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Abstract

The in vivo responses of dorsal raphe nucleus (DRN)

serotonin neurons to emotionally-salient stimuli are a puz-

zle. Existing theories centred on reward, surprise, or un-

certainty individually account for some aspects of sero-

tonergic activity but not others. Here we find a unifying

perspective in a biologically-constrained predictive code

for cumulative future reward, a quantity called state value

in reinforcement learning. Through simulations of trace

conditioning experiments common in the serotonin liter-

ature, we show that our theory, called value prediction,

intuitively explains phasic activation by both rewards and

punishments, preference for surprising rewards but ab-

sence of a corresponding preference for punishments,

and contextual modulation of tonic firing—observations

that currently form the basis of many and varied sero-

tonergic theories. Next, we re-analyzed data from a re-

cent experiment and found serotonin neurons with activity

patterns that are a surprisingly close match: our theory

predicts the marginal effect of reward history on popula-

tion activity with a precision j0.1Hz neuron
−1. Finally,

we directly compared against quantitative formulations

of existing ideas and found that our theory best explains

both within-trial activity dynamics and trial-to-trial modu-

lations, offering performance usually several times better

than the closest alternative. Overall, our results show that

previous models are not wrong, but incomplete, and that

reward, surprise, salience, and uncertainty are simply dif-

ferent faces of a predictively-encoded value signal. By

unifying previous theories, our work represents an im-

portant step towards understanding the potentially het-

erogeneous computational roles of serotonin in learning,

behaviour, and beyond.
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Introduction

What do the activity patterns of serotonin neurons encode?

Over a quarter-century ago, Schultz, Dayan, and Montague

(1) persuasively argued that the phasic activity of dopamine

neurons might encode the reward prediction errors (RPEs)

of reinforcement learning (RL) theory (2). Given the deep

connections between the dopamine and serotonin systems,
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Fig. 1. Summary of qualitative tuning features of serotonin neurons captured by

predictive value coding model. Curves indicate the activity of serotonin neurons over

time, measured either as firing rate (11) or calcium fluorescence (5, 12, 13). A Phasic

activation by predicted rewards over short timescales (11) emerges gradually during

learning (5, 12, 13). Depending on the experiment, activity takes the form of a phasic

cue-associated peak followed by a plateau (left; 11, 13), or a ramp leading up to

reward (right; (12)). B Tonic activity modulated by reward or punishment context over

long timescales (11). C Stronger phasic activation by unpredicted (right) compared

with predicted (left) rewards (11, 13). D Phasic activation by punishments whether

predicted (left) or not (right) (5, 11, 13).

both of which are neuromodulatory systems with important

and well-studied roles in regulating mood, learning, and

behaviour (3), it is surprising that no single account of the

responses of serotonin neurons enjoys a similar level of

support.

There are several possible reasons for this lack of con-

sensus. One possibility is that the serotonin system is not a

monolith, but rather a heterogeneous collection of partially-

overlapping sub-systems with diverse coding features (4–

6). Another possibility, in no way mutually-exclusive, arises

from the fact that experimental and theoretical work in the

serotonin field, including our own, has been deeply shaped

by the potentially incorrect assumption that the activity pat-

terns of serotonin neurons can be divided into phasic and

tonic components that reflect essentially unrelated quan-

tities (3, 7–10). This separation of timescales is reflected

in the currently fragmented picture of the dominant tuning

features of serotonin neurons. Rejecting this assumption

could lead to more clarity about serotonergic function within

and across raphe sub-systems.
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Over the past decade, detailed experimental character-

izations of the diverse in vivo responses of genetically-

identified serotonin neurons to emotionally-salient stimuli

have revealed some common themes in their tuning fea-

tures, even if these patterns remain difficult to interpret. In

trace conditioning experiments, the activity patterns of sero-

tonin neurons are dominated by phasic bumps, plateaus,

or ramps preceding expected rewards that emerge over the

course of learning and diminish during reversals (Fig. 1A;

5, 11–13), modulation of tonic activity by reward or punish-

ment context (Fig. 1B; 11), a phasic preference for unpre-

dicted over predicted rewards (Fig. 1C; 11, 13), and phasic

activation by punishments whether predicted or not (Fig.

1D; 5, 11, 13). To explain aspects of these observations,

serotonin neurons have been proposed to encode current

or future reward [Fig. 1A (14) or, separately, B (11), but not

D], surprise [Fig. 1C but not D (13)], or salience [Figure 1D

but not C (5)]. The reward (14), surprise (13), uncertainty

(15), and salience (5) theories do not offer detailed predic-

tions about the dynamics of serotonin neuron activity, nor

can any of them individually account for all of their domi-

nant tuning features (Table 1). Other serotonergic theories

related to persistence (16), confidence (17), learning rate

(18), and discounting (19, 20) focus on explaining the ef-

fects of serotonergic manipulations on behaviour and do

not connect directly to the naturalistic tuning features of

these cells (but see 15). Even the best established tuning

features of serotonin neurons therefore lack a consistent

interpretation.

Here we argue that existing qualitative serotonergic theo-

ries are incomplete, not incorrect, and that reward, surprise,

salience, and uncertainty are simply different aspects of a

single quantity encoded in the activity patterns of serotonin

neurons. To formulate a consistent interpretation of the

dominant reward and punishment tuning features of sero-

tonin neurons outlined above, we combine top-down ideas

from theories of RL (2) and predictive coding (21, 22) with

recent bottom-up insights into the computational features

of the DRN (10). We hypothesized that serotonin neurons

predictively encode a weighted average of future reward, a

quantity referred to as state value in RL, via the dominant

biophysical feature of this cell type: exceptionally strong

and long-lasting spike frequency adaptation. We formalize

this hypothesis in a quantitative model that we refer to as

as the value prediction theory of serotonin.

To test our value prediction theory, we simulate trace con-

ditioning experiments common in the serotonin literature

(11–13, 15) and show that our model provides a consistent

account of the main established tuning features of these

cells. We also interpolate and extend previous results, pro-

viding intuitive mechanistic connections between seem-

ingly unrelated observations, resolving apparent conflicts

in the literature, and making experimentally testable pre-

dictions. Next, we re-analyze a recently-published dataset

from a trace conditioning experiment (23), finding activity

patterns consistent with our hypothesis. Finally, to counter

our own confirmation bias, we explicitly compare against

quantitative formulations of previous theories and find that

value prediction best explains the data by a large margin.

Our theoretical and empirical results reveal a surprisingly

precise quantitative code for value in the serotonin system.

Results

Predictive encoding of value signals

Reinforcement learning describes the process by which an

agent learns a policy for controlling the state of its envi-

ronment S, s in order to maximize reward R, r (Figure 2A;

2). For example, a mouse learning which lever to press to

obtain a food pellet in an operant conditioning experiment.

RL conceptualizes the reward estimate as a mapping from

states to future rewards referred to as a value function v(s)

(Figure 2B). For simplicity, here we focus on the state value

v(s) which is equivalent to the average q(s, a) value of ac-

tions a available in state s (Appendix A).

Value functions have been central to RL since the very

beginning (24). One particularly well-known use of value

functions is to compare the estimated rewards associated

with different hypothetical courses of action (for example,

pressing different levers) in order to select the action most

likely to lead to the greatest reward (Figure 2B right; 27, 28).

A lesser-known application is the evaluation of the current

state st over time, yielding what we call a value signal

vt = v(st) (Figure 2C). Such a value signal is time de-

pendent because the state is continually changing, a fea-

ture exploited by temporal difference learning to gradually

refine the estimated values of past states (29, 30). Apart

from value learning, value signals can be used to directly

reinforce recent actions (26, 31) or promote persistence
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Fig. 2. Computing future reward. A High-level overview of reinforcement learning (RL; 2). B A value function v(s) is a mapping from states to future rewards. The value

function can be used to drive decision-making (right): by comparing the values of future states, the agent can make choices that lead to rewards (24, 25). C A value signal vt

is the result of evaluating the value function v(s) at the current state st over time. The value signal can be used to drive learning (right): by increasing the probability of taking

an action in proportion to the value signal just after the action is taken, the agent can learn to take actions that lead to rewards (26). D Normative definition of a value function

as the expected sum of discounted future rewards, referred to as the true value v(s). E The estimated value function v̂(s) approximates the true value on the basis of past

rewards. F Predictive value coding model. The dorsal raphe nucleus (DRN) receives a distributed value signal as input, summates its components, and predictively-encodes

the result. (Note that although a distributed value code is illustrated, similar to Fig. 2 in ref. 1, it is also possible that the value signal originates in a single upstream region.)

The predictively-encoded signal consists of a mixture of the original value signal and its time derivative f(v(t)) ≈ α dv

dt
+ v(t), a transformation implemented by strong

spike-frequency adaptation in serotonin neurons (10). Predictive coding can easily be reversed via leaky integration in downstream regions to recover the original value signal

(Appendix H). G Adaptation-based predictive coding model. See Methods.

(27, 32). Here we present evidence of a close match be-

tween the activity patterns of serotonin neurons and value,

leaving the question of how value might be used to drive

learning and behaviour for future work.

Specifically, we focus on a value signal defined as the

expected total discounted future reward in the present state

vt ≡ E

[

∞
∑

i=0

µiRt+i+1

∣

∣

∣

∣

∣

St = st

]

, (1)

where Rt is the random reward obtained at time t, 0 f

µ f 1 is a discrete time discounting factor that controls the

relative weighting of imminent and distant rewards (immi-

nent rewards are weighted more heavily when µ is closer

to zero), and E [X|Y = y] denotes conditional expectation.

Intuitively, it represents a weighted average of future re-

wards, with closer rewards being weighted more heavily

depending on the degree of discounting (Figure 2D). The

size of the window within which future rewards are summed

to calculate the value can be quantified with the discount-

ing timescale Ä , defined as Ä = −dt/ ln µ, where dt is the

duration of a discrete time step.

The above definition of a value signal in terms of future

reward is precise, extremely general (Appendix A), and con-

ceptually simple, but unrealistic: animals do not generally

have perfect knowledge of future rewards. We therefore dis-

tinguish between signals calculated on the basis of future

rewards, which we refer to as true value (Figure 2D), and

more realistic ones learned from past experience, which

we refer to as estimated value (Figure 2E).

We propose that the firing rates of serotonin neurons

present a predictive code for an estimated value signal (Fig-

ure 2F). Recently, we showed that potent spike-frequency

adapation dominates the signal processing features of the

DRN (10). This removes the part of the signal that is similar

to past output, a redundancy-reduction scheme sometimes

called predictive coding (21, 22, see 33 for review). In a sim-

plification of this previous work, here we model the firing

rate output of the DRN as

Ät = ReLU [(1 +A) vt −Aut] ,

where ReLU[x] is the rectified linear function used to en-

sure the firing rate is non-negative, A is a parameter con-

troling the strength of adaptation, and ut is the adaptation

variable, which has a subtractive effect on the output firing

rate. We model adaptation as an exponential moving aver-

age of past activity (Figure 2G and methods). To build an
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intuition for this model, consider that, from a computational

perspective, adaptation can be seen as implementing tem-

poral differentiation (10, 34). As a consequence, the firing

rates of serotonin neurons reflect a mixture of value and its

rate of change.

Our main result is that this predictive coding process in-

duces a qualitative change in the value signal. Adaptation

has the effect of exaggerating sharp transients, often lead-

ing the encoded signal to over- or under-shoot its apparent

target (illustrated schematically in Figure 2G, simulations

in the next section), and hiding the connection between

serotonergic activity patterns and value.

Value prediction during trace conditioning

To examine the temporal evolution of this signal in an ex-

perimental setup common in the serotonin literature, we

simulated our model under trace conditioning. Trace condi-

tioning experiments consist of a series of trials that begin

with a sensory cue (e.g., an auditory tone or an odour) and

end in a reward (typically a drop of water) with a short de-

lay (∼2 s) separating the two (11–13). In this experimental

paradigm, true value signals take four distinct phases (see

Methods): 1) jumping to a higher value upon receiving the

cue since the cue indicates a reward is coming, 2) ramp-

ing upward between the time of the sensory cue and the

reward delivery due to the effects of time discounting, 3)

falling during the reward epoch as the future reward left to

collect disappears, and 4) staying at a constant non-zero

value during the inter-trial interval as the animal waits for

the next randomly-timed trial to begin (black line in Fig-

ure 3A).

These four phases are altered by predictive coding, es-

pecially phase 2) where the ramping upward is preceded

by the adaptation from the cue-triggered jump and phase 3)

where the return to baseline is accompanied by an under-

shoot (blue line in Figure 3A). Multiple research groups

have shown that serotonin neurons are transiently acti-

vated by reward-predicting cues in vivo (11–13; e.g., Fig-

ure 3B inset; schematized in Figure 1A). Previous value

and reward-based serotonergic theories cannot explain this

phasic activity (black line in Figure 3A), leading to propos-

als that serotonin might encode some other quantity (e.g.

surprise 13). In value prediction, phasic cue-associated fir-

ing emerges naturally as a result of adaptation (blue line in

Figure 3A). Unlike previous models, our theory further pre-

dicts a subtle, counter-intuitive drop in activity during the

reward epoch to complement phasic activation by the cue.

