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Abstract

Sex-limited morphs can provide profound insights ithe evolution and genomic architecture of
complex phenotypes. Inter-sexual mimicry is ongigalar type of sex-limited polymorphism in
which a novel morph resembles the opposite sexlé/titer-sexual mimics are known in both
sexes and a diverse range of animals, their ewolaity origin is poorly understood. Here, we
investigated the genomic basis of female-limitedphe and male mimicry in the Common
Bluetail damselfly. Differential gene expressionvien morphs has been documented in
damselflies, but no causal locus has been previadshtified. We found that male-mimicry
originated in an ancestrally sexually-dimorphiekge in association with multiple structural
changes, probably driven by transposable eleménitacThese changes resulted in ~900 kb of
novel genomic content that is partly shared by mafaics in a close relative, indicating that
male mimicry is a trans-species polymorphism. Megently, a third morph originated

following the translocation of part of the male-nitny sequence into a genomic position ~3.5
mb apart. We provide evidence of balancing seleanaintaining male-mimicry, in line with
previous field population studies. Our results uadere how structural variants affecting a
handful of potentially regulatory genes and morphesfic genes, can give rise to novel and

complex phenotypic polymorphisms.
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MAIN

Sexual dimorphism is one of the most fascinatingh®of intra-specific phenotypic variation in
animals. Sexes often differ in size and colouryel as the presence of elaborated ornaments
and weaponry. Theoretical and empirical studies many decades have developed a detailed
framework of sexual selection and sexual confégplaining why these differences arise and
how they become encoded in sex differentiationesyst”. However, a growing number of
examples of inter-sexual mimi¢ry suggest that sexual dimorphism can be evolutityraaigile
and quite dynamic. Inter-sexual mimicry has evolwedeveral lineages, when individuals of
one sex gain a fitness advantage, usually frequenmayensity-dependent, due to their
resemblance to the opposite sex. For example, médesnimic females, as seen in the Ruff
(Calidris pugnax) and the Melanzona Guppldecilia parae), forgo courtship and ‘sneak’
copulations from dominant malfes while females who mimic males, in damselflies and
hummingbirds, avoid excessive male-mating harassmenter-sexual mimicry thus requires
the evolution of a novel sex-mimicking morph inex@gally-dimorphic ancestor. The occurrence
of inter-sexual mimicry may be a intermediate stefne evolution of sexual monomorphism, it
may be an ephemeral state, or it may be maintaieedstable polymorphism. In any case,
sexual mimics harbour genetic changes that atterargirevent the development of sex-specific
phenotypes, and can therefore provide insightstireessential building blocks of sexual

dimorphism.

Considerable research effort has been devotedcmvanthe genetic basis of discrete phenotypic
polymorphisms, such as those associated with aligenreproductive or life-history strategi&s
' Together, these studies highlight a vast divefimechanisms used by evolution to package

complex phenotypic differences into a single lothat is protected from the eroding effects of
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recombination. On one extreme, phenotypic morphgewalve via massive insertions,
deletions, or inversions that lock together dozertsundreds of genes into supergenés On

the other end, much smaller structural variantssjStbnfined to a few thousand base pairs, can
modulate the expression of one or a few regulaibpdeiotropic networks, resulting in markedly
different morphs-“'. We are clearly only starting to get a glimpséhef major themes among
these genetic mechanisms. For example, it is nmivRrwhether genomic architecture
determines the type and breadth of co-varyingsti@ithe likelihood of polymorphisms evolving

in specific lineages.

A few of these studies have focused on semtéid polymorphisms, where one of the morphs
shares the overall appearance, such as the caltterm of the opposite séx"“*. Such sex-
limited morphs may illustrate novel origins of sakdimorphism, driven by either sexual
selection in malé$ or natural selection in femalés'. Alternatively, sex-limited polymorphisms
may arise with the evolution of inter-sexual mingicCrucially, empirical support for the
evolution of inter-sexual mimicry demands both aroavolutionary context for the
polymorphism, showing that sexually dimorphismnsestral, and a documented advantage of
sexual mimics in at least some social contextsrel lsetherefore a need to integrate genomic,
microevolutionary and phylogenetic evidence into anderstanding of the evolutionary
dynamics of sexual dimorphism and inter-sexual miyniThis integrative approach has been
overall rare, and applied mostly to the study téraktive male reproductive strategiés Yet,
female mimicry of males may be more common thamticslly appreciated, and the genetic

basis of such mimicry remains largely unexpléred

The Common Bluetail damselflgchnura elegans (Odonata) has three female-limited morphs

(namelyO, A andl) that differ in colouration, whereas males areagsvmonomorphic. O
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females display the colour pattern and developnhentaur changes inferred as ancestral in a
comparative analysis of the gersshnura® (Fig. 1). Male-like A) females are considered
male mimics, who experience a frequency-dependbrardage of reduced male-mating and
premating harassment due to their resemblance lesmiinally, thel morph shares its stripe
pattern and immature colouration with #enorpti’ (Fig. 1), but develops a yellow-brown
background colouration with age, eventually resémgbtheO morph upon sexual maturationl
females are only known inelegans and a few close relativéqFig. 1), and their evolutionary
relationship toA andO females remains unresolved. The behaviour, ecplgyy population
biology ofl. elegans have been intensely investigated for over two desamaking it one of the
best understood female-limited polymorphisms, rmgof how morphs differ in fithess-related
traits and how alternative morphs are maintainedpsyrically over long periods™.

Nonetheless, the molecular basis of this polymamlemains unknown.

To advance our understanding of the evolution ofiglex phenotypes, such as sexual
dimorphism and sex-specific morphs, we identifygleaomic region responsible for the female-
limited colour polymorphism iih. elegans. Using a combination of reference-based and
reference-free genome wide association studies (S)M#pon morph-specific genome
assemblies, we revealed two novel regions addirtg 800 kb, that are associated with the
evolutionary origin of the male-mimicking morph. These structural variants, probably
generated and expanded by transposable elemena i}y, are partly shared by male-
mimicking females of the Tropical Bluetail damsglflschnura senegalensis), indicating that

male mimicry is a trans-species polymorphism. Vée ahow that the noveimorph evolved via
an ectopic recombination event, where part ofAhumique genomic content was translocated

into anO genomic background. Finally, we examined the ewabary dynamics of the colour


https://doi.org/10.1101/2023.03.27.532508
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.532508; this version posted September 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

105

106

107

108

109
110
111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

available under aCC-BY 4.0 International license.

morph locus and explored expression patterns agcated in this region. Together, our
results indicate that structural variation affegtimmhandful of genes and maintained by balancing
selection provides the raw material for the evolutf a male-mimicking phenotype in pond

damselflies.

RESULTS
Male mimicry is encoded by a locus with a signature of balancing selection

We started by conducting three reference-based GWé@paring all morphs against each
other in a pairwise fashion (Extended Data FigW¢.used a morph genome assembly
(Supporting Text 1) as mapping reference becaugetgtal variant analyses revealed that
females harbour genomic content that is absetigmther two morphs (s&&male morphs
differ in genomic content below). The draft assembly was scaffolded agaimesDarwin Tree of
Life (DToL) reference genome to place the contiga thromosome level framewdtkThe
DTolL reference genome contains heallele (see Supporting Text 2) and is assembléa wi
chromosome resolution, except for chromosome 18wk fragmented and consists of one

main and several unlocalized scaffolds.

