

The genomics and evolution of inter-sexual mimicry and female-limited polymorphisms in damselflies

B. Willink^{1,2*}, K. Tunström¹, S. Nilén³, R. Chikhi⁴, T. Lemane⁵, M. Takahashi^{6†}, Y. Takahashi⁷,
E. I. Svensson³, C. W. Wheat¹

⁵ ¹ Department of Zoology, Stockholm University, Stockholm 106-91, Sweden

6 ² Department of Biological Sciences, National University of Singapore, Singapore 117558,
7 Singapore

8 * Corresponding author email: bwillink@gmail.com

⁹ ³ Department of Biology, Evolutionary Ecology Unit, Lund University, Lund 223-62, Sweden

10 ⁴ Institut Pasteur, Université Paris Cité, Sequence Bioinformatics, F-75015 Paris, France

¹¹ ⁵ Univ. Rennes, Inria, CNRS, IRISA, Rennes F-35000, France

12 ⁶ Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578,
13 Japan

¹⁴ ⁷ Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan

¹⁵ [†] Current address: Graduate School of Agriculture, Kyoto University, Oiwakecho,
¹⁶ Kitashirakawa, Sakyoku, Kyoto, 606-8502, Japan

17 **Keywords:** balancing selection, ectopic recombination, insertion, k -mer GWAS, structural
18 variant, transposable elements, trans-species polymorphism

19 Abstract

20 Sex-limited morphs can provide profound insights into the evolution and genomic architecture of
21 complex phenotypes. Inter-sexual mimicry is one particular type of sex-limited polymorphism in
22 which a novel morph resembles the opposite sex. While inter-sexual mimics are known in both
23 sexes and a diverse range of animals, their evolutionary origin is poorly understood. Here, we
24 investigated the genomic basis of female-limited morphs and male mimicry in the Common
25 Bluetail damselfly. Differential gene expression between morphs has been documented in
26 damselflies, but no causal locus has been previously identified. We found that male-mimicry
27 originated in an ancestrally sexually-dimorphic lineage in association with multiple structural
28 changes, probably driven by transposable element activity. These changes resulted in ~900 kb of
29 novel genomic content that is partly shared by male mimics in a close relative, indicating that
30 male mimicry is a trans-species polymorphism. More recently, a third morph originated
31 following the translocation of part of the male-mimicry sequence into a genomic position ~3.5
32 mb apart. We provide evidence of balancing selection maintaining male-mimicry, in line with
33 previous field population studies. Our results underscore how structural variants affecting a
34 handful of potentially regulatory genes and morph-specific genes, can give rise to novel and
35 complex phenotypic polymorphisms.

36 **MAIN**

37 Sexual dimorphism is one of the most fascinating forms of intra-specific phenotypic variation in
38 animals. Sexes often differ in size and colour, as well as the presence of elaborated ornaments
39 and weaponry. Theoretical and empirical studies over many decades have developed a detailed
40 framework of sexual selection and sexual conflict, explaining why these differences arise and
41 how they become encoded in sex differentiation systems¹⁻³. However, a growing number of
42 examples of inter-sexual mimicry⁴⁻⁷ suggest that sexual dimorphism can be evolutionarily fragile
43 and quite dynamic. Inter-sexual mimicry has evolved in several lineages, when individuals of
44 one sex gain a fitness advantage, usually frequency- or density-dependent, due to their
45 resemblance to the opposite sex. For example, males who mimic females, as seen in the Ruff
46 (*Calidris pugnax*) and the Melanzona Guppy (*Poecilia parae*), forgo courtship and ‘sneak’
47 copulations from dominant males^{4,5}, while females who mimic males, in damselflies and
48 hummingbirds, avoid excessive male-mating harassment^{6,8}. Inter-sexual mimicry thus requires
49 the evolution of a novel sex-mimicking morph in a sexually-dimorphic ancestor. The occurrence
50 of inter-sexual mimicry may be an intermediate step in the evolution of sexual monomorphism, it
51 may be an ephemeral state, or it may be maintained as a stable polymorphism. In any case,
52 sexual mimics harbour genetic changes that attenuate or prevent the development of sex-specific
53 phenotypes, and can therefore provide insights into the essential building blocks of sexual
54 dimorphism⁹.

55 Considerable research effort has been devoted to uncover the genetic basis of discrete phenotypic
56 polymorphisms, such as those associated with alternative reproductive or life-history strategies¹⁰⁻
57 ¹⁴. Together, these studies highlight a vast diversity of mechanisms used by evolution to package
58 complex phenotypic differences into a single locus that is protected from the eroding effects of

59 recombination. On one extreme, phenotypic morphs may evolve via massive insertions,
60 deletions, or inversions that lock together dozens to hundreds of genes into supergenes^{15–17}. On
61 the other end, much smaller structural variants (SVs), confined to a few thousand base pairs, can
62 modulate the expression of one or a few regulators of pleiotropic networks, resulting in markedly
63 different morphs^{11,12,18}. We are clearly only starting to get a glimpse of the major themes among
64 these genetic mechanisms. For example, it is not known whether genomic architecture
65 determines the type and breadth of co-varying traits or the likelihood of polymorphisms evolving
66 in specific lineages¹⁹.

67 A few of these studies have focused on sex-limited polymorphisms, where one of the morphs
68 shares the overall appearance, such as the colour pattern, of the opposite sex^{10,14,20}. Such sex-
69 limited morphs may illustrate novel origins of sexual dimorphism, driven by either sexual
70 selection in males¹⁴ or natural selection in females^{18,21}. Alternatively, sex-limited polymorphisms
71 may arise with the evolution of inter-sexual mimicry. Crucially, empirical support for the
72 evolution of inter-sexual mimicry demands both a macroevolutionary context for the
73 polymorphism, showing that sexually dimorphism is ancestral, and a documented advantage of
74 sexual mimics in at least some social contexts. There is therefore a need to integrate genomic,
75 microevolutionary and phylogenetic evidence into our understanding of the evolutionary
76 dynamics of sexual dimorphism and inter-sexual mimicry. This integrative approach has been
77 overall rare, and applied mostly to the study of alternative male reproductive strategies^{18,22}. Yet,
78 female mimicry of males may be more common than historically appreciated²³, and the genetic
79 basis of such mimicry remains largely unexplored^{24–26}.

80 The Common Bluetail damselfly *Ischnura elegans* (Odonata) has three female-limited morphs
81 (namely *O*, *A* and *I*) that differ in colouration, whereas males are always monomorphic²⁷. *O*

82 females display the colour pattern and developmental colour changes inferred as ancestral in a
83 comparative analysis of the genus *Ischnura*²⁸ (Fig. 1). Male-like (*A*) females are considered
84 male mimics, who experience a frequency-dependent advantage of reduced male-mating and
85 premating harassment due to their resemblance to males⁶. Finally, the *I* morph shares its stripe
86 pattern and immature colouration with the *A* morph²⁷ (Fig. 1), but develops a yellow-brown
87 background colouration with age, eventually resembling the *O* morph upon sexual maturation²⁹. *I*
88 females are only known in *I. elegans* and a few close relatives²⁸ (Fig. 1), and their evolutionary
89 relationship to *A* and *O* females remains unresolved. The behaviour, ecology, and population
90 biology of *I. elegans* have been intensely investigated for over two decades, making it one of the
91 best understood female-limited polymorphisms, in terms of how morphs differ in fitness-related
92 traits and how alternative morphs are maintained sympatrically over long periods^{30–33}.
93 Nonetheless, the molecular basis of this polymorphism remains unknown.
94 To advance our understanding of the evolution of complex phenotypes, such as sexual
95 dimorphism and sex-specific morphs, we identify the genomic region responsible for the female-
96 limited colour polymorphism in *I. elegans*. Using a combination of reference-based and
97 reference-free genome wide association studies (GWAS), upon morph-specific genome
98 assemblies, we revealed two novel regions adding up to ~900 kb, that are associated with the
99 evolutionary origin of the male-mimicking *A* morph. These structural variants, probably
100 generated and expanded by transposable element (TE) activity, are partly shared by male-
101 mimicking females of the Tropical Bluetail damselfly (*Ischnura senegalensis*), indicating that
102 male mimicry is a trans-species polymorphism. We also show that the novel *I* morph evolved via
103 an ectopic recombination event, where part of the *A*-unique genomic content was translocated
104 into an *O* genomic background. Finally, we examined the evolutionary dynamics of the colour

105 morph locus and explored expression patterns of genes located in this region. Together, our
106 results indicate that structural variation affecting a handful of genes and maintained by balancing
107 selection provides the raw material for the evolution of a male-mimicking phenotype in pond
108 damselflies.

109 **RESULTS**

110 *Male mimicry is encoded by a locus with a signature of balancing selection*

111 We started by conducting three reference-based GWAS, comparing all morphs against each
112 other in a pairwise fashion (Extended Data Fig. 1). We used an *A* morph genome assembly
113 (Supporting Text 1) as mapping reference because structural variant analyses revealed that *A*
114 females harbour genomic content that is absent in the other two morphs (see *Female morphs*
115 *differ in genomic content* below). The draft assembly was scaffolded against the Darwin Tree of
116 Life (DToL) reference genome to place the contigs in a chromosome level framework³⁴. The
117 DToL reference genome contains the *O* allele (see Supporting Text 2) and is assembled with
118 chromosome resolution, except for chromosome 13, which is fragmented and consists of one
119 main and several unlocalized scaffolds.

120 All pairwise GWAS between morphs pointed to one and the same unlocalized scaffold of
121 chromosome 13 as the causal morph locus (Fig. 2a). Closer examination of this scaffold revealed
122 two windows of elevated divergence between morphs (Fig. 2b). First, a narrow region near the
123 start of the scaffold (~50 kb - 0.2 mb) captures highly significant SNPs in both *A* vs *O* and *I* vs *O*
124 comparisons (Fig. 2b). Thereafter and up to ~1.5 mb, an abundance of SNPs differentiates *A*
125 females from both *O* and *I* females, especially between ~0.6 and ~1.0 mb (Fig. 2b). These results
126 are mirrored by Fst values across both regions (Fig. 2c).

127 Next, we investigated whether the morph locus carries a signature of balancing selection, as
128 suggested by previous field studies of morph-frequency dynamics³¹. The larger genomic window
129 that uniquely distinguishes *A* females from both *I* and *O* females displays a signature of
130 balancing selection, indicated by highly positive values of Tajima's D, exceeding the 95
131 percentile of genome-wide estimates (Fig. 2d). Conversely, values of both Tajimas's D and π in
132 the narrower window that differentiates *O* females from both *A* and *I* females (~50 kb - 0.2 mb)
133 fall within the 95 percentile of genome-wide estimates (Fig. 2d-e).

134 *Female morphs differ in genomic content*

135 Previous studies have found that complex phenotypic polymorphisms are often underpinned by
136 structural variants (SVs), arising from genomic rearrangements such as insertions, deletions and
137 inversions^{10,13,15,20}. As these variants can be difficult to detect in a reference-based analysis, we
138 employed a *k*-mer based GWAS approach³⁵ (Extended Data Fig. 1), which enables reference-free
139 identification of genomic divergence between morphs. Significant *k*-mers in these analyses could
140 represent regions that are present in one morph and absent in the other (i.e. insertions or
141 deletions), or regions that are highly divergent in their sequence (as in a traditional GWAS).

142 First, we investigated the divergence associated with the male-mimicking *A* morph. Pairwise
143 analyses revealed 568,039 and 508,031 *k*-mers (length = 31 bp) significantly associated with the
144 *A* vs *O* and *A* vs *I* comparisons, respectively. To determine whether the associated *k*-mers
145 represent differences in genomic content or sequence between the morphs, we mapped these *k*-
146 mers to morph-specific reference genomes. If the associated *k*-mers are due to novel sequences
147 found in one morph but not the other, we would expect a vast majority of the significant *k*-mers
148 to be found in only one of the two morphs in a pairwise comparison. If the significant *k*-mers are

149 instead owed to point mutations in high-identity sequences, there should be morph-specific k -
150 mers in both morphs.

151 Most (> 98%) of the mapped k -mers in the A vs O and A vs I comparisons, aligned perfectly to a
152 single ~1.5 mb region of the unlocalized scaffold 2 of chromosome 13, in the A -morph assembly
153 (Fig. 3a; Extended Data Table 1). This is the same region of the A -morph assembly that was
154 previously identified in the standard GWAS (Fig. 2). In contrast, only ~0.3% of the associated k -
155 mers in the A vs O comparison were found anywhere in the O -assembly, and similarly, only
156 ~0.2% of the significant k -mers in the A vs I analysis mapped to the I assembly (Extended Data
157 Table 1). These results thus suggested that a large region of genomic content is unique to the A
158 haplotype.

159 Given that A and I females share their immature colour pattern^{29,36}, we then tested for k -mer
160 associations that would distinguish both A and I females from O females and found 85,134 such
161 k -mers (Extended Data Table 1). When mapped to the A assembly, a majority of these k -mers
162 were found near the start of the unlocalized scaffold 2 of chromosome 13 (Fig. 3a), where we
163 previously reported pronounced divergence of O females (Fig. 2b-c). However, when mapped to
164 the I assembly, most of the significant k -mers were found in a different region of the same
165 scaffold, separated by approximately 3.5 mb (Fig. 3b). These results thus suggested that A and I
166 females share genomic content that is absent in O . However, in the I haplotype this content
167 occupies a different chromosomal location.

168 To further investigate the distribution of genomic content among morphs, we plotted the
169 standardized number of mapped reads (read depths) along the ~1.5 mb region of the A assembly
170 that included most of the significant k -mers (Extended Data Fig. 1). Here, we expected read
171 depth values around 0.5 (heterozygous) or 1.0 (homozygous) for all A samples, whereas I and O

172 samples should have read depths of 0, if genomic content is uniquely present in the *A* allele
173 (because *I* and *O* individuals lack the *A* allele, Fig. 1). Read depths confirmed that male-
174 mimicking *A* females are differentiated by genomic content. Specifically, there are two windows
175 of the *A* assembly (of ~400 kb and ~500 kb) where no *I* or *O* data maps to the assembly after
176 filtering repetitive sequences (Fig. 3c), and which are therefore uniquely present in *A* females.
177 These two windows of *A*-specific content are separated by a region between ~0.6 and ~1.0 mb
178 that is shared among all morphs (Fig. 3c), and highly divergent in SNP-based comparisons
179 involving the *A* morph (Fig. 2b). Finally, the region including most significant *k*-mers in the *A*
180 and *I* vs. *O* comparison is present in all *A* and *I* samples but absent in all *O* samples, except for
181 one individual (Fig. 3c; Supporting Text 3). As noted in the *k*-mer GWAS, this region of
182 genomic content shared by *A* and *I* individuals is located in different regions, separated by ~3.5
183 mb, in the two assemblies (Fig. 3d).

184 By combining reference-based GWAS, reference-free GWAS and read-depth approaches, we
185 have identified three haplotypes controlling morph development in the Common Bluetail. The *A*
186 and *I* haplotypes share ~150 kb that are absent in *O*. The *A* haplotype has two additional
187 windows of unique genomic content, adding up to ~900 kb. In the *A* haplotype, a single ~1.5 mb
188 window (hereafter the morph locus) thus contains the regions of unique genomic content, the
189 region exclusively shared between *A* and *I*, and the SNP-rich region present in all morphs. In the
190 *I* haplotype the region exclusively shared with *A* occupies a single and different locus separated
191 by about 3.5 mb (Fig. 4a). These large and compounded differences in genomic content between
192 haplotypes suggest that multiple structural changes on a multi-million base-pair region were
193 responsible for the evolution of novel female morphs in *Ischnura* damselflies.

