect on ITl value because the
time derivative of the value signal during the ITl is zero. Since value signals are
normalized, different reward sizes can be accommodated by scaling traces. Trial
structure same as in A. See Figure 8 for an extended range of trial durations and
discounting timescales.
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Tonic firing during inter-trial intervals reflects
reward in future trials

The phasic responses of serotonin neurons to rewards
and punishments (Figure 1A and D) have historically
been difficult to reconcile with tonic activity that tracks re-
ward and punishment context (Figure 1B; 11, 35), spawn-
ing proposals that serotonin neurons may multiplex un-
related quantities over short intra-trial and long inter-trial
timescales (11, 15). Value prediction explains these pha-
sic responses (see above) while also predicting that tonic
activity should track reward and punishment context (Fig-
ure 3C, Appendix E), unifying the responses of serotonin
neurons to rewards and punishments over short and long
timescales.

More interestingly, our theory predicts that trial duration
should have pronounced effects on both inter-trial value
coding and within-trial activity dynamics of serotonin neu-
rons. Analysis of our model shows that the proportionality
between inter-trial and within-trial value depends on two
factors: 1) the mean duration of the ITI relative to the trial
duration (vertical axis in Figure 3D) and 2) the duration of
the trial (defined as the time between cue onset and reward
delivery) relative to the discounting timescale of the animal
7 (horizontal axis in Figure 3D). However, while the effect of
ITI duration is surprisingly weak in the typical experimental
range (i.e., ITls two to five times the trial duration; 11-13),
the effect of trial duration is quantitatively large and visually
obvious. Specifically, when the trial duration is shorter than
the discounting timescale, we expect to see both phasic
cue-associated activity (Figure 3D1 and 3) and inter-trial
value coding, while when the trial duration is longer than
the discounting timescale, we expect ramping within-trial
activity (Figure 3D2 and 4) and little to no inter-trial value
coding. The transition between these two regimes is sharp
and occurs when the trial duration is roughly equal to the
discounting timescale. Thus, the ratio between the trial du-
ration and discounting timescale controls both inter-trial
value coding and within-trial “peak and plateau” vs. ramp-
ing activity dynamics.

The effect of trial duration on within-trial activity dynam-
ics and inter-trial value coding predicted by our model ex-
plains 1) why “peak and plateau” dynamics and tonic value
coding co-occur (11), 2) why experiments using longer tri-
als sometimes produce ramping rather than “peak and
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plateau” dynamics (compare 11 and 12; schematized in
Figure 1A; but see 13), and 3) why firing during the pre-
reward epoch may decrease slightly as the trace duration
increases (36).

Value prediction explains reward-specific sur-
prise

While little is known about the effect of trial duration on
the pre-reward activity dynamics of serotonin neurons, the
effect of trial duration on the amplitude of the reward (or
punishment) response itself has received more attention.
Compared with rewards delivered at the end of a trace
conditioning trial, serotonin neurons are more strongly ac-
tivated by rewards delivered spontaneously (11) or imme-
diately following a cue (13). This has been interpreted as
evidence for surprise coding (13), defined as activity that
reflects an unsigned reward prediction error |§;| = | R —v¢],
which is believed to be important for learning (13, 15, 37).
However, because the surprise/absolute RPE-like reward
responses of serotonin neurons do not evolve on the same
timescales as dopaminergic RPEs d; (13), are smaller than
corresponding dopaminergic responses (11), and seem to
be specific to rewards (Figure 1C and D; 11, 13), a different
explanation is needed.

To understand how surprise tuning for rewards might
emerge, we simulated value prediction under progressively
shorter trace conditioning trials. As the trial duration short-
ened, the adaptation-induced cue-associated peak began
to overlap with the response to the reward itself (compare
Figure 4A1 and 2). This phenomenon becomes increas-
ingly pronounced as the trial duration falls below the effec-
tive timescale of adaptation (on the order of hundreds of
milliseconds; scan from left to right along the top of Fig-
ure 4B corresponding to the green line in Figure 4C), and
is maximally strong when the trial duration reaches the
zero lower bound, corresponding to an uncued reward (Fig-
ure 4A3).

It is difficult to differentiate absolute RPE from value pre-
diction on the basis of reward responses alone because
both theories predict stronger responses for surprising re-
wards (schematized in Figure 1C). To rule out absolute
RPE, we turn our attention to serotonergic responses to
punishments. Whereas the absolute RPE theory predicts
that serotonin neurons should respond most strongly to
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surprising punishments (13), just as they do for rewards,
serotonin neurons should have a very slight preference for
predicted punishments under value prediction (Figure 4A4—
6, left to right along the bottom of Figure 4B, red line in
Figure 4C), consistent with experimental observations (13;
schematized in Figure 1D).

To understand why value prediction implies reward-
specific surprise tuning, recall that punishment-associated
activity is caused by punishment withdrawal under our the-
ory (Figure 3B). Shortening the trial duration has no effect
on the rate of punishment withdrawal, and even causes the
pre-punishment inhibition to slightly overlap the withdrawal-
associated peak if the trial duration is sufficiently short,
leading to a small decrease in the punishment response
(Figure 4A4-6). The transition from surprise tuning to lack
thereof occurs sharply when the size of the reward passes
below zero, but this is obscured by the relatively small re-
sponses to near-zero rewards in our model (Figure 4B). As
with rewards, the transition to a slight preference for unsur-
prising punishments occurs when the trial duration drops
below the effective timescale of adaptation, such that re-
ward and punishment responses are expected to diverge
markedly for trial durations on the order of hundreds of mil-
liseconds or less (Figure 4C).

These simulations show that value prediction explains
surprise tuning for rewards that reverses for punishments,
thus providing a more complete account of serotonergic
surprise tuning than the existing absolute RPE theory (13).

Value prediction explains salience tuning for
both surprising and unsurprising stimuli

If surprise is defined in the serotonin literature as abso-
lute RPE |d;], then salience is defined as the absolute
size of the reward itself | R;|. We have already shown that
value prediction explains serotonergic responses to cued
rewards and punishments (Figure 3A and B), a type of
salience tuning, but recent experimental work has focused
on this phenomenon in the context of uncued rewards and
punishments (5).

To show that value prediction explains salience tuning
for both uncued and cued rewards, we simulated trace con-
ditioning experiments using a wide range of trial durations
and reward sizes. We find stronger responses to both re-
wards and punishments compared with neutral outcomes
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across all trial durations, consistent with salience tuning
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Time to reward (s)

Slow online learning

23
9 |3 So far we have focused on the resemblance between
ki g - . L
e o predictively-encoded true value signals and the in vivo ac-
H ° . . o .
& ! % tivity patterns of serotonin neurons. However, it is unrealis-
o

Reward resp. ¢y

O+o0
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etal.
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Fig. 4. Predictively-encoded value resembles surprise and salience. A,B Reward
responses depend on reward size and cue timing. Reward response is defined as
the baseline-subtracted maximum DRN-encoded value signal within 1 s of cue onset
(gray window). Trial duration is defined as the time between the onset of cue and
reward (gray arrow in 1). Sample traces 3 and 6 represent uncued rewards and
punishments, respectively. Signals are shifted up by 2 AU to capture decreased
activity during punishment trials. C Predictively-encoded value yields larger reward
responses for uncued vs. cued rewards but similar responses to uncued and cued
punishments. Note resemblance to reward-specific surprise coding from Matias
et al. (13) (inset modified from ref. Fig. 7B; punishment type: air puff). D Appar-
ent salience coding is distinct from surprise. Whether cued or uncued, reward re-
sponses extracted from predictively-encoded value signals are smaller for neutral
outcomes than both rewards and punishments. Note resemblance to salience cod-
ing from Paquelet et al. (5) (inset modified from ref. Fig. 2D with kind permission
from Bradley Miller; punishment type: bitter quinine solution, reward type: sucrose
solutions). Green and red lines in B and C are slices of data from A as indicated on
mini-heatmaps.

tic to think that serotonin neurons signal true value, since
this would require perfect knowledge of future rewards (Fig-
ure 2D). Instead, serotonin neurons likely encode a value
signal that is estimated on the basis of past rewards (Fig-
ure 2E).

Does our focus on true rather than estimated value pose
a problem for the results presented above? To find out, we
applied an online value estimation algorithm (van Seijen’s
TD()\) [40], see Methods) to a trace conditioning experi-
ment consisting of hundreds of trials. The estimated value
signal exhibited a ramp that gradually increased in ampli-
tude, gradually converging to a close approximation of the
true value (Figure 5A), mirroring observed activity of sero-
tonin neurons in mice (12, 13). The same was true of the
predictively-encoded estimated value (Figure 5B). Overall,
estimated value signals resembled a true value template
rescaled by reward history. These simulations illustrate that
the details of how the value signal is calculated (i.e. on the
basis of future rewards, as in true value Figure 2D, or on

Table 1. Short timescale reward tuning features of genetically-identified mouse DRN serotonin neurons qualitatively explained by various theories. v and X indicate empirical
observations that are clearly consistent or inconsistent with each theory; ambiguous cases are left blank. Ambiguity is due to a lack of quantitative models to accompany the
current and future reward, salience, and surprise theories, as well as variation in experimental design to a lesser extent. Note that refs. (12, 14, 38, 39) focus on a signal that
qualitatively reflects both current and future reward. This signal is referred to as reward or beneficialness by the authors, but is most similar to a value signal in our terminology.

Theory Tonic firing Rew. cue Rew. delivery Pun. Correlated Surprise rew. Lack of
tracks rew. activation activation activation rew. cue and preference surprise pun.
rate (11— (4,5, 11— (4,5,11,13) pun. (11, 13) preference
13, 15, 38, 39) 13, 38, 39) activation (11, 13)
(1
Value prediction (ours) v (Fig. 3C) v (Fig. 3A) v (Fig. 3A) v (Fig. 3B) v (Fig. 4C) v (Fig. 4B) v (Fig. 4B)
Current and future reward v v v X X X X
(12, 14, 38, 39)
Salience (5) X v v v X v
Surprise (13) X v v v v X
Dopamine opponent (7) v X X v X X X
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Fig. 5. Online value estimation. A Estimation of value during 300 trials of trace
conditioning. Comparison between true value v (black) and value estimated using
TD(\) with Dutch eligibility traces (shades of copper). Note that the estimated value
signal converges to a close approximation of the true value (right). B Value signals
predictively encoded by the DRN. Scale bars: 5 min, 1 arbitrary value unit. Vignette
above A modified from ref. Fig. 1G of Zhong et al. (12).

the basis of past rewards, as in estimated value Figure 2E)
play only a minor role in shaping the activity patterns of
serotonin neurons during trace conditioning, whereas pre-
dictive coding and reward history are critical.