All pairwise GWAS between morphs pointed to one ti@dsame unlocalized scaffold of
chromosome 13 as the causal morph locus (FigCader examination of this scaffold revealed
two windows of elevated divergence between morplts @b). First, a narrow region near the
start of the scaffold (~50 kb - 0.2 mb) captureghlyi significant SNPs in botA vs O andl vsO
comparisons (Fig. 2b). Thereafter and up to ~1.5antabundance of SNPs differentiates
females from botl® andl females, especially between ~0.6 and ~1.0 mb @hy.These results

are mirrored by Fst values across both regions @ej
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Next, we investigated whether the morph locus earai signature of balancing selection, as
suggested by previous field studies of morph-fregyelynamics. The larger genomic window
that uniquely distinguishes females from both andO females displays a signature of
balancing selection, indicated by highly positieues of Tajima’s D, exceeding the 95
percentile of genome-wide estimates (Fig. 2d). @osely, values of both Tajimas’s D amth
the narrower window that differentiat€sfemales from botlA andl females (~50 kb - 0.2 mb)

fall within the 95 percentile of genome-wide estiesa(Fig. 2d-e).

Femal e morphs differ in genomic content

Previous studies have found that complex phenotypigmorphisms are often underpinned by
structural variants (SVs), arising from genomiaraagements such as insertions, deletions and
inversions”**>?°. As these variants can be difficult to detect neference-based analysis, we
employed &-mer based GWAS approactiExtended Data Fig. 1), which enables referenee-fr
identification of genomic divergence between mor@ignificantk-mers in these analyses could
represent regions that are present in one morplalaseht in the other (i.e. insertions or

deletions), or regions that are highly divergerthigir sequence (as in a traditional GWAS).

First, we investigated the divergence associatéd tve male-mimickingA morph. Pairwise
analyses revealed 568,039 and 508 J0&lers (length = 31 bp) significantly associatechwite
AvsO andA vs| comparisons, respectively. To determine whetheasociate-mers
represent differences in genomic content or sequbatween the morphs, we mapped these
mers to morph-specific reference genomes. If tse@ateck-mers are due to novel sequences
found in one morph but not the other, we would expevast majority of the significaktmers

to be found in only one of the two morphs in a\wee comparison. If the significakimers are
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instead owed to point mutations in high-identitgsences, there should be morph-speé&Hic

mers in both morphs.

Most (> 98%) of the mappddmers in theA vs O andA vs| comparisons, aligned perfectly to a
single ~1.5 mb region of the unlocalized scaffolof Zhromosome 13, in tlemorph assembly
(Fig. 3a; Extended Data Table 1). This is the seeg®sn of theA-morph assembly that was
previously identified in the standard GWAS (Fig. ) contrast, only ~0.3% of the associated
mers in theA vs O comparison were found anywhere in @@ssembly, and similarly, only
~0.2% of the significarit-mers in theA vs| analysis mapped to theassembly (Extended Data
Table 1). These results thus suggested that adegien of genomic content is unique to ke

haplotype.

Given thatA andl females share their immature colour pattefh we then tested fdemer
associations that would distinguish bétlandl females fronO females and found 85,134 such
k-mers (Extended Data Table 1). When mapped té thesembly, a majority of thekamers

were found near the start of the unlocalized stdffaof chromosome 13 (Fig. 3a), where we
previously reported pronounced divergenc®démales (Fig. 2b-c). However, when mapped to
thel assembly, most of the significaamers were found in a different region of the same
scaffold, separated by approximately 3.5 mb (Hg. Bhese results thus suggested fandl
females share genomic content that is abse@t However, in the haplotype this content

occupies a different chromosomal location.

To further investigate the distribution of genoraantent among morphs, we plotted the
standardized number of mapped reads (read deptimg) e ~1.5 mb region of tieassembly
that included most of the significakimers (Extended Data Fig. 1). Here, we expected rea

depth values around 0.5 (heterozygous) or 1.0 (agguaus) for allA samples, wheredsandO
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samples should have read depths of O, if genomnmteobis uniquely present in tiAeallele
(because andO individuals lack the\ allele, Fig. 1). Read depths confirmed that male-
mimicking A females are differentiated by genomic contentctipally, there are two windows
of theA assembly (of ~400 kb and ~500 kb) wherd 00O data maps to the assembly after
filtering repetitive sequences (Fig. 3c), and whach therefore uniquely presentAriemales.
These two windows oh-specific content are separated by a region betw8ehand ~1.0 mb
that is shared among all morphs (Fig. 3c), andihidivergent in SNP-based comparisons
involving theA morph (Fig. 2b). Finally, the region including megnificantk-mers in theA
andl vs.O comparison is present in &landl samples but absent in &lsamples, except for
one individual (Fig. 3c; Supporting Text 3). As edtn thek-mer GWAS, this region of
genomic content shared Byand! individuals is located in different regions, sejiad by ~3.5

mb, in the two assemblies (Fig. 3d).

By combining reference-based GWAS, reference-frédéAS and read-depth approaches, we
have identified three haplotypes controlling modavelopment in the Common Bluetail. TAe
andl haplotypes share ~150 kb that are abse@ iftheA haplotype has two additional
windows of unique genomic content, adding up to0-. In theA haplotype, a single ~1.5 mb
window (hereafter the morph locus) thus contaiesrédgions of unique genomic content, the
region exclusively shared betwearandl, and the SNP-rich region present in all morphshén

| haplotype the region exclusively shared witbccupies a single and different locus separated
by about 3.5 mb (Fig. 4a). These large and compsdiddferences in genomic content between
haplotypes suggest that multiple structural chalges multi-million base-pair region were

responsible for the evolution of novel female marphlschnura damselflies.
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TE propagation and recombination likely explain the origins of novel female morphs

Based on previous inferences of the historical mirdevhich female morphs evolved (Fig. 1), we
hypothesized that genomic divergence first occupetdveerO andA females, with some
genomic content being then translocated flomto anO background, leading to the
evolutionary origin of females. We analyzed structural variants betweamhs to test this
hypothesis (Extended Data Fig. 1; Supporting Téxadd uncovered evidence of a ~20 kb
sequence in th® haplotype that is duplicated and inverted in tamde derived morphsA and

I; Fig. 4b; Extended Data Fig. 2). An investigatajrthe reads mapping to the inversion
breakpoints suggested that additional duplicatioriee A genome, presumably via TE
proliferation, may be related to the evolutionmer-sexual mimicry (Fig. 4b; Extended Data
Fig. 3). Interestingly, TE content is enriched aacombination is reduced not just in the vicinity
of the morph locus, but across the entire chromesbd(Extended Data Fig. 4-5; Supporting
Text 4). Finally, evidence of a translocation offaderived genomic region back into @n
background (Extended Data Fig. 6; Supporting Téxtlied that théd morph evolved from an
ectopic recombination event between betw&emdO morphs (Fig. 4b). This scenario is also
consistent with our previodsmer GWAS and read-depth results, where we fouatitte only

region differentiating botl andl females fronO females is located ~3.5 mb in theaplotype.

Male mimicry is a trans-species pol ymor phism

Ancestral state reconstruction of female coloutesthad previously pointed to an ancient origin
of male mimicry in the clade that include®l egans and several other widely-distributed
Ischnura damselflies’ (Fig. 1). We investigated whether male mimicrini§act a trans-species
polymorphism usingle novo genome assemblies from the closely related Tropiceetail

(Ischnura senegalensis) (Extended Data Fig. 1). senegalensis shares a common ancestor with
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elegans about 5 M&’, and has both a male-mimickidgmorph and a non-mimicking morph,

which resembles th@ females of. elegans’®”’ (Fig. 5a).