194 *TE propagation and recombination likely explain the origins of novel female morphs*

195 Based on previous inferences of the historical order in which female morphs evolved (Fig. 1), we
196 hypothesized that genomic divergence first occurred between *O* and *A* females, with some
197 genomic content being then translocated from *A* into an *O* background, leading to the
198 evolutionary origin of *I* females. We analyzed structural variants between morphs to test this
199 hypothesis (Extended Data Fig. 1; Supporting Text 4), and uncovered evidence of a ~20 kb
200 sequence in the *O* haplotype that is duplicated and inverted in tandem in derived morphs (*A* and
201 *I*; Fig. 4b; Extended Data Fig. 2). An investigation of the reads mapping to the inversion
202 breakpoints suggested that additional duplications in the *A* genome, presumably via TE
203 proliferation, may be related to the evolution of inter-sexual mimicry (Fig. 4b; Extended Data
204 Fig. 3). Interestingly, TE content is enriched and recombination is reduced not just in the vicinity
205 of the morph locus, but across the entire chromosome 13 (Extended Data Fig. 4-5; Supporting
206 Text 4). Finally, evidence of a translocation of an *A*-derived genomic region back into an *O*
207 background (Extended Data Fig. 6; Supporting Text 4) implied that the *I* morph evolved from an
208 ectopic recombination event between between *A* and *O* morphs (Fig. 4b). This scenario is also
209 consistent with our previous *k*-mer GWAS and read-depth results, where we found that the only
210 region differentiating both *A* and *I* females from *O* females is located ~3.5 mb in the *I* haplotype.

211 *Male mimicry is a trans-species polymorphism*

212 Ancestral state reconstruction of female colour states had previously pointed to an ancient origin
213 of male mimicry in the clade that includes *I. elegans* and several other widely-distributed
214 *Ischnura* damselflies²⁸ (Fig. 1). We investigated whether male mimicry is in fact a trans-species
215 polymorphism using *de novo* genome assemblies from the closely related Tropical Bluetail
216 (*Ischnura senegalensis*) (Extended Data Fig. 1). *I. senegalensis* shares a common ancestor with *I.*

217 *elegans* about 5 Ma²⁸, and has both a male-mimicking *A* morph and a non-mimicking morph,
218 which resembles the *O* females of *I. elegans*^{28,37} (Fig. 5a).

219 We reasoned that if morph divergence is ancestral, the genomic content that is uniquely present
220 in *A* females or shared by *A* and *I* females in *I. elegans* should be at least partly present in *A*
221 females of *I. senegalensis*, but absent in the alternative *O*-like female morph (see Supporting
222 Text 5). This prediction was supported by differences in standardized read depths between the *A*
223 and *O*-like pool of *I. senegalensis*, specifically at the morph locus of *I. elegans* (Fig. 5b;
224 Supporting Text 5). A shared genomic basis of inter-sexual mimicry for the two species was also
225 supported by the same ~20 kb inversion signature in the *A* pool against an *O* assembly, as
226 detected in *A* and *I* females of *I. elegans* (Extended Data Fig. 7). Finally, assembly alignments
227 between *O*-like and *A* haplotypes of *I. senegalensis* showed that the *A*-specific genomic region of
228 *I. elegans* is partly present in the *A* but not the *O*-like assembly of *I. senegalensis* (Fig. 5c).

229 *Shared and morph-specific genes reside in the morph locus*

230 Finally, we examined gene content and expression patterns in the morph locus. As female
231 morphs differ in genomic content as well as sequence, the phenotypic effects of the morph locus
232 could come about in at least three non-exclusive ways. First, entire gene models may be present
233 in some morphs and absent in others. Second, genes present in all morphs may differ in
234 expression patterns. Third, genes may encode different amino acid sequences in different female
235 morphs. We used newly generated and previously published³⁸ RNAseq data to investigate these
236 questions (Extended Data Fig. 1), and capitalized on the annotations of the reference genome of
237 *I. elegans*³⁴, as well as transcripts assembled *de novo* in our *A*-morph genome assembly.
238 Because the genetic basis of inter-sexual mimicry is shared between *I. elegans* and *I.*

239 *senegalensis* (Fig. 5), we focus on genes that are expressed in both species in at least one
240 individual (Fig. 6a).

241 Three transcripts (from two predicted genes) in the morph locus are expressed in *A* females of *I.*
242 *senegalensis*, and in *A* and *I* females of *I. elegans*, but never in *O* or *O*-like females (Fig. 6b).
243 Only one of these gene models (Afem.4094) could be functionally annotated, and appears to
244 encode a Long Interspaced Nuclear Element (LINE) retrotransposon in the clade Jockey
245 (Supporting Text 6). This gene also exhibited expression changes in *I* females that reflect their
246 colour development trajectory of initial resemblance to *A* females, followed by an overall
247 appearance similar to *O* females upon sexual maturation (Supporting Text 6). Notably,
248 *RepeatModeler* and *RepeatMasker* detected signatures of the Jockey family at the same locus as
249 the mapping locations of the *A* reads that had suggested a propagation of TEs in our SV analyses
250 (Fig. 6a; Extended Data Fig. 3). Thus, these results further support that TEs are responsible for
251 the evolution and expansion of the male-mimicry allele.

252 We also identified three gene models that are shared by all haplotypes and expressed in both
253 species. The three predicted genes encode zinc-finger domain proteins (Fig. 6b; Supporting Text
254 6), which are known to participate in transcriptional regulation³⁹. However, we found no
255 conclusive evidence of differential expression, nor evidence of non-synonymous substitutions
256 between morphs shared by both *I. elegans* and *I. senegalensis* (Supporting Text 6). While we see
257 genes of a potentially regulatory function reside in the morph locus, understanding their role in
258 morph development will likely require higher temporal and spatial resolution of gene expression
259 data.

260 **DISCUSSION**

261 Sexual dimorphism, where males and females have markedly distinct colour patterns, has led to
262 multiple evolutionary origins of female-limited polymorphisms and potential male-mimicry in
263 *Ischnura* damselflies²⁸. Here, we present a first genomic glance into how these morphs evolve,
264 setting the stage for future functional work to unravel the reversal of sexual phenotypes in
265 damselfly sexual mimicry. Male mimicry in the Common Bluetail is controlled by a single
266 genomic region in chromosome 13 (Fig. 2; 3). Our data suggests that this morph locus likely
267 evolved with the accumulation of novel and potentially TE-derived sequences in the male
268 mimicry haplotype (Fig. 4), which is shared by male-mimicking females of species diverging
269 more than 5 Ma (Fig. 5). More recently, a rare recombination event involving part of the novel A
270 genomic content has triggered the origin of a third female morph (Fig. 4), which shares its
271 sexually immature colouration and patterning with A females, and shares its sexually mature
272 overall appearance with O females²⁷. The morph locus contains a handful of genes, some of
273 which may have evolved with TE propagation in the A haplotype, and are therefore absent from
274 O individuals (Fig. 6). However, existing annotations provide only a hint on how these genes
275 may influence morph development. Our results thus echo recent calls for a broader application of
276 functional validation tools, in order to understand how lineage-specific genes contribute to
277 phenotypic variation in natural populations⁴⁰.

278 This study underscores two increasingly recognized insights in evolutionary genomics. First,
279 there is mounting evidence that structural variants abound in natural populations and often
280 underpin complex and ecologically relevant phenotypic variation⁴¹, such as discrete phenotypic
281 polymorphisms^{10,13,15,20}. Nonetheless, traditional GWAS approaches based on SNPs can easily
282 miss structural variants, as these approaches are contingent on the genomic content of the

283 reference assembly⁴². Among other novel approaches to tackle this problem⁴², a reference-free k -
284 mer based GWAS, as implemented here, is a powerful method to identify variation in genomic
285 content and sequence, especially when the genomic architecture of the trait of interest is initially
286 unknown³⁵. In this study, we did not know *a priori* which of the three morphs, if any, would
287 harbour unique genomic content. Had we ignored differences in genomic content between
288 morphs and based our GWAS analysis solely upon the DToL (*O*) reference assembly, we would
289 have failed to identify SNPs between *I* and *O* morphs (Extended Data Fig. 8), and the origin of *I*
290 females via a translocation of *A* content would have been obscured.

291 Second, a role for TEs in creating novel and even adaptive phenotypic variation is increasingly
292 being recognized^{43,44}. Here, we found that a ~400 kb region of unique genomic content, possibly
293 driven by LINE transposition is associated with the male-mimicry phenotype in at least two
294 species of *Ischnura* damselflies. TE activity can contribute to phenotypic evolution by multiple
295 mechanisms. For instance, TEs may modify the regulatory environment of genes in their vicinity,
296 by altering methylation⁴⁵ and chromatin conformation patterns⁴⁶, or by providing novel cis-
297 regulatory elements⁴⁷. The male-mimicry region in *I. elegans* is located between two coding
298 genes with putative DNA-binding domains, and which may thus act as transcription factors.
299 However, our expression data does not provide unequivocal support for differential regulation of
300 either of these genes between female morphs. Importantly, currently available expression data
301 comes from adult specimens, as female morphs are not visually discernible in aquatic nymphs.
302 Yet, the key developmental differences that produce the adult morphs are likely directed by
303 regulatory variation during earlier developmental stages. Now that the morph locus has been
304 identified, future work can address differential gene expression at more relevant developmental
305 stages, before colour differences between morphs become apparent.

306 TEs can also contribute to phenotypic evolution if they become domesticated, for example, when
307 TE-encoded proteins are remodeled through evolutionary change to perform adaptive host
308 functions⁴⁸. We found two transcripts located in *A* specific or *A/I* specific regions that are likely
309 derived from LINE retrotransposons and are actively expressed in the genomes that harbour
310 them (Fig. 6b). It is therefore possible that these transcripts participate in the development of
311 adult colour patterns, which are initially more similar between *A* and *I* females than between
312 either of these morphs and *O* females^{27,29}. Yet, functional work on these transcripts is required to
313 ascertain their role in morph determination. Finally, TEs can become sources of novel small
314 regulatory RNAs which play important regulatory roles⁴⁹, including in insect sex
315 determination⁵⁰. Thus, future work should also address non-coding RNA expression and function
316 in the morph locus.

317 Our results also provide molecular evidence for previous insights, gained by alternative research
318 approaches, on the micro- and macroevolution of female-limited colour polymorphisms. A
319 wealth of population data in Southern Sweden has shown that female-morph frequencies are
320 maintained by balancing selection, as they fluctuate less than expected due to genetic drift³¹.
321 Behavioural and field experimental studies indicate that such balancing selection on female
322 morphs is mediated by negative frequency-dependent male harassment^{51,52}. We add to these
323 earlier results, by showing a molecular signature consistent with balancing selection in the
324 genomic region where *A* females differ from both of the non-mimicking morphs. Sexual conflict
325 is expected to have profound effects on genome evolution, but there are few examples of
326 sexually-antagonistic traits with a known genetic basis, in which predictions about these genomic
327 effects can be tested^{53,54}. Here, the signature of balancing selection on the morph locus matches

328 the expectation of inter-sexual conflict resulting in negative-frequency dependent selection and
329 maintaining alternative morph alleles over long periods.

330 Similarly, a recent comparative study based on phenotypic and phylogenetic data inferred a
331 single evolutionary origin of the male-mimicking morph shared by *I. elegans* and *I.*
332 *senegalensis*²⁸. Our present results strongly support this common origin. This is because A
333 females in both species share unique genomic content, including associated transcripts, and an
334 inversion signature against the ancestral *O* morph (Fig. 5; Extended Data Fig. 7). Nonetheless,
335 these data are consistent with both an ancestral polymorphism and ancestral introgression being
336 responsible for the spread of male mimicry across the clade. A potential role for introgression in
337 the evolution of male mimicry is also suggested by rampant hybridization between *I. elegans* and
338 its closest relatives⁵⁵, and by the fact that *I. elegans* and *I. senegalensis* can hybridize millions of
339 years after their divergence, at least in laboratory settings⁵⁶. The identification of the morph locus
340 in *I. elegans*, enables future comparative genomics studies to disentangle the relative roles of
341 long-term balancing selection and introgression in shaping the widespread phylogenetic
342 distribution of female-limited polymorphisms in *Ischnura* damselflies.

343 Finally, our results open up new lines of inquiry on how the genomic architecture and
344 chromosomal context of the female polymorphism may influence its evolutionary dynamics. Our
345 data is consistent with the evolution of a third morph due to an ectopic recombination event that
346 translocated genomic content from the *A* haplotype back into an *O* background. Ectopic
347 recombination can occur when TE propagation generates homologous regions in different
348 genomic locations^{57,58}, and may be facilitated by the excess of TE content in chromosome 13
349 (Exteded Data Fig. 4). The male reproductive morphs in the Ruff (*Calidris pugnax*) are one of
350 few previous examples of a novel phenotypic morph arising via recombination between two pre-

351 existing morph haplotypes¹⁰. In pond damselflies, female polymorphisms with three or more
352 female morphs are not uncommon, and in some cases female morphs exhibit graded resemblance
353 to males⁵⁹. It is therefore possible that recombination, even if rare, has repeatedly generated
354 diversity in damselfly female morphs.

355 While recombination might have had a role in generating the the novel *I* morph, we observe
356 reduced recombination over the morph locus in comparison to the rest of the genome of *I*.
357 *elegans* (Extended Data Fig. 5). However, this reduction in recombination is not limited to the
358 morph locus and its vicinity, but rather pervasive across chromosome 13 (Extended Data Fig. 5).
359 This unexpected finding suggests two alternative causal scenarios. First, selection for reduced
360 recombination at the morph locus, following the origin of sexual mimicry, could have spilled
361 over chromosome 13, facilitating a subsequent accumulation of TEs and further reducing
362 recombination⁶⁰. Second, TE enrichment and reduced recombination may have preceded the
363 evolution of female morphs, and facilitated the establishment and maintenance of the female
364 polymorphism by balancing selection.

365 Both historical scenarios are compatible with a morph locus reminiscent of a supergene, which is
366 defined by tight genetic linkage of multiple functional loci⁶¹. However, an alternative and
367 parsimonious explanation is that the novel sequences in *A* and *I* females and their flanking genes
368 may not code for anything important for the male-mimicking phenotype as such, but simply
369 disrupt a region of chromosome 13 that is required for the development of ancestral sexual
370 differentiation. The observation that *I* females carry part of the sequence that originated in *A* in a
371 different location of the scaffold (Fig. 4b), and still develop some male-like characters (e.g. black
372 thoracic stripes), could come about if insertions anywhere on a larger chromosomal region

373 disrupt female suppression of the male phenotype, although with variable efficacy depending on
374 the exact location or insertion size.

375 *Concluding Remarks*

376 Recent years have witnessed an explosion of studies uncovering the loci behind complex
377 phenotypic polymorphisms in various species. An emerging outlook is that not all
378 polymorphisms are created equal, with some governed by massive chromosomal
379 rearrangements^{15–17}, and others by a handful of regulatory sites^{11,12,18}. Our results contribute to
380 this growing field by uncovering a single causal locus, that features structural variation and
381 morph-specific transcripts, in the female-limited morphs of *Ischnura* damselflies. These morphs
382 not only differ in numerous morphological and life-history traits^{32,62,63} and gene expression
383 profiles^{24,25}, but they include a male mimic that is maintained by balancing frequency-dependent
384 selection. Our findings enable future studies on the developmental basis of such male mimicry,
385 with consequences for a broader understanding of the evolutionary dynamics of sexual
386 dimorphism and the cross-sexual transfer of trait expression⁶⁴.

387 **METHODS**

388 *Ischnura elegans* samples

389 Samples for morph-specific genome assemblies of *I. elegans* were obtained from F1 individuals
390 with genotypes *Ao*, *Io* and *oo* (one adult female of each genotype). In June 2019, recently-mated
391 *O* females were captured in field populations in Southern Sweden. These females oviposited in
392 the lab within 48 h, and their eggs were then released into outdoor cattle tanks seeded with
393 *Daphnia* and covered with synthetic mesh. Larvae thus developed under normal field conditions
394 and emerged as adults during the Summer of 2020. Emerging females were kept in outdoor
395 enclosures until completion of adult colour development^{25,65}. Fully mature females were

396 phenotyped, collected in liquid nitrogen and kept at -80 °C. Because all of these females carry a
397 copy of the most recessive allele *o*, individuals of the *A* and *I* morph are heterozygous, with
398 genotypes *Ao* and *Io*, respectively.