If the activity levels of serotonin neurons are scaled by
reward history, how large should this effect be? The rate
at which the TD(\)-estimated value signal is scaled up and
down by reward history depends on the learning rate «,
which can also be expressed as the estimation timescale
Test = —dtln(l — «). Previous work suggests that the
timescale over which serotonin neurons integrate rewards
is on the order of hundreds of trials (12, 13). Since the
estimation timescale is so long, it is possible to write a
first-order approximation of the effect of an uninterrupted
string of rewards (or reward omissions) on the firing rates
of serotonin neurons (Appendix G. Using an estimation
timescale of 7o = 200 trials (13), background firing rate
of 2Hz (11, 15), and winning streak of five trials, we ex-
pect to see firing rate modulations of only ~0.05 Hz. While
longer runs of rewards (or reward omissions) would pro-
duce larger effects (e.g., 0.4 Hz for a run of 50 trials), such
winning streaks (or losing streaks) are rare in experiments
with probabilistic rewards that are best suited to studying
the effects of reward history on serotonergic activity (15).
In short, if serotonin neurons encode a value signal that
is estimated over a long period of time, as evidence sug-
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gests (12, 13), we expect to see only small effects of reward
history on serotonin neuron firing (<1 Hz) in typical experi-
ments.

Serotonin neurons quantitatively encode re-
ward history

Value prediction unifies a wide range of experimental ob-
servations that do not have a consistent interpretation un-
der existing serotonergic theories (Figure 1, Table 1). To
assess whether value prediction generalizes beyond the
main qualitative results of Cohen et al. (11), Zhong et al.
(12), and Matias et al. (13), we re-analyzed a dataset of
serotonergic responses to dynamically-varying in vivo re-
wards from Grossman et al. (15). To begin, we sought to
determine whether the activity levels of serotonin neurons
in this dataset are weakly modulated by reward history, and,
in particular, whether this is true of neurons with activity dy-
namics resembling a predictively-encoded value signal.

A short description of the experiment and our analysis
approach follows (see Methods for details). The dataset
consists of tetrode recordings of N = 37 identified sero-
tonin neurons in mice receiving dynamically-varying proba-
bilistic rewards in a trace conditioning experiment (15, 23).
We extracted the spikes of each neuron in a short window
around each trial along with the proportion of the past five
trials that were rewarded (Figure 6A). Since true value and
TD value estimates are both very closely tied to the mean
reward (Appendix B), we use the five-trial mean reward as
an interpretable proxy for value. Because the effect of re-
ward history on serotonin neuron activity is expected to be
small (see previous section) and many common statistical
tests for value coding are prone to high rates of false pos-
itives (41), we used circular trial permutation (Figure 6B).
This test breaks the putative association between reward
history and serotonin neuron activity while preserving all
other structure in the data (for example, slow fluctuations
related to arousal). If the association between serotonin
neuron activity and reward history is stronger when the
trials are correctly aligned than when this alignment is bro-
ken, we can conclude that the correlation between sero-
tonin neuron activity and reward history cannot easily be
explained by random fluctuations in the data.

With data and statistical approach in hand, we turned
our attention to quantifying the effect of reward history on
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Fig. 6. Individual serotonin neurons exhibit reward coding features consistent with value prediction. A Example trace conditioning experiment of Grossman et al. (15) (see
Methods). Counterclockwise from top left: Bernoulli water rewards (blue lines) and time varying reward probability estimated using a five-trial moving average (red line).
Distribution of number of trials at each level of estimated reward probability; note the wide range of reward probabilities in this dataset. Firing rate of the serotonin neuron
recorded in this session calculated using a 500 ms PSTH, lines coloured according to estimated reward probability as in histogram at left, scale bar 2 Hz. Spike raster used
to calculate PSTH, background is shaded according to the estimated reward probability as in the other plots. B Circular trial permutation test used to assess statistical
significance of correlations between estimated reward probability and serotonin neuron activity. Reward history is randomly shifted with respect to spiking activity to build up a
null distribution against which the observed correlation can be compared. C Serotonin neuron whole-trial activity reflects reward history. Each line represents the following
regression model fitted to a single neuron: § = B3P + Bo, Where g is the predicted whole-trial activity (defined as the number of spikes within a 7.5 s period beginning 1.5s
before the start of the cue and ending 1 s after the end of the reward epoch), p is the reward probability estimated as in A, and 3; and 3 are the slope and intercept. Slope
Bp represents the effect of recent reward history  on activity and intercept 3o represents the baseline activity level following a short string of unrewarded trials (p = 0/5).
Donut plot shows the distribution of circular trial permutation test p-values against Hy : 85 = 0; p < 0.05 occurs significantly more frequently than 5 % chance rate (inner
pie chart). Lines are colour-coded according to statistical significance of the slope 3 as in the donut plot. NV = 37 neurons. D Distribution of regression slopes 3. Note
tendency towards positive slopes consistent with value prediction. Colour-coded as in C. E Distribution of regression intercepts 3. Note positive correlation between baseline
activity and reward rate over very long timescales consistent with value prediction. Colour-coded as in C. F Relationship between reward history modulation (vertical axis) and
phasic cue-associated firing (horizontal axis). Note that neurons with clear cue-associated firing (G1 and A, for example) tend to be positively modulated by reward history,
consistent with value prediction. G Firing dynamics and whole-trial activity modulation in representative serotonin neurons. G1 shows a neuron with clear trial-associated
activity dynamics and positive activity modulation by reward history, representative of neurons in the upper right of F. Note the striking correspondence between activity
dynamics of the value prediction model (blue inset) and the example neuron. G2 shows a neuron with no clear trial-associated activity dynamics and numerically positive (but
not statistically significant) activity modulation by reward history, representative of most neurons in the left part of F. Regression plots (G1 right and G2 right) illustrate the
analysis used for C—F. Error bars/bands represent 95 % bootstrap confidence intervals (with Monte-Carlo bias correction in the case of error bars) provided for illustration
purposes only.

Harkin etal. | Serotonin predictively encodes value


https://doi.org/10.1101/2023.09.19.558526
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.19.558526; this version posted September 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

the activity levels of serotonin neurons. Regressing the
number of spikes per trial (which we refer to as whole-
trial activity) onto the five trial mean reward for each neu-
ron (Figure 6C) revealed statistically-significant modula-
tion by reward history in 8/37 cells (circular permutation
test p < 0.05 against regression slope §8; = 0; signifi-
cantly above the 5 % chance rate, binomial proportion test
p < 0.001; see donut plot in Figure 6C) somewhat vari-
able levels of background activity (regression intercepts
By = 18.6 & 8.0spikestrial ', mean + SD, equivalent to
2.5 £ 1.1 Hz, coefficient of variation 0.43). It is possible that
22 % represents a lower bound on the proportion of cells in
our sample that encode value. Consistent with this possi-
bility, the relationship between activity and reward history
was generally positive across the population (regression
slopes 35 = 0.64 + 1.60 spikes trial ! reward ", Wilcoxon
signed rank test p = 0.039; equivalent to 0.09 4+ 0.21 Hz,
roughly consistent with the effect size calculation in the
previous section; 55 > 0 in 65 % of cells, one-sided sign
test p = 0.049), including in many cells that did not cross
the p = 0.05 significance threshold in the circular trial per-
mutation test (Figure 6D, note significance-stratified medi-
ans). We observed two neurons with a statistically signifi-
cant negative effect of reward history on whole trial activity
(Figure 6C and D). This is consistent with the expected
false positive rate (2/37 = 5.4 %), but it is also possible
that value prediction is not universal in the DRN. Finally,
we also observed a significant correlation between back-
ground activity and the proportion of all trials rewarded in
the corresponding session (Pearson r = 0.43 between
regression intercept 5, and whole-session mean reward,
p = 0.008, Figure 6E), consistent with value coding over
timescales beyond the five trial horizon. This correlation is
surprisingly strong considering the many factors that im-
pact background firing rate (differences in the biophysical
features or inputs of individual serotonin neurons, differ-
ences in thirst or arousal between recording sessions and
mice, etc.) and the coarseness of the whole-session reward
metric. Due to a high rate of statistically null results which
neither confirm nor rule out value coding, additional analy-
ses are needed to determine to what extent value predic-
tion is typical in the DRN (see “Value prediction dominates
population activity” below). For now, we conclude that at
least some serotonin neurons exhibit positive reward his-
tory modulation consistent with value prediction.

Harkin etal. | Serotonin predictively encodes value

Our theory predicts that the phasic reward cue-
associated activity observed in some serotonin neurons
is due to value coding, while other theories propose that
phasic activity could be unrelated to reward history. To ex-
amine the potential connection between this phasic activity
and value prediction, we stratified the slopes obtained from
our regression analysis according to the amplitude of the
cue-associated extremum in the firing rate (Figure 6F). Of
the small number of cells with a clear cue-associated peak
(N = 7 cells with >1 Hz increase in firing above baseline),
all exhibited numerically positive reward history modulation
(one-sided sign test p = 0.008, N = 7) which was individ-
ually statistically significant in just over half of these cells
(circular trial permutation test p < 0.05 in 4/7 neurons; ex-
act p values for each neuron are 0.006, 0.007, 0.009, 0.013,
0.071, 0.126, 0.237 in order of decreasing significance, val-
ues lower than p = 0.002 are not possible). The connection
between phasic activity and value coding was surprisingly
consistent: out of 37 neurons, we did not observe any with
both clear phasic activity and numerically negative reward
history modulation (bottom right quadrant in Figure 6F). We
conclude that there is a strong association between phasic
cue-associated activity and positive modulation by reward
history, consistent with the idea that value prediction under-
lies both phenomena.

The main ideas of this analysis are summed up by
the two example neurons presented in Figure 6G. In Fig-
ure 6G1, we see a neuron with activity dynamics strik-
ingly similar to the value prediction model, including cue-
associated phasic firing, a pre-reward ramp, and falling ac-
tivity during the reward period. In this neuron, we also
observe statistically significant (circular trial permutation
test p = 0.006) and almost perfectly linear positive scal-
ing of whole-trial activity by reward history, consistent with
value prediction. The neuron in Figure 6G1 is clearly well-
described by our theory, but the same cannot be said of
the neuron in Figure 6G2. Examining its peri-stimulus time
histogram (PSTH) reveals no clear activity dynamics, and
there is no statistically-significant effect of reward history on
firing (circular trial permutation test p = 0.063). This neuron
may not predictively encode value, but it is also possible
that the timescale of this experiment is simply too fast. An
absence of discernible within-trial activity dynamics is con-
sistent with value prediction if the discounting timescale is
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much longer than the trial duration’ (Figure 8), and, while
not statistically significant, the magnitude of the reward his-
tory modulation is actually closer to our predictions than the
unusually large effect shown in Figure 6G1 (for an increase
in reward probability from 1/2 to 1, the calculation in the
previous section shows we expect an increase in firing of
~0.05 Hz, compared with 0.25 Hz and 0.07 Hz in example
neurons 1 and 2, respectively). The analyses presented in
this section prioritize clarity over statistical power. As a re-
sult, effects that pass the statistical significance threshold
are likely to be unusually strong and not representative of
the broader population of value coding serotonin neurons
(42). Our results are best interpreted as a lower bound on
the proportion of serotonin neurons that encode value.