Interestingly, this phenomenon is visible in raw experimen-

tal data presented in the literature (11–13), but is generally

not quantified. In short, value prediction through adaptation

explains why serotonin neurons are phasically activated by

reward-predicting cues (Figure 1A) and predicts that sero-

tonin neurons should exhibit decreasing/below baseline ac-

tivity during reward consumption.

Value prediction captures response to pun-

ishments

A significant problem for value and reward-based seroton-

ergic theories is that serotonin neurons are often activated

by both rewards and punishments (5, 11, 13). Since punish-

ments can be seen as negative rewards Rt < 0, and value

represents an estimate of future reward (Figure 2D), then

serotonin neurons should be inhibited by punishments —

not activated — if they encode a simple value signal (black

line in Figure 3B).

In contrast, activation by punishments is expected un-

der the value prediction theory. This is because predictive

coding through adaptation (Figure 2G) creates an over-

shoot in the level of activity as the punishment ends (blue

line in Figure 3B). To understand why this happens, recall

that the effect of predictive coding through adaptation is to

exaggerate positive (and negative) transients in the under-

lying value signal. The value signal during a punishment

trial is the mirror image of the value during a reward trial

(black lines in Figure 3A and B), increasing as the punish-

ment ends just as the reward trial value signal decreases

when the reward is consumed (3 s to 4 s post-cue in Fig-

ure 3A and B). Through predictive coding, the fast increase

in value during the punishment epoch is enhanced, causing

the encoded signal to briefly overshoot its baseline (∼4 s

post-cue in Figure 3B).

The idea that predictively encoding a value signal cre-

ates a punishment withdrawal-induced overshoot explains

1) why serotonin neurons are activated by punishments as

well as rewards (5, 11, 13), 2) why these seemingly op-

posite response features are positively correlated across

cells (11), and 3) why this activation occurs at the end of a

punishment rather than the beginning (4).
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Fig. 3. Value prediction signals reward and punishment over multiple timescales.

A,B True value signals (black) and their predictively-encoded counterparts (blue) for

trace conditioning trials terminating in either a reward (A) or punishment (B). Signals

are shifted up by 0.5 AU to capture background firing. Note resemblance between

value prediction theory and firing rate of a genetically-identified serotonin neuron

from Cohen et al. (11) (B inset; modified from ref. Fig. 3A2; scale bar 5Hz, 1 s). C

ITI value reflects reward or punishment context. Simulated block length of 10 trials,

normalized reward and punishment sizes of 1 and −1, respectively, and all other

parameters as in D1 below. Note resemblance with the tonic firing rate of a serotonin

neuron (right; modified from ref. 11 Fig. 3B1; scale bar 3Hz, 10min). D Analytically-

derived true value of the inter-trial interval (ITI) is proportional to peak within-trial

value. Heatmap shows ITI value as a function of experimental design parameters

(mean ITI duration / trial duration; vertical axis; ribbons are to scale, gray represents

ITI duration and colours represent trial epochs) and agent parameters (trial duration /

discounting τ ; horizontal axis). ITI value is presented as a fraction of the peak value

during the trial (i.e., value just before reward). Numbered panels at right illustrate

the within-trial dynamics of the true (black) and predictively-encoded (blue) value

signals for various combinations of experimental and agent parameters indicated

on the heatmap. Note that predictive coding has no effect on ITI value because the

time derivative of the value signal during the ITI is zero. Since value signals are

normalized, different reward sizes can be accommodated by scaling traces. Trial

structure same as in A. See Figure 8 for an extended range of trial durations and

discounting timescales.

Tonic firing during inter-trial intervals reflects

reward in future trials

The phasic responses of serotonin neurons to rewards

and punishments (Figure 1A and D) have historically

been difficult to reconcile with tonic activity that tracks re-

ward and punishment context (Figure 1B; 11, 35), spawn-

ing proposals that serotonin neurons may multiplex un-

related quantities over short intra-trial and long inter-trial

timescales (11, 15). Value prediction explains these pha-

sic responses (see above) while also predicting that tonic

activity should track reward and punishment context (Fig-

ure 3C, Appendix E), unifying the responses of serotonin

neurons to rewards and punishments over short and long

timescales.

More interestingly, our theory predicts that trial duration

should have pronounced effects on both inter-trial value

coding and within-trial activity dynamics of serotonin neu-

rons. Analysis of our model shows that the proportionality

between inter-trial and within-trial value depends on two

factors: 1) the mean duration of the ITI relative to the trial

duration (vertical axis in Figure 3D) and 2) the duration of

the trial (defined as the time between cue onset and reward

delivery) relative to the discounting timescale of the animal

Ä (horizontal axis in Figure 3D). However, while the effect of

ITI duration is surprisingly weak in the typical experimental

range (i.e., ITIs two to five times the trial duration; 11–13),

the effect of trial duration is quantitatively large and visually

obvious. Specifically, when the trial duration is shorter than

the discounting timescale, we expect to see both phasic

cue-associated activity (Figure 3D1 and 3) and inter-trial

value coding, while when the trial duration is longer than

the discounting timescale, we expect ramping within-trial

activity (Figure 3D2 and 4) and little to no inter-trial value

coding. The transition between these two regimes is sharp

and occurs when the trial duration is roughly equal to the

discounting timescale. Thus, the ratio between the trial du-

ration and discounting timescale controls both inter-trial

value coding and within-trial “peak and plateau” vs. ramp-

ing activity dynamics.

The effect of trial duration on within-trial activity dynam-

ics and inter-trial value coding predicted by our model ex-

plains 1) why “peak and plateau” dynamics and tonic value

coding co-occur (11), 2) why experiments using longer tri-

als sometimes produce ramping rather than “peak and
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plateau” dynamics (compare 11 and 12; schematized in

Figure 1A; but see 13), and 3) why firing during the pre-

reward epoch may decrease slightly as the trace duration

increases (36).

Value prediction explains reward-specific sur-

prise

While little is known about the effect of trial duration on

the pre-reward activity dynamics of serotonin neurons, the

effect of trial duration on the amplitude of the reward (or

punishment) response itself has received more attention.

Compared with rewards delivered at the end of a trace

conditioning trial, serotonin neurons are more strongly ac-

tivated by rewards delivered spontaneously (11) or imme-

diately following a cue (13). This has been interpreted as

evidence for surprise coding (13), defined as activity that

reflects an unsigned reward prediction error |¶t| = |Rt−vt|,

which is believed to be important for learning (13, 15, 37).

However, because the surprise/absolute RPE-like reward

responses of serotonin neurons do not evolve on the same

timescales as dopaminergic RPEs ¶t (13), are smaller than

corresponding dopaminergic responses (11), and seem to

be specific to rewards (Figure 1C and D; 11, 13), a different

explanation is needed.

To understand how surprise tuning for rewards might

emerge, we simulated value prediction under progressively

shorter trace conditioning trials. As the trial duration short-

ened, the adaptation-induced cue-associated peak began

to overlap with the response to the reward itself (compare

Figure 4A1 and 2). This phenomenon becomes increas-

ingly pronounced as the trial duration falls below the effec-

tive timescale of adaptation (on the order of hundreds of

milliseconds; scan from left to right along the top of Fig-

ure 4B corresponding to the green line in Figure 4C), and

is maximally strong when the trial duration reaches the

zero lower bound, corresponding to an uncued reward (Fig-

ure 4A3).

It is difficult to differentiate absolute RPE from value pre-

diction on the basis of reward responses alone because

both theories predict stronger responses for surprising re-

wards (schematized in Figure 1C). To rule out absolute

RPE, we turn our attention to serotonergic responses to

punishments. Whereas the absolute RPE theory predicts

that serotonin neurons should respond most strongly to

surprising punishments (13), just as they do for rewards,

serotonin neurons should have a very slight preference for

predicted punishments under value prediction (Figure 4A4–

6, left to right along the bottom of Figure 4B, red line in

Figure 4C), consistent with experimental observations (13;

schematized in Figure 1D).

To understand why value prediction implies reward-

specific surprise tuning, recall that punishment-associated

activity is caused by punishment withdrawal under our the-

ory (Figure 3B). Shortening the trial duration has no effect

on the rate of punishment withdrawal, and even causes the

pre-punishment inhibition to slightly overlap the withdrawal-

associated peak if the trial duration is sufficiently short,

leading to a small decrease in the punishment response

(Figure 4A4–6). The transition from surprise tuning to lack

thereof occurs sharply when the size of the reward passes

below zero, but this is obscured by the relatively small re-

sponses to near-zero rewards in our model (Figure 4B). As

with rewards, the transition to a slight preference for unsur-

prising punishments occurs when the trial duration drops

below the effective timescale of adaptation, such that re-

ward and punishment responses are expected to diverge

markedly for trial durations on the order of hundreds of mil-

liseconds or less (Figure 4C).

These simulations show that value prediction explains

surprise tuning for rewards that reverses for punishments,

thus providing a more complete account of serotonergic

surprise tuning than the existing absolute RPE theory (13).

Value prediction explains salience tuning for

both surprising and unsurprising stimuli

If surprise is defined in the serotonin literature as abso-

lute RPE |¶t|, then salience is defined as the absolute

size of the reward itself |Rt|. We have already shown that

value prediction explains serotonergic responses to cued

rewards and punishments (Figure 3A and B), a type of

salience tuning, but recent experimental work has focused

on this phenomenon in the context of uncued rewards and

punishments (5).

To show that value prediction explains salience tuning

for both uncued and cued rewards, we simulated trace con-

ditioning experiments using a wide range of trial durations

and reward sizes. We find stronger responses to both re-

wards and punishments compared with neutral outcomes
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Fig. 4. Predictively-encoded value resembles surprise and salience. A,B Reward

responses depend on reward size and cue timing. Reward response is defined as

the baseline-subtracted maximum DRN-encoded value signal within 1 s of cue onset

(gray window). Trial duration is defined as the time between the onset of cue and

reward (gray arrow in 1). Sample traces 3 and 6 represent uncued rewards and

punishments, respectively. Signals are shifted up by 2 AU to capture decreased

activity during punishment trials. C Predictively-encoded value yields larger reward

responses for uncued vs. cued rewards but similar responses to uncued and cued

punishments. Note resemblance to reward-specific surprise coding from Matias

et al. (13) (inset modified from ref. Fig. 7B; punishment type: air puff). D Appar-

ent salience coding is distinct from surprise. Whether cued or uncued, reward re-

sponses extracted from predictively-encoded value signals are smaller for neutral

outcomes than both rewards and punishments. Note resemblance to salience cod-

ing from Paquelet et al. (5) (inset modified from ref. Fig. 2D with kind permission

from Bradley Miller; punishment type: bitter quinine solution, reward type: sucrose

solutions). Green and red lines in B and C are slices of data from A as indicated on

mini-heatmaps.

across all trial durations, consistent with salience tuning

(Figure 4B). Interestingly, the salience tuning effect is fairly

balanced for cued rewards and punishments (“V”-shaped

red line in Figure 4D), whereas a clear preference for re-

wards emerges in very short trials (“6”-shaped green line

in Figure 4D). This reward preference can be explained

by the interaction of reward-specific surprise tuning (Fig-

ure 4C) with salience. Thus, evidence for existing salience

and surprise theories also supports value prediction.

Slow online learning

So far we have focused on the resemblance between

predictively-encoded true value signals and the in vivo ac-

tivity patterns of serotonin neurons. However, it is unrealis-

tic to think that serotonin neurons signal true value, since

this would require perfect knowledge of future rewards (Fig-

ure 2D). Instead, serotonin neurons likely encode a value

signal that is estimated on the basis of past rewards (Fig-

ure 2E).

Does our focus on true rather than estimated value pose

a problem for the results presented above? To find out, we

applied an online value estimation algorithm (van Seijen’s

TD(¼) [40], see Methods) to a trace conditioning experi-

ment consisting of hundreds of trials. The estimated value

signal exhibited a ramp that gradually increased in ampli-

tude, gradually converging to a close approximation of the

true value (Figure 5A), mirroring observed activity of sero-

tonin neurons in mice (12, 13). The same was true of the

predictively-encoded estimated value (Figure 5B). Overall,

estimated value signals resembled a true value template

rescaled by reward history. These simulations illustrate that

the details of how the value signal is calculated (i.e. on the

basis of future rewards, as in true value Figure 2D, or on

Table 1. Short timescale reward tuning features of genetically-identified mouse DRN serotonin neurons qualitatively explained by various theories. 6 and : indicate empirical

observations that are clearly consistent or inconsistent with each theory; ambiguous cases are left blank. Ambiguity is due to a lack of quantitative models to accompany the

current and future reward, salience, and surprise theories, as well as variation in experimental design to a lesser extent. Note that refs. (12, 14, 38, 39) focus on a signal that

qualitatively reflects both current and future reward. This signal is referred to as reward or beneficialness by the authors, but is most similar to a value signal in our terminology.