399 A total of 19 resequencing samples of each female morph of *I. elegans* were also collected from
400 local populations in Southern Sweden, within a 40 x 40 km area (Table S1). Samples were
401 submerged in 95% ethanol and stored in a -20 °C freezer until extraction. Additionally, 24
402 individuals (six adult females of each morph and six males) were collected for RNAseq analysis
403 in a natural field population (Bunkeflostrand) in Southern Sweden, in early July 2019. These
404 samples were transported on carbonated ice and stored in -80 °C until extraction.

405 *Ischnura senegalensis* samples

406 Adults of *I. senegalensis* (30 adult females of each morph) were collected for pool sequencing
407 from a population on Okinawa Island in Japan (26.148N, 127.795E) in May 2016. Samples were
408 visually determined to sex and morph and stored in 99% ethanol until extraction. Samples for
409 morph-specific genome assemblies of *I. senegalensis* were obtained from a population in
410 Clementi Forest, Singapore (1.33N, 103.78E). Because the *A* allele is recessive in *I.*
411 *senegalensis*, all females with the *A* phenotype are homozygous. To obtain a homozygous *O*-like
412 sample, we developed primers (forward: CGCGGTATGATATGGTCCGA, reverse:
413 GGCTGCTTACACCAATGCAA) for an *A*-specific sequence that is shared by *A* females of the
414 two species (318,131 - 318,213 bp on the *A* haplotype of *I. elegans*). We used the mapped pool-
415 seq data to identify fixed SNPs between species and tailor the primer sequences accordingly. We
416 then tested the primers in 20 *A* females of *I. senegalensis* using a 328 bp fragment of the Histone
417 H3 gene (forward: ATGGCTCGTACCAAGCAGACGGC, reverse:
418 ATATCCTTGGGCATGATGGTGAC)⁶⁶ as a positive control for the PCR reaction. Once

419 validated, we utilize these primers to identify *O*-like females lacking the *A* allele and selected
420 one of these samples for whole genome sequencing.

421 *DNA extraction, library preparation and sequencing*

422 High molecular weight (HMW) DNA was extracted from one *I. elegans* female of each genotype
423 (*Ao*, *Io*, *oo*), using the Nanobind® Tissue Big Extraction Kit (Cat. No. NB-900-701-01,
424 Circulomics Inc. (PacBio), MD, USA). HMW DNA was isolated from homozygous females of
425 each morph of *I. senegalensis*, using the Monarch® HMW DNA Extraction Kit for Tissue (Cat.
426 No. T3060S, New England BioLabs Inc., MA, USA). DNA from resequencing samples was
427 isolated using either a modified protocol for the DNeasy Blood and Tissue Kit (Cat. No. 19053,
428 Qiagen, Germany) or the KingFisher Cell and Tissue DNA Kit (Cat no. N11997, ThermoFisher
429 Scientific). *I. senegalensis* DNA was extracted from muscle tissues in thoraxes using Maxwell®
430 16 LEV Plant DNA Kit (Cat. No. AS1420, Promega, WI, USA). Details on extraction and
431 library preparation protocols are provided in the Supporting Text 1.

432 Sequencing libraries were constructed from each HMW DNA sample for the Nanopore LSK-110
433 ligation kit (Oxford Nanopore Technologies, UK). Adapter ligation and sequencing of *I. elegans*
434 samples were carried out at the Uppsala Genome Centre (NGI), hosted by SciLife Lab. Each
435 sample was sequenced on a PromethION R10.4 with 1 nuclease wash and two library loadings.
436 Library preparation and sequencing of *I. senegalensis* samples were carried out by the Integrated
437 Genomics Platform, Genome Institute of Singapore (GIS), A-STAR, Singapore. Each sample
438 was sequenced on a PromethION R9.4 flow cell, with 2 nuclease washes and three library
439 loadings.

440 *RNA extraction and sequencing*

441 Whole-thorax samples were grounded into a fine powder using a TissueLyser and used as input
442 for the SpectrumTM Plant Total RNA Kit (Cat. No. STRN50, Sigma Aldrich, MO, USA),
443 including DNase I treatment (Cat. No. DNASE10, Sigma Aldrich, MO, USA). Library
444 preparation and sequencing were performed by SciLife Lab at the Uppsala Genome Centre
445 (NGI). Sequencing libraries were prepared from 300 ng of RNA, using the TrueSeq stranded
446 mRNA library preparation kit (Cat. No. 20020595, Illumina Inc., CA, USA) including polyA
447 selection and unique dual indexing (Cat. No. 20022371, Illumina Inc., CA, USA), according to
448 the manufacturer's protocol. Sequencing was performed on the Illumina NovaSeq 6000 SP
449 flowcell with paired-end reads of 150 bp.

450 *De novo genome assembly*

451 Bases in raw ONT reads from *I. elegans* were called using *Guppy* v 4.0.11 (*Ao* and *Io* data) and
452 *Guppy* v 5.0.11 (*oo* data) (<https://nanoporetech.com/>). Low quality reads (qscore < 7 for v 4.0.11
453 and < 10 for v 5.0.11) were subsequently discarded. High quality reads were assembled using the
454 *Shasta* long-read assembler v 0.7.0⁶⁷. Each assembly was conducted under four different
455 configuration schemes, which modified the June 2020 Nanopore configuration file
456 (<https://github.com/chanzuckerberg/shasta/blob/master/conf/Nanopore-Jun2020.conf>) in
457 alternative ways (Table S3). Assembly metrics were compared among *Shasta* configurations for
458 each morph using *AsmQC*⁶⁸ (<https://sourceforge.net/projects/amos/>) and the *stats.sh* script in the
459 *BBTools* suite (<https://sourceforge.net/projects/bbmap>). The assembly with greater contiguity
460 (i.e. highest contig N50, highest average contig length and highest percentage of the main
461 genome in scaffolds > 50 kb) was selected for polishing and downstream analyses.

462 Bases in raw ONT reads from *I. senegalensis* samples were called using *Guppy* v 6.1.5. Reads
463 with quality score < 7 were subsequently discarded. High quality reads were assembled using the
464 *Shasta* long-read assembler v 0.7.0⁶⁷ and the configuration file T2 (Table S3), which was also
465 selected for the *Io* and *oo* assemblies of *I. elegans*.

466 Morph specific assemblies of *I. elegans* were first polished using the ONT reads mapped back to
467 their respective assembly with *minimap2* v 2.22-r1110⁶⁹, and the *PEPPER-Margin-DeepVariant*
468 pipeline r0.4⁷⁰. Alternative haplotypes were subsequently filtered using *purge_dups* v 0.0.3⁷¹, to
469 produce a single haploid genome assembly for each sample. The *I. elegans* draft assemblies were
470 then polished with short read data from one resequencing sample (TE-2564-SwD172_S37, Table
471 S1), using the *POLCA* tool in *MaSuRCA* v 4.0.4⁷². For every draft and final assembly of *I.*
472 *elegans*, we computed quality metrics as mentioned above and assessed the completeness of
473 conserved insect genes using *BUSCO* v 5.0.0⁷³ and the “insecta_odb10” database (Fig. S1). For
474 *I. senegalensis*, we report quality metrics of the final assemblies (Fig. S2).

475 *Scaffolding with the Darwin Tree of Life super assembly*
476 During the course of this study, a chromosome-level genome of *I. elegans* was assembled by the
477 Darwin Tree of Life (DToL) Project³⁴, based on long-read (PacBio) and short-read (Illumina)
478 data, as well as Hi-C (Illumina) chromatin interaction data. 99.5% of the total length of this
479 assembly is distributed across 14 chromosomes, one of which (no. 13) is fragmented and divided
480 into a main assembly and five unlocalized scaffolds.

481 We used *RagTag* v 2.10⁷⁴ to scaffold each our morph-specific assemblies based on the DToL
482 reference (Supporting Text 2). Scaffolding was conducted using the *nucmer* v 4.0.0⁷⁵ aligner and
483 default *RagTag* options. Morph-specific scaffolded genomes were also aligned to each other
484 using *nucmer* and a minimum cluster length of 100 bp. Alignments were then filtered to preserve

485 only the longest alignments in both reference and query sequences, and alignments of at least 5
486 kb. These assembly alignments were then used to visualize synteny patterns across morphs, in
487 the region uncovered in our association analyses (Extended Data Fig. 1), using the package
488 *Rideogram* v 0.2.2⁷⁶ in *R* v 4.2.2⁷⁷.

489 *Reference-based (SNP) GWAS*

490 We first investigated genomic divergence between morphs using a standard GWAS approach
491 based on SNPs (Extended Data Fig. 1). Initially, we conducted preliminary analyses using
492 different morph assemblies as mapping reference. Once the *A*-specific genomic region was
493 confirmed, we designated the *A* assembly as the mapping reference for the main analyses. Short-
494 read data were mapped using *bwa-mem* v 0.7.17⁷⁸. Optical and PCR duplicates were then flagged
495 in the unfiltered *bam* files using *GATK* v 4.2.0.0⁷⁹. Variant calling, filtering and sorting were
496 conducted using *bcftools* v 1.12⁸⁰, excluding the flagged reads. We retained only variant sites
497 with mapping quality > 20, genotype quality > 30 and minor allele frequency > 0.02 (i.e. the
498 variant is present in more than one sample). To avoid highly repetitive content, we filtered
499 variants that had a combined depth across samples > 1360 (equivalent to all samples having ~
500 50% higher than average coverage), and variants located in sites annotated as repetitive in either
501 *RepeatMasker* v 1.0.93⁸¹ or *Red* v 0.0.1⁸². The final variant calling file was analysed in pairwise
502 comparisons (*A* vs *O*, *A* vs *I*, *I* vs *O*) using *PLINK* v 1.9⁸³
503 (<http://pngu.mgh.harvard.edu/purcell/plink/>). We report the -Log₁₀ of P-values for SNP
504 associations in these pairwise comparisons.

505 *Reference free (k-mer) GWAS*

506 We created a list of all *k*-mers of length 31 in the short-read data (19 females per morph,
507 Extended Data Fig. 1) following Voichek and Weigel³⁵, and counting *k*-mers in each sample

508 using *KMC* v 3.1.0⁸⁴. The *k*-mer list was filtered by the minor allele count; *k*-mers that appeared
509 in less than 5 individuals were excluded. *k*-mers were also filtered by percent canonized (i.e. the
510 percent of samples for which the reverse complement of the *k*-mer was also present). If at least
511 20% of the samples including a given *k*-mer contained its canonized form, the *k*-mer was kept in
512 the list. The *k*-mer list was then used to create a table recording the presence or absence of each
513 *k*-mer in each sample. A kinship matrix for all samples was calculated from this *k*-mer table, and
514 was converted to a *PLINK*⁸³ binary file, where the presence or absence of each *k*-mer is coded as
515 two homozygous variants. In this step, we further filtered the *k*-mers with a minor allele
516 frequency below 5%.

517 Because a single variant, be it a SNP or SV, will likely be captured by multiple *k*-mers,
518 significance testing of *k*-mer associations requires a method to control for the non-independence
519 of overlapping *k*-mers. We followed the approach developed by Voichek and Weigel³⁵, which
520 uses a linear mixed model (LMM) genome-wide association analysis implemented in *GEMMA* v
521 0.98.5⁸⁵, and computes P-value thresholds for associated *k*-mers based on phenotype
522 permutations. We thus report *k*-mers below the 5% false-positive threshold as *k*-mers
523 significantly associated with the female-polymorphism in *I. elegans*. We conducted three *k*-mers
524 based GWAS: 1) comparing male mimics to the putatively ancestral female morph (*A* vs *O*), 2)
525 comparing male mimics to the most derive female morph (*A* vs *I*), and 3) comparing both
526 derived female morphs (*A* and *I*) to the ancestral *O* females. For every analysis, we then mapped
527 the significant *k*-mers to all reference genomes using *Blast* v 2.22.28⁸⁶ for short sequences, and
528 removed alignments that were below 100% identity and below full-length. The mapped *k*-mers
529 thus indicate the proportion of relevant genomic content present in each morph and how this
530 content is distributed across each genome (Extended Data Table 1).

531 *Read depth analysis*

532 To validate the *k*-mer GWAS results of unique genomic content in *A*-females relative to both *I*-
533 and *O*-females, we plotted read-depth across our region of interest (the unlocalized scaffold 2 of
534 chromosome 13, see Results) in the *A* assembly (Extended Data Fig. 1). Short-read data (19
535 samples per morph) were mapped to the assembly with *bwa-mem* v 0.7.17⁷⁸ and reads with
536 mapping score < 20 were filtered, using *Samtools* v 1.14⁸⁷. Long-read data (one sample per
537 morph) were also mapped to the assembly using *minimap2* v 2.22-r1110⁶⁹, and quality filtering
538 was conducted as above. Read depth was then averaged for each sample across 500 bp, non-
539 overlapping windows using *mosdepth* v 0.2.8⁸⁸. We also annotated repetitive content in the
540 reference genome using *RepeatMasker* v 1.0.93⁸¹ and *Red* v 0.0.1⁸², and filtered windows with
541 more than 10% repetitive content under either method.

542 To account for differences in overall coverage between samples, we conducted the same
543 procedure on a large (~15 mb) non-candidate region in chromosome 11 and calculated a
544 “background read depth” as the mean read depth across the non-repetitive windows of this
545 region. We then expressed read-depth in the candidate region as a proportion of the background
546 read depth. Values around 1 thus indicate that a sample is homozygous for the presence of the
547 sequence in a window. Values around 0.5 suggest that the sample only has one copy of this
548 sequence in its diploid genome (i.e. it is heterozygous). Finally, values of 0 imply that the 500 bp
549 reference sequence is not present in the sample (i.e. the window is part of an insertion or
550 deletion).

551 We also investigated read-depth coverage on the *I* assembly, specifically across the region that
552 was identified in the *k*-mer based GWAS as capturing content that differentiated both *A* and *I*
553 females from *O* females (Fig. 3b, Extended Data Fig. 1). To do so, we followed the same

554 strategy as a above, except here we used a 15 mb region from chromosome 1 to estimate
555 background read depth.

556 *Population genetics*

557 We investigated the evolutionary consequences of morph divergence by estimating between-
558 morph Fst and population-wide Tajima's D and nucleotide diversity (π). For these analyses, we
559 used the *A* assembly as mapping reference and the same variant calling approach as described for
560 the SNP based GWAS, but applied different filtering criteria (Extended Data Fig. 1).

561 Specifically, invariant sites were retained and we only filtered sites with mapping quality score <
562 20 and combined depth across samples > 1360 (equivalent to ~50% excess coverage in all
563 samples). Fst and (π) were estimated in *pixy* v 1.2.5⁸⁹ across 30 kb windows. Fst was computed
564 using the *hudson* estimator⁹⁰. Negative Fst values were converted to zero for plotting. Tajima's D
565 was estimated across 30 kb using *vcftools* v 0.1.17⁹¹. In all analyses, windows with > 10%
566 repetitive content according to either *RepeatMasker* v 1.0.93⁸¹ or *Red* v 0.0.1⁸² annotation were
567 excluded.

568 *Structural variants*

569 We used two complimentary approaches to identify SVs overlapping the genomic region
570 uncovered by both *k*-mer-based and SNP-based GWAS. First, we mapped the raw data from
571 each long-read sample to the assemblies of alternative morphs (e.g. *Ao* data mapped to *Io* and *oo*
572 assemblies), and called SVs using *Sniffles* v 1.0.10⁹² (Extended Data Fig. 1). These SV calls may
573 represent fixed differences between morphs, within-morph polymorphisms, or products of
574 assembly error. We therefore used *SamPlot* v 1.3.0⁹³ and our short-read samples (n = 19 per
575 morph) to validate morph-specific SV calls (Extended Data Fig. 1). *Samplot* identifies and plots
576 reads with discordant alignments, which can result from specific types of SVs. For example, if

577 *Sniffles* called a 10 kb deletion in the *Ao* and *Io* long-read samples relative to the *oo* assembly,
578 we then constructed a Samplot for this region using short-read data, and expected to find support
579 for such deletion in *I* and *A* samples, but not in *O* samples. We complemented this validation
580 approach with a scan of the region of interest in each assembly, in windows of 250 and 500 kb,
581 again using *Samplot* and the short-read data. If a SV appeared to be supported by the majority of
582 short-read samples from an alternative morph, we zoomed in this SV and recorded the number of
583 samples supporting the call in each morph.