In this section, we have shown that value prediction pro-
vides a very good description of the activity patterns of
at least some serotonin neurons. Could a different model
provide an equally good or even better description of sero-
tonin neuron activity? To what extent are the tuning features
explained by value prediction dominant at the population
level? We turn to these questions next.

Comparison with expected uncertainty

A significant body of literature argues that serotonin neu-
rons encode a quantity related to RPE, typically its absolute
value, in order to signal surprising events (7, 13, 15). Per-
haps surprisingly, some of the strongest evidence for this
perspective is consistent with our results.

An influential model of the role of serotonin in learn-
ing connects trial-to-trial modulations of serotonin neuron
activity to a moving average of absolute RPEs called ex-
pected uncertainty (15). To compare expected uncertainty
against our model (which predicts an essentially linear re-
lationship between mean reward and serotonergic activity,
e.g. Figure 6G1 right), we analytically derived the relation-
ship between reward probability and mean absolute RPE
in models of animal learning (Appendix F). While the mean
absolute RPE is precisely twice the variance of a binary
reward in the simplest of RL models (and therefore has
an inverted U-shaped relationship with reward probability),
sophisticated models of animal learning often include fea-

This does not seem implausible. Trace conditioning trials are typically
only a few seconds long—if humans had a discounting timescale on the
order of a minute or less, no-one would ever read beyond the first few
sentences of this manuscript.
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tures that profoundly alter this relationship (e.g., 15, 18). As
aresult, in theory expected uncertainty is usually negatively
related to the mean reward in addition to being positively
related to variance (Figure 11). Re-analyzing the computed
expected uncertainty values from the dynamic Pavlovian
task in Grossman et al. (15) shows that this is also true
in practice: expected uncertainty is more strongly corre-
lated with reward probability than variance in 26/28 ses-
sions in this dataset (Figures 9 and 10; median marginal
r2 between expected uncertainty and five-trial mean re-
ward 0.815, IQR 0.565 to 0.903, compared with median
0.083, IQR 0.016 to 0.216 for variance). The fact that the
previously-reported correlation between expected uncer-
tainty and serotonergic activity is negative more often than
not also suggests a connection between serotonergic ac-
tivity and mean reward rather than variance. We conclude
that evidence for serotonin neurons signalling expected un-
certainty is consistent with value coding.

Comparison with reward variance

To address the possibility that serotonergic activity might
encode reward variability in a way that is not captured
by expected uncertainty, we repeated the regression anal-
yses described above (Figure 6) using reward variance
in place of the mean reward (Figure 11). We found that
the whole-trial activity levels of serotonin neurons are bet-
ter described by mean reward than variance (Wilcoxon
signed-rank test on weighted sum of squared errors from
regression fits p = 0.007, N = 37), and the effects of
mean reward are larger (absolute change in activity of
1.19 + 1.25 spikes trial ~* from a reward of zero to a reward
of one and 0.59 + 0.69 spikestrial ™' from a variance of
zero to the maximum variance of 0.25, both quantified us-
ing the absolute regression slope, Wilcoxon signed-rank
p = 0.001), more consistent (regression slopes are typi-
cally positive for mean reward, Wilcoxon signed-rank p =
0.039, but symmetric around zero for variance, Wilcoxon
signed-rank p = 0.281), and statistically significant twice
as often (21.6 % and 10.8 % of cells with circular trial permu-
tation test p < 0.05 against regression slope equal to zero
for mean and variance, respectively; for comparison, we ex-
pect significant p values in up to 12 % of cells even if none
actually encode variance, approx. 95 % CI on a proportion
of 5% with N = 37).
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Because the mean and variance of binary rewards are
directly related, we wondered whether the apparent corre-
lations between reward variance and serotonin neuron ac-
tivity might actually be due to value coding. Consistent with
this idea, statistical confounding between mean reward and
variance was unusually strong in the subset of cells with a
significant correlation between variance and activity (Pear-
son r between variance and mean reward is higher in cells
with circular trial permutation test p < 0.05 for the variance
slope # = 0, permutation ¢ test p = 0.039).

Our simple analysis does not reveal clear evidence that
serotonin neurons encode an unbiased estimate of reward
variance. To mitigate the possibility that these findings are
sensitive to technical details of our approach, we repeated
the above analyses using reward standard deviation and
entropy as alternative definitions of variability, using an it-
erative/TD method to estimate reward statistics rather than
a five-trial moving average, and quantifying activity using a
pre-trial baseline rather than whole-trial activity (Figures 11
and 12). None of these variations affected our results.

We are unable to conclude that serotonin neurons en-
code reward variability in this task. If serotonin neurons do
encode reward variability, our results are consistent with a
variability code that is significantly weaker and less consis-
tent than the code for value.

Untested models

To address the possibility that a different, untested model
might provide a better account of the relationship between
reward statistics and serotonergic activity, we inspected the
residuals of our regression fits (Figure 11). Whereas the
regression against reward variance systematically overes-
timates serotonin neuron activity when the mean reward
is low and overestimates activity when the mean reward is
high, we did not observe any obvious structure in the errors
of the regression against the mean reward. The marginal re-
lationship between serotonergic activity and mean reward
is surprisingly well-described by a straight line, offering no
hint as to what a better model might be.

Value prediction dominates population activ-
ity

Value prediction provides a good description of the activity
dynamics and reward history modulation of at least some
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serotonin neurons, but are the features captured by our
model typical of serotonin neurons in general? To address
this question, we constructed a synthetic serotonin neuron
population using the N = 37 cells in our dataset and tested
how well value prediction explains the synthetic population-
level activity patterns in comparison with other models. If
these cells do not generally predictively encode value, the
features predicted by our model could be washed out by
noise or masked by other coding features that are subtle at
the single neuron level.

We began by considering whether serotonin neuron
population activity is positively modulated by reward
history. Using a population-level version of the circu-
lar trial permutation test, we found that whole-trial pop-
ulation activity is positively modulated by reward his-

tory (p =

with our predictions (expected increase in firing from
1

0.0008, Figure 7A) at a level consistent
a mean reward of 1/2 to 1 of ~0.05Hzneuron™!, see
“Serotonin slowly learns value” above, compared with
0.11 Hzneuron—! in our synthetic population based on fit-
ted 3; = 1.64 spikes neuron—! trial ~!). Encoding of reward
history was nearly linear during both the pre-trial baseline
and cue epochs (Figure 7B, weighted 2 = 0.802 during
baseline and r? = 0.656 during cue), suggesting that tonic
and phasic firing participate equally in value prediction. To
determine whether a different model could better explain
population coding of reward history, we used repeated five-
fold cross validation to assess how well mean reward, re-
ward variance, and null models could predict serotonin neu-
ron population activity during the baseline and cue epochs
of held-out trials (Figure 7C). Consistent with value pre-
diction, the mean reward model exhibited five- to ten-fold
better performance than variability-based alternatives (Ta-
ble 2). Thus, value prediction describes the effects of re-
ward history on serotonin neuron population activity with a

precision considerably better than 0.1 Hz neuron—!.

The population activity dynamics shown in Figure 7A ex-
hibit a cue-associated peak, elevated firing during the trace
period, and falling activity during the reward, qualitatively
consistent with value prediction. Value (without adaptation),
surprise, and reward signals are each missing at least one
of these properties (Figure 7D left). As a result, quantita-
tive models based on these ideas (see Methods) poorly
explain population activity in comparison with value predic-
tion (Figure 7D middle and right). The only tested model
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Fig. 7. Value prediction better explains serotonin neuron population activity than competing theories. A Whole-trial population activity encodes reward history. Whole-trial
activity and circular permutation test as in Fig. 6. B Baseline population firing rate quantitatively encodes reward history. Baseline activity defined as mean of PSTH 1 s before
start of cue. Peak cue activity is defined as the maximum of the PSTH during the 1 s cue period. Error bars represent 95 % confidence intervals obtained via bootstrap with
Monte-Carlo bias correction. Error bands around regression lines represent 95 % confidence interval obtained via bootstrap. Regression slopes are significantly different
from zero; bootstrap 99 % Cl test. C Value prediction better accounts for reward history modulation of population firing rate than variance. z-axis represents the proportion of
variance explained (weighted r2) by each model fitted to data as in B. Performance is presented as the mean five-fold cross-validated accuracy, each point represents one
cross-validation repeat. Ceiling line represents the accuracy obtained using the training data to predict the validation data directly (maximum across all repeats). D Value
prediction better accounts for population firing rate dynamics than competing theories. Schematics at left illustrate predictions of each theory; note that surprise-like signals
should decrease during trials, but this does not happen in our model fits. Performance is assessed using repeated five-fold cross-validation as in C. Scale bar 0.2 Hz neuron ™ *.
Trial structure as in A.

that offered performance competitive with value prediction Discussion
was a surprise signal with added adaptation (mean vali-
dation weighted 72 = 0.749 4 0.007 for value prediction
and r? = 0.642 + 0.023 for surprise with adaptation; mean
+ SD of ten cross-validation repeats). However, since the

fitted surprise signal with adaptation does not exhibit the ex-

The in vivo activity patterns of serotonin neurons are noto-
riously difficult to explain. In this work, we show that a time-
dependent estimate of cumulative future reward predic-

. . . . tively encoded through spike-frequency adaptation, which
pected decrease in activity during the trial (see Methods),

the justification for adding adaptation to a model that is
already an idealized form of adaptation is dubious, and sur-
prise does not readily explain the effects of reward history

we call value prediction (Figure 2), unifies a surprisingly
wide range of puzzling observations and conflicting theo-
ries from the serotonin literature (Figure 1 and Table 1).

. ) ) ) In particular, phasic activation by reward-predicting cues
on activity (Figure 6 and Figure 7A-C), nor serotonergic

responses to punishments (Figure 4) in addition to offer-
ing lower performance than value prediction (Figure 7D),
we believe it can be rejected. In sum, the fast activity dy-

and primary rewards is explained by a rapid increase in

proximity to reward, activation by punishments is explained

by a rapid increase in value as the end of the punishment

) ) ) approaches, and tonic firing that reflects reward and pun-
namics of serotonin neurons are better explained by value . ) i )

ishment context is consistent with a code for the value of

upcoming trials (Figure 3). By simulating trace conditioning

experiments with different reward sizes and trial durations,

prediction than surprise, reward, or a raw value signal.

Overall, we conclude that value prediction provides a re-
markably precise and complete account of the population
activity patterns of serotonin neurons during trace condi-
tioning, as foreshadowed by our results at the level of indi-
vidual neurons.
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we have shown that the appearance of surprise (13) and
salience (5) tuning emerges naturally in our model (Fig-
ure 4), providing an intuitive link between tuning features
that previously seemed conceptually unrelated. To add
weight to these qualitative results, we re-analyzed a dataset
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of serotonin neuron responses to in vivo rewards (23). We
observed small modulations in serotonin neuron firing by
recent reward history, quantitatively consistent with value
estimation over hundreds of trials (Figure 6; see also ref.
13). Finally, we directly compared value prediction against
competing theories. We found that our theory provides a
remarkably precise description of both trial-to-trial changes
in activity associated with reward history and within-trial ac-
tivity dynamics, usually exhibiting predictive performance
several times better than alternative models (Figure 7). It
has been said that “serotonin’s many meanings elude sim-
ple theories” (35). Our work shows that several of these
meanings — reward, punishment, surprise, salience, and
uncertainty — can be merged into one: value prediction.