We reasoned that if morph divergence is ancestralgenomic content that is uniquely present
in A females or shared #yandl females in. elegans should be at least partly presenfin
females of. senegalensis, but absent in the alternati@like female morph (see Supporting
Text 5). This prediction was supported by diffeesin standardized read depths betweerthe
andO-like pool ofl. senegalensis, specifically at the morph locus bfelegans (Fig. 5b;
Supporting Text 5). A shared genomic basis of #statual mimicry for the two species was also
supported by the same ~20 kb inversion signatutieeA pool against a® assembly, as
detected imA andl females ol. elegans (Extended Data Fig. 7). Finally, assembly alignteen
betweenO-like andA haplotypes of. senegalensis showed that th&-specific genomic region of

|. elegansis partly present in th& but not theD-like assembly of. senegalensis (Fig. 5c¢).

Shared and morph-specific genes reside in the morph locus

Finally, we examined gene content and expressatteqms in the morph locus. As female
morphs differ in genomic content as well as seqegte phenotypic effects of the morph locus
could come about in at least three non-exclusivwswairst, entire gene models may be present
in some morphs and absent in others. Second, geesant in all morphs may differ in
expression patterns. Third, genes may encode eliffermino acid sequences in different female
morphs. We used newly generated and previoushighes’” RNAseq data to investigate these
guestions (Extended Data Fig. 1), and capitalizethe annotations of the reference genome of
|. elegans™, as well as transcripts assembdiedhovo in our A-morph genome assembly.

Because the genetic basis of inter-sexual mimgshared betwednelegans andl.
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senegalensis (Fig. 5), we focus on genes that are expressbdtimspecies in at least one

individual (Fig. 6a).

Three transcripts (from two predicted genes) inntteeph locus are expressedAriemales of.
senegalensis, and inA andl females of. elegans, but never irO or O-like females (Fig. 6b).
Only one of these gene models (Afem.4094) coultlbetionally annotated, and appears to
encode a Long Interspaced Nuclear Element (LINEdtransposon in the clade Jockey
(Supporting Text 6). This gene also exhibited espi@n changes infemales that reflect their
colour development trajectory of initial resemblancA females, followed by an overall
appearance similar © females upon sexual maturation (Supporting TexiN6jably,
RepeatModeler andRepeatMasker detected signatures of the Jockey family at tineeslacus as
the mapping locations of thereads that had suggested a propagation of TE# i8\6 analyses
(Fig. 6a; Extended Data Fig. 3). Thus, these reduither support that TEs are responsible for

the evolution and expansion of the male-mimicrglell

We also identified three gene models that are shayeall haplotypes and expressed in both
species. The three predicted genes encode zinerfdamain proteins (Fig. 6b; Supporting Text
6), which are known to participate in transcripéibregulatiori’. However, we found no
conclusive evidence of differential expression, emidence of non-synonymous substitutions
between morphs shared by boétklegans andl. senegalensis (Supporting Text 6). While we see
genes of a potentially regulatory function resia¢hie morph locus, understanding their role in
morph development will likely require higher temaloand spatial resolution of gene expression

data.
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DiscussioN

Sexual dimorphism, where males and females havkeudlgrdistinct colour patterns, has led to
multiple evolutionary origins of female-limited gohorphisms and potential male-mimicry in
Ischnura damselflies”. Here, we present a first genomic glance into tt®ge morphs evolve,
setting the stage for future functional work toawel the reversal of sexual phenotypes in
damselfly sexual mimicry. Male mimicry in the CommBluetail is controlled by a single
genomic region in chromosome 13 (Fig. 2; 3). Odadaggests that this morph locus likely
evolved with the accumulation of novel and potdiytiaE-derived sequences in the male
mimicry haplotype (Fig. 4), which is shared by mademicking females of species diverging
more than 5 Ma (Fig. 5). More recently, a rare nelsmation event involving part of the nowl
genomic content has triggered the origin of a tferdale morph (Fig. 4), which shares its
sexually immature colouration and patterning wAtfemales, and shares its sexually mature
overall appearance with females’. The morph locus contains a handful of genes, safme
which may have evolved with TE propagation in Aleaplotype, and are therefore absent from
O individuals (Fig. 6). However, existing annotasqgorovide only a hint on how these genes
may influence morph development. Our results tluh® @ecent calls for a broader application of
functional validation tools, in order to understdrav lineage-specific genes contribute to

phenotypic variation in natural populatiéhs

This study underscores two increasingly recognizsights in evolutionary genomics. First,
there is mounting evidence that structural variabisund in natural populations and often
underpin complex and ecologically relevant pheniotypriatiori”, such as discrete phenotypic
polymorphism&****>*°. Nonetheless, traditional GWAS approaches base®Ni?s can easily

miss structural variants, as these approachesatmgent on the genomic content of the
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reference assembify Among other novel approaches to tackle this b a reference-frele
mer based GWAS, as implemented here, is a powestihod to identify variation in genomic
content and sequence, especially when the genauohitecture of the trait of interest is initially
unknown”. In this study, we did not knowpriori which of the three morphs, if any, would
harbour uniqgue genomic content. Had we ignorectiifices in genomic content between
morphs and based our GWAS analysis solely upoDifad (O) reference assembly, we would
have failed to identify SNPs betwekandO morphs (Extended Data Fig. 8), and the origih of

females via a translocation Afcontent would have been obscured.

Second, a role for TEs in creating novel and ew&ptive phenotypic variation is increasingly
being recognized*’. Here, we found that a ~400 kb region of uniqueogeic content, possibly
driven by LINE transposition is associated with thale-mimicry phenotype in at least two
species ofschnura damselflies. TE activity can contribute to phempatyevolution by multiple
mechanisms. For instance, TEs may modify the régl@nvironment of genes in their vicinity,
by altering methylatiott and chromatin conformation patteihor by providing novel cis-
regulatory element§ The male-mimicry region ih elegans is located between two coding
genes with putative DNA-binding domains, and whadly thus act as transcription factors.
However, our expression data does not provide unecal support for differential regulation of
either of these genes between female morphs. lapityf currently available expression data
comes from adult specimens, as female morphs arasually discernible in aquatic nymphs.
Yet, the key developmental differences that prodbeeadult morphs are likely directed by
regulatory variation during earlier developmentabgs. Now that the morph locus has been
identified, future work can address differentiahgexpression at more relevant developmental

stages, before colour differences between morptsne apparent.
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TEs can also contribute to phenotypic evolutiainédy become domesticated, for example, when
TE-encoded proteins are remodeled through evolatjoohange to perform adaptive host
functions®. We found two transcripts locatedAmspecific orA/l specific regions that are likely
derived from LINE retrotransposons and are actiealyressed in the genomes that harbour
them (Fig. 6b). It is therefore possible that thieaascripts participate in the development of
adult colour patterns, which are initially more ganbetweerA andl females than between

either of these morphs aifemales”*’. Yet, functional work on these transcripts is lieeglito
ascertain their role in morph determination. FinallEs can become sources of novel small
regulatory RNAs which play important regulatorye®i, including in insect sex

determinatior’. Thus, future work should also address non-coBiNé expression and function

in the morph locus.