584 *Linkage disequilibrium and transposable elements*

585 To estimate linkage disequilibrium (LD), we used the same variant calling file as for the SNP
586 based GWAS, which included only variant sites and was filtered by mapping quality, genotyping
587 quality, minimum allele frequency, and read depth, as described above (Extended Data Fig. 1).
588 The file was downsampled to one variant every 100th using vcftools v 0.1.17⁹¹, prior to LD
589 estimation. We estimated LD using *PLINK* v 1.9⁸³, and recorded R^2 values > 0.05 for pairs up to
590 15 mb apart or with 10,000 or fewer variants between them. We estimated LD for the
591 unlocalized scaffold 2 of chromosome 13, which contains the morph loci and is about ~ 15 mb in
592 the *A* assembly. For comparison, we also estimated LD across the first 15 mb of the fully
593 assembled chromosomes (1-12 and X), the main scaffold of chromosome 13, and the unlocalized
594 scaffolds 1, 3 and 4 of chromosome 13.

595 We used the TE annotations from *RepeatModeler* v 2.0.1 *RepeatMasker* v 1.0.93⁸¹ and “One
596 code to find them all”⁹⁴ to quantify TE coverage in chromosome 13 in comparison to the rest of
597 the genome. We divided each chromosome into 1.5 mb windows, and computed the proportion
598 of each window covered by each TE family.

599 *Evidence of a trans-species polymorphism*

600 We used pool-seq data from the closely related Tropical Bluetail damselfly (*Ischnura*
601 *senegalensis*) to determine whether male-mimicry has a shared genetic basis in the two species
602 (Extended Data Fig. 1). First, we aligned the short-read data from the the two *I. senegalensis*
603 pools (*A* and *O*-like) to the *A* morph assembly of *I. elegans* using *bwa-mem* v 0.7.17⁷⁸, and
604 filtered reads with mapping score < 20, using *Samtools* v 1.14⁸⁷. We then quantified read depth
605 as for the *I. elegans* resequencing data (see *Read depth analysis* above). To confirm that the
606 higher read-depth coverage of the *A* pool is specific to the putative morph locus, we also plotted
607 the distribution of read-depth differences between *O*-like and *A* pools across the rest of the
608 genome and compared it to the morph locus (Supporting Text 5). Next, we determined if the ~20
609 kb SV that characterizes *A* and *I* females of *I. elegans* is also present in *A* females of *I.*
610 *senegalensis*. To do this, we mapped the pool-seq data to the *O* assembly of *I. elegans* as above,
611 and scanned the region at the start of the scaffold 2 of chromosome 13 for SVs using *Samplot* v
612 1.3.0⁹³. Finally, we aligned the morph-specific assemblies of *I. senegalensis* to the *A* assembly of
613 *I. elegans*, using *nucmer* v 4.0.0⁷⁵ and preserving alignments > 500 bp and with identity > 70%
614 (Extended Data Fig. 1). We visualized synteny patterns across the morph locus using the package
615 *Rideogram* v 0.2.2⁷⁶ in *R* v 4.2.2⁷⁷.

616 *Gene content and expression in the morph locus*

617 We assembled transcripts in the *A* morph genome (Extended Data Fig. 1) to identify potential
618 gene models unique to the *A* or *A* and *I* morphs and which would therefore be absent from the *I.*
619 *elegans* reference annotation (based on the *O* haplotype). First, all raw RNAseq data from *I.*
620 *elegans* samples were mapped to the *A* assembly using *HISAT2* v 2.2.1⁹⁵ and reads with
621 mapping quality < 60 were filtered using *Samtools* v 1.19⁸⁷. Transcripts were then assembled in

622 *StringTie* v 2.1.4⁹⁶ under default options, and merged into a single gtf file. Transcript abundances
623 were quantified using this global set of transcripts as targets, and a transcript count matrix was
624 produced using the *prepDE.py3* script provided with *StringTie*. Mapped RNAseq data from *I.*
625 *senegalensis* was also used to assemble transcripts (Extended Data Fig. 1), but this time the
626 HISAT2 assembly was guided by the annotation based on *I. elegans* data, while allowing the
627 identification of novel transcripts. Transcript abundances were quantified as for *I. elegans*.

628 We analyzed differential gene expression using the package *edgeR* v 3.36⁹⁷ in *R* v 4.2.2⁷⁷.
629 Transcripts with fewer than one count per million in more than three samples were filtered.
630 Library sizes were normalized across samples using the trimmed mean of M-values method⁹⁸,
631 and empirical Bayes tagwise dispersion⁹⁹ was estimated prior to pairwise expression analyses.
632 Differential expression of genes in the morph loci was tested using two-tailed exact tests¹⁰⁰,
633 assuming negative-binomially distributed transcript counts and applying the Benjamini and
634 Hochberg's algorithm to control the false discovery rate (FDR)¹⁰¹.

635 Nucleotide sequences of all transcripts mapped to the 1.5 mb morph locus in the *A* assembly
636 were selected. Coding sequences (CDS) in these transcripts were predicted using *Transdecoder* v
637 5.5.0 (<https://github.com/TransDecoder/TransDecoder>). Predicted CDS and peptide sequences
638 were read from the assemblies using the genome-based coding region annotation produced with
639 *Transdecoder* and *gffread* v 0.12.7¹⁰². We investigated whether any inferred peptides or
640 transcripts were unique to *A* or *A* and *I* by comparing these sequences to the DToL reference
641 transcriptome and proteome (based on the *O* haplotype). We then searched for homologous and
642 annotated proteins in other taxa in the Swissprot database using *Blast* v 2.9.0⁸⁶. We found three
643 gene models which are protein-coding and present in both *A* and *O* females (see Results, Fig. 6).

644 We scanned these protein sequences for functional domains using *InterProScan*¹⁰³ and searched
645 for orthologous groups and functional annotations in *EggNOG* v 5.0¹⁰⁴.

646 *Data availability*

647 Sequencing data from this study have been submitted to the NCBI Sequence Read Archive
648 (SRA) (<https://www.ncbi.nlm.nih.gov/sra/>) under BioProject PRJNA940276. For details, please
649 see Supplementary Tables 1 and 2. Morph-specific genome assemblies and intermediate output
650 files required to reproduce the figures in the main text and Supporting Material are available on
651 Zenodo¹⁰⁵.

652 *Code availability*

653 All code necessary to reproduce the results of this study can be found on Zenodo
654 <https://doi.org/10.5281/zenodo.8304055> and Github <https://github.com/bwillink/Morph-locus>.

655 *Acknowledgements*

656 We thank H. Dort, R.A. Steward, J. Haushofer, P. de Sessions, and the Monteiro Lab for
657 suggestions and helpful discussions. We are also grateful to M.P. Celorio-Mancera and H.M.
658 Low for invaluable technical support. Prof. A. Monteiro hosted B.W. at the National University
659 of Singapore during part of the duration of this study. Computation and data handling were
660 enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC)
661 through the Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX),
662 under projects 2022/6-230 and 2022/5-419 awarded to EIS. Specimens of *I. senegalensis* were
663 collected in Singapore, under a Research Permit (NP/RP22-015b) from the National Parks
664 Board, Singapore. This work was supported by an International Postdoc Grant from the Swedish
665 Research Council (VR; grant no. 2019-06444 to BW). Funding was also provided by the
666 Swedish Research Council (VR; grant no. 2017-04386 to CWW, and grant no. 2016-03356 to

667 EIS) and by the Stina Werners Foundation (grant no. 2018-017 to EIS) and Erik Philip Sørensens
668 Stiftelse (grant no. 2019-033 to EIS). SN was funded by a scholarship grant for Master's students
669 from Sven and Lily Lawski's Foundation.

670 *Author contributions*

671 **BW** conceived the study with input from **CWW**. **EIS** organized field work in the long-term
672 population study of *I. elegans* during 2019 and 2020, planned and prepared the outdoor rearing
673 experiments. **EIS** and **SN** collected DNA and RNA samples of *I. elegans*. **MT** and **YT** collected
674 samples for pool sequencing of *I. senegalensis*, and **BW** collected samples of *I. senegalensis* in
675 Singapore. **SN**, **BW**, and **KT** conducted laboratory work on *I. elegans*. **MT**, **YT**, and **BW**
676 conducted laboratory work on *I. senegalensis*. **BW** analyzed the data with input from **CWW**,
677 **KT**, **RC**, and **TL**. **BW** wrote the manuscript with contributions from all authors.

678 *Competing interests*

679 The authors declare no competing interests.

680 *Figure legends*

681 **Figure 1.** The evolution of female-limited colour polymorphisms in *Ischnura* damselflies. **a** A
682 previous phylogenetic study and ancestral state reconstruction²⁸ proposed that the genus
683 *Ischnura* had a sexually dimorphic ancestor, with *O*-like females (red circle). The *O* morph is
684 markedly different from males, having a bronze-brown thorax and faint stripes, instead of the
685 black thoracic stripes on a bright blue background of males. **b** Male mimicry (*A* females, blue
686 circle) has evolved more than once, for instance, in an ancestor of the (expanded) clade that
687 includes the Common Bluetail (*I. elegans*, encircled with solid line) and the Tropical Bluetail (*I.*
688 *senegalensis*, encircled with dashed line). **c** *I. elegans* is a trimorphic species, due to the recent
689 evolution of a third female morph, *I* (yellow circle). In *I. elegans*, morph inheritance follows a
690 dominance hierarchy, where the most dominant allele produces the *A* morph and two copies of
691 most recessive allele are required for the development of *O* females. In contrast, the *O* allele is
692 dominant in *I. senegalensis*¹⁰⁶. Terminal nodes in the phylogeny represent different species. Gray
693 triangles represent other clades of *Ischnura* that are collapsed for clarity.

694 **Figure 2.** Morph determination in the Common Bluetail Damselfly (*Ischnura elegans*) is
695 controlled in a ~ 1.5 mb region of chromosome 13. **a** SNP-based genome-wide associations in all
696 pairwise analyses between morphs. Genomic DNA from 19 wild-caught females of each colour
697 morph and of unknown genotype was extracted and sequenced for these analyses. Illumina short
698 reads were aligned against an *A* morph genome assembly, generated from Nanopore long-read
699 data (Extended Data Fig. 1). **b** A closer look of the SNP associations on the unlocalized scaffold
700 2 of chromosome 13, which contained all highly significant SNPs. Transcripts expressed in at
701 least one adult of both *I. elegans* and *I. senegalensis* are shown at the bottom (see also Fig. 6).
702 Grey transcripts are shared by all morphs, whereas blue transcripts are uniquely present in *A* or *A*

703 and *I* samples (see *Shared and morph-specific genes reside in the morph locus*). The y axis in **a**
704 and **b** indicates unadjusted -Log₁₀ P-values calculated from chi-squared tests. **c** Fst values
705 averaged across 30 kb windows for the same pairwise comparisons as in the SNP based GWAS.
706 The dashed line marks the 95 percentile of all non-zero Fst values across the entire genome. The
707 red double arrow shows the region of elevated divergence between *O* and both *A* and *I* samples
708 (~50 kb - 0.2 mb). The blue double arrow shows the region of elevated divergence between *A*
709 and both *O* and *I* samples (~0.2 mb - 1.5 mb). Population-level estimates of **d** Tajima's D, and **e**
710 nucleotide diversity (π) averaged across 30 kb windows. The shaded area contains the 5-95
711 percentile of all genome-wide estimates.

712 **Figure 3.** Female morphs of *Ischnura elegans* differ in genomic content. Number of significant
713 *k*-mers (below the 5% false-positive threshold, see Methods) associated with pairwise genome-
714 wide analyses and mapped to the unlocalized scaffold 2 of chromosome 13, in **a** the *A* morph
715 assembly, and in **b** the *I* morph assembly. Standardized read depths along the unlocalized
716 scaffold 2 of chromosome 13, relative to background coverage of **c** the *A* morph assembly, and **d**
717 the *I* morph assembly. Solid lines (yellow, blue and red) show short-read data (19 samples per
718 morph) and black dashed lines represent long-read data (1 sample per morph). Grey areas show
719 regions of genomic content present in *A* and *I* individuals, but absent in all but one *O* sample.
720 Note that different regions of the scaffold are plotted for the two assemblies (see main text).

721 **Figure 4.** Structural variants differentiate morph haplotypes in the Common Bluetail Damselfly
722 (*Ischnura elegans*). **a** Alignment between morph-specific genomes assembled from long-read
723 Nanopore samples with genotypes *Ao*, *Io*, and *oo*. Grey lines represent alignments of at least 5 kb
724 and > 70% identity. The black line connects regions of genomic content shared by the three
725 morphs within the morph locus. The red to blue gradient represents a ~20 kb region that carries

726 an inversion signature in *A* and *I* females relative to the *O* haplotype (see Extended Data Fig. 2).
727 The blue to yellow gradient represents a ~ 150 kb alignment between the start of the unlocalized
728 scaffold 2 of chromosome 13 in *A* and a region ~ 3.5 mb apart in the *I* haplotype. Coordinates at
729 the bottom are based on the Darwin Tree of Life (DToL) reference assembly. **b** Schematic
730 illustration of the hypothetical sequence of events responsible for the evolution of novel female
731 morphs. First, a sequence originally present in *O* was duplicated and inverted in tandem,
732 potentially causing the initial divergence of the *A* allele. Second, part of this inversion was
733 subsequently duplicated in *A*, in association with a putative TE, leading to multiple inversion
734 signatures in the *A* haplotype relative to an *O* reference (see Extended Data Fig. 3). Finally, part
735 of the *A* duplications were translocated into a position ~ 3.5 mb downstream into an *O*
736 background, giving rise to the *I* morph. Currently, *A* females are also characterized by another
737 region of unique content and unknown origin (question mark). *A* female show elevated sequence
738 divergence in the internal region of the morph locus that is shared by all haplotypes (dark grey
739 bars, see also black line in **a**). Coordinates on the *O* haplotype are based on the (DToL) reference
740 assembly. Grey numbers in IV give the approximate size of genomic sequences in *A* and *I* that
741 are absent in *O*.

742 **Figure 5.** A shared genomic basis of *A* females in *Ischnura elegans* and *Ischnura senegalensis* **a**
743 *I. senegalensis* is a female-dimorphic species, where one female morph (*O*-like) is distinctly
744 different from males and resembles *O* females in *I. elegans*, and the other female morph (*A*) is a
745 male-mimic. Photo credit: Mike Hooper. **b** Standardized read depth of pool-seq samples (n = 30
746 females of each morph per pool) of *I. senegalensis*, against the *A* morph assembly of *I. elegans*,
747 calculated in 500 bp windows. The x-axis shows the first 1.5 mb of the unlocalized scaffold 2 of
748 chromosome 13. **c** Alignments between morph-specific genomes from a homozygous *O*-like

749 female of *I. senegalensis* (top), an *Ao* female of *I. elegans* (middle) and a homozygous *A* female
750 of *I. senegalensis* (bottom). Lines connecting the assemblies represent alignments of at least 500
751 bp and > 70% identity. The black line connects genomic content in the morph locus, which is
752 shared by the three morphs of *I. elegans*. In *I. elegans*, this region is rich in SNPs differentiating
753 *A* females from the other two morphs (see Fig. 2b). The blue-turquoise gradient connects
754 sequences uniquely present in the *A* morphs of *I. elegans* and *I. senegalensis*.

755 **Figure 6.** The morph locus of *Ischnura elegans* is situated in the unlocalized scaffold 2 of
756 chromosome 13 **a** Diagram of the ~ 1.5 mb morph locus on the *A*-morph assembly, showing
757 from top to bottom: morph-specific read depth coverage, the location of LINE retrotransposons
758 in the the Jockey family, the mapping locations of *A*-derived reads with a previously detected
759 inversion signature against *O* females, and transcripts expressed in at least one adult individual
760 of both *I. elegans* and *I. senegalensis*. Transcripts plotted in black are present in both the *A* and *O*
761 assemblies, while transcripts in blue are located in genomic regions that are unique to the *A*
762 haplotype or are shared between *A* and *I* but not the *O* allele. **b** Functional annotations and sex-
763 and morph-specific expression of transcripts. Square fill indicates whether transcript expression
764 was detected in each group. RNAseq data for *I. elegans* comes from whole-thorax samples from
765 sexually immature and sexually mature wild-caught adults (n = 3 females of each morph and 3
766 males). RNAseq data for *I. senegalensis* comes from a recent study in which the abdomen, head,
767 thorax, and wings were sampled in two females of each morph and two males (one individual of
768 each group sampled upon emergence and one sampled after two days).