Theory Tonic firing

tracks rew.

rate

Rew. cue

activation

(11–

13, 15, 38, 39)

Rew. delivery

activation

(4, 5, 11–

13, 38, 39)

Pun.

activation

(4, 5, 11, 13)

Correlated

rew. cue and

pun.

activation

(11)

Surprise rew.

preference

(11, 13)

Lack of

surprise pun.

preference

(11, 13)

Value prediction (ours) 6(Fig. 3C) 6(Fig. 3A) 6(Fig. 3A) 6(Fig. 3B) 6(Fig. 4C) 6(Fig. 4B) 6(Fig. 4B)

Current and future reward

(12, 14, 38, 39)

6 6 6 : : : :

Salience (5) : 6 6 6 : 6

Surprise (13) : 6 6 6 6 :

Dopamine opponent (7) 6 : : 6 : : :
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the basis of past rewards, as in estimated value Figure 2E)

play only a minor role in shaping the activity patterns of

serotonin neurons during trace conditioning, whereas pre-

dictive coding and reward history are critical.

If the activity levels of serotonin neurons are scaled by

reward history, how large should this effect be? The rate

at which the TD(¼)-estimated value signal is scaled up and

down by reward history depends on the learning rate ³,

which can also be expressed as the estimation timescale

Äest = −dt ln(1 − ³). Previous work suggests that the

timescale over which serotonin neurons integrate rewards

is on the order of hundreds of trials (12, 13). Since the

estimation timescale is so long, it is possible to write a

first-order approximation of the effect of an uninterrupted

string of rewards (or reward omissions) on the firing rates

of serotonin neurons (Appendix G. Using an estimation

timescale of Äest = 200 trials (13), background firing rate

of 2Hz (11, 15), and winning streak of five trials, we ex-

pect to see firing rate modulations of only ∼0.05Hz. While

longer runs of rewards (or reward omissions) would pro-

duce larger effects (e.g., 0.4Hz for a run of 50 trials), such

winning streaks (or losing streaks) are rare in experiments

with probabilistic rewards that are best suited to studying

the effects of reward history on serotonergic activity (15).

In short, if serotonin neurons encode a value signal that

is estimated over a long period of time, as evidence sug-

gests (12, 13), we expect to see only small effects of reward

history on serotonin neuron firing (j1Hz) in typical experi-

ments.

Serotonin neurons quantitatively encode re-

ward history

Value prediction unifies a wide range of experimental ob-

servations that do not have a consistent interpretation un-

der existing serotonergic theories (Figure 1, Table 1). To

assess whether value prediction generalizes beyond the

main qualitative results of Cohen et al. (11), Zhong et al.

(12), and Matias et al. (13), we re-analyzed a dataset of

serotonergic responses to dynamically-varying in vivo re-

wards from Grossman et al. (15). To begin, we sought to

determine whether the activity levels of serotonin neurons

in this dataset are weakly modulated by reward history, and,

in particular, whether this is true of neurons with activity dy-

namics resembling a predictively-encoded value signal.

A short description of the experiment and our analysis

approach follows (see Methods for details). The dataset

consists of tetrode recordings of N = 37 identified sero-

tonin neurons in mice receiving dynamically-varying proba-

bilistic rewards in a trace conditioning experiment (15, 23).

We extracted the spikes of each neuron in a short window

around each trial along with the proportion of the past five

trials that were rewarded (Figure 6A). Since true value and

TD value estimates are both very closely tied to the mean

reward (Appendix B), we use the five-trial mean reward as

an interpretable proxy for value. Because the effect of re-

ward history on serotonin neuron activity is expected to be

small (see previous section) and many common statistical

tests for value coding are prone to high rates of false pos-

itives (41), we used circular trial permutation (Figure 6B).

This test breaks the putative association between reward

history and serotonin neuron activity while preserving all

other structure in the data (for example, slow fluctuations

related to arousal). If the association between serotonin

neuron activity and reward history is stronger when the

trials are correctly aligned than when this alignment is bro-

ken, we can conclude that the correlation between sero-

tonin neuron activity and reward history cannot easily be

explained by random fluctuations in the data.

With data and statistical approach in hand, we turned

our attention to quantifying the effect of reward history on
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Fig. 6. Individual serotonin neurons exhibit reward coding features consistent with value prediction. A Example trace conditioning experiment of Grossman et al. (15) (see

Methods). Counterclockwise from top left: Bernoulli water rewards (blue lines) and time varying reward probability estimated using a five-trial moving average (red line).

Distribution of number of trials at each level of estimated reward probability; note the wide range of reward probabilities in this dataset. Firing rate of the serotonin neuron

recorded in this session calculated using a 500ms PSTH, lines coloured according to estimated reward probability as in histogram at left, scale bar 2Hz. Spike raster used

to calculate PSTH, background is shaded according to the estimated reward probability as in the other plots. B Circular trial permutation test used to assess statistical

significance of correlations between estimated reward probability and serotonin neuron activity. Reward history is randomly shifted with respect to spiking activity to build up a

null distribution against which the observed correlation can be compared. C Serotonin neuron whole-trial activity reflects reward history. Each line represents the following

regression model fitted to a single neuron: ŷ = βp̂p̂ + β0, where ŷ is the predicted whole-trial activity (defined as the number of spikes within a 7.5 s period beginning 1.5 s

before the start of the cue and ending 1 s after the end of the reward epoch), p̂ is the reward probability estimated as in A, and βp̂ and β0 are the slope and intercept. Slope

βp̂ represents the effect of recent reward history p̂ on activity and intercept β0 represents the baseline activity level following a short string of unrewarded trials (p̂ = 0/5).

Donut plot shows the distribution of circular trial permutation test p-values against H0 : βp̂ = 0; p < 0.05 occurs significantly more frequently than 5% chance rate (inner

pie chart). Lines are colour-coded according to statistical significance of the slope βp̂ as in the donut plot. N = 37 neurons. D Distribution of regression slopes βp̂. Note

tendency towards positive slopes consistent with value prediction. Colour-coded as in C. E Distribution of regression intercepts β0. Note positive correlation between baseline

activity and reward rate over very long timescales consistent with value prediction. Colour-coded as in C. F Relationship between reward history modulation (vertical axis) and

phasic cue-associated firing (horizontal axis). Note that neurons with clear cue-associated firing (G1 and A, for example) tend to be positively modulated by reward history,

consistent with value prediction. G Firing dynamics and whole-trial activity modulation in representative serotonin neurons. G1 shows a neuron with clear trial-associated

activity dynamics and positive activity modulation by reward history, representative of neurons in the upper right of F. Note the striking correspondence between activity

dynamics of the value prediction model (blue inset) and the example neuron. G2 shows a neuron with no clear trial-associated activity dynamics and numerically positive (but

not statistically significant) activity modulation by reward history, representative of most neurons in the left part of F. Regression plots (G1 right and G2 right) illustrate the

analysis used for C–F. Error bars/bands represent 95% bootstrap confidence intervals (with Monte-Carlo bias correction in the case of error bars) provided for illustration

purposes only.
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the activity levels of serotonin neurons. Regressing the

number of spikes per trial (which we refer to as whole-

trial activity) onto the five trial mean reward for each neu-

ron (Figure 6C) revealed statistically-significant modula-

tion by reward history in 8/37 cells (circular permutation

test p < 0.05 against regression slope ´p̂ = 0; signifi-

cantly above the 5% chance rate, binomial proportion test

p < 0.001; see donut plot in Figure 6C) somewhat vari-

able levels of background activity (regression intercepts

´0 = 18.6 ± 8.0 spikes trial−1, mean ± SD, equivalent to

2.5± 1.1Hz, coefficient of variation 0.43). It is possible that

22% represents a lower bound on the proportion of cells in

our sample that encode value. Consistent with this possi-

bility, the relationship between activity and reward history

was generally positive across the population (regression

slopes ´p̂ = 0.64 ± 1.60 spikes trial−1
reward

−1, Wilcoxon

signed rank test p = 0.039; equivalent to 0.09 ± 0.21Hz,

roughly consistent with the effect size calculation in the

previous section; ´p̂ > 0 in 65% of cells, one-sided sign

test p = 0.049), including in many cells that did not cross

the p = 0.05 significance threshold in the circular trial per-

mutation test (Figure 6D, note significance-stratified medi-

ans). We observed two neurons with a statistically signifi-

cant negative effect of reward history on whole trial activity

(Figure 6C and D). This is consistent with the expected

false positive rate (2/37 = 5.4%), but it is also possible

that value prediction is not universal in the DRN. Finally,

we also observed a significant correlation between back-

ground activity and the proportion of all trials rewarded in

the corresponding session (Pearson r = 0.43 between

regression intercept ´0 and whole-session mean reward,

p = 0.008, Figure 6E), consistent with value coding over

timescales beyond the five trial horizon. This correlation is

surprisingly strong considering the many factors that im-

pact background firing rate (differences in the biophysical

features or inputs of individual serotonin neurons, differ-

ences in thirst or arousal between recording sessions and

mice, etc.) and the coarseness of the whole-session reward

metric. Due to a high rate of statistically null results which

neither confirm nor rule out value coding, additional analy-

ses are needed to determine to what extent value predic-

tion is typical in the DRN (see “Value prediction dominates

population activity” below). For now, we conclude that at

least some serotonin neurons exhibit positive reward his-

tory modulation consistent with value prediction.

Our theory predicts that the phasic reward cue-

associated activity observed in some serotonin neurons

is due to value coding, while other theories propose that

phasic activity could be unrelated to reward history. To ex-

amine the potential connection between this phasic activity

and value prediction, we stratified the slopes obtained from

our regression analysis according to the amplitude of the

cue-associated extremum in the firing rate (Figure 6F). Of

the small number of cells with a clear cue-associated peak

(N = 7 cells with >1Hz increase in firing above baseline),

all exhibited numerically positive reward history modulation

(one-sided sign test p = 0.008, N = 7) which was individ-

ually statistically significant in just over half of these cells

(circular trial permutation test p < 0.05 in 4/7 neurons; ex-

act p values for each neuron are 0.006, 0.007, 0.009, 0.013,

0.071, 0.126, 0.237 in order of decreasing significance, val-

ues lower than p = 0.002 are not possible). The connection

between phasic activity and value coding was surprisingly

consistent: out of 37 neurons, we did not observe any with

both clear phasic activity and numerically negative reward

history modulation (bottom right quadrant in Figure 6F). We

conclude that there is a strong association between phasic

cue-associated activity and positive modulation by reward

history, consistent with the idea that value prediction under-

lies both phenomena.

The main ideas of this analysis are summed up by

the two example neurons presented in Figure 6G. In Fig-

ure 6G1, we see a neuron with activity dynamics strik-

ingly similar to the value prediction model, including cue-

associated phasic firing, a pre-reward ramp, and falling ac-

tivity during the reward period. In this neuron, we also

observe statistically significant (circular trial permutation

test p = 0.006) and almost perfectly linear positive scal-

ing of whole-trial activity by reward history, consistent with

value prediction. The neuron in Figure 6G1 is clearly well-

described by our theory, but the same cannot be said of

the neuron in Figure 6G2. Examining its peri-stimulus time

histogram (PSTH) reveals no clear activity dynamics, and

there is no statistically-significant effect of reward history on

firing (circular trial permutation test p = 0.063). This neuron

may not predictively encode value, but it is also possible

that the timescale of this experiment is simply too fast. An

absence of discernible within-trial activity dynamics is con-

sistent with value prediction if the discounting timescale is
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much longer than the trial duration1 (Figure 8), and, while

not statistically significant, the magnitude of the reward his-

tory modulation is actually closer to our predictions than the

unusually large effect shown in Figure 6G1 (for an increase

in reward probability from 1/2 to 1, the calculation in the

previous section shows we expect an increase in firing of

∼0.05Hz, compared with 0.25Hz and 0.07Hz in example

neurons 1 and 2, respectively). The analyses presented in

this section prioritize clarity over statistical power. As a re-

sult, effects that pass the statistical significance threshold

are likely to be unusually strong and not representative of

the broader population of value coding serotonin neurons

(42). Our results are best interpreted as a lower bound on

the proportion of serotonin neurons that encode value.

In this section, we have shown that value prediction pro-

vides a very good description of the activity patterns of

at least some serotonin neurons. Could a different model

provide an equally good or even better description of sero-

tonin neuron activity? To what extent are the tuning features

explained by value prediction dominant at the population

level? We turn to these questions next.

Comparison with expected uncertainty

A significant body of literature argues that serotonin neu-

rons encode a quantity related to RPE, typically its absolute

value, in order to signal surprising events (7, 13, 15). Per-

haps surprisingly, some of the strongest evidence for this

perspective is consistent with our results.

An influential model of the role of serotonin in learn-

ing connects trial-to-trial modulations of serotonin neuron

activity to a moving average of absolute RPEs called ex-

pected uncertainty (15). To compare expected uncertainty

against our model (which predicts an essentially linear re-

lationship between mean reward and serotonergic activity,

e.g. Figure 6G1 right), we analytically derived the relation-

ship between reward probability and mean absolute RPE

in models of animal learning (Appendix F). While the mean

absolute RPE is precisely twice the variance of a binary

reward in the simplest of RL models (and therefore has

an inverted U-shaped relationship with reward probability),

sophisticated models of animal learning often include fea-

1This does not seem implausible. Trace conditioning trials are typically

only a few seconds long—if humans had a discounting timescale on the

order of a minute or less, no-one would ever read beyond the first few

sentences of this manuscript.

tures that profoundly alter this relationship (e.g., 15, 18). As

a result, in theory expected uncertainty is usually negatively

related to the mean reward in addition to being positively

related to variance (Figure 11). Re-analyzing the computed

expected uncertainty values from the dynamic Pavlovian

task in Grossman et al. (15) shows that this is also true

in practice: expected uncertainty is more strongly corre-

lated with reward probability than variance in 26/28 ses-

sions in this dataset (Figures 9 and 10; median marginal

r2 between expected uncertainty and five-trial mean re-

ward 0.815, IQR 0.565 to 0.903, compared with median

0.083, IQR 0.016 to 0.216 for variance). The fact that the

previously-reported correlation between expected uncer-

tainty and serotonergic activity is negative more often than

not also suggests a connection between serotonergic ac-

tivity and mean reward rather than variance. We conclude

that evidence for serotonin neurons signalling expected un-

certainty is consistent with value coding.