Hiding in plain sight

Why was a serotonergic code for value not established
earlier? The idea that serotonin neurons encode value or
something very similar is not new (14, 43), but this perspec-
tive has fallen increasingly out of favour in recent years
because of evidence that seems to directly contradict a
value or reward-based code, first and foremost the fact
that many serotonin neurons are activated by punishments
(11, 13, 44) as well as model-based analysis that sug-
gests that serotonin neurons do not track reward history
on the same timescale as changes in foraging behaviour
(15). Here we have shown that not only do punishment
responses not rule out a value code, they are actually ex-
pected if reward-predicting cues evoke transient firing, con-
sistent with experimental results (ref. Fig. 5C in 11). Our
work also shows that value coding by serotonin neurons
is more precise and temporally extended than behaviour
would suggest, again consistent with previous results (13)
and adding to an emerging pattern of neural systems hav-
ing population codes that are more precise than behaviour
and perception (45, 46).

Turning to the literature and finding results that seemed
puzzling at the time but are predicted by our theory (the
apparent reward-specificity of surprise tuning being a no-
table example; 13) became a recurring theme during this
project, leading us to feel that evidence for value coding by
serotonin, much like dopamine (47), has long been hiding
in plain sight. We hope that future work will uncover more
such examples, and, conversely, temper our confirmation
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bias by highlighting tuning features that are clearly incom-
patible with value prediction.

The meaning of predictively-encoded value

An adapting value signal is not the same as value itself,
raising interesting questions about how DRN output might
be interpreted by downstream regions (and scientists!).

One possibility, although perhaps not a very exciting one,
is that value prediction is simply reversed to recover the
original value signal. The exceptionally large axonal ar-
borizations of serotonin neurons (48) likely place significant
metabolic constraints on the activity of serotonin neurons,
and predictive coding through adaptation could act as a
sort of compression scheme (21, 22, 33, 49, 50) allowing
the serotonin system to broadcast a signal widely using
a minimum number of spikes. If adaptation compresses
the value signal, how is later decompressed? In theory, the
exact answer is simple: leaky integration (Appendix H). In
light of the close relationship to predictive coding seen as
a compression scheme, it is interesting to note that many
of the biological processes involved in decoding serotonin
neuron activity implement leaky integration (e.g., accumu-
lation of serotonin in the extracellular space, slow kinetics
of G-protein coupled receptors, and the membrane voltage
dynamics of downstream cells). Adapting value might be
more similar to value than it first appears.

A more intriguing possibility arises if adaptation already
visible in the spiketrains of serotonin neurons is further en-
hanced downstream, for example via depressing synapses.
In that case, our work implies that DRN output would be
decoded as the rate of change of value (10). This quan-
tity is required to calculate real-time RPEs (as is value it-
self; 51, see also 7), and one of the main predictions of
the dopaminergic RPE hypothesis of Schultz et al. (1) was
that the dopamine system should receive input from some
region (or collection of regions) that encodes the rate of
change of value. Since the dopamine system is one of the
main targets of the DRN (52), might serotonin play an im-
portant part in computing RPE?

Behaviour

If serotonin predictively encodes value, how is this signal
used to drive learning and behaviour? The ways in which
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value is used in RL are varied and the effects of serotoner-
gic manipulations are perplexing, but here we offer some
speculation.

One of the better established roles of serotonin in regulat-
ing behaviour is that fast optogenetic activation of serotonin
neurons promotes maintenance of behaviours directed at
obtaining imminent rewards, an effect commonly called pa-
tience or persistence (16, 17, 53, 54). If serotonin encodes
an estimate of relatively immediate reward (due to heavy
discounting) that is compared against a longer-term aver-
age reward rate, then control policies based on optimal giv-
ing up (55) or option interruption (56) could produce similar
behaviour. In principle, persistence could also be explained
by immediate reinforcement of an ongoing reward-seeking
action through policy gradient learning (26) or boosting
RPEs (see previous section), but these ideas are difficult
to reconcile with evidence that stimulation of serotonin neu-
rons is not generally reinforcing (18, 53, 54, 57, but see
58).

Selfridge’s run and twiddle model (32) offers a more ele-
gant potential explanation of persistence in terms of value.
According to this simple control model, the current action is
maintained as long as value is increasing (“run”), offering
an interesting connection to the predictive coding compo-
nent of our theory, whereas a decrease in value triggers a
random action (“twiddle”). Given the evolutionarily-ancient
origins of the serotonin system (59) and its involvement
in regulating very coarse aspects of behaviour such as the
tradeoff between exploration (taking random or sub-optimal
actions) and exploitation (taking actions that are expected
to lead to reward) (60), we are tempted to speculate that
a relatively primitive control policy might provide the best
account of the role of serotonin in behaviour. From that per-
spective, run and twiddle, which was originally conceived
to explain the foraging behaviour of bacteria, might be a
good place to start.

Learning

Confusingly, activation and inhibition of serotonin neurons
both promote maintenance of reward-seeking behaviour.
However, whereas optogenetic activation of serotonin neu-
rons produces behaviour directed at obtaining immediate
rewards that is usually framed in a positive light, chemo-
genetic inhibition reduces the rate of abandonment of de-
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pleted sources of reward (13, 15), which is framed as per-
severation. This effect has been explained in terms of a
selective decrease in the rate of learning from reward omis-
sions (13, 15). There is a normative reason for the learn-
ing rate to decrease when rewards are intrinsically vari-
able (Appendix C) and increase when the environment is
non-stationary, prompting the development of models that
separately track variance and volatility to enhance learn-
ing (61, 62). Serotonin has been proposed to modulate the
rate of learning from reward omissions via surprise or un-
certainty (13, 15), but, as we have shown, these results are
more consistent with value. Finally, a model-based anal-
ysis showed that optogenetic manipulations of serotonin
neuron activity affected behaviour in a way that was con-
sistent with an enhancement of learning rate (18), but this
effect was specific to long timescales and also explained
relatively well by RPE boosting (ref. Fig. S14; see previous
section). Since all components of RL models affect the rate
of change of behaviour, it is plausible that many of the ap-
parent qualitative effects of serotonin on learning could be
explained through the lens of value.

Mechanistic basis of value prediction

The question of where value prediction comes from can
be broken into two parts: where does the value signal in-
put originate, and where does predictive coding through
adaptation occur?

Since the DRN receives input from nearly the entire fore-
brain (63), it is unlikely that a single upstream region is com-
pletely responsible for computing value, simply because
this input would be drowned out by unrelated information
streaming into the DRN. Instead, we believe it is likely that
the net value input required by our theory is assembled
from multiple sources, for example temporally-extended ac-
tion values from the mPFC (64), and various aspects of
reward, including inverted RPE, from the lateral habenula
and lateral hypothalamus (45, 65, 66). These possibilities
are merely speculation. Our theory does not depend on
whether the net value input originates in one particular re-
gion or is distributed across many others.

As for the predictive coding aspect of our theory, the ex-
ceptionally strong spike frequency adaptation of serotonin
neurons is not only sufficient (10), it was the main motiva-
tion for the present work. This adaptation comes from a
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combination of apamin-sensitive potassium currents and
spike-triggered changes in spike threshold in individual
serotonin neurons (10, 67) as well as network-level recur-
rent inhibition via 5-HT4a receptors (67, 68). Feed-forward
inhibition (63, 69) does not seem to be functionally involved
(10). Setting aside this physiological evidence, value predic-
tion on its own technically does not exclude the possibility
that at least some of the adaptation visible in the spiketrains
of serotonin neurons originates upstream of the DRN.
Selectively inhibiting certain DRN inputs or pharmaco-
logically reducing adaptation in vivo could shed light on the
mechanisms of value prediction in the serotonin system.

Phasic and tonic firing

The idea that serotonin neurons encode essentially unre-
lated signals in phasic and tonic components of their firing
rates is popular in the serotonin literature (3, 7-9). Here
we have shown that the responses of serotonin neurons
to rewards and punishments are well-described by a sim-
ple model that does not distinguish between different types
of firing. Instead, our model shows that firing patterns that
have traditionally been called phasic can be interpreted as
increases in firing rate that are short-lived due to adapta-
tion. While we cannot rule out the possibility that serotonin
neurons multiplex different quantities in their firing rates in
other tasks, it is important to note that the phasic/tonic sep-
aration has historically been partly rooted in speculation
(7, 8) and the difficulty of formulating a consistent inter-
pretation of serotonergic responses to rewards and pun-
ishments (11). Functionally distinct phasic and tonic firing
is an exciting hypothesis, but perhaps no longer a good
default modelling assumption.

Heterogeneity

Serotonin neurons are biochemically, developmentally,
anatomically, and to some extent electrophysiologically het-
erogeneous (6). They are probably computationally het-
erogeneous as well, but in what sense? In principle, sero-
tonin neurons might be quantitatively computationally het-
erogeneous, meaning that differences in their activity pat-
terns can be captured by adjusting the parameters of our
value prediction model, or qualitatively computationally het-
erogeneous, meaning that value prediction simply does

Harkin etal. | Serotonin predictively encodes value

not apply to all serotonin neurons. Our results cannot dif-
ferentiate between these two possibilities (which are not
mutually-exclusive in any case). While value prediction
dominates the population activity patterns of serotonin neu-
rons in the data we re-analyzed, many individual neurons
seemed essentially unresponsive to the task. If serotonin
neurons encode value subject to a wide range of discount-
ing timescales (quantitative heterogeneity), echoing distri-
butional coding in the dopamine system (47, 70, 71), the
cells that appear unresponsive might simply exhibit dis-
counting and/or learning rates that are very slow relative to
the structure of the experiment (see Figure 8). Consistent
with the idea that this experiment is too fast to engage value
prediction in most serotonin neurons, the neurons with the
clearest responses to reward-predicting cues exhibited re-
ward history modulations much larger than expected based
on previous work (see effect size calculation in results).
At the same time, the null responses we observed could
just as easily be explained by the idea that the neurons
in question do not predictively encode value (qualitative
heterogeneity). Value prediction subsumes several previ-
ous ideas about serotonergic function and is sufficient to
explain a surprisingly wide range of results reported in lit-
erature, but this does not imply that it is universal.

In view of the marked heterogeneity of the serotonin sys-
tem in nearly every aspect of its biology, it seems likely
that computational heterogeneity in this system is at least
partly qualitative. Indeed, there are differences in the tun-
ing features of serotonin neurons across DRN subregions
that are difficult for our model to explain (4), as are reported
activation by punishment-predicting cues and preference
for smaller rewards (11). Perhaps these observations are
the result of competing ON and OFF value prediction path-
ways in the DRN (67) or something else entirely. By testing
value prediction against a battery of alternative models, our
work provides a template for assessing computational het-
erogeneity in the serotonin system.