Our results also provide molecular evidence fowipss insights, gained by alternative research
approaches, on the micro- and macroevolution offerimited colour polymorphisms. A

wealth of population data in Southern Sweden hag/stihat female-morph frequencies are
maintained by balancing selection, as they fluetliegs than expected due to genetic Urift
Behavioural and field experimental studies indi¢htg such balancing selection on female
morphs is mediated by negative frequency-dependate harassmerit”. We add to these

earlier results, by showing a molecular signatwmsestent with balancing selection in the
genomic region whera females differ from both of the non-mimicking mbgp Sexual conflict

is expected to have profound effects on genomeuguoal but there are few examples of
sexually-antagonistic traits with a known genetsib, in which predictions about these genomic

effects can be tested”. Here, the signature of balancing selection omibgph locus matches
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the expectation of inter-sexual conflict resultingnegative-frequency dependent selection and

maintaining alternative morph alleles over longqus.

Similarly, a recent comparative study based on ptypic and phylogenetic data inferred a
single evolutionary origin of the male-mimicking rpb shared by. elegans andl.

senegalensis’™®. Our present results strongly support this comorigin. This is becaus&

females in both species share unique genomic dpmbetuding associated transcripts, and an
inversion signature against the ancesirahorph (Fig. 5; Extended Data Fig. 7). Nonetheless,
these data are consistent with both an ancestiaghpgphism and ancestral introgression being
responsible for the spread of male mimicry acrbesctade. A potential role for introgression in
the evolution of male mimicry is also suggestedadypant hybridization betweénelegans and
its closest relatives and by the fact that elegans andl. senegalensis can hybridize millions of
years after their divergence, at least in laboyesettings’. The identification of the morph locus
in |. elegans, enables future comparative genomics studiessentiingle the relative roles of
long-term balancing selection and introgressioshiaping the widespread phylogenetic

distribution of female-limited polymorphisms lischnura damselflies.

Finally, our results open up new lines of inquirylmw the genomic architecture and
chromosomal context of the female polymorphism imélyence its evolutionary dynamics. Our
data is consistent with the evolution of a thirdrpiodue to an ectopic recombination event that
translocated genomic content from thé@aplotype back into a® background. Ectopic
recombination can occur when TE propagatignerates homologous regions in different
genomic location$™®, and may be facilitated by the excess of TE cdritechromosome 13
(Exteded Data Fig. 4). The male reproductive morphike Ruff Calidrispugnax) are one of

few previous examples of a nhovel phenotypic monpireg via recombination between two pre-
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existing morph haplotyp&s In pond damselflies, female polymorphisms witteéhor more
female morphs are not uncommon, and in some casedd morphs exhibit graded resemblance
to males’. It is therefore possible that recombination, elfeare, has repeatedly generated

diversity in damselfly female morphs.

While recombination might have had a role in getiegethe the novel morph, we observe
reduced recombination over the morph locus in coispa to the rest of the genomel of

elegans (Extended Data Fig. 5). However, this reductioneicombination is not limited to the
morph locus and its vicinity, but rather pervasaeeoss chromosome 13 (Extended Data Fig. 5).
This unexpected finding suggests two alternativesabscenarios. First, selection for reduced
recombination at the morph locus, following thegoriof sexual mimicry, could have spilled

over chromosome 13, facilitating a subsequent aa@tman of TEs and further reducing
recombinatiof’. Second, TE enrichment and reduced recombinatinhave preceded the
evolution of female morphs, and facilitated thebbshment and maintenance of the female

polymorphism by balancing selection.

Both historical scenarios are compatible with aphdocus reminiscent of a supergene, which is
defined by tight genetic linkage of multiple furwtal locf*. However, an alternative and
parsimonious explanation is that the novel sequeimcg andl females and their flanking genes
may not code for anything important for the malenmsking phenotype as such, but simply
disrupt a region of chromosome 13 that is requioedhe development of ancestral sexual
differentiation. The observation thiatemales carry part of the sequence that originatédn a
different location of the scaffold (Fig. 4b), artdl slevelop some male-like characters (e.g. black

thoracic stripes), could come about if insertiongvehere on a larger chromosomal region
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disrupt female suppression of the male phenotyfegyagh with variable efficacy depending on

the exact location or insertion size.

Concluding Remarks

Recent years have witnessed an explosion of studiesvering the loci behind complex
phenotypic polymorphisms in various species. Anrging outlook is that not all
polymorphisms are created equal, with some goveogadassive chromosomal
rearrangements"’, and others by a handful of regulatory sit&€s. Our results contribute to
this growing field by uncovering a single causals, that features structural variation and
morph-specific transcripts, in the female-limitednphs ofischnura damselflies. These morphs
not only differ in numerous morphological and Iifistory traits“°~°* and gene expression
profiles™*", but they include a male mimic that is maintaibgdalancing frequency-dependent
selection. Our findings enable future studies @dbvelopmental basis of such male mimicry,
with consequences for a broader understandingeoétblutionary dynamics of sexual

dimorphism and the cross-sextr@nsfer of trait expressioh

METHODS
Ischnura elegans samples

Samples for morph-specific genome assembli¢sabégans were obtained from F1 individuals
with genotype#\o, o andoo (one adult female of each genotype). In June 2@&t@&ntly-mated
O females were captured in field populations in Seut Sweden. These females oviposited in
the lab within 48 h, and their eggs were then ssdanto outdoor cattle tanks seeded with
Daphnia and covered with synthetic mesh. Larvae thus dgeel under normal field conditions
and emerged as adults during the Summer of 202@rdtny females were kept in outdoor

enclosures until completion of adult colour devetemt>°>. Fully mature females were
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phenotyped, collected in liquid nitrogen and kep88 °C. Because all of these females carry a
copy of the most recessive all@eindividuals of theA andl morph are heterozygous, with

genotypesh\o andlo, respectively.

A total of 19 resequencing samples of each femalg@mofl. elegans were also collected from
local populations in Southern Sweden, within a 4@»m area (Table S1). Samples were
submerged in 95% ethanol and stored in a -20 ¥z déreuntil extraction. Additionally, 24
individuals (six adult females of each morph anxdnsales) were collected for RNAseq analysis
in a natural field population (Bunkeflostrand) iaushern Sweden, in early July 2019. These

samples were transported on carbonated ice aretlstor80 °C until extraction.

Ischnura senegalensis samples

Adults of . senegalensis (30 adult females of each morph) were collectegéml sequencing
from a population on Okinawa Island in Japan (28MN,4L27.795E) in May 2016. Samples were
visually determined to sex and morph and storé@®# ethanol until extraction. Samples for
morph-specific genome assembliesd.aenegalensis were obtained from a population in
Clementi Forest, Singapore (1.33N, 103.78E). BezthusA allele is recessive in

senegalensis, all females with thé phentoype are homozygous. To obtain a homozy@elilse
sample, we developed primers (forward: CGCGGTATGATAGTCCGA, reverse:
GGCTGCTTACACCAATGCAA) for anmA-specific sequence that is shareddigmales of the
two species (318,131 - 318,213 bp onAlteaplotype of. elegans). We used the mapped pool-
seq data to identify fixed SNPs between speciedalwl the primer sequences accordingly. We
then tested the primers in 20females ol. senegalensis using a 328 bp fragment of the Histone
H3 gene (forward: ATGGCTCGTACCAAGCAGACGGC, reverse:

ATATCCTTGGGCATGATGGTGAC)® as a positive control for the PCR reaction. Once
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validated, we utilize these primers to identiilike females lacking tha4 allele and selected

one of these samples for whole genome sequencing.