Comparison with reward variance

To address the possibility that serotonergic activity might

encode reward variability in a way that is not captured

by expected uncertainty, we repeated the regression anal-

yses described above (Figure 6) using reward variance

in place of the mean reward (Figure 11). We found that

the whole-trial activity levels of serotonin neurons are bet-

ter described by mean reward than variance (Wilcoxon

signed-rank test on weighted sum of squared errors from

regression fits p = 0.007, N = 37), and the effects of

mean reward are larger (absolute change in activity of

1.19± 1.25 spikes trial−1 from a reward of zero to a reward

of one and 0.59 ± 0.69 spikes trial−1 from a variance of

zero to the maximum variance of 0.25, both quantified us-

ing the absolute regression slope, Wilcoxon signed-rank

p = 0.001), more consistent (regression slopes are typi-

cally positive for mean reward, Wilcoxon signed-rank p =

0.039, but symmetric around zero for variance, Wilcoxon

signed-rank p = 0.281), and statistically significant twice

as often (21.6% and 10.8% of cells with circular trial permu-

tation test p < 0.05 against regression slope equal to zero

for mean and variance, respectively; for comparison, we ex-

pect significant p values in up to 12% of cells even if none

actually encode variance, approx. 95% CI on a proportion

of 5% with N = 37).
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Because the mean and variance of binary rewards are

directly related, we wondered whether the apparent corre-

lations between reward variance and serotonin neuron ac-

tivity might actually be due to value coding. Consistent with

this idea, statistical confounding between mean reward and

variance was unusually strong in the subset of cells with a

significant correlation between variance and activity (Pear-

son r between variance and mean reward is higher in cells

with circular trial permutation test p < 0.05 for the variance

slope ´ = 0, permutation t test p = 0.039).

Our simple analysis does not reveal clear evidence that

serotonin neurons encode an unbiased estimate of reward

variance. To mitigate the possibility that these findings are

sensitive to technical details of our approach, we repeated

the above analyses using reward standard deviation and

entropy as alternative definitions of variability, using an it-

erative/TD method to estimate reward statistics rather than

a five-trial moving average, and quantifying activity using a

pre-trial baseline rather than whole-trial activity (Figures 11

and 12). None of these variations affected our results.

We are unable to conclude that serotonin neurons en-

code reward variability in this task. If serotonin neurons do

encode reward variability, our results are consistent with a

variability code that is significantly weaker and less consis-

tent than the code for value.

Untested models

To address the possibility that a different, untested model

might provide a better account of the relationship between

reward statistics and serotonergic activity, we inspected the

residuals of our regression fits (Figure 11). Whereas the

regression against reward variance systematically overes-

timates serotonin neuron activity when the mean reward

is low and overestimates activity when the mean reward is

high, we did not observe any obvious structure in the errors

of the regression against the mean reward. The marginal re-

lationship between serotonergic activity and mean reward

is surprisingly well-described by a straight line, offering no

hint as to what a better model might be.

Value prediction dominates population activ-

ity

Value prediction provides a good description of the activity

dynamics and reward history modulation of at least some

serotonin neurons, but are the features captured by our

model typical of serotonin neurons in general? To address

this question, we constructed a synthetic serotonin neuron

population using the N = 37 cells in our dataset and tested

how well value prediction explains the synthetic population-

level activity patterns in comparison with other models. If

these cells do not generally predictively encode value, the

features predicted by our model could be washed out by

noise or masked by other coding features that are subtle at

the single neuron level.

We began by considering whether serotonin neuron

population activity is positively modulated by reward

history. Using a population-level version of the circu-

lar trial permutation test, we found that whole-trial pop-

ulation activity is positively modulated by reward his-

tory (p = 0.0008, Figure 7A) at a level consistent

with our predictions (expected increase in firing from

a mean reward of 1/2 to 1 of ∼0.05Hz neuron−1, see

“Serotonin slowly learns value” above, compared with

0.11Hz neuron−1 in our synthetic population based on fit-

ted ´p̂ = 1.64 spikes neuron−1 trial
−1). Encoding of reward

history was nearly linear during both the pre-trial baseline

and cue epochs (Figure 7B, weighted r2 = 0.802 during

baseline and r2 = 0.656 during cue), suggesting that tonic

and phasic firing participate equally in value prediction. To

determine whether a different model could better explain

population coding of reward history, we used repeated five-

fold cross validation to assess how well mean reward, re-

ward variance, and null models could predict serotonin neu-

ron population activity during the baseline and cue epochs

of held-out trials (Figure 7C). Consistent with value pre-

diction, the mean reward model exhibited five- to ten-fold

better performance than variability-based alternatives (Ta-

ble 2). Thus, value prediction describes the effects of re-

ward history on serotonin neuron population activity with a

precision considerably better than 0.1Hz neuron−1.

The population activity dynamics shown in Figure 7A ex-

hibit a cue-associated peak, elevated firing during the trace

period, and falling activity during the reward, qualitatively

consistent with value prediction. Value (without adaptation),

surprise, and reward signals are each missing at least one

of these properties (Figure 7D left). As a result, quantita-

tive models based on these ideas (see Methods) poorly

explain population activity in comparison with value predic-

tion (Figure 7D middle and right). The only tested model
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Fig. 7. Value prediction better explains serotonin neuron population activity than competing theories. A Whole-trial population activity encodes reward history. Whole-trial

activity and circular permutation test as in Fig. 6. B Baseline population firing rate quantitatively encodes reward history. Baseline activity defined as mean of PSTH 1 s before

start of cue. Peak cue activity is defined as the maximum of the PSTH during the 1 s cue period. Error bars represent 95% confidence intervals obtained via bootstrap with

Monte-Carlo bias correction. Error bands around regression lines represent 95% confidence interval obtained via bootstrap. Regression slopes are significantly different

from zero; bootstrap 99% CI test. C Value prediction better accounts for reward history modulation of population firing rate than variance. x-axis represents the proportion of

variance explained (weighted r2) by each model fitted to data as in B. Performance is presented as the mean five-fold cross-validated accuracy, each point represents one

cross-validation repeat. Ceiling line represents the accuracy obtained using the training data to predict the validation data directly (maximum across all repeats). D Value

prediction better accounts for population firing rate dynamics than competing theories. Schematics at left illustrate predictions of each theory; note that surprise-like signals

should decrease during trials, but this does not happen in our model fits. Performance is assessed using repeated five-fold cross-validation as in C. Scale bar 0.2Hz neuron
−1.

Trial structure as in A.

that offered performance competitive with value prediction

was a surprise signal with added adaptation (mean vali-

dation weighted r2 = 0.749 ± 0.007 for value prediction

and r2 = 0.642± 0.023 for surprise with adaptation; mean

± SD of ten cross-validation repeats). However, since the

fitted surprise signal with adaptation does not exhibit the ex-

pected decrease in activity during the trial (see Methods),

the justification for adding adaptation to a model that is

already an idealized form of adaptation is dubious, and sur-

prise does not readily explain the effects of reward history

on activity (Figure 6 and Figure 7A–C), nor serotonergic

responses to punishments (Figure 4) in addition to offer-

ing lower performance than value prediction (Figure 7D),

we believe it can be rejected. In sum, the fast activity dy-

namics of serotonin neurons are better explained by value

prediction than surprise, reward, or a raw value signal.

Overall, we conclude that value prediction provides a re-

markably precise and complete account of the population

activity patterns of serotonin neurons during trace condi-

tioning, as foreshadowed by our results at the level of indi-

vidual neurons.

Discussion

The in vivo activity patterns of serotonin neurons are noto-

riously difficult to explain. In this work, we show that a time-

dependent estimate of cumulative future reward predic-

tively encoded through spike-frequency adaptation, which

we call value prediction (Figure 2), unifies a surprisingly

wide range of puzzling observations and conflicting theo-

ries from the serotonin literature (Figure 1 and Table 1).

In particular, phasic activation by reward-predicting cues

and primary rewards is explained by a rapid increase in

proximity to reward, activation by punishments is explained

by a rapid increase in value as the end of the punishment

approaches, and tonic firing that reflects reward and pun-

ishment context is consistent with a code for the value of

upcoming trials (Figure 3). By simulating trace conditioning

experiments with different reward sizes and trial durations,

we have shown that the appearance of surprise (13) and

salience (5) tuning emerges naturally in our model (Fig-

ure 4), providing an intuitive link between tuning features

that previously seemed conceptually unrelated. To add

weight to these qualitative results, we re-analyzed a dataset
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of serotonin neuron responses to in vivo rewards (23). We

observed small modulations in serotonin neuron firing by

recent reward history, quantitatively consistent with value

estimation over hundreds of trials (Figure 6; see also ref.

13). Finally, we directly compared value prediction against

competing theories. We found that our theory provides a

remarkably precise description of both trial-to-trial changes

in activity associated with reward history and within-trial ac-

tivity dynamics, usually exhibiting predictive performance

several times better than alternative models (Figure 7). It

has been said that “serotonin’s many meanings elude sim-

ple theories” (35). Our work shows that several of these

meanings — reward, punishment, surprise, salience, and

uncertainty — can be merged into one: value prediction.

Hiding in plain sight

Why was a serotonergic code for value not established

earlier? The idea that serotonin neurons encode value or

something very similar is not new (14, 43), but this perspec-

tive has fallen increasingly out of favour in recent years

because of evidence that seems to directly contradict a

value or reward-based code, first and foremost the fact

that many serotonin neurons are activated by punishments

(11, 13, 44) as well as model-based analysis that sug-

gests that serotonin neurons do not track reward history

on the same timescale as changes in foraging behaviour

(15). Here we have shown that not only do punishment

responses not rule out a value code, they are actually ex-

pected if reward-predicting cues evoke transient firing, con-

sistent with experimental results (ref. Fig. 5C in 11). Our

work also shows that value coding by serotonin neurons

is more precise and temporally extended than behaviour

would suggest, again consistent with previous results (13)

and adding to an emerging pattern of neural systems hav-

ing population codes that are more precise than behaviour

and perception (45, 46).

Turning to the literature and finding results that seemed

puzzling at the time but are predicted by our theory (the

apparent reward-specificity of surprise tuning being a no-

table example; 13) became a recurring theme during this

project, leading us to feel that evidence for value coding by

serotonin, much like dopamine (47), has long been hiding

in plain sight. We hope that future work will uncover more

such examples, and, conversely, temper our confirmation

bias by highlighting tuning features that are clearly incom-

patible with value prediction.

The meaning of predictively-encoded value

An adapting value signal is not the same as value itself,

raising interesting questions about how DRN output might

be interpreted by downstream regions (and scientists!).

One possibility, although perhaps not a very exciting one,

is that value prediction is simply reversed to recover the

original value signal. The exceptionally large axonal ar-

borizations of serotonin neurons (48) likely place significant

metabolic constraints on the activity of serotonin neurons,

and predictive coding through adaptation could act as a

sort of compression scheme (21, 22, 33, 49, 50) allowing

the serotonin system to broadcast a signal widely using

a minimum number of spikes. If adaptation compresses

the value signal, how is later decompressed? In theory, the

exact answer is simple: leaky integration (Appendix H). In

light of the close relationship to predictive coding seen as

a compression scheme, it is interesting to note that many

of the biological processes involved in decoding serotonin

neuron activity implement leaky integration (e.g., accumu-

lation of serotonin in the extracellular space, slow kinetics

of G-protein coupled receptors, and the membrane voltage

dynamics of downstream cells). Adapting value might be

more similar to value than it first appears.

A more intriguing possibility arises if adaptation already

visible in the spiketrains of serotonin neurons is further en-

hanced downstream, for example via depressing synapses.

In that case, our work implies that DRN output would be

decoded as the rate of change of value (10). This quan-

tity is required to calculate real-time RPEs (as is value it-

self; 51, see also 7), and one of the main predictions of

the dopaminergic RPE hypothesis of Schultz et al. (1) was

that the dopamine system should receive input from some

region (or collection of regions) that encodes the rate of

change of value. Since the dopamine system is one of the

main targets of the DRN (52), might serotonin play an im-

portant part in computing RPE?

Behaviour

If serotonin predictively encodes value, how is this signal

used to drive learning and behaviour? The ways in which
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value is used in RL are varied and the effects of serotoner-

gic manipulations are perplexing, but here we offer some

speculation.