769 *Extended data Tables*

770 **Extended Data Table 1.** Significant k -mers associated with morph comparisons in *I. elegans*.

771 For each comparison (A vs O , A vs I and A and I vs O), we show the total number of significant
772 k -mers, and the total number of significant k -mers that map without any mismatching position to
773 morph-specific reference assemblies. Of the mapping k -mers, we then show the number located
774 in the unlocalized scaffold 2 of chromosome 13, which includes the putative morph locus. For
775 the DToL assembly, we show the number of significant k -mers mapping to both the primary
776 assembly (capturing the O allele) and the haplotigs, where the haplotig RAPID_106 comprises
777 the A allele (see Supporting Text 2).

778

k -mers	A vs O	A vs I	I vs O
Total number	568,039	508,031	85,134
A assembly	435,509	383,679	45,580
A Chr 13_2	427,606	376,075	44,990
I assembly	46,733	1,111	49,093
I Chr 13_2	45,819	375	48,484
O assembly	1,478	762	1,452
O Chr 13_2	276	92	72
DToL primary assembly	915	756	676
DToL Chr 13_2	134	115	14
DToL haplotigs	542,571	489,912	66,861
DToL RAPID_106	539,588	486,943	65,999

779

780 *Extended data figure legends*

781 **Extended Data Figure 1.** Outline of data and analyses used in this study. For our main study
782 species *Ischnura elegans*, we obtained short-read genomic data from 19 field-caught females per
783 morph, and long-read genomic data from three females with genotypes *Ao*, *Io*, and *oo*. The long-
784 read samples were used to assemble morph-specific genomes, scaffolded against the Darwin
785 Tree of Life reference assembly. We obtained whole-thorax RNAseq data from three females of
786 each morph in both sexually immature and sexually mature colour phases (n = 2). Immature and
787 mature males (n = 3 of each) were also sampled for whole-thorax RNAseq data. We used short-
788 read pool-seq data (n = 30 individuals of each morph per pool) of the close relative *Ischnura*
789 *senegalensis* to investigate whether the female polymorphisms in both species share a genomic
790 basis. We also analysed expression levels of candidate genes in this species, using samples from
791 a previously published study³⁸, which produced transcriptomic data from four body parts (head,
792 thorax, wing and abdomen) of each *A* females, *O* females and males (n = 2), sampled at adult
793 emergence and two days thereafter. The *k*-mer based GWAS is reference-free, but significant *k*-
794 mers were mapped to the morph-specific assemblies to determine their chromosomal context.

795 **Extended Data Figure 2.** An inversion signature differentiates *A* and *I* individuals from the *O*
796 morph. Read mapping and sample coverage at the start of the scaffold 2 of chromosome 13 in **a**
797 our *O* assembly and **b** the DToL reference assembly, showing a signature of a ~ 20 kb inversion
798 in *A* and *I* samples. A single *O* sample also exhibited this signature but was excluded here for
799 clarity (see Supporting Text 3). Note that the first 415 kb of the reference DToL assembly are
800 absent in our scaffolded *O* assembly, and therefore the x-axis is shifted by 415 kb in **b**.

801 **Extended Data Figure 3.** The *A* and *I* reads mapped to inversion break points on the *O* assembly
802 (see Extended Data Fig. 2) map to multiple locations on the *A* assembly. **a** Reads from the first
803 inversion breakpoint. **b** Reads from the second inversion breakpoint. Each row represents a
804 sample and each circle an individual read. The x-axis corresponds to coordinates on the *A*
805 assembly.

806 **Extended Data Figure 4.** Proportion of TE content in non-overlapping 1.5 mb regions. The gray
807 dots correspond to genomic windows outside chromosome 13. The main assembly and the
808 unlocalized scaffolds of chromosome 13 are depicted with different colours. The dashed line
809 marks the 95 percentile of TE coverage across all windows.

810 **Extended Data Figure 5.** Linkage disequilibrium (LD) in the genome of *Ischnura elegans*. LD
811 estimates are shown for the first 15 mb of each chromosome and all unlocalized scaffolds of
812 chromosome 13. The morph locus is found in the first ~ 1.5 mb of the unlocalized scaffold 2 of
813 chromosome 13, which has a total size of ~ 15 mb. Each dot represent the square correlation
814 coefficient (R^2) between two variant sites on the x axis, separated by the number of sites
815 indicated in the y axis.

816 **Extended Data Figure 6.** Evidence of a translocation between *A* and *I* haplotypes. Mapping and
817 coverage of long reads from an *Io* sample across the first 5.6 mb of the unlocalized scaffold 2 of
818 chromosome 13 in the *A* assembly, showing a signature consistent with either a 5.54 mb
819 inversion or a translocation of inverted *A* content. Absence of morph divergence beyond ~1.5 mb
820 on the *A* assembly supports the translocation scenario.

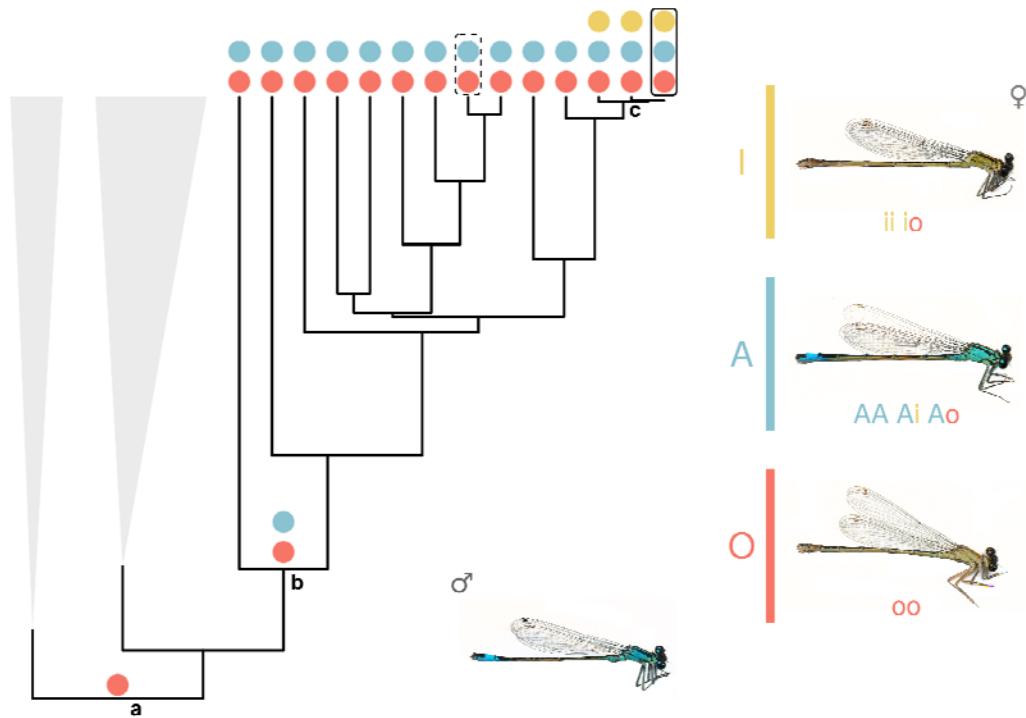
821 **Extended Data Figure 7.** Structural variants between *A* and *O*-like females of *I. senegalensis*
822 along the morph locus identified in *I. elegans*. **a** Read mapping and sample coverage of *I.*
823 *senegalensis* pool-seq data at the start of the unlocalized scaffold 2 of chromosome 13 in the *O*
824 assembly of *I. elegans*. The same ~ 20 kb inversion signature is found in *A* and *I* samples of *I.*
825 *elegans* (see Extended Data Fig. 2). **b-c** The *A*-pool reads mapped to break points on the *O*
826 assembly map to multiple locations on the *A* assembly. **b** Reads from the first breakpoint. **c**
827 Reads from the second breakpoint. Each row represents a pool of *I. senegalensis* and each circle
828 an individual read. The x-axis corresponds to the *A* assembly of *I. elegans*.

829 **Extended Data Figure 8.** Morph divergence using the DToL assembly (*O* haplotype) as
830 mapping reference. **a** SNP-based genome-wide associations in all pairwise analyses between
831 morphs. Genomic DNA from 19 wild-caught females of each colour morph and of unknown
832 genotype was extracted and sequenced for these analyses. Illumina short reads were aligned
833 against the DToL reference assembly. **b** A closer look of the SNP associations on the
834 unlocalized scaffold 2 of chromosome 13, which contained all highly significant SNPs. The y
835 axis in **a** and **b** indicates unadjusted $-\text{Log}_{10} \text{P}$ -values calculated from chi-squared tests. **c** Fst
836 values averaged across 30 kb windows for the same pairwise comparisons as in the SNP based
837 GWAS. The dashed line marks the 95 percentile of all non-zero Fst values across the entire
838 genome. The red double arrow shows the region of elevated divergence between *A* and both *O*
839 and *I* samples. Population-level estimates of **d** Tajima's D, and **e** nucleotide diversity (π)
840 averaged across 30 kb windows. The shaded area contains the 5-95 percentile of all genome-
841 wide estimates.

- 842 **REFERENCES**
- 843 1. Mank, J. E. Sex chromosomes and the evolution of sexual dimorphism: Lessons from the
844 genome. *The American Naturalist* **173**, 141–150 (2009).
- 845 2. De Lisle, S. P. Understanding the evolution of ecological sex differences: Integrating
846 character displacement and the Darwin-Bateman paradigm. *Evolution Letters* **3**, 434–447
847 (2019).
- 848 3. Hopkins, B. R. & Kopp, A. Evolution of sexual development and sexual dimorphism in
849 insects. *Current opinion in Genetics & Development* **69**, 129–139 (2021).
- 850 4. Jukema, J. & Piersma, T. Permanent female mimics in a lekking shorebird. *Biology
851 Letters* **2**, 161–164 (2006).
- 852 5. Hurtado-Gonzales, J. L. & Uy, J. A. C. Alternative mating strategies may favour the
853 persistence of a genetically based colour polymorphism in a pentamorphic fish. *Animal
854 Behaviour* **77**, 1187–1194 (2009).
- 855 6. Gosden, T. P. & Svensson, E. I. Density-dependent male mating harassment, female
856 resistance, and male mimicry. *The American Naturalist* **173**, 709–721 (2009).
- 857 7. Falk, J. J., Rubenstein, D. R., Rico-Guevara, A. & Webster, M. S. Intersexual social
858 dominance mimicry drives female hummingbird polymorphism. *Proceedings of the
859 Royal Society B* **289**, 20220332 (2022).
- 860 8. Falk, J. J., Webster, M. S. & Rubenstein, D. R. Male-like ornamentation in female
861 hummingbirds results from social harassment rather than sexual selection. *Current
862 Biology* **31**, 4381–4387 (2021).
- 863 9. Mank, J. E. Sex-specific morphs: The genetics and evolution of intra-sexual variation.
864 *Nature Reviews Genetics* 1–9 (2022).
- 865 10. Lamichhaney, S. *et al.* Structural genomic changes underlie alternative reproductive
866 strategies in the ruff (*Philomachus pugnax*). *Nature Genetics* **48**, 84–88 (2016).
- 867 11. Andrade, P. *et al.* Regulatory changes in pterin and carotenoid genes underlie balanced
868 color polymorphisms in the wall lizard. *Proceedings of the National Academy of Sciences
869* **116**, 5633–5642 (2019).
- 870 12. Kim, K.-W. *et al.* Genetics and evidence for balancing selection of a sex-linked colour
871 polymorphism in a songbird. *Nature Communications* **10**, 1–11 (2019).
- 872 13. Woronik, A. *et al.* A transposable element insertion is associated with an alternative life
873 history strategy. *Nature Communications* **10**, 1–11 (2019).
- 874 14. Hendrickx, F. *et al.* A masculinizing supergene underlies an exaggerated male
875 reproductive morph in a spider. *Nature Ecology & Evolution* **6**, 195–206 (2022).
- 876 15. Tuttle, E. M. *et al.* Divergence and functional degradation of a sex chromosome-like
877 supergene. *Current Biology* **26**, 344–350 (2016).

- 878 16. Sanchez-Donoso, I. *et al.* Massive genome inversion drives coexistence of divergent
879 morphs in common quails. *Current Biology* **32**, 462–469 (2022).
- 880 17. Villoutreix, R. *et al.* Inversion breakpoints and the evolution of supergenes. *Molecular*
881 *Ecology* **30**, 2738–2755 (2021).
- 882 18. Tunström, K. *et al.* Evidence for a single, ancient origin of a genus-wide alternative life
883 history strategy. *Science Advances* **9**, eabq3713 (2023).
- 884 19. Gutiérrez-Valencia, J., Hughes, P. W., Berdan, E. L. & Slotte, T. The genomic
885 architecture and evolutionary fates of supergenes. *Genome Biology and Evolution* **13**,
886 evab057 (2021).
- 887 20. Sandkam, B. A. *et al.* Extreme Y chromosome polymorphism corresponds to five male
888 reproductive morphs of a freshwater fish. *Nature Ecology & Evolution* **5**, 939–948
889 (2021).
- 890 21. Kunte, K. *et al.* Doublesex is a mimicry supergene. *Nature* **507**, 229–232 (2014).
- 891 22. Feiner, N. *et al.* A single locus regulates a female-limited color pattern polymorphism in
892 a reptile. *Science Advances* **8**, eabm2387 (2022).
- 893 23. Neff, B. D. & Svensson, E. I. Polyandry and alternative mating tactics. *Philosophical*
894 *Transactions of the Royal Society B: Biological Sciences* **368**, 20120045 (2013).
- 895 24. Takahashi, M., Takahashi, Y. & Kawata, M. Candidate genes associated with color
896 morphs of female-limited polymorphisms of the damselfly *Ischnura senegalensis*.
897 *Heredity* **122**, 81–92 (2019).
- 898 25. Willink, B., Duryea, M. C., Wheat, C. & Svensson, E. I. Changes in gene expression
899 during female reproductive development in a color polymorphic insect. *Evolution* **74**,
900 1063–1081 (2020).
- 901 26. Takahashi, M., Okude, G., Futahashi, R., Takahashi, Y. & Kawata, M. The effect of the
902 doublesex gene in body colour masculinization of the damselfly *Ischnura senegalensis*.
903 *Biology Letters* **17**, 20200761 (2021).
- 904 27. Cordero, A., Carbone, S. S. & Utzeri, C. Mating opportunities and mating costs are
905 reduced in androchrome female damselflies, *Ischnura elegans* (odonata). *Animal*
906 *Behaviour* **55**, 185–197 (1998).
- 907 28. Blow, R., Willink, B. & Svensson, E. I. A molecular phylogeny of forktail damselflies
908 (genus *ischnura*) reveals a dynamic macroevolutionary history of female colour
909 polymorphisms. *Molecular Phylogenetics and Evolution* **160**, 107134 (2021).
- 910 29. Henze, M. J., Lind, O., Wilts, B. D. & Kelber, A. Pterin-pigmented nanospheres create
911 the colours of the polymorphic damselfly *Ischnura elegans*. *Journal of the Royal Society*
912 *Interface* **16**, 20180785 (2019).