DNA extraction, library preparation and sequencing

High molecular weight (HMW) DNA was extracted framel. elegans female of each genotype
(Ao, lo, 00), using the Nanobind® Tissue Big Extraction Kig(CNo. NB-900-701-01,
Circulomics Inc. (PacBio), MD, USA). HMW DNA wasalkated from homozygous females of
each morph of. senegalensis, using the Monarch® HMW DNA Extraction Kit for Ege (Cat.
No. T3060S, New England BioLabs Inc., MA, USA). DNtAm resequencing samples was
isolated using either a modified protocol for thiddasy Blood and Tissue Kit (Cat. No. 19053,
Qiagen, Germany) or the KingFisher Cell and Tid3M&A Kit (Cat no. N11997, ThermoFisher
Scientific).1. senegalensis DNA was extracted from muscle tissues in thorarssg Maxwell®
16 LEV Plant DNA Kit (Cat. No. AS1420, Promega, WIEA). Details on extraction and

library preparation protocols are provided in thip@orting Text 1.

Sequencing libraries were constructed from each HM\M sample for the Nanopore LSK-110
ligation kit (Oxford Nanopore Technologies, UK). &gter ligation and sequencinglo&legans
samples were carried out at the Uppsala GenomeeC@i1), hosted by Scilife Lab. Each
sample was sequenced on a PromethlON R10.4 witltlease wash and two library loadings.
Library preparation and sequencing ofenegalensis samples were carried out by the Integrated
Genomics Platform, Genome Institute of Singapol&YGA-STAR, Singapore. Each sample
was sequenced on a PromethlON R9.4 flow cell, @itluclease washes and three library

loadings.
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RNA extraction and sequencing

Whole-thorax samples were grounded into a fine mowding a TissueLyser and used as input
for the Spectru! Plant Total RNA Kit (Cat. No. STRN50, Sigma AldtioMO, USA),

including DNase | treatment (Cat. No. DNASE10, SighAidrich, MO, USA). Library
preparation and sequencing were performed by Scllab at the Uppsala Genome Centre
(NGI). Sequencing libraries were prepared from 8§@f RNA, using the TrueSeq stranded
MRNA library preparation kit (Cat. No. 2002059%hina Inc., CA, USA) including polyA
selection and unique dual indexing (Cat. No. 20G228lumina Inc., CA, USA), according to
the manufacturer’s protocol. Sequencing was peedron the lllumina NovaSeq 6000 SP

flowcell with paired-end reads of 150 bp.

De novo genome assembly
Bases in raw ONT reads fromelegans were called usin@Guppy v 4.0.11 Ao andlo data) and

Guppy v 5.0.11 ¢o data) (ittps://nanoporetech.cojnLow quality reads (gscore < 7 for v 4.0.11
and < 10 for v 5.0.11) were subsequently discarHegh quality reads were assembled using the
Shasta long-read assembler v 0.7.0Each assembly was conducted under four different
configuration schemes, which modified the June 20200pore configuration file
(https://github.com/chanzuckerberg/shasta/blob/mastef/Nanopore-Jun2020.cqnh

alternative ways (Table S3). Assembly metrics veem@pared among Shasta configurations for
each morph usingsmQC™ (https://sourceforge.net/projects/ama@md thestats.sh script in the
BBTools suite (ittps://sourceforge.net/projects/bbrjabhe assembly with greater contiguity

(i.e. highest contig N50, highest average contigtle and highest percentage of the main

genome in scaffolds > 50 kb) was selected for polishing and downstream snalyse
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Bases in raw ONT reads fromsenegalensis samples were called usi@yppy v 6.1.5. Reads
with quality score < 7 were subsequently discaréiegh quality reads were assembled using the
Shasta long-read assembler v 0.7.@nd the configuration file T2 (Table S3), whichsraso

selected for théo andoo assemblies df. elegans.

Morph specific assemblies bfelegans were first polished using the ONT reads mapped bac
their respective assembly withinimap2 v 2.22-r1116°, and the?EPPER-Margin-DeepVariant
pipeline r0.4°. Alternative haplotypes were subsequently filtansghgpurge dupsv 0.0.3", to
produce a single haploid genome assembly for emtiple. Thd. elegans draft assemblies were
then polished with short read data from one resetjng sample (TE-2564-SwD172_S37, Table
S1), using th@OLCA tool inMaSURCA v 4.0.4°. For every draft and final assemblylof

elegans, we computed quality metrics as mentioned abodeaasessed the completeness of
conserved insect genes usBIgSCO v 5.0.0° and the “insecta_odb10” database (Fig. S1). For

|. senegalensis, we report quality metrics of the final assemb(igig. S2).

Scaffolding with the Darwin Tree of Life super assembly

During the course of this study, a chromosome-lgeelome of. elegans was assembled by the
Darwin Tree of Life (DToL) Project, based on long-read (PacBio) and short-read (iflajn
data, as well as Hi-C (lllumina) chromatin interatdata. 99.5% of the total length of this
assembly is distributed across 14 chromosomespfonbich (no. 13) is fragmented and divided

into a main assembly and five unlocalized scaffolds

We used RagTag v 2.100 scaffold each our morph-specific assembliestas the DToL
reference (Supporting Text 2). Scaffolding wasducted using theucmer v 4.0.0° aligner and
default RagTag options. Morph-specific scaffolded@mes were also aligned to each other

usingnucmer and a minimum cluster length of 100 bp. Alignmemése then filtered to preserve


https://doi.org/10.1101/2023.03.27.532508
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.532508; this version posted September 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

485

486

487

488

489
490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505
506

507

available under aCC-BY 4.0 International license.

only the longest alignments in both reference arehygsequences, and alignments of at least 5
kb. These assembly alignments were then usedualiae synteny patterns across morphs, in
the region uncovered in our association analyse(ded Data Fig. 1), using the package

Rideogramv 0.2.2°inRv 4.2.2".

Reference-based (SNP) GWAS

We first investigated genomic divergence betweerpimousing a standard GWAS approach
based on SNPs (Extended Data Fig. 1). Initiallycaeducted preliminary analyses using
different morph assemblies as mapping referencee @eA-specific genomic region was
confirmed, we designated theassembly as the mapping reference for the maiysesa Short-
read data were mapped uslga-memv 0.7.17°. Optical and PCR duplicates were then flagged
in the unfilterecbam files usingGATK v 4.2.0.0°. Variant calling, filtering and sorting were
conducted using bcftools v 12excluding the flagged reads. We retained onljavéisites

with mapping quality > 20, genotype quality > 3@ aminor allele frequency > 0.02 (i.e. the
variant is present in more than one sample). Tadawghly repetitive content, we filtered
variants that had a combined depth across samd8866 (equivalent to all samples having ~
50% higher than average coverage), and varian&sdddn sites annotated as repetitive in either
RepeatMasker v 1.0.93" or Red v 0.0.1”. The final variant calling file was analysed irirpase
comparisonsA vs O, A vsl, | vsO) usingPLINK v 1.9"
(http://pngu.mgh.harvard.edu/purcell/plinkWe report the -Log of P-values for SNP

associations in these pairwise comparisons.