One of the better established roles of serotonin in regulat-

ing behaviour is that fast optogenetic activation of serotonin

neurons promotes maintenance of behaviours directed at

obtaining imminent rewards, an effect commonly called pa-

tience or persistence (16, 17, 53, 54). If serotonin encodes

an estimate of relatively immediate reward (due to heavy

discounting) that is compared against a longer-term aver-

age reward rate, then control policies based on optimal giv-

ing up (55) or option interruption (56) could produce similar

behaviour. In principle, persistence could also be explained

by immediate reinforcement of an ongoing reward-seeking

action through policy gradient learning (26) or boosting

RPEs (see previous section), but these ideas are difficult

to reconcile with evidence that stimulation of serotonin neu-

rons is not generally reinforcing (18, 53, 54, 57, but see

58).

Selfridge’s run and twiddle model (32) offers a more ele-

gant potential explanation of persistence in terms of value.

According to this simple control model, the current action is

maintained as long as value is increasing (“run”), offering

an interesting connection to the predictive coding compo-

nent of our theory, whereas a decrease in value triggers a

random action (“twiddle”). Given the evolutionarily-ancient

origins of the serotonin system (59) and its involvement

in regulating very coarse aspects of behaviour such as the

tradeoff between exploration (taking random or sub-optimal

actions) and exploitation (taking actions that are expected

to lead to reward) (60), we are tempted to speculate that

a relatively primitive control policy might provide the best

account of the role of serotonin in behaviour. From that per-

spective, run and twiddle, which was originally conceived

to explain the foraging behaviour of bacteria, might be a

good place to start.

Learning

Confusingly, activation and inhibition of serotonin neurons

both promote maintenance of reward-seeking behaviour.

However, whereas optogenetic activation of serotonin neu-

rons produces behaviour directed at obtaining immediate

rewards that is usually framed in a positive light, chemo-

genetic inhibition reduces the rate of abandonment of de-

pleted sources of reward (13, 15), which is framed as per-

severation. This effect has been explained in terms of a

selective decrease in the rate of learning from reward omis-

sions (13, 15). There is a normative reason for the learn-

ing rate to decrease when rewards are intrinsically vari-

able (Appendix C) and increase when the environment is

non-stationary, prompting the development of models that

separately track variance and volatility to enhance learn-

ing (61, 62). Serotonin has been proposed to modulate the

rate of learning from reward omissions via surprise or un-

certainty (13, 15), but, as we have shown, these results are

more consistent with value. Finally, a model-based anal-

ysis showed that optogenetic manipulations of serotonin

neuron activity affected behaviour in a way that was con-

sistent with an enhancement of learning rate (18), but this

effect was specific to long timescales and also explained

relatively well by RPE boosting (ref. Fig. S14; see previous

section). Since all components of RL models affect the rate

of change of behaviour, it is plausible that many of the ap-

parent qualitative effects of serotonin on learning could be

explained through the lens of value.

Mechanistic basis of value prediction

The question of where value prediction comes from can

be broken into two parts: where does the value signal in-

put originate, and where does predictive coding through

adaptation occur?

Since the DRN receives input from nearly the entire fore-

brain (63), it is unlikely that a single upstream region is com-

pletely responsible for computing value, simply because

this input would be drowned out by unrelated information

streaming into the DRN. Instead, we believe it is likely that

the net value input required by our theory is assembled

from multiple sources, for example temporally-extended ac-

tion values from the mPFC (64), and various aspects of

reward, including inverted RPE, from the lateral habenula

and lateral hypothalamus (45, 65, 66). These possibilities

are merely speculation. Our theory does not depend on

whether the net value input originates in one particular re-

gion or is distributed across many others.

As for the predictive coding aspect of our theory, the ex-

ceptionally strong spike frequency adaptation of serotonin

neurons is not only sufficient (10), it was the main motiva-

tion for the present work. This adaptation comes from a
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combination of apamin-sensitive potassium currents and

spike-triggered changes in spike threshold in individual

serotonin neurons (10, 67) as well as network-level recur-

rent inhibition via 5-HT1A receptors (67, 68). Feed-forward

inhibition (63, 69) does not seem to be functionally involved

(10). Setting aside this physiological evidence, value predic-

tion on its own technically does not exclude the possibility

that at least some of the adaptation visible in the spiketrains

of serotonin neurons originates upstream of the DRN.

Selectively inhibiting certain DRN inputs or pharmaco-

logically reducing adaptation in vivo could shed light on the

mechanisms of value prediction in the serotonin system.

Phasic and tonic firing

The idea that serotonin neurons encode essentially unre-

lated signals in phasic and tonic components of their firing

rates is popular in the serotonin literature (3, 7–9). Here

we have shown that the responses of serotonin neurons

to rewards and punishments are well-described by a sim-

ple model that does not distinguish between different types

of firing. Instead, our model shows that firing patterns that

have traditionally been called phasic can be interpreted as

increases in firing rate that are short-lived due to adapta-

tion. While we cannot rule out the possibility that serotonin

neurons multiplex different quantities in their firing rates in

other tasks, it is important to note that the phasic/tonic sep-

aration has historically been partly rooted in speculation

(7, 8) and the difficulty of formulating a consistent inter-

pretation of serotonergic responses to rewards and pun-

ishments (11). Functionally distinct phasic and tonic firing

is an exciting hypothesis, but perhaps no longer a good

default modelling assumption.

Heterogeneity

Serotonin neurons are biochemically, developmentally,

anatomically, and to some extent electrophysiologically het-

erogeneous (6). They are probably computationally het-

erogeneous as well, but in what sense? In principle, sero-

tonin neurons might be quantitatively computationally het-

erogeneous, meaning that differences in their activity pat-

terns can be captured by adjusting the parameters of our

value prediction model, or qualitatively computationally het-

erogeneous, meaning that value prediction simply does

not apply to all serotonin neurons. Our results cannot dif-

ferentiate between these two possibilities (which are not

mutually-exclusive in any case). While value prediction

dominates the population activity patterns of serotonin neu-

rons in the data we re-analyzed, many individual neurons

seemed essentially unresponsive to the task. If serotonin

neurons encode value subject to a wide range of discount-

ing timescales (quantitative heterogeneity), echoing distri-

butional coding in the dopamine system (47, 70, 71), the

cells that appear unresponsive might simply exhibit dis-

counting and/or learning rates that are very slow relative to

the structure of the experiment (see Figure 8). Consistent

with the idea that this experiment is too fast to engage value

prediction in most serotonin neurons, the neurons with the

clearest responses to reward-predicting cues exhibited re-

ward history modulations much larger than expected based

on previous work (see effect size calculation in results).

At the same time, the null responses we observed could

just as easily be explained by the idea that the neurons

in question do not predictively encode value (qualitative

heterogeneity). Value prediction subsumes several previ-

ous ideas about serotonergic function and is sufficient to

explain a surprisingly wide range of results reported in lit-

erature, but this does not imply that it is universal.

In view of the marked heterogeneity of the serotonin sys-

tem in nearly every aspect of its biology, it seems likely

that computational heterogeneity in this system is at least

partly qualitative. Indeed, there are differences in the tun-

ing features of serotonin neurons across DRN subregions

that are difficult for our model to explain (4), as are reported

activation by punishment-predicting cues and preference

for smaller rewards (11). Perhaps these observations are

the result of competing ON and OFF value prediction path-

ways in the DRN (67) or something else entirely. By testing

value prediction against a battery of alternative models, our

work provides a template for assessing computational het-

erogeneity in the serotonin system.

Top-down meets bottom-up

Here we build on a theme of some of our previous work

by adding biological details to a simple model in order to

improve its interpretability and performance (10, 72, 73).

Here, the success of our model hinges on combining the

normative idea of a value signal with spike-frequency adap-
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tation from a bottom-up model of the DRN (10). Neither of

these are new to the serotonin field (14, 43, 44, 74–80), but,

to the best of our knowledge, they have not previously been

combined. The fact that serotonergic responses to rewards

and punishments only become interpretable after account-

ing for the effects of adaptation illustrates the usefulness of

elements of biological detail even in normatively-focused

branches of computational neuroscience.

Conclusion

Here we present a simple theory for serotonin’s many

meanings: reward, surprise, salience, and uncertainty are

different faces of a predictive code for value. Our work links

the biology of the serotonin system to a normative account

of serotonergic responses to rewards and punishments

through value, a quantity that is central to RL theory. On an

intuitive level, our definition of value as the expectation of

future reward is akin to optimism, providing a conceptual

link to the use of serotonergic medications in treating mood

disorders. With value prediction, we establish serotonin as

“a neural substrate of prediction and reward” (1).
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Methods

True value signal

We define the true value of a state s to be the expected

total future reward to be collected by an agent that be-

gins in that state at time t and transitions to future states

St+1, St+2, . . . according to the dynamics of the environ-

ment. Future rewards are discounted by a factor 0 f µ f 1

such that rewards after t + 1 are ignored if µ = 0 and all

rewards are equally valuable if µ = 1. This textbook defini-

tion of value can be written as an explicit sum over future

rewards

v(s) = E

[
∞∑

i=0

µiRt+i+1

∣
∣
∣
∣
∣
St = s

]

, (2)

or as an equivalent Bellman recursion

v(s) = E [Rt+1 + µv(St+1) | St = s] .

For a trace conditioning experiment with exponentially-

distributed inter-trial interval (ITI) durations of mean LITI,

fixed cue, delay, and reward durations Lcue, Ldelay, Lreward,

and fixed reward size, the normalized continuous-time true

value signal is given by

v(t)

v(trew)
=







τ
LITI+τ exp

[
−(Lcue+Ldelay)

τ

]

t in ITI,

exp
[
t−trew

τ

]
t in cue or delay,

A (1− e
t−tend

τ ) +B t in reward,

(3)

where Ä = −dt ln µ is the discounting timescale, trew =

t0+Lcue +Ldelay is the start of the reward epoch (given the

start of the trial t0), tend = t0+Lcue+Ldelay+Lrew is the end

of the reward epoch, and A,B are scaling and offset fac-

tors to ensure continuity. (See Appendix D for derivation.)

By construction, this normalized definition of the value sig-

nal is proportional to the true value signal for any reward

size (including negative rewards corresponding to punish-

ments) and can therefore be multiplied by a constant to

accommodate different mean rewards.

Note that this model has only one free parameter: the

discounting timescale.

Estimated value signal

To simulate the estimated value signal v̂(t) in a trace con-

ditiong experiment, we used the true online TD(¼) algo-

rithm of van Seijen et al. (40, 81), which is designed to

agree more closely with the forward view of TD learning

(Figure 2D) than other TD(¼) algorithms. van Seijen’s algo-

rithm applies to causal linear value function approximation

v̂(st) = wt−1xt, where xt is a vector of state features and

wt−1 are weights from the previous time step (since wt

depends on quantities in the future).

Weights are learned online according to

wt+1 = wt + ¶tet + ³





v̂(st)
︷ ︸︸ ︷
wt−1xt −wtxt



xt

et+1 = µ¼et + ³xt+1 − (³µ¼etxt+1)xt+1,

where e is the eligibility trace vector and ¶t = Rt+1 +

µv̂(st+1)− v̂(st) is the reward prediction error (RPE). Com-

pared with traditional TD(¼) with eligibility traces, this al-

gorithm adds a correction to the weight update and uses

Dutch eligibility traces, which are intermediate to accumu-

lating (et+1 = µ¼et + ³xt) and replacing traces (et+1 =

µ¼et » (1 − xt) + ³xt, where xt is an indicator vector).

Following the notation of van Seijen et al. (81), we place

the learning rate ³ inside the eligibility trace update rather

than in front of ¶t in the weight update.

Simulation was performed using tabular features xt =

1s, eligibility trace ¼ = 0.995, discounting factor µ = 0.99,

learning rate ³ = 0.01, and time step dt = 50ms.

Value prediction model

The DRN rate model-based value prediction model is de-

fined as

Ä(t) = ReLU[(1 +A) v(t)−A u(t)]

du

dt
=

Ä(t)− u(t)

Äad

,
(4)

where Ä(t) is the firing rate of DRN serotonin neurons; v(t)

is the time-dependent net input, assumed to be a value

signal (either true or estimated, as indicated in main text);

u(t) is adaptation; A and Äad are the strength and timescale

of adaptation, respectively; and ReLU[x] = max(x, 0) is

the rectified linear function. The input is rescaled by a factor

1 + A so that Ä(t) = C for any constant input x(t) = C
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independent of the strength of adaptation A.

We used A = 3 and Äad = 1 s to achieve effective adap-

tation amplitude and kinetics similar to those observed in

our previous experimentally-constrained semi-biophysical

model (10). Note that the effective adaptation kinetics are

faster than Äad due to feedback between u(t) and Ä(t).

Adaptation dynamics were numerically integrated using the

second-order Runge-Kutta method. Surprise/salience tun-

ing simulations were carried out using a time step dt =

1ms, all others used dt = 50ms.

For a true value signal, the value prediction model has

only three free parameters: the discounting timescale, the

strength of adaptation, and the adaptation timescale.

In vivo experiment

The dynamic trace conditioning experiment analyzed here

has been reported previously by Grossman et al. (15). A

brief summary is as follows:

Tetrode recordings of optogenetically-tagged serotonin

(SERT-expressing) neurons were collected from head-fixed

and water-restricted C57BL/6J mice presented with odour-

cued water rewards. Each trial consisted of a 1 s odour

cue followed by a 1 s delay and a 3 s window during which

a fixed-size water reward (approx. 2µL to 4µL) could be

collected from a lick spout. After the 3 s reward interval,

the lick spout was retracted and any remaining water re-

moved via vacuum for 1 s. Inter-trial interval durations were

exponentially-distributed with a mean parameter of 3.3 s

(actual: 3.31± 3.46 s, mean ± SD, range 0 s to 54.28 s).