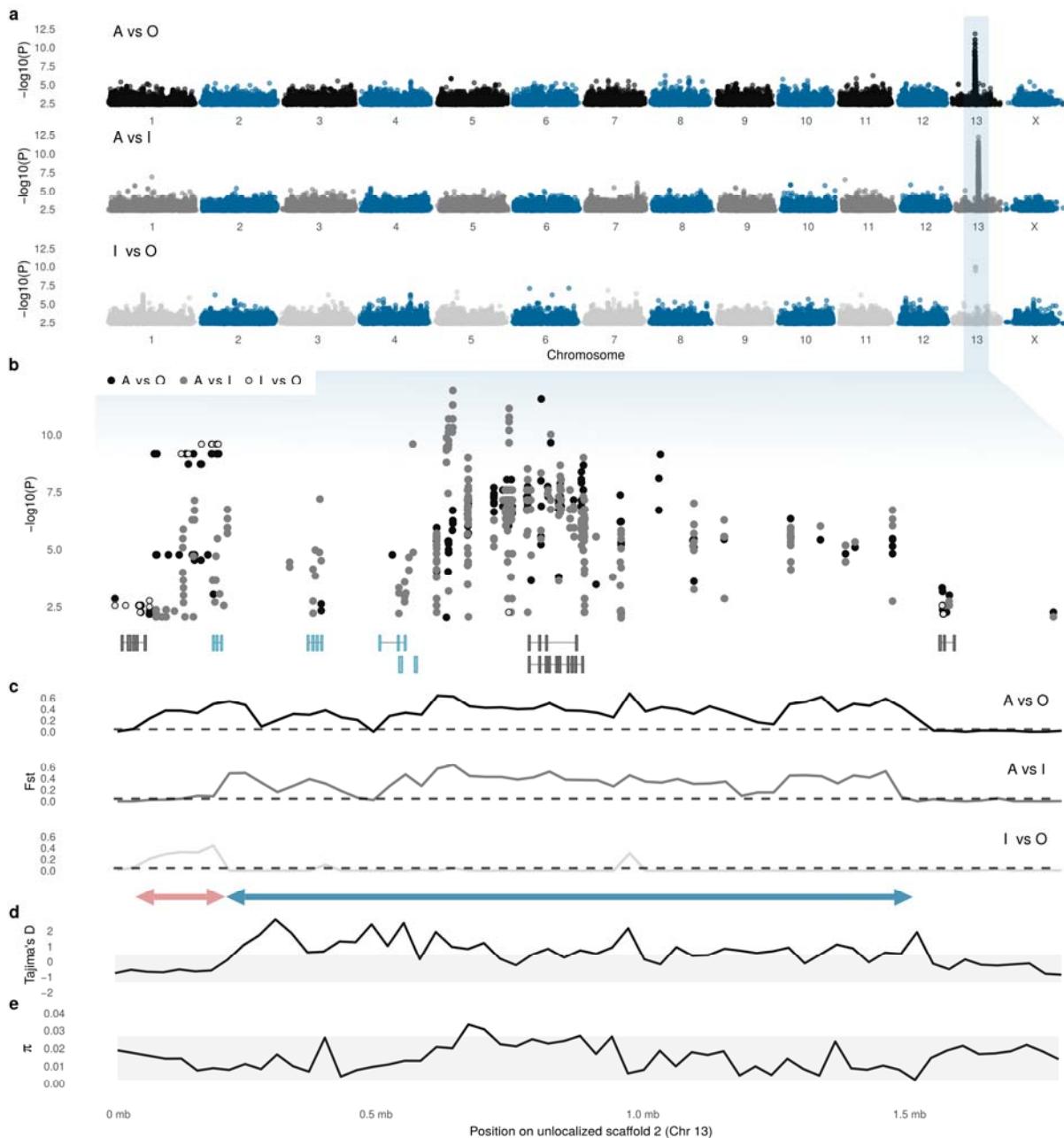
- 913 30. Svensson, E. I., Abbott, J. & Härdling, R. Female polymorphism, frequency dependence,
914 and rapid evolutionary dynamics in natural populations. *The American Naturalist* **165**,
915 567–576 (2005).
- 916 31. Le Rouzic, A., Hansen, T. F., Gosden, T. P. & Svensson, E. I. Evolutionary time-series
917 analysis reveals the signature of frequency-dependent selection on a female mating
918 polymorphism. *The American Naturalist* **185**, E182–E196 (2015).
- 919 32. Svensson, E. I., Willink, B., Duryea, M. C. & Lancaster, L. T. Temperature drives pre-
920 reproductive selection and shapes the biogeography of a female polymorphism. *Ecology
921 Letters* **23**, 149–159 (2020).
- 922 33. Willink, B., Duryea, M. C. & Svensson, E. I. Macroevolutionary origin and adaptive
923 function of a polymorphic female signal involved in sexual conflict. *The American
924 Naturalist* **194**, 707–724 (2019).
- 925 34. Price, B. W., Winter, M., Brooks, S. J. & Darwin Tree of Life Consortium. The genome
926 sequence of the blue-tailed damselfly, *elegans* (vander linden, 1820) [version 1; peer
927 review: Awaiting peer review]. *Wellcome Open Research* **7**, 66 (2022).
- 928 35. Voichek, Y. & Weigel, D. Identifying genetic variants underlying phenotypic variation in
929 plants without complete genomes. *Nature Genetics* **52**, 534–540 (2020).
- 930 36. Parr, M. J. The terminology of female polymorphs of *ischnura* (Zygoptera:
931 Coenagrionidae). *International Journal of Odonatology* **2**, 95–99 (1999).
- 932 37. Takahashi, Y. & Watanabe, M. Male mate choice based on ontogenetic colour changes of
933 females in the damselfly *Ischnura senegalensis*. *Journal of Ethology* **29**, 293–299 (2011).
- 934 38. Okude, G. *et al.* Molecular mechanisms underlying metamorphosis in the most-ancestral
935 winged insect. *Proceedings of the National Academy of Sciences* **119**, e2114773119
936 (2022).
- 937 39. Laity, J. H., Lee, B. M. & Wright, P. E. Zinc finger proteins: New insights into structural
938 and functional diversity. *Current Opinion in Structural Biology* **11**, 39–46 (2001).
- 939 40. Gudmunds, E., Wheat, C. W., Khila, A. & Husby, A. Functional genomic tools for
940 emerging model species. *Trends in Ecology & Evolution* (2022).
- 941 41. Chakraborty, M., Emerson, J. J., Macdonald, S. J. & Long, A. D. Structural variants
942 exhibit widespread allelic heterogeneity and shape variation in complex traits. *Nature
943 Communications* **10**, 1–11 (2019).
- 944 42. Quan, C., Lu, H., Lu, Y. & Zhou, G. Population-scale genotyping of structural variation
945 in the era of long-read sequencing. *Computational and Structural Biotechnology Journal*
946 (2022).
- 947 43. Schrader, L. & Schmitz, J. The impact of transposable elements in adaptive evolution.
948 *Molecular Ecology* **28**, 1537–1549 (2019).


- 949 44. Catlin, N. S. & Josephs, E. B. The important contribution of transposable elements to
950 phenotypic variation and evolution. *Current Opinion in Plant Biology* **65**, 102140 (2022).
- 951 45. Zhang, J. *et al.* Autotetraploid rice methylome analysis reveals methylation variation of
952 transposable elements and their effects on gene expression. *Proceedings of the National
953 Academy of Sciences* **112**, E7022–E7029 (2015).
- 954 46. Diehl, A. G., Ouyang, N. & Boyle, A. P. Transposable elements contribute to cell and
955 species-specific chromatin looping and gene regulation in mammalian genomes. *Nature
956 Communications* **11**, 1–18 (2020).
- 957 47. Sundaram, V. & Wysocka, J. Transposable elements as a potent source of diverse cis-
958 regulatory sequences in mammalian genomes. *Philosophical Transactions of the Royal
959 Society B* **375**, 20190347 (2020).
- 960 48. Jangam, D., Feschotte, C. & Betrán, E. Transposable element domestication as an
961 adaptation to evolutionary conflicts. *Trends in Genetics* **33**, 817–831 (2017).
- 962 49. McCue, A. D. & Slotkin, R. K. Transposable element small RNAs as regulators of gene
963 expression. *Trends in Genetics* **28**, 616–623 (2012).
- 964 50. Kiuchi, T. *et al.* A single female-specific piRNA is the primary determiner of sex in the
965 silkworm. *Nature* **509**, 633–636 (2014).
- 966 51. Van Gossum, H., Stoks, R. & De Bruyn, L. Frequency-dependent male mate harassment
967 and intra-specific variation in its avoidance by females of the damselfly *Ischnura
968 elegans*. *Behavioral Ecology and Sociobiology* **51**, 69–75 (2001).
- 969 52. Takahashi, Y., Kagawa, K., Svensson, E. I. & Kawata, M. Evolution of increased
970 phenotypic diversity enhances population performance by reducing sexual harassment in
971 damselflies. *Nature Communications* **5**, 1–7 (2014).
- 972 53. Rowe, L., Chenoweth, S. F. & Agrawal, A. F. The genomics of sexual conflict. *The
973 American Naturalist* **192**, 274–286 (2018).
- 974 54. Sayadi, A. *et al.* The genomic footprint of sexual conflict. *Nature Ecology & Evolution* **3**,
975 1725–1730 (2019).
- 976 55. Wellenreuther, M. *et al.* Molecular and ecological signatures of an expanding hybrid
977 zone. *Ecology and Evolution* **8**, 4793–4806 (2018).
- 978 56. Okude, G., Fukatsu, T. & Futahashi, R. Interspecific crossing between blue-tailed
979 damselflies *Ischnura elegans* and *I. Senegalensis* in the laboratory. *Entomological
980 Science* **23**, 165–172 (2020).
- 981 57. Montgomery, E. A., Huang, S. M., Langley, C. H. & Judd, B. H. Chromosome
982 rearrangement by ectopic recombination in *Drosophila melanogaster*: Genome structure
983 and evolution. *Genetics* **129**, 1085–1098 (1991).

- 984 58. Delprat, A., Negre, B., Puig, M. & Ruiz, A. The transposon Galileo generates natural
985 chromosomal inversions in *Drosophila* by ectopic recombination. *PLoS one* **4**, e7883
986 (2009).
- 987 59. Andrés, J. A. & Cordero, A. The inheritance of female colour morphs in the damselfly
988 *Ceriagrion tenellum* (Odonata, Coenagrionidae). *Heredity* **82**, 328–335 (1999).
- 989 60. Kent, T. V., Uzunović, J. & Wright, S. I. Coevolution between transposable elements and
990 recombination. *Philosophical Transactions of the Royal Society B: Biological Sciences*
991 **372**, 20160458 (2017).
- 992 61. Thompson, M. J. & Jiggins, C. Supergenes and their role in evolution. *Heredity* **113**, 1–8
993 (2014).
- 994 62. Willink, B. & Svensson, E. I. Intra-and intersexual differences in parasite resistance and
995 female fitness tolerance in a polymorphic insect. *Proceedings of the Royal Society B: Biological Sciences*
996 **284**, 20162407 (2017).
- 997 63. Abbott, J. K. & Gosden, T. P. Correlated morphological and colour differences among
998 females of the damselfly *ischnura elegans*. *Ecological Entomology* **34**, 378–386 (2009).
- 999 64. West-Eberhard, M. J. *Developmental plasticity and evolution*. (Oxford University Press,
1000 2003).
- 1001 65. Svensson, E. I., Abbott, J. K., Gosden, T. P. & Coreau, A. Female polymorphisms, sexual
1002 conflict and limits to speciation processes in animals. *Evolutionary Ecology* **23**, 93
1003 (2009).
- 1004 66. Colgan, D. J. *et al.* Histone H3 and U2 snRNA DNA sequences and arthropod molecular
1005 evolution. *Australian Journal of Zoology* **46**, 419–437 (1998).
- 1006 67. Shafin, K. *et al.* Nanopore sequencing and the Shasta toolkit enable efficient de novo
1007 assembly of eleven human genomes. *Nature Biotechnology* **38**, 1044–1053 (2020).
- 1008 68. Phillippy, A. M., Schatz, M. C. & Pop, M. Genome assembly forensics: Finding the
1009 elusive mis-assembly. *Genome Biology* **9**, 1–13 (2008).
- 1010 69. Li, H. Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094–
1011 3100 (2018).
- 1012 70. Shafin, K. *et al.* Haplotype-aware variant calling with PEPPER-Margin-DeepVariant
1013 enables high accuracy in nanopore long-reads. *Nature Methods* **18**, 1322–1332 (2021).
- 1014 71. Guan, D. *et al.* Identifying and removing haplotypic duplication in primary genome
1015 assemblies. *Bioinformatics* **36**, 2896–2898 (2020).
- 1016 72. Zimin, A. V. *et al.* Hybrid assembly of the large and highly repetitive genome of -
1017 *textitAegilops tauschii*, a progenitor of bread wheat, with the MaSuRCA mega-reads
1018 algorithm. *Genome Research* **27**, 787–792 (2017).

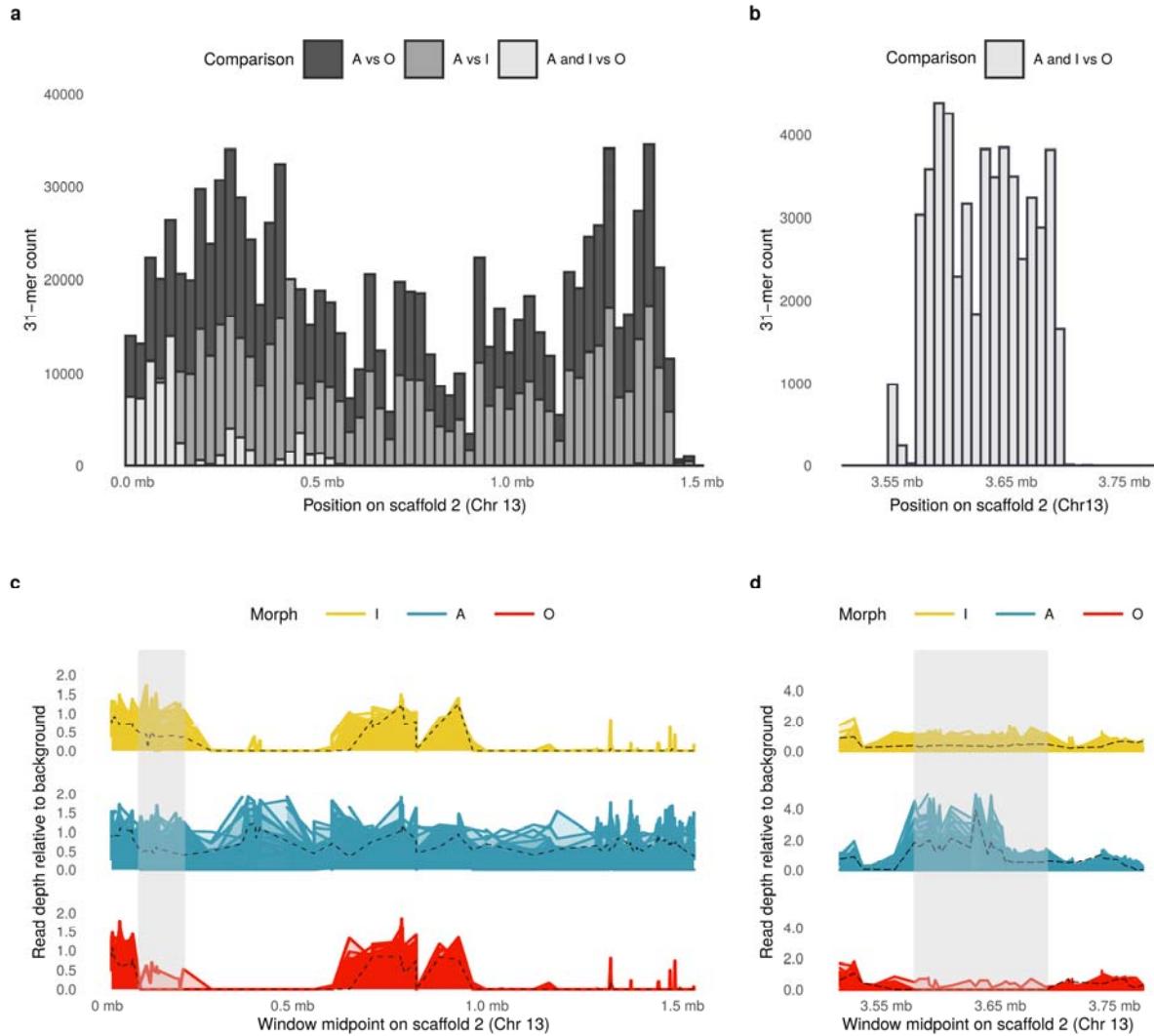
- 1019 73. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M.
1020 BUSCO: Assessing genome assembly and annotation completeness with single-copy
1021 orthologs. *Bioinformatics* **31**, 3210–3212 (2015).
- 1022 74. Alonge, M. *et al.* Automated assembly scaffolding elevates a new tomato system for
1023 high-throughput genome editing. *bioRxiv* (2021) doi:[10.1101/2021.11.18.469135](https://doi.org/10.1101/2021.11.18.469135).
- 1024 75. Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. Fast algorithms for large-scale
1025 genome alignment and comparison. *Nucleic Acids Research* **30**, 2478–2483 (2002).
- 1026 76. Hao, Z. *et al.* *Rideogram: Drawing SVG graphics to visualize and map genome-wide*
1027 *data on idiograms.* (2020).
- 1028 77. R Core Team. *R: A language and environment for statistical computing.* (R Foundation
1029 for Statistical Computing, 2021).
- 1030 78. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
1031 *arXiv preprint arXiv:1303.3997* (2013).
- 1032 79. Van der Auwera, G. A. *et al.* From FastQ data to high-confidence variant calls: The
1033 genome analysis toolkit best practices pipeline. *Current Protocols in Bioinformatics* **43**,
1034 11.10.1–11.10.33 (2013).
- 1035 80. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping
1036 and population genetical parameter estimation from sequencing data. *Bioinformatics* **27**,
1037 2987–2993 (2011).
- 1038 81. Smith, A. F. A., Hubley, R. & Green, P. RepeatMasker open-4.0. (2013-2015)
1039 doi:<http://www.repeatmasker.org>.
- 1040 82. Girgis, H. Z. Red: An intelligent, rapid, accurate tool for detecting repeats de-novo on the
1041 genomic scale. *BMC Bioinformatics* **16**, 1–19 (2015).
- 1042 83. Purcell, S. *et al.* PLINK: A tool set for whole-genome association and population-based
1043 linkage analyses. *The American Journal of Human Genetics* **81**, 559–575 (2007).
- 1044 84. Kokot, M., Długosz, M. & Deorowicz, S. KMC 3: Counting and manipulating *k*-mer
1045 statistics. *Bioinformatics* **33**, 2759–2761 (2017).
- 1046 85. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association
1047 studies. *Nature Genetics* **44**, 821–824 (2012).
- 1048 86. Camacho, C. *et al.* BLAST+: Architecture and applications. *BMC Bioinformatics* **10**, 1–9
1049 (2009).
- 1050 87. Li, H. *et al.* The sequence alignment/map format and SAMtools. *Bioinformatics* **25**,
1051 2078–2079 (2009).
- 1052 88. Pedersen, B. S. & Quinlan, A. R. Mosdepth: Quick coverage calculation for genomes and
1053 exomes. *Bioinformatics* **34**, 867–868 (2018).