Reference free (k-mer) GWAS
We created a list of admers of length 31 in the short-read data (19 fesipker morph,

Extended Data Fig. 1) following Voichek and Weigeand countind-mers in each sample
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usingkMC v 3.1.0". Thek-mer list was filtered by the minor allele coukiners that appeared
in less than 5 individuals were exclud&edners were also filtered by percent canonized the.
percent of samples for which the reverse complemktitek-mer was also present). If at least
20% of the samples including a givilemer contained its canonized form, #xener was kept in
the list. Thek-mer list was then used to create a table recorti@gresence or absence of each
k-mer in each sample. A kinship matrix for all saegplvas calculated from thksmer table, and
was converted to BLINK®® binary file, where the presence or absence of keawér is coded as
two homozygous variants. In this step, we furtliegred thek-mers with a minor allele

frequency below 5%.

Because a single variant, be it a SNP or SV, Wwi#lly be captured by multiple mers,
significance testing df-mer associations requires a method to contrah®mnon-independence
of overlappingk-mers. We followed the approach developed by Vdiced Weigel’, which
uses a linear mixed model (LMM) genome-wide assimrianalysis implemented BEMMA v
0.98.5”, and computes P-value thresholds for assoclatedrs based on phenotype
permutations. We thus repdrimers below the 5% false-positive threshold-asers
significantly associated with the female-polymogphiinl. elegans. We conducted thrdemers
based GWAS: 1) comparing male mimics to the putitimncestral female morpA ¢sO), 2)
comparing male mimics to the most derive femalephdA vs1), and 3) comparing both
derived female morph#\(andl) to the ancestr& females. For every analysis, we then mapped
the significank-mers to all reference genomes usBiast v 2.22.28° for short sequences, and
removed alignments that were below 100% identity laglow full-length. The mappddmers
thus indicate the proportion of relevant genomiatent present in each morph and how this

content is distributed across each genome (ExtebDdéal Table 1).
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Read depth analysis

To validate th&k-mer GWAS results of unique genomic contenAifemales relative to both
andO-females, we plotted read-depth across our rediamerest (the unlocalized scaffold 2 of
chromosome 13, see Results) in Ahassembly (Extended Data Fig. 1). Short-read d#&a (
samples per morph) were mapped to the assemblybwibmemv 0.7.17° and reads with
mapping score < 20 were filtered, usBantoolsv 1.14". Long-read data (one sample per
morph) were also mapped to the assembly usingnap2 v 2.22-r1116°, and quality filtering
was conducted as above. Read depth was then astdoageach sample across 500 bp, non-
overlapping windows usingosdepth v 0.2.8”. We also annotated repetitive content in the
reference genome usifRgpeatMasker v 1.0.93" andRed v 0.0.17, and filtered windows with

more than 10% repetitive content under either neétho

To account for differences in overall coverage leetavsamples, we conducted the same
procedure on a large (~15 mb) non-candidate ragichromosome 11 and calculated a
“background read depth” as the mean read deptlssatine non-repetitive windows of this
region. We then expressed read-depth in the caediggion as a proportion of the background
read depth. Values around 1 thus indicate thatrgksais homozygous for the presence of the
sequence in a window. Values around 0.5 suggesstitbadample only has one copy of this
sequence in its diploid genome (i.e. it is hetegozyg). Finally, values of 0 imply that the 500 bp
reference sequence is not present in the samgleh@ window is part of an insertion or

deletion).

We also investigated read-depth coverage oh #issembly, specifically across the region that
was identified in thé-mer based GWAS as capturing content that difféxead bothA andl

females fronO females (Fig. 3b, Extended Data Fig. 1). To doasofollowed the same
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strategy as a above, except here we used a 15gwim feom chromosome 1 to estimate

background read depth.

Population genetics

We investigated the evolutionary consequences opimdivergence by estimating between-
morph Fst and population-wide Tajima’s D and nuiitkodiversity f). For these analyses, we
used theA assembly as mapping reference and the same vaeailing approach as described for
the SNP based GWAS, but applied different filteromigeria (Extended Data Fig. 1).
Specifically, invariant sites were retained andondy filtered sites with mapping quality score <
20 and combined depth across samples > 1360 (dguiva ~50% excess coverage in all
samples). Fst anat were estimated ipixy v 1.2.5° across 30 kb windows. Fst was computed
using thehudson estimator’. Negative Fst values were converted to zero foitipg. Tajima’'s D
was estimated across 30 kb usietjools v 0.1.17". In all analyses, windows with > 10%
repetitive content according to eitfRepeatMasker v 1.0.93" or Red v 0.0.1* annotation were

excluded.

Structural variants

We used two complimentary approaches to identifg 8verlapping the genomic region
uncovered by botk-mer-based and SNP-based GWAS. First, we mappadthdata from

each long-read sample to the assemblies of alteenaiorphs (e.gAo data mapped tio andoo
assemblies), and called SVs us8niffles v 1.0.10° (Extended Data Fig. 1). These SV calls may
represent fixed differences between morphs, witherph polymorphisms, or products of
assembly error. We therefore usgsnPlot v 1.3.0” and our short-read samples (n = 19 per
morph) to validate morph-specific SV calls (Extethd¥ata Fig. 1)Samplot identifies and plots

reads with discordant alignments, which can rdsoith specific types of SVs. For example, if
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Sniffles called a 10 kb deletion in the andlo long-read samples relative to theassembly,

we then constructed a Samplot for this region ushmgt-read data, and expected to find support
for such deletion ih andA samples, but not i® samples. We complemented this validation
approach with a scan of the region of interestaicheassembly, in windows of 250 and 500 kb,
again usingsamplot and the short-read data. If a SV appeared to jpeosted by the majority of
short-read samples from an alternative morph, weensadl in this SV and recorded the number of

samples supporting the call in each morph.

Linkage disequilibrium and transposable € ements

To estimate linkage disequilibrium (LD), we used ame variant calling file as for the SNP
based GWAS, which included only variant sites aiad Viltered by mapping quality, genotyping
guality, minimum allele frequency, and read depthdescribed above (Extended Data Fig. 1).
The file was downsampled to one variant every 108thg vcftools v 0.1.17, prior to LD
estimation. We estimated LD usifiINK v 1.9°°, and recorded Rvalues > 0.05 for pairs up to
15 mb apart or with 10,000 or fewer variants betwiem. We estimated LD for the
unlocalized scaffold 2 of chromosome 13, which aorg the morph loci and is about ~ 15 mb in
the A assembly. For comparison, we also estimated LBsadhe first 15 mb of the fully
assembled chromosomes (1-12 and X), the main $¢affehromosome 13, and the unlocalized

scaffolds 1, 3 and 4 of chromosome 13.

We used the TE annotations frdRepeatModeler v 2.0.1RepeatMasker v 1.0.93" and “One
code to find them al* to quantify TE coverage in chromosome 13 in corisparto the rest of
the genome. We divided each chromosome into 1.%imilows, and computed the proportion

of each window covered by each TE family.
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599 Evidence of a trans-species polymorphism

600 We used pool-seq data from the closely relateditab@luetail damselfly lschnura

601 senegalensis) to determine whether male-mimicry has a shareetyebasis in the two species
602 (Extended Data Fig. 1). First, we aligned the sheatd data from the the twosenegalensis

603 pools @A andO-like) to theA morph assembly df elegans usingbwa-memv 0.7.17° and

604 filtered reads with mapping score < 20, usSagitoolsv 1.14". We then quantified read depth
605 as for thd. elegans resequencing data (sBead depth analysis above). To confirm that the

606 higher read-depth coverage of i@ool is specific to the putative morph locus, W alotted
607 the distribution of read-depth differences betw®eike andA pools across the rest of the

608 genome and compared it to the morph locus (Supgpitext 5). Next, we determined if the ~20
609 kb SV that characterize’sandl females ol. elegans is also present iA females of.