Rewards were delivered probabilistically according to a

hierarchical Bernoulli point process

Rt ∼







Bernoulli[pt] with 95% proba. (odour A)

0 catch trial; 5% proba. (odour B),

where the reward probability pt varied according to a block

structure. Block lengths were uniformly distributed between

20 and 70 trials. Depending on the recording session,

reward probabilities were set to pt ∈ {0.2, 0.5, 0.8} or

pt ∈ {0.2, 0.8}. Catch trials and trials in which a reward

was available but not collected were deemed unrewarded

for the purposes of our analysis.

Mice collected 0.45 ± 0.04 rewards per trial (mean ±

SD; range 0.37 to 0.54) and completed 346 ± 88 trials

per session (range 180 to 565). Mice failed to collect avail-

able rewards 4.1± 4.3% of the time (median 3.4%, range

0.0% to 19.0%). Sessions lasted approximately 1 h (time

from start of first trial to start of last trial: 53.1 ± 12.9min,

range 29.0min to 88.1min). Sessions with more trials were

not significantly associated with higher or lower reward

rates (Pearson r = 0.206, p = 0.293, N = 28 sessions).

Data were gathered from five mice (four male, one female)

across 28 sessions with 1.32± 0.54 neurons recorded per

session (range 1 to 3).

Surgical and experimental procedures were approved by

the Johns Hopkins University Animal Care and Use Com-

mittee and performed in compliance with the National Insti-

tutes of Health Guide for the Care and Use of Laboratory

Animals.

Data analysis

Reward history

Reward history was operationally defined as the mean re-

ward across the past five trials

p̂t =
1

5

5∑

i=1

rt−i,

which is an unbiased estimate of the true time-varying

Bernoulli reward probability. To mitigate boundary effects,

we set rt = 0.45 for t < 0.

Note that the mean reward can be used as a crude

proxy for value because the true value is proportional to

the true reward probability. The connection between mean

reward and true value is also exploited by temporal differ-

ence learning methods, which implicitly define value as an

exponential moving average of past rewards (Appendix B).

We choose to use the five-trial mean reward instead of the

true reward probability or a TD estimate so that the con-

nection between the activity of serotonin neurons and the

animal’s estimate of a reward statistic is clear.

Reward variability

We quantified reward variability using three statistics that

can be derived from the estimated Bernoulli reward proba-

bility p̂t: reward variance

V̂ar[Rt] = p̂t(1− p̂t),
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standard deviation

ŜD[Rt] =
√

p̂t(1− p̂t),

and entropy

Ĥ[Rt] = p̂t log2 p̂t + (1− p̂t) log2(1− p̂t).

Variance is the focus of our analysis because it is propor-

tional to the absolute RPE used as a measure of surprise or

uncertainty in some reward learning models (Appendix F).

The other statistics are nearly proportional to variance and

are included only to illustrate that our results to not depend

on technical details of the variability measure.

Quantification of activity

We quantified neural activity using either the peri-stimulus

time histogram (PSTH) with 500ms window width or, as a

more coarse-grained metric, the mean number of spikes

in a 7.5 s window around each trial (1.5 s pre-trial baseline,

5 s trial, 1 s post-trial baseline), which we refer to as “whole-

trial activity”. Baseline activity was defined as the mean of

the PSTH 1 s before the start of each trial or, similarly, the

number of spikes in a 1 s period just before the start of the

trial. Cue-associated activity was defined as the extremum

(usually maximum) of the PSTH during the 1 s cue period.

PSTHs were not smoothed.

All activity metrics were precision-weighted across neu-

rons and reward history conditions as applicable. For exam-

ple, the population PSTH for the reward probability p̂ = 1/5

condition was calculated by summing spiketrains from all

trials of all neurons where p̂t = 1/5 and dividing by the total

number of trials being summed. The resulting population

PSTH can be seen as a weighted average of the PSTHs of

individual neurons, where each neuron is weighted accord-

ing to the precision (inverse variance) of its PSTH N/Ã2.

Dynamical model definitions

Value The value prediction and value models of sero-

tonin neuron activity are defined by Eq. ?? and 4. The

discounting timescale, adaptation strength, and adaptation

timescale are estimated from the data along with scale and

offset parameters.

Surprise Surprise is defined in reward learning as the ab-

solute reward prediction error |¶t| and in information theory

as log2 p, both of which are zero for deterministic events

and greater than zero for stochastic events. Therefore, each

instant in the inter-trial interval, the beginning of the trial,

and the beginning of reward delivery all have non-zero sur-

prise, while all other moments during the trial have zero

surprise.

Our surprise-like model is defined as a piecewise con-

stant function

SurprishModel(t) =







A t is in ITI,

B t is start of trial,

C t is the start of reward delivery,

D otherwise,

subject to the restrictions

B g A g D

and

C g D,

where the coefficients A,B,C,D are estimated from the

data.

Reward The reward model is a piecewise constant func-

tion

RewardModel(t) =







A t is in reward epoch,

B otherwise,

where the coefficients A,B are estimated from the data.

Null The null model is a constant function with an offset

parameter estimated from the data.

Surprise with adaptation The surprise-like model with

adaptation is modified from the surprise-like model defined
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above:

AdSurprishModel(t) =A

+BΘ(t− tstart) e
−(t−tstart)

τ

+ C Θ(t− trew) e
−(t−trew)

τ

+DΘ(t− tstart)Θ(−(t− tend))

+ EΘ(t− tend) e
−(t−tend)

τ ,

subject to the restrictions

A g D

B g 0

C g 0

E g 0

Ä g 0,

where Θ(·) is the Heaviside step function and the coef-

ficients A,B,C,D,E, Ä are estimated from the data. As

before, A,B,C,D represent the activity during the ITI, trial

start, reward start, and the remainder of the trial, respec-

tively. E represents the amplitude of the overshoot at the

end of the trial and Ä is the timescale of adaptation.

While adaptation can be used to compute surprise, we

are doubtful that adaptation should be added to a model

of surprise itself: the fact that adding adaptation actually

slows down the kinetics of the surprise signal is a major

conceptual difficulty. We include this model in our analysis

only for completeness.

Reward with adaptation The reward model with adapta-

tion is modified from the reward model defined above:

AdRewardModel(t) =AΘ(t− trew)Θ(−(t− tend))

+B

+ C Θ(t− trew) e
−(t−trew)

τ

+DΘ(t− tend) e
−(t−tend)

τ ,

subject to the restrictions

A g B

C g 0

D f 0

Ä g 0,

where the coefficients A,B,C,D, Ä are estimated from the

data. As before, A,B represent the activity during the re-

ward period and at all other times, respectively. C parame-

terizes the amplitude of the phasic activity associated with

reward onset, D parameterizes the amplitude of the un-

dershoot associated with reward offset, and Ä is the time

constant of adaptation.

Dynamical model fitting

Before fitting, all models were smoothed with a 500 ms

boxcar filter to simulate a PSTH and lagged by 150 ms to

account for perceptual delays.

All models were fitted by minimizing the mean

squared error on the population PSTH (see Quan-

tification of activity). For the reward model (without

adaptation) this was accomplished using linear regres-

sion. For all other models, this was accomplished using

bounded/constrained gradient-based optimization methods

provided by scipy.optimize.minimize (L-BFGS-B or se-

quential least-squares quadratic programming).

Performance was assessed using repeated five-fold

cross validation. Data was stratified by neuron identity

(which partially reflects reward history beyond the five-trial

horizon, Figure 6E) and reward history level prior to assign-

ing folds in order to minimize class imbalances between

training and validation sets.

We use cross validation rather than AIC or BIC because

cross validation does not rely on distributional assumptions

that would be needed to formulate a likelihood function for

each model.

Analysis of reward modulation

Reward modulation was defined as the slope ´p̂ of a re-

gression line between an activity metric (see Quantification

of activity) and the estimated reward probability

ŷi = ´p̂p̂i + ´0 + ϵi,

where yi is the measured activity, p̂i ∈ {0/5, 1/5, . . . , 5/5}

is the estimated reward probability (see Reward history),

´0 is the intercept of the regression line, and ϵi is a resid-

ual. The regression model was fitted using weighted least-

squares (observations were precision-weighted; see Quan-

tification of activity).
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Statistical significance of the slope ´p̂ was assessed us-

ing circular trial permutation or bootstrapping.

Circular trial permutation tests are not sensitive to au-

tocorrelations in timeseries data that can significantly in-

crease the false positive rates of classical and shuffling-

based statistical tests (41). These tests were performed

by shifting the per-trial estimated reward probabilities p̂t

to break the alignment between activity and reward his-

tory while controlling for other correlations in the data. For

example, the reward probabilities for a T trial experiment

p̂t=1, p̂t=2, . . . , p̂t=T can be shifted D places to generate

un-aligned probabilities

p̃t = p̂t+D (mod T ),

and the analysis described above can be repeated using

the shifted probabilities p̃. The value of the slope ´p̃ ob-

tained using this procedure represents the apparent reward

modulation under the null hypothesis that activity and re-

ward history are not actually related (because the trials

were shifted). In the case of whole-trial reward modulation

of population activity, the permutation procedure was re-

peated 2500 times to generate a distribution for ´p̃ used to

obtain an approximate p-value for ´p̂. In the case of whole-

trial reward modulation of individual neurons, the procedure

was repeated exhaustively to generate exact p-values. In

both cases, we restricted 10 f D f T−10 due to very high

experimental design-related autocorrelations in p̂ (specifi-

cally, block structure and the fact that p̂t and p̂t−4, . . . , p̂t+4

are calculated on overlapping sets of trials). Removing this

restriction post hoc did not meaningfully affect our results.

Bootstrap distributions for activity metrics ŷi, regression

predictions yi, and regression slopes ´p̂ were generated by

sampling trials 1000 times with replacement within reward

probability levels 0/5, 1/5, . . . , 5/5 and neurons as applica-

ble. Activity metric distributions were corrected for Monte-

Carlo bias (82). Statistical significance of the regression

slope ´p̂ was assessed using the 99% confidence interval

method.

For consistency with dynamical model comparison, re-

ward modulation models based on reward history p̂ and

related statistics Var[R], SD[R], H[R] (see corresponding

section above) were compared using repeated stratified

five-fold cross validation. Performance is presented as the

mean variance explained across folds for each repeat.

Statistical analysis

Statistical tests are specified in the main text and methods

above. Non-parametric tests were used as much as pos-

sible; where samples sizes were so small that the loss of

power associated with non-parametric tests became pro-

hibitive, robust tests were used. All tests are two-sided un-

less otherwise stated. Sign tests were one-sided because

our theory implies that the relevant effects should have a

specific sign. Exact p values are reported in the main text.

Results were considered statistically significant at p f 0.05

and p f 0.1 was considered a trend. Sample sizes were

not predetermined because only previously published data

was used. N = 37 neurons in nearly all cases. Because

neurons were usually recorded individually (see “In vivo ex-

periment” above), we considered them to be independent

biological replicates for the purposes of statistical analysis.

Error bars represent 95% confidence intervals. Uncertain-

ties are presented as standard deviation in the main text

unless otherwise specified.

Data and code availability

Previously-published data is available on the Dryad reposi-

tory (23). Code will be made available on GitHub.
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Elements of Figure 3B and C, Figure 4C, and Figure 5 have

been reproduced from Cohen et al. (11), Matias et al. (13),

and Zhong et al. (12), respectively, under the Creative Com-

mons Attribution license (CC-BY 4.0). A bar chart from

Paquelet et al. (5), which is covered by the Creative Com-

mons Attribution Non-commercial No Derivatives license

(CC-BY-NC-ND 4.0), has been included in Figure 4D with

kind permission from Bradley Miller.
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schematics to improve clarity. Due to space constraints,
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from the vignette in Figure 4C, as were statistical anno-
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change the interpretation of the underlying data. Refer-

ences to the specific figures from the original publications
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vided extensive input and helpful discussion throughout the

project, as well as detailed comments on the manuscript.

Cooper Grossman and Jeremiah Cohen provided data and

validated the design of our analysis. Cooper Grossman

provided helpful discussion and extensive input on com-

parisons with the uncertainty model, significantly strength-

ening this aspect of the work. Jeremiah Cohen provided

helpful discussion and detailed input on the manuscript.