- 1054 89. Korunes, K. L. & Samuk, K. pixy: Unbiased estimation of nucleotide diversity and
1055 divergence in the presence of missing data. *Molecular Ecology Resources* **21**, 1359–1368
1056 (2021).
- 1057 90. Hudson, R. R., Slatkin, M. & Maddison, W. P. Estimation of levels of gene flow from
1058 DNA sequence data. *Genetics* **132**, 583–589 (1992).
- 1059 91. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156–2158
1060 (2011).
- 1061 92. Sedlazeck, F. J. *et al.* Accurate detection of complex structural variations using single-
1062 molecule sequencing. *Nature Methods* **15**, 461–468 (2018).
- 1063 93. Belyeu, J. R. *et al.* Samplot: A platform for structural variant visual validation and
1064 automated filtering. *Genome Biology* **22**, 1–13 (2021).
- 1065 94. Bailly-Bechet, M., Haudry, A. & Lerat, E. ‘One code to find them all’: A perl tool to
1066 conveniently parse RepeatMasker output files. *Mobile DNA* **5**, 1–15 (2014).
- 1067 95. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome
1068 alignment and genotyping with HISAT2 and HISAT-genotype. *Nature Biotechnology* **37**,
1069 907–915 (2019).
- 1070 96. Pertea, M. *et al.* StringTie enables improved reconstruction of a transcriptome from
1071 RNA-seq reads. *Nature Biotechnology* **33**, 290–295 (2015).
- 1072 97. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: A Bioconductor package for
1073 differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–
1074 140 (2010).
- 1075 98. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential
1076 expression analysis of RNA-seq data. *Genome Biology* **11**, 1–9 (2010).
- 1077 99. Robinson, M. D. & Smyth, G. K. Moderated statistical tests for assessing differences in
1078 tag abundance. *Bioinformatics* **23**, 2881–2887 (2007).
- 1079 100. Robinson, M. D. & Smyth, G. K. Small-sample estimation of negative binomial
1080 dispersion, with applications to SAGE data. *Biostatistics* **9**, 321–332 (2008).
- 1081 101. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and
1082 powerful approach to multiple testing. *Journal of the Royal Statistical Society: Series B
(Methodological)* **57**, 289–300 (1995).
- 1084 102. Pertea, G. & Pertea, M. GFF utilities: GffRead and GffCompare. *F1000Research* **9**,
1085 (2020).
- 1086 103. Jones, P. *et al.* InterProScan 5: genome-scale protein function classification.
1087 *Bioinformatics* **30**, 1236–1240 (2014).


- 1088 104. Huerta-Cepas, J. *et al.* eggNOG5.0: A hierarchical, functionally and phylogenetically
1089 annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids*
1090 *Research* **47**, D309–D314 (2019).
- 1091 105. Willink, B. *et al.* Data from: The genomics and evolution of inter-sexual mimicry and
1092 female-limited polymorphisms in damselflies. *Zenodo* (2023).
- 1093 106. Takahashi, Y. Testing negative frequency-dependent selection: Linking behavioral
1094 plasticity and evolutionary dynamics. *Bull Kanto Branch Ecol Soc Jpn* **59**, 8–14 (2011).