610 senegalensis. To do this, we mapped the pool-seq data t@tlassembly of. elegans as above,
611 and scanned the region at the start of the scaZfolidchromosome 13 for SVs using Samplot v
612 1.3.0" Finally, we aligned the morph-specific assemhiiils senegalensis to theA assembly of
613 |. elegans, usingnucmer v 4.0.0° and preserving alignments > 500 bp and with iderti70%

614 (Extended Data Fig. 1). We visualized synteny pastacross the morph locus using the package

615 Rldeogramv 0.2.2°inRv 4.2.2",

616 Gene content and expression in the morph locus

617 We assembled transcripts in theénorph genome (Extended Data Fig. 1) to identifiepbal
618 gene models unique to tieor A andl morphs and which would therefore be absent fragm.th
619 elegansreference annotation (based on@bkaplotype). First, all raw RNAseq data frém
620 elegans samples were mapped to tha@ssembly using HISAT2 v 2.271and reads with

621 mapping quality < 60 were filtered usiSgmtools v 1.19". Transcripts were then assembled in
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SringTie v 2.1.4° under default options, and merged into a sindlélgt Transcript abundances
were gquantified using this global set of transerig targets, and a transcript count matrix was
produced using therepDE.py3 script provided witl&ringTie. Mapped RNAseq data from
senegalensis was also used to assemble transcripts (Extended@ 1), but this time the
HISAT2 assembly was guided by the annotation basedelegans data, while allowing the

identification of novel transcripts. Transcript adances were quantified as foelegans.

We analyzed differential gene expression usingpatkagesdgeR v 3.36 inRv 4.2.2".
Transcripts with fewer than one count per milliarmore than three samples were filtered.
Library sizes were normalized across samples uk@grimmed mean of M-values mettigd
and empirical Bayes tagwise dispersionas estimated prior to pairwise expression analyse
Differential expression of genes in the morph lvas tested using two-tailed exact t€8fs
assuming negative-binomially distributed transcriiints and applying the Benjamini and

Hochberg'’s algorithm to control the false discoverte (FDR)”".

Nucleotide sequences of all transcripts mappeldad t5 mb morph locus in tieassembly

were selected. Coding sequences (CDS) in thessctipts were predicted usiigansdecoder v
5.5.0 (ttps://github.com/TransDecoder/TransDechcPredicted CDS and peptide sequences
were read from the assemblies using the genometlzaskng region annotation produced with
Transdecoder andgffread v 0.12.7°%. We investigated whether any inferred peptides or
transcripts were unique or A andl by comparing these sequences to the DToL reference
transcriptome and proteome (based omQh®plotype). We then searched for homologous and
annotated proteins in other taxa in the Swisspatatthse usinBlast v 2.9.0°. We found three

gene models which are protein-coding and presdmbtimnA andO females (see Results, Fig. 6).
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We scanned these protein sequences for functiomadihs usingnter ProScan'®” and searched

for orthologous groups and functional annotationS8ggNOG v 5.0,

Data availability
Sequencing data from this study have been subnidtdte NCBI Sequence Read Archive

(SRA) (hitps://www.ncbi.nim.nih.gov/srpunder BioProject PRINA940276. For details, please
see Supplementary Tables 1 and 2. Morph-specifioge assemblies and intermediate output
files required to reproduce the figures in the maki and Supporting Material are available on

Zenodd®”.

Code availability

All code necessary to reproduce the results ofstidy can be found on Zenodo

https://doi.org/10.5281/zenod0.83040&td Githulhttps://github.com/bwillink/Morph-locus
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680 Figurelegends

681 Figurel. The evolution of female-limited colour polymorpims inlschnura damselfliesa A

682 previous phylogenetic study and ancestral stansgruction” proposed that the genus

683 Ischnura had a sexually dimorphic ancestor, widHike females (red circle). Th® morph is

684 markedly different from males, having a bronze-brdthorax and faint stripes, instead of the
685 black thoracic stripes on a bright blue backgroahohalesb Male mimicry @ females, blue
686 circle) has evolved more than once, for instanceni ancestor of the (expanded) clade that
687 includes the Common Bluetall glegans, encircled with solid line) and the Tropical Blagf(l.
688 senegalensis, encircled with dashed ling).l. elegansis a trimorphic species, due to the recent
689 evolution of a third female morph{yellow circle). Inl. elegans, morph inheritance follows a
690 dominance hierarchy, where the most dominant gliedduces thé& morph and two copies of
691 most recessive allele are required for the devetopirafO females. In contrast, th@ allele is
692 dominant inl. senegalensis'”. Terminal nodes in the phylogeny represent diffespecies. Gray

693 triangles represent other cladedsohnura that are collapsed for clarity.

694 Figure2. Morph determination in the Common Bluetail Damigdlfschnura elegans) is

695 controlled in a ~ 1.5 mb region of chromosomed SNP-based genome-wide associations in all
696 pairwise analyses between morphs. Genomic DNA ft8rwild-caught females of each colour
697 morph and of unknown genotype was extracted andesegd for these analyses. lllumina short
698 reads were aligned againstAamorph genome assembly, generated from Nanopoger&ad

699 data (Extended Data Fig. D) A closer look of the SNP associations on the wliped scaffold
700 2 of chromosome 13, which contained all highly gigant SNPs. Transcripts expressed in at
701 least one adult of both elegans andl. senegalensis are shown at the bottom (see also Fig. 6).

702  Grey transcripts are shared by all morphs, whdskgestranscripts are uniquely presenAior A


https://doi.org/10.1101/2023.03.27.532508
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.532508; this version posted September 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

703 andl samples (seghared and morph-specific genes reside in the morph locus). They axis ina

704 andb indicates unadjusted -LagP-values calculated from chi-squared testsst values

705 averaged across 30 kb windows for the same pairwise comparisons as in the SNP baSed GWA
706 The dashed line marks the 95 percentile of all neno- Fst values across the entire genome. The
707 red double arrow shows the region of elevated damce betwee® and bothA andl samples

708 (=50 kb - 0.2 mb). The blue double arrow showsrélggon of elevated divergence between

709 and bothO andl samples (~0.2 mb - 1.5 mb). Population-level esta® ofd Tajima’s D, ance

710 nucleotide diversityx) averaged across 30 kb windows. The shaded ar¢ai® the 5-95

711 percentile of all genome-wide estimates.

712 Figure 3. Female morphs dichnura elegans differ in genomic content. Number of significant
713 k-mers (below the 5% false-positive threshold, set¢hidds) associated with pairwise genome-
714 wide analyses and mapped to the unlocalized sdaZfoif chromosome 13, mnthe A morph

715 assembly, and ib thel morph assembly. Standardized read depths alongnibealized

716 scaffold 2 of chromosome 13, relative to backgrocowkrage o€ the A morph assembly, arai
717 thel morph assembly. Solid lines (yellow, blue and gtw short-read data (19 samples per
718 morph) and black dashed lines represent long-rated(@ sample per morph).Grey areas show
719 regions of genomic content presenfiand! individuals, but absent in all but o@esample.