References

[1] W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of

prediction and reward. Science 275, no. 5306, 1593–1599. (1997)

[2] R. S. Sutton and A. G. Barto. Reinforcement Learning, 2nd ed. (The

MIT Press, 2018)

[3] C. D. Grossman and J. Y. Cohen. Neuromodulation and neurophys-

iology on the timescale of learning and decision-making. Annual

Review of Neuroscience 45, 317–337. (2022)

[4] J. Ren, D. Friedmann, J. Xiong, C. D. Liu, B. R. Ferguson, T. Weer-

akkody, K. E. DeLoach, C. Ran, A. Pun, et al.. Anatomically defined

and functionally distinct dorsal raphe serotonin sub-systems. Cell

175, no. 2, 472–487. (2018)

[5] G. E. Paquelet, K. Carrion, C. O. Lacefield, P. Zhou, R. Hen, and

B. R. Miller. Single-cell activity and network properties of dorsal

raphe nucleus serotonin neurons during emotionally salient behav-

iors. Neuron 110, no. 16, 2664–2679. (2022)

[6] B. W. Okaty, K. G. Commons, and S. M. Dymecki. Embracing diver-

sity in the 5-HT neuronal system. Nature Reviews Neuroscience 20,

no. 7, 397–424. (2019)

[7] N. D. Daw, S. Kakade, and P. Dayan. Opponent interactions be-

tween serotonin and dopamine. Neural Networks 15, no. 4-6, 603–

616. (2002)

[8] D. Asher, A. Craig, A. Zaldivar, A. Brewer, and J. Krichmar. A dy-

namic, embodied paradigm to investigate the role of serotonin in

decision-making. Frontiers in Integrative Neuroscience 7. (2013)

[9] K. Wong-Lin, D.-H. Wang, A. A. Moustafa, J. Y. Cohen, and K. Naka-

mura. Toward a multiscale modeling framework for understanding

serotonergic function. The Journal of Psychopharmacology 31, no. 9,

1121–1136. (2017)

[10] E. F. Harkin, M. B. Lynn, A. Payeur, J.-F. Boucher, L. Caya-

Bissonnette, D. Cyr, C. Stewart, A. Longtin, R. Naud, et al.. Tem-

poral derivative computation in the dorsal raphe network revealed

by an experimentally-driven augmented integrate-and-fire modeling

framework. eLife 12, e72951. (2023)

[11] J. Y. Cohen, M. W. Amoroso, and N. Uchida. Serotonergic neu-

rons signal reward and punishment on multiple timescales. eLife

4, e06346. (2015)

[12] W. Zhong, Y. Li, Q. Feng, and M. Luo. Learning and stress shape

the reward response patterns of serotonin neurons. The Journal of

Neuroscience 37, no. 37, 8863–8875. (2017)

[13] S. Matias, E. Lottem, G. P. Dugué, and Z. F. Mainen. Activity patterns
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S. Haj-Dahmane, and J.-C. Béı̈que. Target-specific modulation of the

descending prefrontal cortex inputs to the dorsal raphe nucleus by

cannabinoids. Proceedings of the National Academy of Sciences

113, no. 19, 5429–5434. (2016)
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mean reward and positively related to variance (Appendix F). Consistent with this, negative expected uncertainty closely resembles five-trial mean reward (top). Gaps in the
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Table 2. Performance statistics for models of population activity modulation by reward history. Related to Figure 7C.

Training r
2 Validation r

2

Model Baseline Cue Baseline Cue

Value pred. (ours) 0.894± 0.002 0.713± 0.006 0.763± 0.030 0.526± 0.074

Variance 0.111± 0.001 0.208± 0.005 0.088± 0.019 0.111± 0.048

Std. dev. 0.109± 0.001 0.168± 0.004 0.086± 0.018 0.085± 0.040

Entropy 0.111± 0.001 0.188± 0.004 0.088± 0.019 0.098± 0.044

Null 0.000 0.000 0.000 0.000
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Fig. 11. Serotonin neuron activity reflects mean reward and is spuriously correlated

with reward variability. A,B Reward variability is inextricably linked to mean reward

for binary (Bernoulli) rewards. A Expected uncertainty (15), defined as the mean

RPE in a model of biased animal learning, has an inverted U-shaped relationship

with the mean reward. If learning rates for positive and negative RPEs are highly

asymmetric, as in previous work, expected uncertainty is mostly negatively related

to the mean reward. B Unbiased statistics of reward variability, such as reward vari-

ance, also have inverted U-shaped relationships with the mean reward. C Serotonin

neuron activity is better described by mean reward than reward variability. SSEx

− SSEmean represents the difference in weighted sum of squared errors (SSE)

between a linear fit of serotonin neuron whole-trial activity to the reward variance,

standard deviation, or entropy versus a linear fit of whole-trial activity to the mean

reward (estimated using a five trial history, as in main text). Positive values indicate

a better fit (lower error) with the mean reward model. p values are from Wilcoxon

signed-rank tests. D Serotonin neuron activity does not systematically deviate from

the mean reward model (left). Errors are derived from linear fits used in C. Dark

gray bands indicate 95% CIs on the mean (i.e., mean ±1.96 SEM). No systematic

errors are expected if the model is essentially correct (illustrated in inset). Note that

the variance model exhibits systematic errors (right), as expected if serotonin neuron

activity encodes the mean reward (illustrated in inset). E Serotonin neuron activity

is relatively strongly positively related to mean reward. Slopes are derived from fits

used in C and normalized to the dynamic range of the corresponding reward statistic

as in B (0–1 for mean reward, 0–1/4 for variance, 0–1/2 for standard deviation,

and 0–1 for entropy). p values are from Wilcoxon signed-rank tests. F The activity of

individual serotonin neurons is more often correlated with mean reward than reward

variability, and significant correlations with variability are likely due to confounding.

A significant proportion of serotonin neurons exhibit activity that is significantly cor-

related with each reward statistic (top; cyclic permutation test, see main text; dark

blue, light blue, dark gray, and light gray indicate p ≤ 0.05, 0.05 < p ≤ 0.1,

0.1 < p ≤ 0.5, and p > 0.5, respectively, as in main text). However, in the subset

of neurons in which activity is significantly correlated with reward variability, reward

variability is unusually strongly confounded with the mean reward (bottom). Stars

indicate 0.01 < p ≤ 0.05 (actual range: p = 0.024 to p = 0.037) in permutation-

based two sample t tests (non-parametric tests could not be used because too

few neurons had statistically-significant correlations with reward variability statistics).

N = 37 neurons in all cases.
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Fig. 12. Correlation between serotonergic activity and mean reward does not depend on technical details of analysis. A,B Conclusions are unlikely to depend on the decision

to use a five trial reward history as a proxy for value rather than an incrementally-learned estimate because the two are very similar. A Comparison of five trial mean reward

used in main text with an exponential moving average of past reward for an example session. The blue line represents an exponential moving average with a time constant

of 30 trials, which is equivalent to the value estimated by temporal difference (TD) learning using a learning rate of α = 1/30 (and no discounting). B Pearson correlation

between five trial mean reward and moving reward average as a function of the time constant of the moving average (learning time constant) for the example session shown in

A. Note that the two are moderately or strongly correlated across a wide range of learning time constants. C,D Whole trial activity is correlated with mean reward but not reward

variability when reward statistics are calculated using a moving average of past rewards rather than a five trial history. Note that this result does not depend on the choice of

learning time constant. E, F Choice of activity metric does not affect conclusions: baseline activity is also correlated with mean reward but not reward variability. In C–F, reward

variance, standard deviation, and entropy were calculated from the learned p̂t rather than moving averages (of squared errors, for example) because this approach is less

statistically biased and/or better defined. N = 37 cells in all cases.
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A Connection between state value

v(s) and state-action value q(s, a)

It is well known that the state-action value

depends on the state value: q(s, a) =

E [Rt+1 + γv(St+1) | St = s,At = a] (25). As we show

below, the state value can also be expressed in terms of

state-action values.

Following the notational conventions of RL theory, let

S,A be random variables denoting the state and action and

let s, a be a specific state and action. Let v(s) and q(s, a)

be the state and state-action value functions, respectively,

under the action-generating policy π(a | s) = Pr[At = a |

St = s]. The state value function v(s) is equivalent to the

expected state action value q(s, a) under the policy π:

v(s) = E

[
∞∑

i=0

γiRt+i+1

∣
∣
∣
∣
∣
St = s

]

= EAt∼π(a|s) [q(s,At) | St = s]

Proof: The state-action value function is the expected

cumulative discounted future reward to be obtained after

taking action a in state s, written as

q(s, a) = E

[
∞∑

i=0

γiRt+i+1

∣
∣
∣
∣
∣
St = s,At = a

]

.

Note that this is exactly the same as the state value v(s)

except for the dependence on the chosen action At = a.

To prove that v(s) is the expected q value, we need to

incorporate At into v(s). To simplify notation, let Gt be the

random variable
∑∞

i=0 γ
iRt+i+1. Using Gt and expanding

expectation, we can rewrite the state value as follows

v(s) =

∫ ∞

−∞

Gt Pr[Gt | St = s]dGt.

Incorporating the chosen action At by conditioning, we ob-

tain

v(s) =
∑

a

q(s,a)
︷ ︸︸ ︷
∫ ∞

−∞

Gt Pr[Gt | s, a] dGt

π(a|s)
︷ ︸︸ ︷

Pr[At = a | s]

= EAt∼π(a|s) [q(s,At) | St = s] ,

completing the proof.

B Temporal difference learning aver-

ages past rewards

Consider an experiment with a single state (e.g., a trace

conditioning experiment where each trial is considered to

be a time step) and a stochastic reward R ∼ Bernoulli[p].

Learning the state value v̂t using the RPE δt = Rt − v̂t

causes the state value to be an exponential moving aver-

age of past rewards that is an unbiased estimate of the

reward probability p

E[v̂] = E[R] = p

Proof: The current state value v̂t depends on the past

state value v̂t−1 and RPE δt−1

v̂t = v̂t−1 + αδt−1,

where 0 f α f 1 is the learning rate. Expanding the above,

we obtain

v̂t = v̂t−1 + α(Rt−1 − v̂t−1)

= αRt−1 + (1− α)v̂t−1

= αRt−1 + (1− α)αRt−2 + (1− α)2v̂t−2

= (1− α)H+1vt−H−1 + α
H∑

i=0

(1− α)iRt−i−1,

where H ∈ N is the time horizon. Taking an infinite hori-

zon, the term (1−α)H+1v̂t−H−1 vanishes, and we are left

with value as a scaled exponential moving average of past

rewards

v̂t = α
∞∑

i=0

(1− α)iRt−i−1

with an estimation timescale τest = −dt ln(1− α).

Taking the expectation shows that the above is an unbi-

ased estimate of the reward probability

E[v̂t] = E

[

α

∞∑

i=0

(1− α)iRt−i−1

]

= α
∞∑

i=0

(1− α)i E[Rt−i−1]

= p

by linearity of expectation E[αX] = αE[X], simplification of

the geometric series
∑∞

i=0(1−α)i = 1/α, and expectation
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of the Bernoulli reward E[Rt] = p.

The reader may verify that the above implies that v̂ is an

unbiased estimator by adding a bias term b and showing

that it is zero: E[v̂+ b] = p =⇒ b = 0. This completes the

proof.

C Learning rate controls value vari-

ance

Appendix B shows that the state value v̂ is an unbiased

estimate of the mean reward E[R] = p. The variance of

this estimate is set by the TD learning rate α according to

Var[v̂] =
α

2− α
Var[R].

Proof: Recall that the value estimate can be written as

v̂t = α
∞∑

i=0

(1− α)iRt−i−1.

Taking the variance and moving the constant terms out, we

obtain

Var[v̂t] = α2
∞∑

i=0

(1− α)2i Var[Rt−i−1],

remembering that Var[α
∑

i Xi] = α2
∑

i Var[Xi] for con-

stant α and independent Xi. Removing time dependence

by assuming Var[Rt−i−1] = Var[R] ∀t, i and simplifying

the constant term using convergence of the geometric se-

ries completes the proof.

D Derivation of true value in trace

conditioning experiments

The normalized true value signal v(t)/v(trew) in a trace

conditioning experiment is given by the piecewise function

v(t)

v(trew)
=







τ
LITI+τ e

−(Lcue+Ldelay)

τ t in ITI,

e
t−trew

τ t in cue or delay,

A (1− e
t−tend

τ ) +B t in reward,

presented in Equation (3). (See Methods for the meaning

of each variable.)

To derive this equation, we model a trace conditioning

experiment as a Markov reward process (MRP). The states

in the MRP are labelled s0, s1, s2, . . . , sM+N , where s0 is

the ITI, s1, s2, . . . , sM are the trial states representing the

M time steps between the start of the cue in s1 and the

end of the delay period in sM , and sM+1, sM+2, . . . , sM+N

are the reward states representing the N time steps during

the reward period. The transition probabilities are

p(s1 | s0) = pstart

p(s0 | s0) = 1− pstart

p(s0 | sM+N ) = 1

p(si+1 | si) = 1 1 f i < M +N

where p(sj | si) represents the probability of transitioning

to sj at the next time step given that the current state is

si. These transition probabilities were chosen so that the

dwell time in the ITI state s0 follows a geometric distribution

with mean LITI =
dt
pstart

, reflecting exponentially distributed

ITI durations commonly used in experiments, and so that

the fixed durations of the cue, delay, and reward epochs

are given by Ltrial = Lcue +Ldelay = M dt and Lrew = N dt.

A reward of size r/N is delivered in each of the N reward

states, such that each trial ends in a total reward of size r.

As noted in the main text, we define the value of each state

in terms of the expected discounted future reward

v(s) ≡ E

[
∞∑

i=0

γiRt+i+1

∣
∣
∣
∣
∣
St = s

]

,

which can also be written in Bellman form as

v(s) = E [Rt+1 + γv(St+1) | St = s] .