Top-down meets bottom-up

Here we build on a theme of some of our previous work
by adding biological details to a simple model in order to
improve its interpretability and performance (10, 72, 73).
Here, the success of our model hinges on combining the
normative idea of a value signal with spike-frequency adap-
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tation from a bottom-up model of the DRN (10). Neither of
these are new to the serotonin field (14, 43, 44, 74-80), but,
to the best of our knowledge, they have not previously been
combined. The fact that serotonergic responses to rewards
and punishments only become interpretable after account-
ing for the effects of adaptation illustrates the usefulness of
elements of biological detail even in normatively-focused
branches of computational neuroscience.

Conclusion

Here we present a simple theory for serotonin’s many
meanings: reward, surprise, salience, and uncertainty are
different faces of a predictive code for value. Our work links
the biology of the serotonin system to a normative account
of serotonergic responses to rewards and punishments
through value, a quantity that is central to RL theory. On an
intuitive level, our definition of value as the expectation of
future reward is akin to optimism, providing a conceptual
link to the use of serotonergic medications in treating mood
disorders. With value prediction, we establish serotonin as
“a neural substrate of prediction and reward” (1).

Harkin etal. | Serotonin predictively encodes value
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Methods

True value signal

We define the true value of a state s to be the expected
total future reward to be collected by an agent that be-
gins in that state at time ¢ and transitions to future states
Sti1,S¢ra,. .. according to the dynamics of the environ-
ment. Future rewards are discounted by a factor 0 <y <1
such that rewards after ¢t + 1 are ignored if v = 0 and all
rewards are equally valuable if v = 1. This textbook defini-
tion of value can be written as an explicit sum over future

rewards

U(S) =K lz ’yiRt+i+1 St =S, (2)

=0

or as an equivalent Bellman recursion

v(s) = E[Ri1 +y0(Se41) | St = s].

For a trace conditioning experiment with exponentially-
distributed inter-trial interval (ITI) durations of mean L,
fixed cue, delay, and reward durations Lcye, Ldelay; Lreward,
and fixed reward size, the normalized continuous-time true
value signal is given by

T eXp |:_(Lcue:‘Lde\ay):| t |n |T|,

Lm+T
o(t) |
) | &P [{ton ] ¢ in cue or delay,
A(l—e—)+B t in reward,
(©)
where 7 = —dtIn~y is the discounting timescale, tew =

to + Lcue + Laelay is the start of the reward epoch (given the
start of the trial tg), tend = to+ Lcue + Ldelay + Lirew is the end
of the reward epoch, and A, B are scaling and offset fac-
tors to ensure continuity. (See Appendix D for derivation.)
By construction, this normalized definition of the value sig-
nal is proportional to the true value signal for any reward
size (including negative rewards corresponding to punish-
ments) and can therefore be multiplied by a constant to
accommodate different mean rewards.

Note that this model has only one free parameter: the
discounting timescale.
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Estimated value signal

To simulate the estimated value signal ©(t) in a trace con-
ditiong experiment, we used the true online TD()) algo-
rithm of van Seijen et al. (40, 81), which is designed to
agree more closely with the forward view of TD learning
(Figure 2D) than other TD(\) algorithms. van Seijen’s algo-
rithm applies to causal linear value function approximation
0(s¢) = w_1X¢, Where x, is a vector of state features and
w;_1 are weights from the previous time step (since w;
depends on quantities in the future).
Weights are learned online according to

0(st)
= 1)
Wil = Wi +0t€ + 0 | Wy 1Xy — WXy | Xy

€1 = YAer + axy 1 — (yAerXiq1) Xeq,

where e is the eligibility trace vector and §; = R;y1 +
~Y0(st4+1) —0(s¢) is the reward prediction error (RPE). Com-
pared with traditional TD(\) with eligibility traces, this al-
gorithm adds a correction to the weight update and uses
Dutch eligibility traces, which are intermediate to accumu-
lating (e:+1 = vAe; + ax;) and replacing traces (e;11 =
vher @ (1 — x¢) + ax;, where z; is an indicator vector).
Following the notation of van Seijen et al. (81), we place
the learning rate « inside the eligibility trace update rather
than in front of d; in the weight update.

Simulation was performed using tabular features x; =
1,, eligibility trace A = 0.995, discounting factor v = 0.99,
learning rate @ = 0.01, and time step dt = 50 ms.

Value prediction model

The DRN rate model-based value prediction model is de-
fined as

p(t) = ReLU[(1 + A) v(t) — A u(t)]
du plt) — u(t) @

dt Tad ’

where p(t) is the firing rate of DRN serotonin neurons; v(t)
is the time-dependent net input, assumed to be a value
signal (either true or estimated, as indicated in main text);
u(t) is adaptation; A and 7,4 are the strength and timescale
of adaptation, respectively; and ReLU[z] = max(z,0) is
the rectified linear function. The input is rescaled by a factor
1+ A so that p(¢t) = C for any constant input z(¢t) = C
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independent of the strength of adaptation A.

We used A = 3 and 7,9 = 1 s to achieve effective adap-
tation amplitude and kinetics similar to those observed in
our previous experimentally-constrained semi-biophysical
model (10). Note that the effective adaptation kinetics are
faster than 7,4 due to feedback between u(t) and p(t).
Adaptation dynamics were numerically integrated using the
second-order Runge-Kutta method. Surprise/salience tun-
ing simulations were carried out using a time step dt =
1 ms, all others used dt = 50 ms.

For a true value signal, the value prediction model has
only three free parameters: the discounting timescale, the
strength of adaptation, and the adaptation timescale.

In vivo experiment

The dynamic trace conditioning experiment analyzed here
has been reported previously by Grossman et al. (15). A
brief summary is as follows:

Tetrode recordings of optogenetically-tagged serotonin
(SERT-expressing) neurons were collected from head-fixed
and water-restricted C57BL/6J mice presented with odour-
cued water rewards. Each trial consisted of a 1s odour
cue followed by a 1s delay and a 3 s window during which
a fixed-size water reward (approx. 2 uL to 4 L) could be
collected from a lick spout. After the 3s reward interval,
the lick spout was retracted and any remaining water re-
moved via vacuum for 1s. Inter-trial interval durations were
exponentially-distributed with a mean parameter of 3.3s
(actual: 3.31 £ 3.46's, mean + SD, range 0s to 54.28s).

Rewards were delivered probabilistically according to a
hierarchical Bernoulli point process

Bernoulli[p;] with 95 % proba. (odour A)

Rt ~
0 catch trial; 5 % proba. (odour B),

where the reward probability p; varied according to a block
structure. Block lengths were uniformly distributed between
20 and 70 trials. Depending on the recording session,
reward probabilities were set to p; € {0.2,0.5,0.8} or
p: € {0.2,0.8}. Catch trials and trials in which a reward
was available but not collected were deemed unrewarded
for the purposes of our analysis.

Mice collected 0.45 £ 0.04 rewards per trial (mean =+
SD; range 0.37 to 0.54) and completed 346 + 88 trials
per session (range 180 to 565). Mice failed to collect avail-
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able rewards 4.1 + 4.3 % of the time (median 3.4 %, range
0.0 % to 19.0 %). Sessions lasted approximately 1 h (time
from start of first trial to start of last trial: 53.1 4= 12.9 min,
range 29.0 min to 88.1 min). Sessions with more trials were
not significantly associated with higher or lower reward
rates (Pearson » = 0.206, p = 0.293, N = 28 sessions).
Data were gathered from five mice (four male, one female)
across 28 sessions with 1.32 + 0.54 neurons recorded per
session (range 1 to 3).

Surgical and experimental procedures were approved by
the Johns Hopkins University Animal Care and Use Com-
mittee and performed in compliance with the National Insti-
tutes of Health Guide for the Care and Use of Laboratory
Animals.

Data analysis
Reward history

Reward history was operationally defined as the mean re-
ward across the past five trials

1
bt = g;ﬁﬂ',

which is an unbiased estimate of the true time-varying
Bernoulli reward probability. To mitigate boundary effects,
we set r; = 0.45 for ¢ < 0.

Note that the mean reward can be used as a crude
proxy for value because the true value is proportional to
the true reward probability. The connection between mean
reward and true value is also exploited by temporal differ-
ence learning methods, which implicitly define value as an
exponential moving average of past rewards (Appendix B).
We choose to use the five-trial mean reward instead of the
true reward probability or a TD estimate so that the con-
nection between the activity of serotonin neurons and the
animal’s estimate of a reward statistic is clear.

Reward variability

We quantified reward variability using three statistics that
can be derived from the estimated Bernoulli reward proba-
bility p;: reward variance

-

Var[R;] = p(1 — py),
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standard deviation

—

SD[Rt] = \/ﬁt(l _ﬁt)7

and entropy

—

H[Rt] = ptlogy pr + (1 — pe) logg (1 — py)-

Variance is the focus of our analysis because it is propor-
tional to the absolute RPE used as a measure of surprise or
uncertainty in some reward learning models (Appendix F).
The other statistics are nearly proportional to variance and
are included only to illustrate that our results to not depend
on technical details of the variability measure.

Quantification of activity

We quantified neural activity using either the peri-stimulus
time histogram (PSTH) with 500 ms window width or, as a
more coarse-grained metric, the mean number of spikes
in a 7.5s window around each trial (1.5 s pre-trial baseline,
5s trial, 1 s post-trial baseline), which we refer to as “whole-
trial activity”. Baseline activity was defined as the mean of
the PSTH 1 s before the start of each trial or, similarly, the
number of spikes in a 1 s period just before the start of the
trial. Cue-associated activity was defined as the extremum
(usually maximum) of the PSTH during the 1s cue period.
PSTHs were not smoothed.

All activity metrics were precision-weighted across neu-
rons and reward history conditions as applicable. For exam-
ple, the population PSTH for the reward probability p = 1/5
condition was calculated by summing spiketrains from all
trials of all neurons where p; = 1/5 and dividing by the total
number of trials being summed. The resulting population
PSTH can be seen as a weighted average of the PSTHs of
individual neurons, where each neuron is weighted accord-
ing to the precision (inverse variance) of its PSTH N/o2.

Dynamical model definitions

Value The value prediction and value models of sero-
tonin neuron activity are defined by Eq. ?? and 4. The
discounting timescale, adaptation strength, and adaptation
timescale are estimated from the data along with scale and
offset parameters.
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Surprise Surprise is defined in reward learning as the ab-
solute reward prediction error |4;| and in information theory
as log, p, both of which are zero for deterministic events
and greater than zero for stochastic events. Therefore, each
instant in the inter-trial interval, the beginning of the trial,
and the beginning of reward delivery all have non-zero sur-
prise, while all other moments during the trial have zero
surprise.