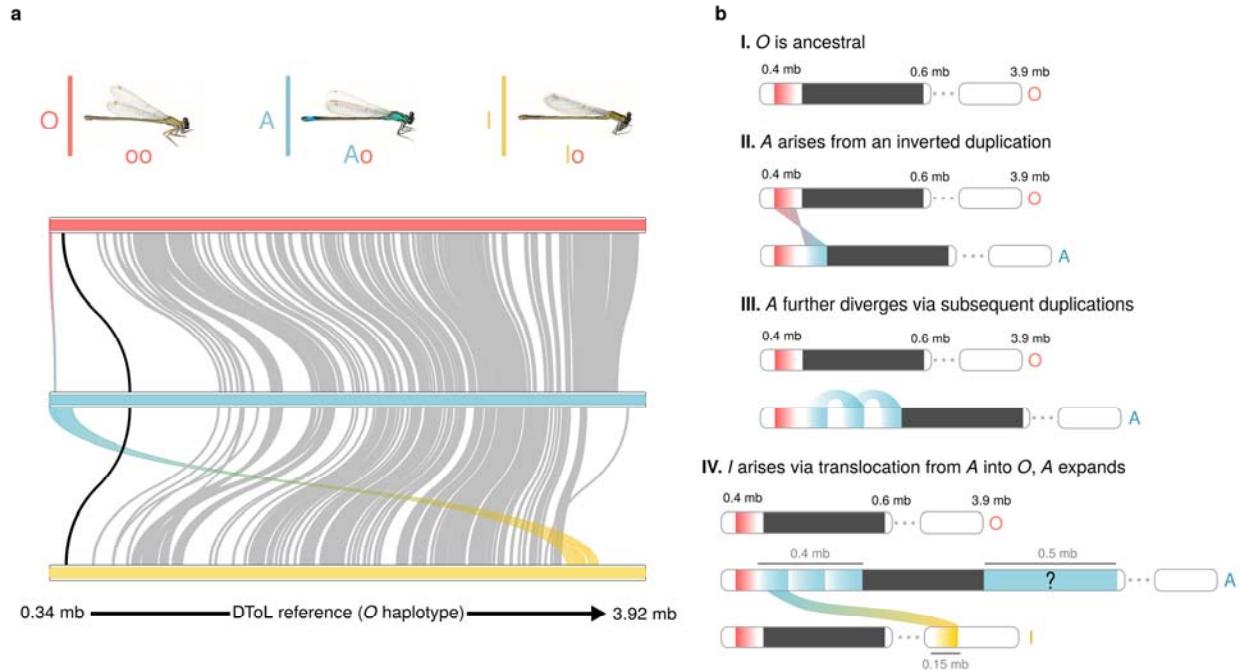
1095

1096


Figure 1

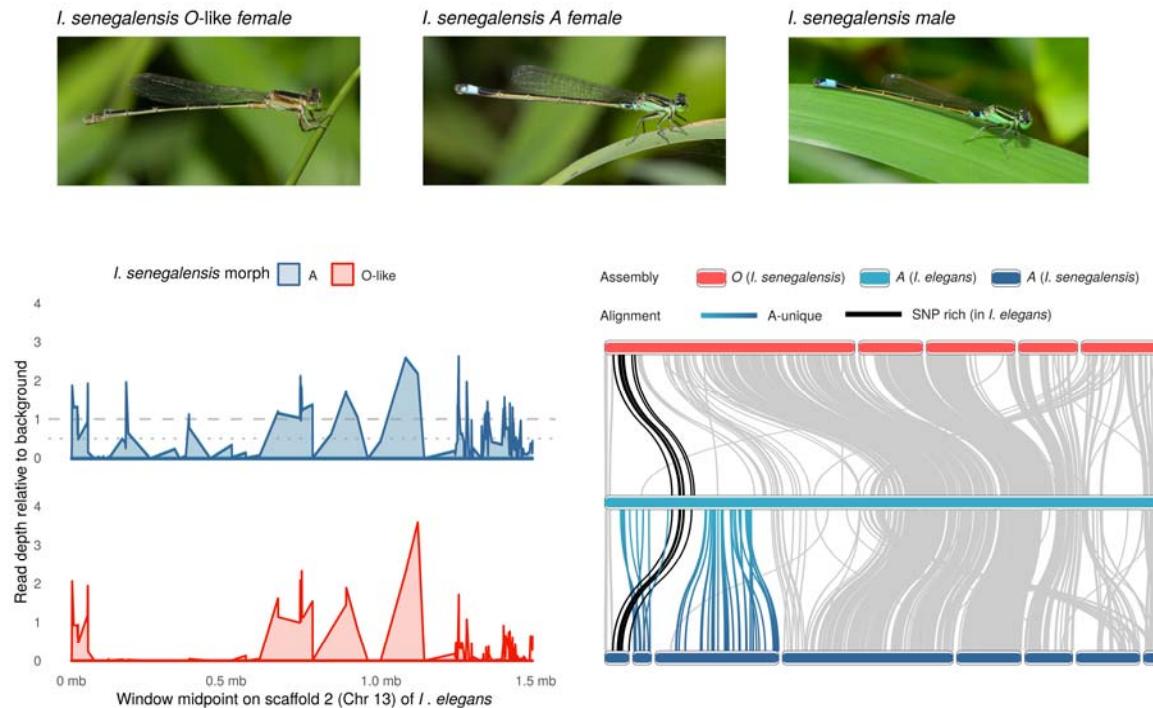
1097

1098


Figure 2

1099

1100


Figure 3

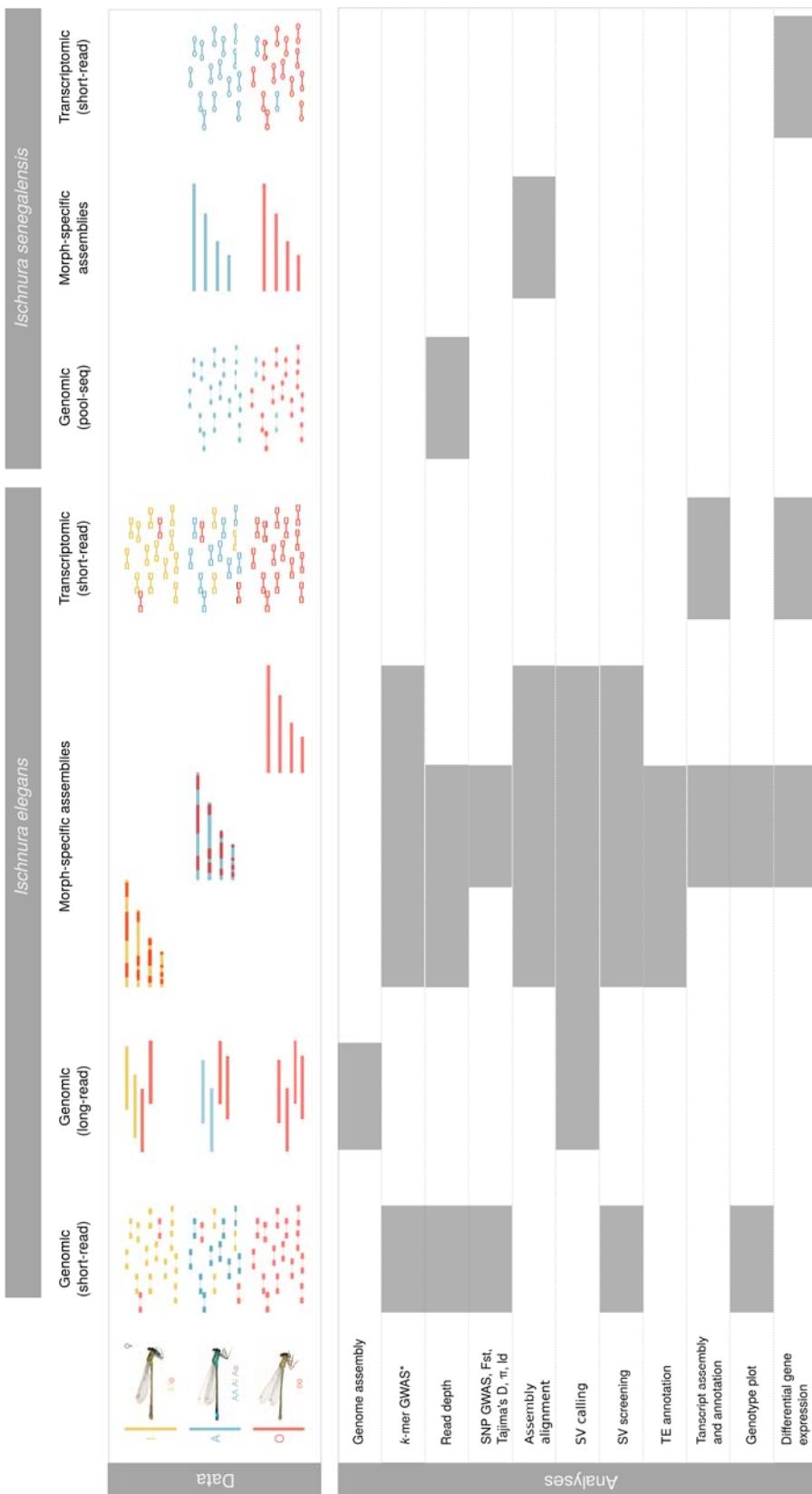
1101

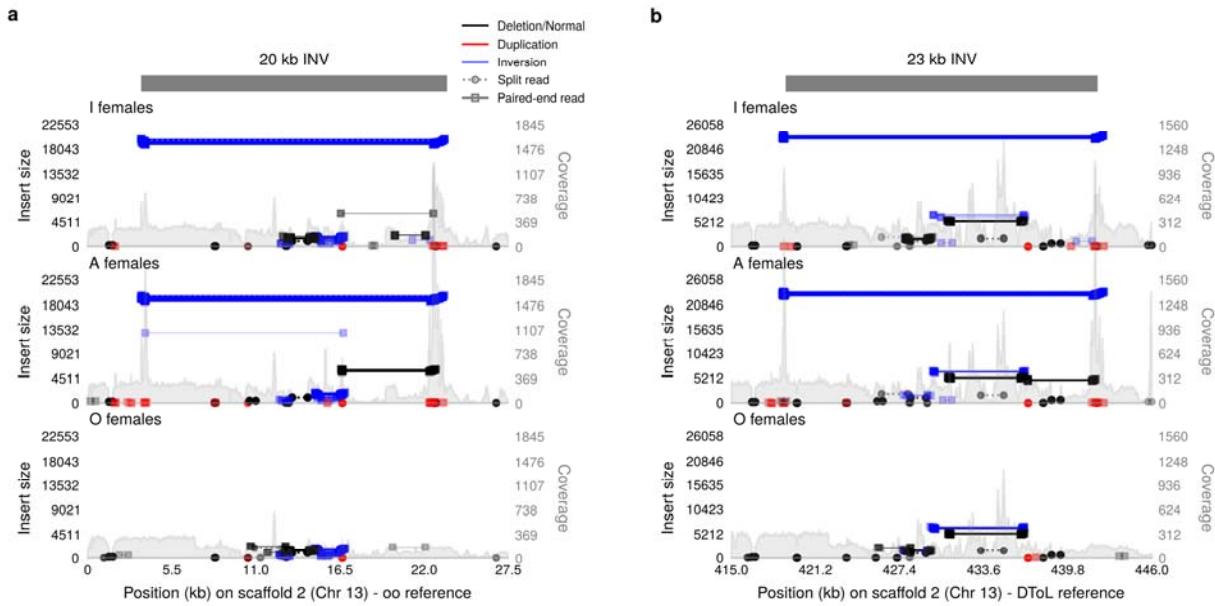
1102

Figure 4

1103

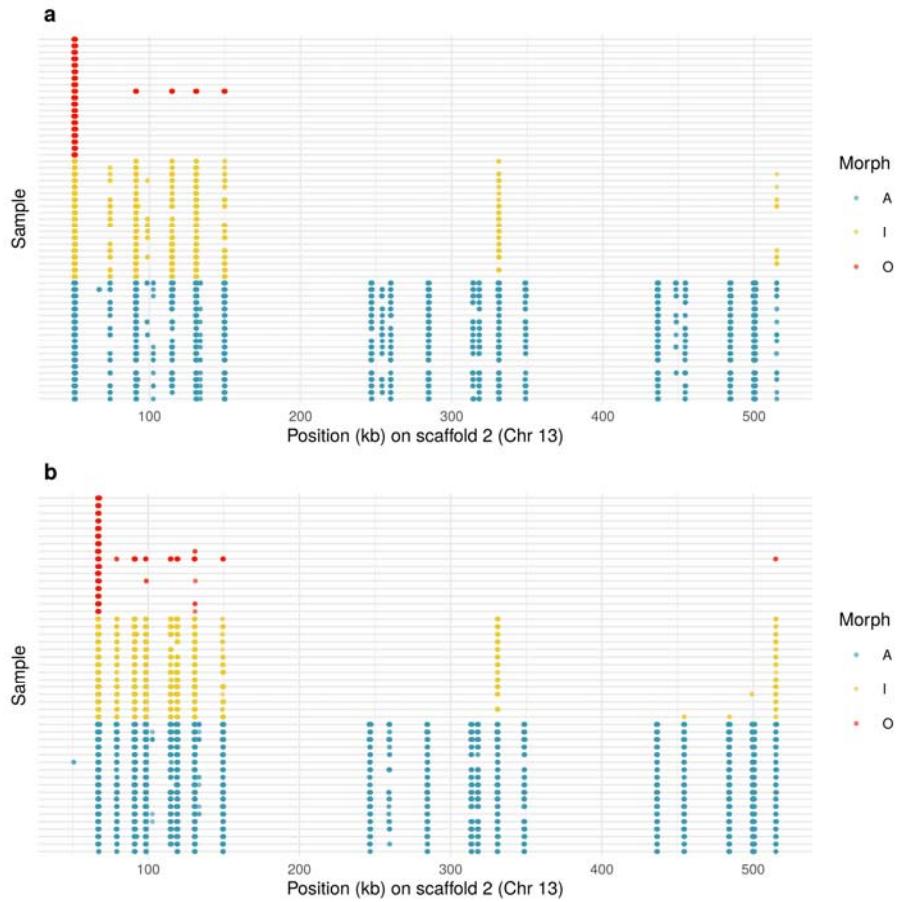
1104


Figure 5


1105

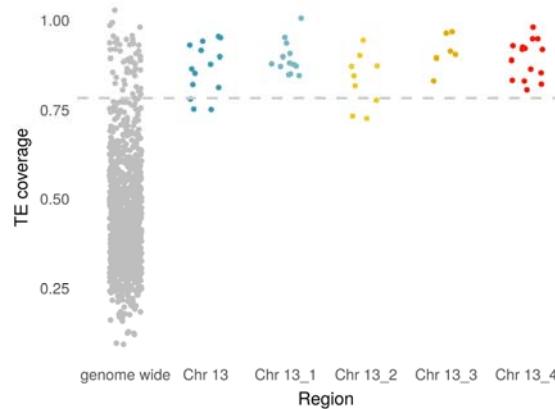
1106

Figure 6


Extended Data Figure 1

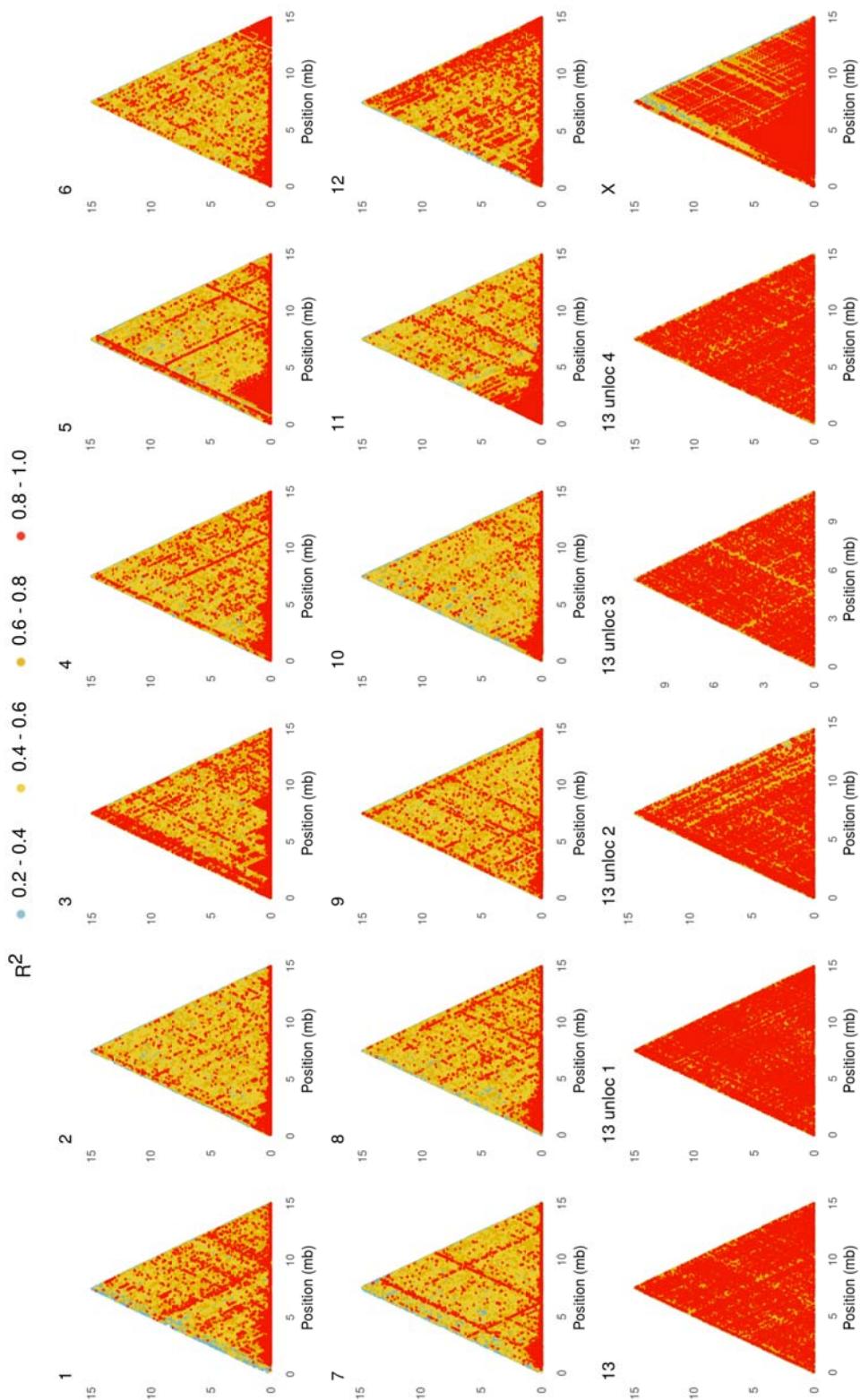
1109

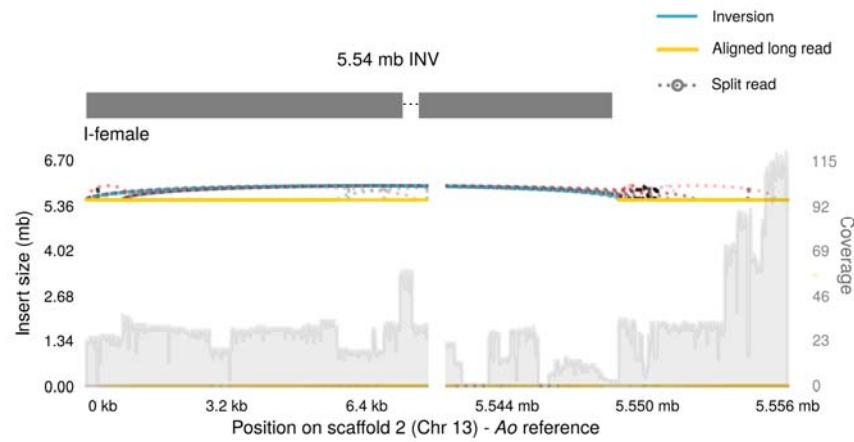
1110


Extended Data Figure 2

1111

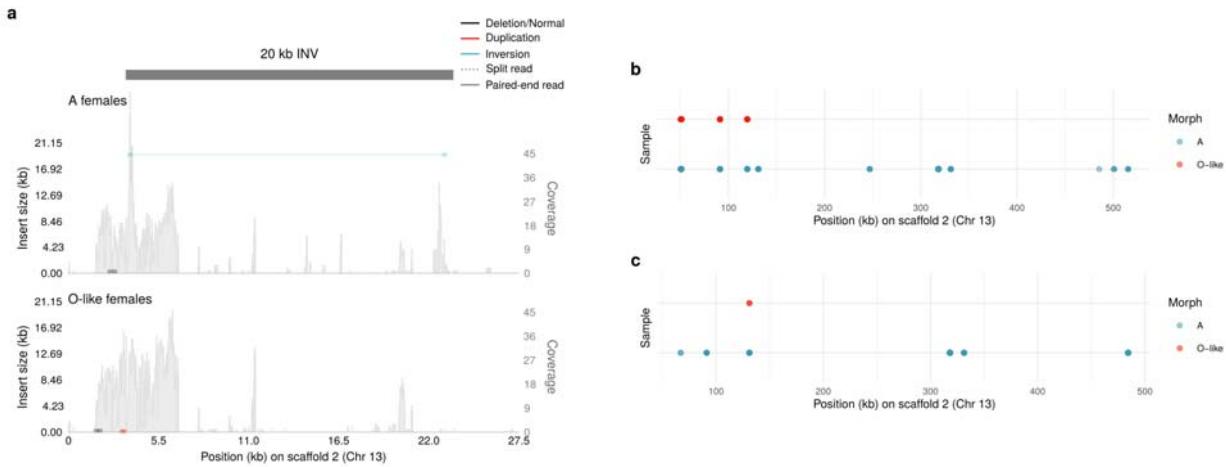
1112


Extended Data Figure 3


1113

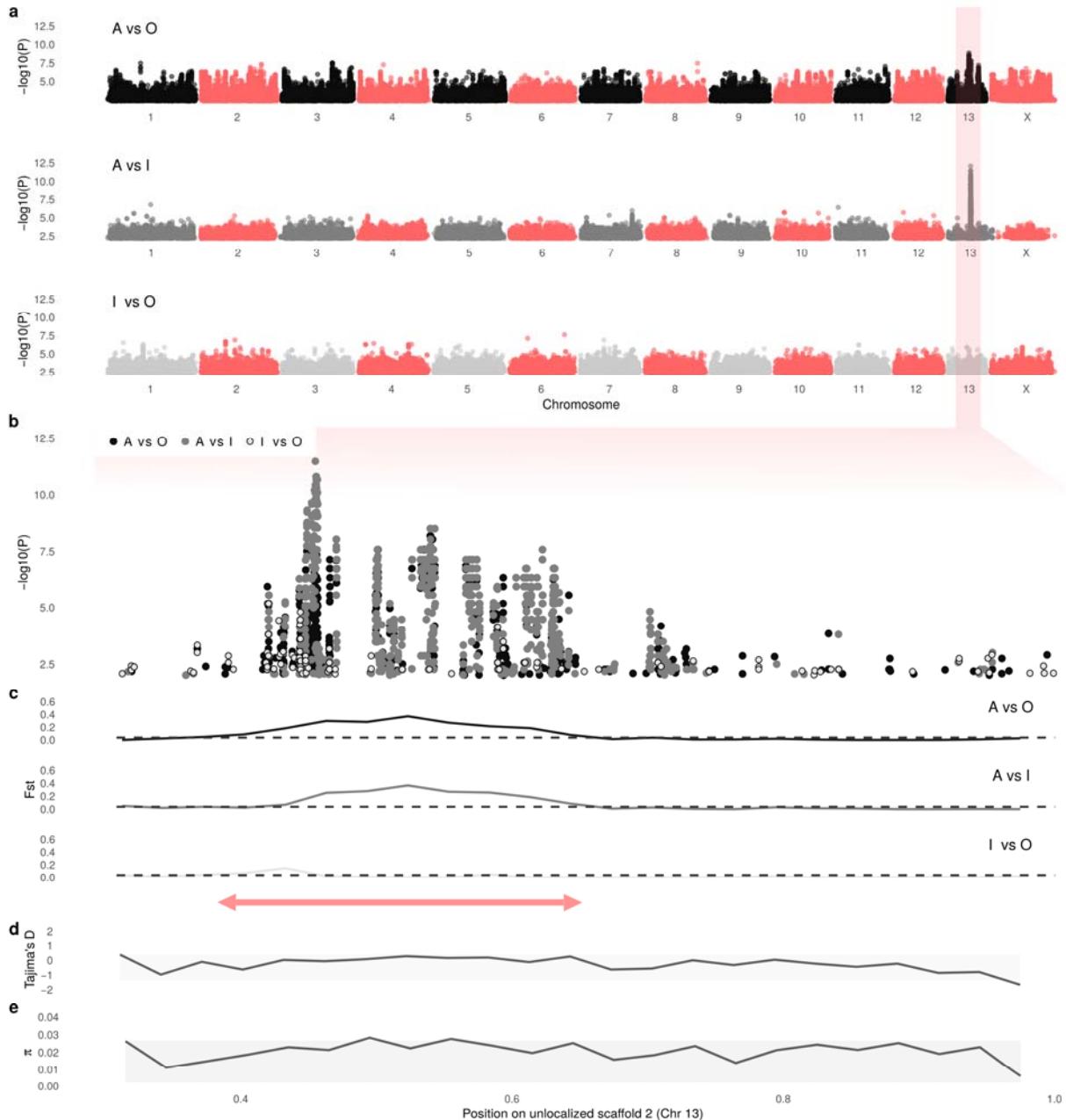
1114

Extended Data Figure 4


Extended Data Figure 5

1117

1118


Extended Data Figure 6

1119

1120

Extended Data Figure 7

1121

1122

Extended Data Figure 8