In the three sections below, we show how each part

of the continuous time normalized true value signal

v(t)/v(trew) can be derived from the MRP and value func-

tion v(s) given above in the limit of dt → 0.

True value during the ITI

Writing the value of the ITI state v(s0) using the Bellman

form and expanding the expectation shows that it is depen-

dent on itself and the value of the first trial state

v(s0) = γv(s1) pstart + γv(s0) (1− pstart),
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which can be solved in terms of v(s0), yielding

v(s0) =
γv(s1) pstart

1− γ(1− pstart)
.

The first trial state v(s1) can be written in terms of the

final trial state v(sM )

v(s1) = γM−1v(sM )

since the state transitions are deterministic and no rewards

are delivered during the cue and delay epochs.

Substituting the value of the first trial state v(s1) into the

value of the ITI state v(s0) and normalizing by the peak

value during the trial v(sM ) yields

v(s0)

v(sM )
=

γMpstart

1− γ(1− pstart)
.

Using M = (Lcue + Ldelay)/dt and pstart = dt/LITI from

the problem definition and letting γ = e
−dt

τ , the relative ITI

value can be rewritten

v(s0)

v(sM )
=

dt/LITI

1− e
−dt

τ (1− dt/LITI)
e

−(Lcue+Ldelay)

τ .

Taking the limit as dt → 0 completes the derivation.

True value during trace and delay epochs

Using the Bellman form of the value function and the fact

that no rewards are delivered during the cue and trace

periods, the value leading up to reward can be written

v(si) = γM−iv(sM ) for 1 f i f M .

Normalizing by v(sM ) and converting to continuous time

using γ = e
−dt

τ and M = Ltrial/dt completes the deriva-

tion.

True value during the reward epoch

The true value starting in state sM and continuing through

the reward epoch is

v(sM+i) = γN−i+1v(s0) +
N−i−1∑

j=0

γjr/N for 0 f i f N,

abusing notation by allowing
∑−1

j=0 x = 0. Removing the

contribution of v(s0) and normalizing out the reward, we

are left with

v(sM+i)− γN−i+1v(s0) ∝
N−i−1∑

j=0

γj for 0 f i f N.

The sum of discounting factors on the right hand side can

be rewritten in continuous time as the integral of an expo-

nential discounting kernel

∫ Lrew−t

0

e
−x

τ dx = τ
(

1− e
−(Lrew−t)

τ

)

for 0 f t f Lrew.

Incorporating the scaling and offset terms A,B to ensure

continuity with the normalized value function at v(trew) and

v(tend) completes the derivation.

E Inter-trial interval value reflects

value at the start of the next trial

Let the state a be that the animal is in the ITI, let the state

b be that the animal is at the very start of a trial, and let T

be a random variable that represents the number of time

steps remaining in the ITI before the start of the next trial.

The true value of the ITI state v(a) is proportional to the

value at the start of the next trial v(b) as follows

v(a) = v(b) E
[
γT+1

∣
∣ St = a

]
,

where γ is the discounting factor.

Proof: Recall that the true value of a state S, s is defined

as the expected sum of exponentially-discounted future re-

wards

v(s) = E

[
∞∑

i=0

γiRt+i+1

∣
∣
∣
∣
∣
St = s

]

.

Applying this definition to the states a, b, we obtain

v(a) = E

[
∑T

i=0 γ
iRt+i+1 +

∑∞
i=T+1 γ

iRt+i+1

∣
∣
∣ St = a

]

and v(b) = E
[∑∞

i=0 γ
iRt+i+1

∣
∣ St = b

]
, where the sum in

v(a) is split between the value of the rest of the ITI and

the discounted value at the start of the next trial. Since the

value at the start of the next trial is v(b), we can rewrite the

ITI value as follows

v(a) = E

[
T∑

i=0

γiRt+i+1 + γT+1v(b)

∣
∣
∣
∣
∣
St = a

]

.

Observing that the cumulative reward during the ITI is zero

by definition
∑T

i=0 γ
iRt+i+1 = 0, and also observing that
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v(b) is a constant that can be factored out of the expecta-

tion, we find that the ITI value is

v(a) = v(b) E
[
γT+1

∣
∣ St = a

]
,

completing the proof.

Notes:

• This proof can easily be extended to the value of any

state in the upcoming trial (not just the first state) by

redefining T and b.

• If the ITI durations are drawn from a geometric

(or exponential) distribution, then the scaling factor

E
[
γT+1

∣
∣ St = a

]
does not depend on the amount of

time spent in the ITI so far. The value during the ITI

v(a) is therefore constant.

F Relationship between uncertainty

and reward variance

Absolute RPEs |δ| are sometimes used in RL as a mea-

sure of variability or uncertainty that can be used to regu-

late learning (15), but the precise statistical interpretation

of |δ| is unclear. Here we show that for vanilla TD learn-

ing from Bernoulli rewards, the average absolute RPE is

proportional to the reward variance

E[|δ|] = 2Var[R],

but this relationship can be distorted by asymmetric learn-

ing rates and forgetting.

Proof for vanilla TD: For simplicity, let R ∼ Bernoulli[p],

let the RPE be δ = R − v̂, and set value to its fixed point

v̂ = p (since E[∆v̂] = 0 ⇐⇒ E[δ] = 0 ⇐⇒ v̂ = p under

TD learning). Substituting p into the RPE and taking the

expectation of the absolute value, we get

E [|δ|] = E [|R− p|] .

Since the reward is binary R ∈ {0, 1}, we can easily rewrite

the expectation above and simplify

E [|δ|] = |1− p|p+ |0− p|(1− p)

= 2p(1− p)

= 2Var[R],
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Fig. 13. Numerical verification of relationship between absolute RPE |δ| and reward

variance Var[R] under TD learning. Panels show |δ| mean ± SEM (blue points;

error bars are too small to be visible) calculated from simulated TD learning trials

against 2Var[R] (black lines). Simulations were burned in for 500 trials and RPE

statistics were calculated on 2000 trials. Learning rate α used in the TD model is

indicated at top of each panel.
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Fig. 14. Effect of asymmetric learning rates on value v̂ and absolute RPE |δ| in TD

learning.

completing the proof.

The relationship between absolute RPE |δ| and reward

variance shown analytically above holds well in practice

even if the value estimate v̂ is not generally exactly equal

to its fixed point p (Figure 13).

Effect of asymmetric learning: In vanilla TD learning,

the value estimate is updated proportional to the RPE

∆v̂ = αδ, but a common extension is to use different learn-

ing rates for positive and negative RPEs

∆v̂ =







α+δ if δ g 0

α−δ if δ < 0,

called asymmetric learning. Under asymmetric learning,

value has a fixed point that is different from the reward

probability E[∆v̂] = 0 ⇍⇒ v̂ = p. We can find the fixed

point by solving

0 = E[∆v̂]

0 = α+(1− v̂)p− α−v̂(1− p)

v̂ =
p

p+ α
−

α+
(1− p)

Substituting the above into the expectation of the absolute

RPE E[|δ|] = E[|R − v̂|], we find that there is no longer

a clear connection to the variance of the Bernoulli reward

Var[R] (Figure 14).

Effect of forgetting: Another common modification of
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Fig. 15. Effect of forgetting on value v̂ and absolute RPE |δ| under asymmetric TD

learning with
α
−

α+
= 0.3.

TD learning is to include a forgetting rate 0 f ζ f 1 in the

RPE δ = R− v̂− ζv̂. Solving E[∆v̂] = 0 as above, we find

the fixed point

v̂ =
p

[

p+ α
−

α+
(1− p)

]

(1 + ζ)
.

The main effect of forgetting is to decrease the estimated

value when the reward probability is high, increasing the

absolute RPE in this range (Figure 15).

G Perturbation analysis

Setup: According to the value prediction theory, the trial-

aligned activity patterns of serotonin neurons in reward

learning experiments should resemble the normalized true

value signal derived in Appendix D scaled by the reward

probability. Therefore, if an animal’s estimate of the re-

ward probability is dynamically changing, then the activity

of serotonin neurons should scale up and down accord-

ingly. Assuming that the animal estimates the reward prob-

ability on the basis of the proportion of recent trials that

were rewarded, the value prediction theory makes a simple

testable prediction: in a given experiment, the firing rates

of serotonin neurons should be positively correlated to the

proportion of recent trials that were rewarded. We do no

know, however, the precise timescale over which the re-

cent rewards affect the value function. To circumvent this

problem, we use perturbation theory to derive a simpler ex-

pression relating the value with the fraction of recent trials

that were rewarded.

Our value prediction theory states the firing rate of sero-

tonergic neurons is proportional to the predictively coded

value signal. Over the slow timescale of the whole-trial, the

predictively coded value signal becomes the value signal.

Our goal is thus to relate the value signal

vt = E

[
∞∑

i=0

γiRt+i+1

∣
∣
∣
∣
∣
St = s

]

,

with fluctuations in the recent reward history p̂t =
1
L

∑L−1
k=0 rk, for some small number of recent trials L and

where rk refers to the kth reward in the past with respect

to time t.

We begin by proving that vt ∝ ṽtE[R], where the normal-

ized value signal ṽt from Appendix D captures within-trial

value dynamics and the expected reward E[R] is responsi-

ble for trial-to-trial fluctuations. By definition,

vt = ṽt v(sM ),

where v(sM ) is the true value just before reward delivery

(see Appendix D), so it remains only to be shown that

v(sM ) ∝ E[R]. Assuming the reward lasts only one time

step, we can write

v(sM ) = E[R] + γv(s0),

where v(s0) is the true value during the ITI. Using the fact

that v(s0) ∝ v(sM ) from Appendix E, we can introduce a

temporary proportionality constant C and simplify

v(sM ) = E[R] + γCv(sM )

v(sM ) = E[R]/(1− γC)

v(sM ) ∝ E[R].

Thus we have that

v(sM ) ∝ E[R] =⇒ vt ∝ ṽtE[R].

The proof can be extended to rewards that last more than

one timestep without much difficulty.

There are multiple ways of calculating the expected re-

ward E[R], but in TD learning methods, the expected re-

ward is an exponential moving average of past rewards (Ap-

pendix B). Therefore, the value signal fluctuates according

to an unknown value estimation timescale τe

v̂t = ṽt(1− e−T/τe)
∞∑

k=0

e−Tk/τerk

Using the fact that the total trial and ITI duration T times

the trial horizon L is much smaller than the estimation
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timescale τe, by first order Taylor expansion of the expo-

nential terms we get

v̂t = ṽt

[
T

τe
Lp̂t + c

]

where c = T
τe

∑∞
k=L e−Tk/τerk ≈ r̄(1 + TL/τe) where r̄

is the average reward on a long time horizon. The relative

change in value is then

v̂t − v̄

v̄
= (r̄(1 + τe/TL))

−1 ≈ 2.5%

using an estimation time scale of τe = 200 trials (12, 13),

an L = 5 trial horizon, and an average reward rate of r̄ =

0.5. This implies that if the average firing rate of a serotonin

neuron is 2Hz, we expect to observe activity modulations of

roughly 0.05Hz in either direction around the mean based

on a five-trial reward history.

Note: As a rough guide to the sensitivity of this calcu-

lation, consider that if the estimation time scale were an

order of magnitude faster than what has previously been re-

ported (12, 13) (τe = 20 trials), then we would expect activ-

ity modulations of roughly 0.8Hz (40% of a 2Hz baseline).

Therefore, changes in serotonergic activity associated with

a five-trial reward history should be much smaller than the

multi-Hz within-trial fluctuations in activity explained by ṽ

and observed experimentally (11), even if our estimate of

the value estimation timescale τe is badly wrong.

H Predictive coding exactly cancels

leaky decoding

Let I(t) be the net input to the DRN, let f(·) be the en-

coding function of the DRN, and let g(·) be the decoding

function of some downstream region. The output of the

DRN is (f ◦ I)(t) and the decoded signal is (g ◦ f ◦ I)(t).

Assuming that g performs leaky integration on its input, the

decoded signal is given as follows

(g ◦ f ◦ I)(t) = −

∫ −∞

0

(f ◦ I)(t+ z)
1

τ
ez/τ dz. (5)

Following our previous work (10), assuming f predictively

encodes its input such that

(f ◦ I)(t) = τ
dI

dt
+ I(t), (6)

then

(g ◦ f ◦ I)(t) = I(t).

Proof: Substituting Eq. 6 in Eq. 5 and expanding the

resulting integral yields

(g ◦ f ◦ I)(t) =−

∫ −∞

0

τ
dI

dt

∣
∣
∣
t+z

1

τ
ez/τ dz

−

∫ −∞

0

I(t+ z)
1

τ
ez/τdz.

(7)

The time derivative of the input dI
dt can be removed from

the first term using integration by parts, yielding

−

[

τI(t+ z)
1

τ
ez/τ

]−∞

z=0

+

∫ −∞

0

I(t+ z)
1

τ
ez/τdz.

Substituting the above into Eq. 7 causes the remaining in-

tegrals to cancel and changes the sign on the non-integral

term, giving

(g ◦ f ◦ I)(t) =

[

τI(t+ z)
1

τ
ez/τ

]−∞

z=0

,

which simplifies to

(g ◦ f ◦ I)(t) = I(t),

completing the proof.
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