Our surprise-like model is defined as a piecewise con-
stant function

A tisinITI,
) B tis start of trial,
SurprishModel(t) =
C tis the start of reward delivery,
D otherwise,
subject to the restrictions
B>A>D
and
C>D,

where the coefficients A, B, C, D are estimated from the
data.

Reward The reward model is a piecewise constant func-
tion

A tisinreward epoch,
RewardModel(t) =

B otherwise,

where the coefficients A, B are estimated from the data.

Null The null model is a constant function with an offset
parameter estimated from the data.

Surprise with adaptation The surprise-like model with
adaptation is modified from the surprise-like model defined
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above:

AdSurprishModel(t) =A

— (t—tstar)

+BO(t— tstart) T

—(t—trew)

(

+CO(t —tew)e 7

+ D O(t — tsart) O(—(t — tena))
(

—(t—teng)

—‘,—E@t—tend) ™ ,

subject to the restrictions

where O(:) is the Heaviside step function and the coef-
ficients A, B,C, D, E, T are estimated from the data. As
before, A, B, C, D represent the activity during the ITI, trial
start, reward start, and the remainder of the trial, respec-
tively. E represents the amplitude of the overshoot at the
end of the trial and 7 is the timescale of adaptation.

While adaptation can be used to compute surprise, we
are doubtful that adaptation should be added to a model
of surprise itself: the fact that adding adaptation actually
slows down the kinetics of the surprise signal is a major
conceptual difficulty. We include this model in our analysis
only for completeness.

Reward with adaptation The reward model with adapta-
tion is modified from the reward model defined above:

AdRewardModel(t) =A©(t

+B

- trew) @(*(t - tend))

(t—trew)

+C®(t_trew)€7 T

—(t—tend)

+D@(t7tend)6 T s

subject to the restrictions

A>B
c>0
T 9
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where the coefficients A, B, C, D, T are estimated from the
data. As before, A, B represent the activity during the re-
ward period and at all other times, respectively. C' parame-
terizes the amplitude of the phasic activity associated with
reward onset, D parameterizes the amplitude of the un-
dershoot associated with reward offset, and 7 is the time
constant of adaptation.

Dynamical model fitting

Before fitting, all models were smoothed with a 500 ms
boxcar filter to simulate a PSTH and lagged by 150 ms to
account for perceptual delays.

All models were fitted by minimizing the mean
squared error on the population PSTH (see Quan-
tification of activity). For the reward model (without
adaptation) this was accomplished using linear regres-
sion. For all other models, this was accomplished using
bounded/constrained gradient-based optimization methods
provided by scipy.optimize.minimize (L-BFGS-B or se-
quential least-squares quadratic programming).

Performance was assessed using repeated five-fold
cross validation. Data was stratified by neuron identity
(which partially reflects reward history beyond the five-trial
horizon, Figure 6E) and reward history level prior to assign-
ing folds in order to minimize class imbalances between
training and validation sets.

We use cross validation rather than AIC or BIC because
cross validation does not rely on distributional assumptions
that would be needed to formulate a likelihood function for
each model.

Analysis of reward modulation

Reward modulation was defined as the slope ; of a re-
gression line between an activity metric (see Quantification
of activity) and the estimated reward probability

Ui = BpDi + Bo + €,

where y; is the measured activity, p; € {0/5,1/5,...,5/5}
is the estimated reward probability (see Reward history),
Bo is the intercept of the regression line, and ¢; is a resid-
ual. The regression model was fitted using weighted least-
squares (observations were precision-weighted; see Quan-
tification of activity).
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Statistical significance of the slope 3; was assessed us-
ing circular trial permutation or bootstrapping.

Circular trial permutation tests are not sensitive to au-
tocorrelations in timeseries data that can significantly in-
crease the false positive rates of classical and shuffling-
based statistical tests (41). These tests were performed
by shifting the per-trial estimated reward probabilities p;
to break the alignment between activity and reward his-
tory while controlling for other correlations in the data. For
example, the reward probabilities for a T trial experiment
Pt=1,Pt=2, - - - , Pr=T CaN be shifted D places to generate
un-aligned probabilities

Pt = Pt4D  (mod T)s

and the analysis described above can be repeated using
the shifted probabilities p. The value of the slope 55 ob-
tained using this procedure represents the apparent reward
modulation under the null hypothesis that activity and re-
ward history are not actually related (because the trials
were shifted). In the case of whole-trial reward modulation
of population activity, the permutation procedure was re-
peated 2500 times to generate a distribution for 85 used to
obtain an approximate p-value for 3;. In the case of whole-
trial reward modulation of individual neurons, the procedure
was repeated exhaustively to generate exact p-values. In
both cases, we restricted 10 < D < T'—10 due to very high
experimental design-related autocorrelations in p (specifi-
cally, block structure and the fact that p; and p;—4, . . ., P44
are calculated on overlapping sets of trials). Removing this
restriction post hoc did not meaningfully affect our results.

Bootstrap distributions for activity metrics ¢;, regression
predictions y;, and regression slopes 3; were generated by
sampling trials 1000 times with replacement within reward
probability levels 0/5,1/5, . ..,5/5 and neurons as applica-
ble. Activity metric distributions were corrected for Monte-
Carlo bias (82). Statistical significance of the regression
slope (3; was assessed using the 99 % confidence interval
method.

For consistency with dynamical model comparison, re-
ward modulation models based on reward history p and
related statistics Var[R)], SD[R], H[R] (see corresponding
section above) were compared using repeated stratified
five-fold cross validation. Performance is presented as the
mean variance explained across folds for each repeat.
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Statistical analysis

Statistical tests are specified in the main text and methods
above. Non-parametric tests were used as much as pos-
sible; where samples sizes were so small that the loss of
power associated with non-parametric tests became pro-
hibitive, robust tests were used. All tests are two-sided un-
less otherwise stated. Sign tests were one-sided because
our theory implies that the relevant effects should have a
specific sign. Exact p values are reported in the main text.
Results were considered statistically significant at p < 0.05
and p < 0.1 was considered a trend. Sample sizes were
not predetermined because only previously published data
was used. N = 37 neurons in nearly all cases. Because
neurons were usually recorded individually (see “In vivo ex-
periment” above), we considered them to be independent
biological replicates for the purposes of statistical analysis.
Error bars represent 95 % confidence intervals. Uncertain-
ties are presented as standard deviation in the main text
unless otherwise specified.

Data and code availability

Previously-published data is available on the Dryad reposi-
tory (23). Code will be made available on GitHub.

Copyright permissions

Elements of Figure 3B and C, Figure 4C, and Figure 5 have
been reproduced from Cohen et al. (11), Matias et al. (13),
and Zhong et al. (12), respectively, under the Creative Com-
mons Attribution license (CC-BY 4.0). A bar chart from
Paquelet et al. (5), which is covered by the Creative Com-
mons Attribution Non-commercial No Derivatives license
(CC-BY-NC-ND 4.0), has been included in Figure 4D with
kind permission from Bradley Miller.

Artwork has been modified by changing colours, replac-
ing axis annotations with icons or larger text, and/or adding
schematics to improve clarity. Due to space constraints,
small reward and neutral stimulus groups were removed
from the vignette in Figure 4C, as were statistical anno-
tations. In all cases, our aesthetic modifications do not
change the interpretation of the underlying data. Refer-
ences to the specific figures from the original publications
are included in our captions.
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Fig. 8. Effects of discounting over extreme timescales. This figure extends the horizontal axis of main text Figure 3D. Heatmap shows the ITI value relative to the maximal
value during the trial (i.e., the value just before the start of reward delivery) as a function of experimental parameters (vertical axis) and the duration of the trial relative to the
discounting timescale of the agent (horizontal axis). Ribbons next to the vertical axis are to scale, gray represents the mean ITI duration and colours represent trial epochs.
Traces show the true value dynamics (black) and predictively-encoded value (blue) for a trial consisting of a 3s combined cue and delay epoch and a 1's reward epoch. True
value is normalized to the maximum just before reward as in the heatmap; different reward sizes (and learning) can be accommodated by scaling the traces. Note that the value
signal is nearly flat if the discounting timescale is much longer than the trial duration (traces 1 and 4), similar to the dynamics of some serotonin neurons (e.g., Figure 6G2).
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Fig. 9. Expected uncertainty (15) reflects mean reward, not reward variance, in an example session. A Comparison between the time-course of expected uncertainty (black)
and mean reward (blue, top) or reward variance (gray, bottom) calculated using a five-trial history. Note that expected uncertainty is theoretically negatively related to the
mean reward and positively related to variance (Appendix F). Consistent with this, negative expected uncertainty closely resembles five-trial mean reward (top). Gaps in the
expected uncertainty timeseries are due to removal of catch trials. B Marginal relationship between expected uncertainty and mean reward (left) and reward variance (right)
calculated using a five-trial history, as in our main analysis (e.g., Figure 7B). Data are presented as mean £ SD. Note connection between negative expected uncertainty
and the mean reward (left). C Comparison between the time-course of expected uncertainty (black) and mean reward (blue, top) or reward variance (gray, bottom) calculated
using an exponential moving average with an estimation time constant of 7es; = 200 trials. The mean reward calculated using an exponential moving average is equivalent
to state value under TD learning (Appendix B). D Marginal relationship between expected uncertainty and mean reward (left) and reward variance (right) calculated using
an exponential moving average as in C. Note connection between expected uncertainty and mean reward (left). Z-scored expected uncertainty values for recording session
mBB036d20160623 (23) used in (15) kindly provided by Cooper Grossman.

Table 2. Performance statistics for models of population activity modulation by reward history. Related to Figure 7C.

Training 72 Validation r2
Model Baseline Cue Baseline Cue
Value pred. (ours)  0.894 +0.002 0.713+0.006 0.763 £0.030 0.526 £ 0.074
Variance 0.111 £0.001  0.208 £0.005 0.088 £0.019 0.111 £0.048
Std. dev. 0.109 +£0.001 0.168 £0.004 0.086 +£0.018 0.085 + 0.040
Entropy 0.111 £0.001 0.188£0.004 0.088 £0.019 0.098 £ 0.044
Null 0.000 0.000 0.000 0.000
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Fig. 10. Expected uncertainty (15) reflects mean reward, not reward variance, across sessions. A Marginal relationship between expected uncertainty and mean reward.
Marginals were calculated by averaging expected uncertainty at each level of mean reward calculated using a five-trial history, as in our main analysis (e.g., Figure 6A). Black
line represents mean 4+ SEM across N = 28 recording sessions. Note that expected uncertainty is negatively related to the mean reward, consistent with our simplified model
(Appendix F). The relationship between expected uncertainty and five-trial mean reward is nearly linear, possibly due to the long timescale over which expected uncertainty is
estimated (15). B Expected uncertainty is more closely related to the mean reward than reward variance in nearly all sessions. Unweighted r? values represent the fraction of
variance in the gray lines from A that is explained by a straight line (mean reward, vertical axis) or a parabola (variance, horizontal axis). Z-scored expected uncertainty values
used in (15) kindly provided by Cooper Grossman.
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Fig. 11. Serotonin neuron activity reflects mean reward and is spuriously correlated
with reward variability. A,B Reward variability is inextricably linked to mean reward
for binary (Bernoulli) rewards. A Expected uncertainty (15), defined as the mean
RPE in a model of biased animal learning, has an inverted U-shaped relationship
with the mean reward. If learning rates for positive and negative RPEs are highly
asymmetric, as in previous work, expected uncertainty is mostly negatively related
to the mean reward. B Unbiased statistics of reward variability, such as reward vari-
ance, also have inverted U-shaped relationships with the mean reward. C Serotonin
neuron activity is better described by mean reward than reward variability. SSE,,
— SSEmean represents the difference in weighted sum of squared errors (SSE)
between a linear fit of serotonin neuron whole-trial activity to the reward variance,
standard deviation, or entropy versus a linear fit of whole-trial activity to the mean
reward (estimated using a five trial history, as in main text). Positive values indicate
a better fit (lower error) with the mean reward model. p values are from Wilcoxon
signed-rank tests. D Serotonin neuron activity does not systematically deviate from
the mean reward model (left). Errors are derived from linear fits used in C. Dark
gray bands indicate 95 % Cls on the mean (i.e., mean £1.96 SEM). No systematic
errors are expected if the model is essentially correct (illustrated in inset). Note that
the variance model exhibits systematic errors (right), as expected if serotonin neuron
activity encodes the mean reward (illustrated in inset). E Serotonin neuron activity
is relatively strongly positively related to mean reward. Slopes are derived from fits
used in C and normalized to the dynamic range of the corresponding reward statistic
as in B (0-1 for mean reward, 0-1/4 for variance, 0—1/2 for standard deviation,
and 0-1 for entropy). p values are from Wilcoxon signed-rank tests. F The activity of
individual serotonin neurons is more often correlated with mean reward than reward
variability, and significant correlations with variability are likely due to confounding.
A significant proportion of serotonin neurons exhibit activity that is significantly cor-
related with each reward statistic (top; cyclic permutation test, see main text; dark
blue, light blue, dark gray, and light gray indicate p < 0.05,0.05 < p < 0.1,
0.1 < p <£0.5,and p > 0.5, respectively, as in main text). However, in the subset
of neurons in which activity is significantly correlated with reward variability, reward
variability is unusually strongly confounded with the mean reward (bottom). Stars
indicate 0.01 < p < 0.05 (actual range: p = 0.024 to p = 0.037) in permutation-
based two sample ¢ tests (non-parametric tests could not be used because too
few neurons had statistically-significant correlations with reward variability statistics).
N = 37 neurons in all cases.
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Fig. 12. Correlation between serotonergic activity and mean reward does not depend on technical details of analysis. A,B Conclusions are unlikely to depend on the decision
to use a five trial reward history as a proxy for value rather than an incrementally-learned estimate because the two are very similar. A Comparison of five trial mean reward
used in main text with an exponential moving average of past reward for an example session. The blue line represents an exponential moving average with a time constant
of 30 trials, which is equivalent to the value estimated by temporal difference (TD) learning using a learning rate of « = 1/30 (and no discounting). B Pearson correlation
between five trial mean reward and moving reward average as a function of the time constant of the moving average (learning time constant) for the example session shown in
A. Note that the two are moderately or strongly correlated across a wide range of learning time constants. C,D Whole trial activity is correlated with mean reward but not reward
variability when reward statistics are calculated using a moving average of past rewards rather than a five trial history. Note that this result does not depend on the choice of
learning time constant. E, F Choice of activity metric does not affect conclusions: baseline activity is also correlated with mean reward but not reward variability. In C—F, reward
variance, standard deviation, and entropy were calculated from the learned p; rather than moving averages (of squared errors, for example) because this approach is less
statistically biased and/or better defined. N = 37 cells in all cases.
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A Connection between state value
v(s) and state-action value ¢(s, a)

It is well known that the state-action value
depends on the state wvalue: ¢(s,a) =
E[Rit1 +yv(Sey1) | St = s, Ar = a] (25). As we show
below, the state value can also be expressed in terms of

state-action values.

Following the notational conventions of RL theory, let
S, A be random variables denoting the state and action and
let s, a be a specific state and action. Let v(s) and ¢(s, a)
be the state and state-action value functions, respectively,
under the action-generating policy 7(a | s) = Pr[4; = a |
S; = s]. The state value function v(s) is equivalent to the
expected state action value ¢(s, a) under the policy :

St:S‘|

= E4,~r(als) (5, Ar) | S¢ = 8]

o

Z’YiRt+i+1

i=0

v(s)=E

Proof: The state-action value function is the expected
cumulative discounted future reward to be obtained after
taking action « in state s, written as

Z Y Rt+z+1

i=0

q(s,a) = Sy =s5,A:=a

Note that this is exactly the same as the state value v(s)
except for the dependence on the chosen action A; = a.

To prove that v(s) is the expected ¢ value, we need to
incorporate A; into v(s). To simplify notation, let G, be the
random variable >:° ) 7" Ry+i41. Using G, and expanding
expectation, we can rewrite the state value as follows

= / Gt PI‘[Gt | St = S}th.

Incorporating the chosen action A; by conditioning, we ob-
tain

q(s,a)

(als)

v(s) = Z/_OO G Pr[G; | s,a]dGy Pr[A; = a | ]

- EA,Nﬂ(a |s) |4 [ (S At) | St - S]

completing the proof.
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B Temporal difference learning aver-
ages past rewards

Consider an experiment with a single state (e.g., a trace
conditioning experiment where each trial is considered to
be a time step) and a stochastic reward R ~ Bernoulli[p].
Learning the state value v; using the RPE 6; = R; — ¥
causes the state value to be an exponential moving aver-
age of past rewards that is an unbiased estimate of the
reward probability p

Proof: The current state value v, depends on the past
state value 7;_; and RPE ;_1

Uy = Vg1 + dy—1,

where 0 < a < 1 is the learning rate. Expanding the above,
we obtain

Op = 01 + a(Ry—1 — 0—1)
=aR_ 1+ (1—a)t_1
=aR; 1+ (1—a)aR; o+ (1 —a)?i_o

H

1-a)™ Mgy +ad (1—a) R,
=0

where H € N is the time horizon. Taking an infinite hori-
zon, the term (1 — o) 14,z vanishes, and we are left
with value as a scaled exponential moving average of past

rewards
oo
Uy = Z 1- Ol Rt i—1
i=0
with an estimation timescale 75t = —dt In(1 — «).

Taking the expectation shows that the above is an unbi-
ased estimate of the reward probability

E[0;] laZl—a ‘Ri—i1

"E[R¢—;—1]

by linearity of expectation E[aX] = oE[X], simplification of
the geometric series Y~ ,(1—a)’ = 1/, and expectation
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of the Bernoulli reward E[R;] =

The reader may verify that the above implies that © is an
unbiased estimator by adding a bias term b and showing
that it is zero: E[0 + b] = p = b = 0. This completes the
proof.

C Learning rate controls value vari-
ance

Appendix B shows that the state value ¢ is an unbiased
estimate of the mean reward E[R] = p. The variance of
this estimate is set by the TD learning rate a according to

Var[d] = 2& Var[R].

Proof: Recall that the value estimate can be written as

oo
@:Zl_athl
=0

Taking the variance and moving the constant terms out, we
obtain

2lVar [Ri—i—1],

Var[o;] = =a? Z
remembering that Varja >, X;] = a? Y, Var[X.
stant a and independent X;. Removing time dependence

by assuming Var|[R;_;_1] = Var[R] Vt,i and simplifying
the constant term using convergence of the geometric se-

;] for con-

ries completes the proof.

D Derivation of true value in trace
conditioning experiments

The normalized true value signal v(t)/v(tew) in a trace
conditioning experiment is given by the piecewise function

— (Leue+ Lgelay) .

—T—e—  tinlTl,

Lm+7

U(t) t—trew
T

v (trew) B

=Ae t in cue or delay,

A(l—e =)+ B tinreward,

presented in Equation (3). (See Methods for the meaning
of each variable.)
To derive this equation, we model a trace conditioning
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experiment as a Markov reward process (MRP). The states
in the MRP are labelled sy, s1, so, .. .,
the ITI, s1, s9,...,
M time steps between the start of the cue in s; and the

SM4N > where s is
sns are the trial states representing the
end of the delay period in sp;, and sar41, Svr+2y - - - s SM4+N
are the reward states representing the IV time steps during
the reward period. The transition probabilities are

p(s1 | S0) = Pstart
p(s0 | 50) = 1 — pstant
p(so | smn) =
p(siv1 | 8i) = 1<i<M+N

where p(s; | s;) represents the probability of transitioning
to s; at the next time step given that the current state is
s;. These transition probabilities were chosen so that the
dwell time in the ITI state so follows a geometric distribution

with mean Ly = , reflecting exponentially distributed

Pt it
ITI durations commonly used in experiments, and so that
the fixed durations of the cue, delay, and reward epochs
= Leue + Ldelay = M dt and Lyew = N dt.

A reward of size /N is delivered in each of the N reward

are given by Lyia
states, such that each trial ends in a total reward of size r.

As noted in the main text, we define the value of each state
in terms of the expected discounted future reward

’U(S) =E [Z ’yiRt+i+1 St = S‘| N

i=0
which can also be written in Bellman form as

v(s) = E[Rig1 +y0(Se41) | St = s].

In the three sections below, we show how each part
of the continuous time normalized true value signal
v(t)/v(trew) can be derived from the MRP and value func-
tion v(s) given above in the limit of dt — 0.

True value during the ITI
Writing the value of the ITI state v(sg) using the Bellman
form and expanding the expectation shows that it is depen-

dent on itself and the value of the first trial state

v(s0) = Yv(51) Pstart + Yv(50) (1 — Pstart),
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which can be solved in terms of v(sp), yielding

U(SO) _ ’)’U(Sl) Dstart
1- '7(1 - pstart)

The first trial state v(s1) can be written in terms of the
final trial state v(sps)

M-1

v(s1) =77 w(sm)

since the state transitions are deterministic and no rewards
are delivered during the cue and delay epochs.

Substituting the value of the first trial state v(s1) into the
value of the ITI state v(sg) and normalizing by the peak
value during the trial v(sys) yields

v(s0) _ ’YMpstart
U(SIW) 1- ’7(1 - pstart)

Using M = (Lcue + Ldelay)/dt and pstart = dt/ L from
the problem definition and letting v = e, the relative ITI
value can be rewritten

U(S()) - dt/Lm
—dt

’U(SJW) B 1-— 67(1 — dt/Lm)

—(Lcue+ Ldelay)
T

Taking the limit as dt — 0 completes the derivation.

True value during trace and delay epochs

Using the Bellman form of the value function and the fact
that no rewards are delivered during the cue and trace
periods, the value leading up to reward can be written

v(si) = yMw(spr) forl1 <i< M.

Normalizing by v(sas) and converting to continuous time
using v = e=" and M = Lyiai/dt completes the deriva-
tion.

True value during the reward epoch

The true value starting in state s, and continuing through
the reward epoch is

N—i—1
v(sares) = 7Y " lu(se) + Z yir/N for0<i<N,
=0

abusing notation by allowing Zj;lox = 0. Removing the

contribution of v(sp) and normalizing out the reward, we

Harkin etal. | Serotonin predictively encodes value

are left with

N—i—1
v(Sp4i) — ny*”lv(so) x Z 47 for0<i<N.
j=0

The sum of discounting factors on the right hand side can
be rewritten in continuous time as the integral of an expo-
nential discounting kernel

Lrew—t —x —(Lrew—1t)
BTdI:T(lfe & ) for 0 <t < Lyew-
0

Incorporating the scaling and offset terms A, B to ensure
continuity with the normalized value function at v(tew) and
v(teng) cOmpletes the derivation.

E Inter-trial interval value reflects

value at the start of the next trial

Let the state a be that the animal is in the ITI, let the state
b be that the animal is at the very start of a trial, and let T’
be a random variable that represents the number of time
steps remaining in the ITI before the start of the next trial.
The true value of the ITI state v(a) is proportional to the
value at the start of the next trial v(b) as follows

v(a) =v(b) E[y"! | Si=a],

where ~ is the discounting factor.
Proof: Recall that the true value of a state .S, s is defined
as the expected sum of exponentially-discounted future re-

StZS].

Applying this definition to the states a,b, we obtain
v(a) = E [ZiT:o Y Riviv1+ Yoy V' Ririta ‘ S = a}
and v(b) =E [>77 )Y Retit1 | S¢ = b], where the sum in
v(a) is split between the value of the rest of the ITI and

wards

i=0

v(s) =E lz Y Riyit1

the discounted value at the start of the next trial. Since the
value at the start of the next trial is v(b), we can rewrite the
ITI value as follows

St = a‘| .

Observing that the cumulative reward during the ITl is zero
by definition ZiT:o v'R¢1:+1 = 0, and also observing that

T

> V' Regivr++" T o(b)
=0

v(a) =E
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v(b) is a constant that can be factored out of the expecta-
tion, we find that the ITI value is

v(a) =v(b) E[y"! | Sy =a],

completing the proof.
Notes:

« This proof can easily be extended to the value of any
state in the upcoming trial (not just the first state) by
redefining T" and b.

 If the ITI durations are drawn from a geometric
(or exponential) distribution, then the scaling factor
E [T+ | S; = a] does not depend on the amount of
time spent in the ITI so far. The value during the ITI
v(a) is therefore constant.

F Relationship between uncertainty
and reward variance

Absolute RPEs || are sometimes used in RL as a mea-
sure of variability or uncertainty that can be used to regu-
late learning (15), but the precise statistical interpretation
of |4 is unclear. Here we show that for vanilla TD learn-
ing from Bernoulli rewards, the average absolute RPE is
proportional to the reward variance

E[|0]] = 2 Var([R],

but this relationship can be distorted by asymmetric learn-
ing rates and forgetting.

Proof for vanilla TD: For simplicity, let R ~ Bernoulli[p],
let the RPE be § = R — 9, and set value to its fixed point
0 =p(since E[A)] =0 < E[§] =0 <= © = punder
TD learning). Substituting p into the RPE and taking the
expectation of the absolute value, we get

Eflof) =E[[R—pl].

Since the reward is binary R € {0, 1}, we can easily rewrite
the expectation above and simplify

E[[6]] = [1 = plp+10 = p[(1 - p)
=2p(1-p)
= 2 Var[R],

Harkin etal. | Serotonin predictively encodes value

a=e-11 a=e-110 = e-1/100
S 05
w
o
o
< 0.0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Reward p Reward p Reward p

Fig. 13. Numerical verification of relationship between absolute RPE |5 | and reward
variance Var[R] under TD learning. Panels show |§| mean £ SEM (blue points;
error bars are too small to be visible) calculated from simulated TD learning trials
against 2 Var[R] (black lines). Simulations were burned in for 500 trials and RPE
statistics were calculated on 2000 trials. Learning rate o used in the TD model is
indicated at top of each panel.

1.0
0.50 — a-/ay=0.1

— a-/a;=1.0
0.25 — a-/a; =10.0

Est. value v
o
(9,1

Abs. RPE |5]

0.0 0.00
0.0 0.5
Reward p

o
o
o

0.5 1.0
Reward p

Fig. 14. Effect of asymmetric learning rates on value © and absolute RPE |§]| in TD
learning.

completing the proof.

The relationship between absolute RPE |4]| and reward
variance shown analytically above holds well in practice
even if the value estimate v is not generally exactly equal
to its fixed point p (Figure 13).

Effect of asymmetric learning: In vanilla TD learning,
the value estimate is updated proportional to the RPE
Av = «ad, but a common extension is to use different learn-
ing rates for positive and negative RPEs

a_d ifd <0,

Ad =

called asymmetric learning. Under asymmetric learning,
value has a fixed point that is different from the reward
probability E[Ad] = 0 <& © = p. We can find the fixed
point by solving

0 = E[A7]

O=ay(l—0)p—a_v(1—p)

P
p+o-(1-p)

Substituting the above into the expectation of the absolute
RPE E[|6]] = E[|R — 9|], we find that there is no longer
a clear connection to the variance of the Bernoulli reward
Var[R] (Figure 14).

Effect of forgetting: Another common modification of
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Fig. 15. Effect of forgetting on value © and absolute RPE |§| under asymmetric TD
learning with Z—J’r = 0.3.

TD learning is to include a forgetting rate 0 < ¢ < 1in the
RPE 6 = R — 9 — (0. Solving E[A¢] = 0 as above, we find
the fixed point

p .
p+=(-p)| (1+0)

’[/}:

The main effect of forgetting is to decrease the estimated
value when the reward probability is high, increasing the
absolute RPE in this range (Figure 15).

G Perturbation analysis

Setup: According to the value prediction theory, the trial-
aligned activity patterns of serotonin neurons in reward
learning experiments should resemble the normalized true
value signal derived in Appendix D scaled by the reward
probability. Therefore, if an animal’s estimate of the re-
ward probability is dynamically changing, then the activity
of serotonin neurons should scale up and down accord-
ingly. Assuming that the animal estimates the reward prob-
ability on the basis of the proportion of recent trials that
were rewarded, the value prediction theory makes a simple
testable prediction: in a given experiment, the firing rates
of serotonin neurons should be positively correlated to the
proportion of recent trials that were rewarded. We do no
know, however, the precise timescale over which the re-
cent rewards affect the value function. To circumvent this
problem, we use perturbation theory to derive a simpler ex-
pression relating the value with the fraction of recent trials
that were rewarded.

Our value prediction theory states the firing rate of sero-
tonergic neurons is proportional to the predictively coded
value signal. Over the slow timescale of the whole-trial, the
predictively coded value signal becomes the value signal.

Harkin etal. | Serotonin predictively encodes value

Our goal is thus to relate the value signal

St:8‘|7

with fluctuations in the recent reward history p; =
%Zf;ol Ty, for some small number of recent trials L and

Z V' Riyis

=0

Ut:]E

where 7, refers to the kth reward in the past with respect
to time ¢.

We begin by proving that v; o« 0:E[R], where the normal-
ized value signal v; from Appendix D captures within-trial
value dynamics and the expected reward E[R] is responsi-
ble for trial-to-trial fluctuations. By definition,

Vg = Uy U(SM),

where v(syy) is the true value just before reward delivery
(see Appendix D), so it remains only to be shown that
v(sp) o E[R]. Assuming the reward lasts only one time
step, we can write

v(sp) = E[R] + yv(so),

where v(sg) is the true value during the ITI. Using the fact
that v(sg) o< v(sps) from Appendix E, we can introduce a
temporary proportionality constant C' and simplify

E[R] + ’YOU(SM)
v(sn) = E[R]/(1 —~C)

<
—
w
S
~

Il

Thus we have that
v(sy) x E[R] = v x 3E[R].

The proof can be extended to rewards that last more than
one timestep without much difficulty.

There are multiple ways of calculating the expected re-
ward E[R], but in TD learning methods, the expected re-
ward is an exponential moving average of past rewards (Ap-
pendix B). Therefore, the value signal fluctuates according
to an unknown value estimation timescale 7,

)
Oy = (1 — efT/TE) Z e Th/Tey,
k=0

Using the fact that the total trial and ITI duration 7" times
the trial horizon L is much smaller than the estimation
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timescale ., by first order Taylor expansion of the expo-
nential terms we get

U = Uy {ZL@ + c}
where ¢ = L3702 | e TF/ ey ~ (1 + TL/7.) where 7
is the averagé reward on a long time horizon. The relative
change in value is then
Sl P+ 7 )TL) ~25%

using an estimation time scale of 7. = 200 trials (12, 13),
an L = 5 trial horizon, and an average reward rate of ¥ =
0.5. This implies that if the average firing rate of a serotonin
neuron is 2 Hz, we expect to observe activity modulations of
roughly 0.05 Hz in either direction around the mean based
on a five-trial reward history.

Note: As a rough guide to the sensitivity of this calcu-
lation, consider that if the estimation time scale were an
order of magnitude faster than what has previously been re-
ported (12, 13) (7. = 20 trials), then we would expect activ-
ity modulations of roughly 0.8 Hz (40 % of a 2 Hz baseline).
Therefore, changes in serotonergic activity associated with
a five-trial reward history should be much smaller than the
multi-Hz within-trial fluctuations in activity explained by v
and observed experimentally (11), even if our estimate of
the value estimation timescale 7. is badly wrong.

H Predictive coding exactly cancels
leaky decoding

Let I(t) be the net input to the DRN, let f(-) be the en-
coding function of the DRN, and let g(-) be the decoding
function of some downstream region. The output of the
DRN s (f o I)(t) and the decoded signal is (g o f o I)(t).
Assuming that g performs leaky integration on its input, the
decoded signal is given as follows

wofon® == [ (fon(+s) 1emds @

Following our previous work (10), assuming f predictively
encodes its input such that

dl

(foI)(t) =75 + 1) ©

Harkin etal. | Serotonin predictively encodes value

then
(go fol)(t)=1().

Proof: Substituting Eq. 6 in Eq. 5 and expanding the
resulting integral yields

T dI 1
goron® == [ 7% Sermas
0 dt t+2z T
e ) @)
- / I(t+z) —e*/7dz.
0 T
dI

The time derivative of the input %; can be removed from

the first term using integration by parts, yielding

— 00

— {Tf(t-i-z) ! Z/T}

—e
T

oo 1
+ / I(t+z) =e*/7dz.
z=0 0 T

Substituting the above into Eq. 7 causes the remaining in-
tegrals to cancel and changes the sign on the non-integral
term, giving

—00

1
(gofol)(t) = l:TI(t-l—Z) eZ/T} ,
T z2=0
which simplifies to

(go fol)(t)=1(t),

completing the proof.
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