720 Note that different regions of the scaffold aretigld for the two assemblies (see main text).

721 Figure4. Structural variants differentiate morph haplotypethe Common Bluetail Damselfly
722 (Ischnura elegans). a Alignment between morph-specific genomes assenfbded long-read

723 Nanopore samples with genotyp&s 1o, andoo. Grey lines represent alignments of at least 5 kb
724 and > 70% identity. The black line connects regiohgenomic content shared by the three

725 morphs within the morph locus. The red to blue gnatdrepresents a ~20 kb region that carries
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726 an inversion signature iy andl females relative to th® haplotype (see Extended Data Fig. 2).
727 The blue to yellow gradient represents a ~ 150ligmaent between the start of the unlocalized
728 scaffold 2 of chromosome 13 Aand a region ~ 3.5 mb apart in theaplotype. Coordinates at
729 the bottom are based on the Darwin Tree of LifeqDjTreference assembllg.Schematic

730 illustration of the hypothetical sequence of eveasponsible for the evolution of novel female
731 morphs. First, a sequence originally preser@® was duplicated and inverted in tandem,

732 potentially causing the initial divergence of thallele. Second, part of this inversion was

733 subsequently duplicated A& in association with a putative TE, leading to tiple inversion

734 signatures in thé haplotype relative to a@ reference (see Extended Data Fig. 3). Finally, par
735 of theA duplications were translocated into a position5-rBb downstream into &b

736 background, giving rise to tHeamorph. CurrentlyA females are also characterized by another
737 region of unique content and unknown origin (questnark).A female show elevated sequence
738 divergence in the internal region of the morph kthat is shared by all haplotypes (dark grey
739 bars, see also black lineah Coordinates on th® haplotype are based on the (DToL) reference
740 assembly. Grey numbers in IV give the approximeate sf genomic sequencesArandl that

741 are absent i®.

742 Figure5. A shared genomic basis Affemales inschnura elegans andlschnura senegalensis a
743 1. senegalensisis a female-dimorphic species, where one femalgm-like) is distinctly

744  different from males and resembl@gemales in. elegans, and the other female morph)(s a
745 male-mimic. Photo credit: Mike Hoopdy.Standardized read depth of pool-seq samples (h = 3
746 females of each morph per pool)lo$enegalensis, against thé morph assembly df elegans,

747 calculated in 500 bp windows. The x-axis showsfitise€ 1.5 mb of the unlocalized scaffold 2 of

748 chromosome 13 Alignments between morph-specific genomes fromradzygousO-like
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female ofl. senegalensis (top), anAo female ofl. elegans (middle) and a homozygousfemale
of I. senegalensis (bottom). Lines connecting the assemblies reptedgmments of at least 500
bp and > 70% identity. The black line connects ganaontent in the morph locus, which is
shared by the three morphsloélegans. In |. elegans, this region is rich in SNPs differentiating
A females from the other two morphs (see Fig. 2bg Blue-turquoise gradient connects

sequences uniquely present in gamorphs ofl. elegans andl. senegalens's.

Figure 6. The morph locus dfschnura elegans is situated in the unlocalized scaffold 2 of
chromosome 13 Diagram of the ~ 1.5 mb morph locus on #amorph assembly, showing
from top to bottom: morph-specific read depth cager, the location of LINE retrotransposons
in the the Jockey family, the mapping location®\aferived reads with a previously detected
inversion signature againStfemales, and transcripts expressed in at leasadule individual

of bothl. elegans andl. senegalensis. Transcripts plotted in black are present in ib#hA andO
assemblies, while transcripts in blue are locategenomic regions that are unique toAhe
haplotype or are shared betweeandl but not theO allele.b Functional annotations and sex-
and morph-specific expression of transcripts. Sgjfitrindicates whether transcript expression
was detected in each group. RNAseq data. f'degans comes from whole-thorax samples from
sexually immature and sexually mature wild-caughiits (n = 3 females of each morph and 3
males). RNAseq data forsenegalensis comes from a recent study in which the abdomesd he
thorax, and wings were sampled in two females oheaorph and two males (one individual of

each group sampled upon emergence and one sanfigleth@a days).
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Extended data Tables

Extended Data Table 1. Significantk-mers associated with morph comparisonis aéegans.

For each comparisoi\ (s O, A vsl andA andl vs O), we show the total number of significant
k-mers, and the total number of significanhers that map without any mismatching position to
morph-specific reference assemblies. Of the mappimgrs, we then show the number located
in the unlocalized scaffold 2 of chromosome 13,ahincludes the putative morph locus. For
the DToL assembly, we show the number of signitiGamers mapping to both the primary
assembly (capturing th@ allele) and the haplotigs, where the haplotig RAPIO6 comprises

theA allele (see Supporting Text 2).

k-mers AvsO Avsl I vsO
Total number 568,039 508,031 85,134
A assembly 435,509 383,679 45,580
A Chr13 2 427,606 376,075 44,990
| assembly 46,733 1,111 49,093
| Chr13_ 2 45,819 375 48,484
O assembly 1,478 762 1,452
OChr13 2 276 92 72
DToL primary assembly 915 756 676
DToL Chr 13_2 134 115 14
DToL haplotigs 542,571 489,912 66,861
DToL RAPID_106 539,588 486,943 65,999
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Extended data figure legends

Extended Data Figure 1. Outline of data and analyses used in this studiyobr main study
speciedschnura elegans, we obtained short-read genomic data from 19-teldght females per
morph, and long-read genomic data from three fesnaith genotype#o, |0, andoo. The long-
read samples were used to assemble morph-speeifames, scaffolded against the Darwin
Tree of Life reference assembly. We obtained wiindgax RNAseq data from three females of
each morph in both sexually immature and sexuadljune colour phases (n = 2). Immature and
mature males (n = 3 of each) were also sampledtiote-thorax RNAseq data. We used short-
read pool-seq data (n = 30 individuals of each imqr pool) of the close relativschnura
senegalensis to investigate whether the female polymorphismisatin species share a genomic
basis. We also analysed expression levels of catelgknes in this species, using samples from
a previously published stutfy which produced transcriptomic data from four bpdyts (head,
thorax, wing and abdomen) of ea&liemales O females and males (n = 2), sampled at adult
emergence and two days thereafter. Rineer based GWAS is reference-free, but signifigant

mers were mapped to the morph-specific assemioligdstermine their chromosomal context.

Extended Data Figure 2. An inversion signature differentiatdsandl individuals from theD
morph. Read mapping and sample coverage at theobthe scaffold 2 of chromosome 13an
our O assembly andl the DToL reference assembly, showing a signatiiee~020 kb inversion
in Aandl samples. A singl® sample also exhibited this signature but was eberlthere for
clarity (see Supporting Text 3). Note that thet#%5 kb of the reference DToL assembly are

absent in our scaffolded assembly, and therefore the x-axis is shifted 1ykb inb.
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Extended Data Figure 3. TheA andl reads mapped to inversion break points orClassembly
(see Extended Data Fig. 2) map to multiple location theA assemblya Reads from the first
inversion breakpoint Reads from the second inversion breakpoint. Eastrepresents a
sample and each circle an individual read. Theig-@orresponds to coordinates on e

assembly.

Extended Data Figure 4. Proportion of TE content in non-overlapping 1.5 ragions. The gray
dots correspond to genomic windows outside chromesb3. The main assembly and the
unlocalized scaffolds of chromosome 13 are depiaitid different colours. The dashed line

marks the 95 percentile of TE coverage acrossiatiows.

Extended Data Figure 5. Linkage disequilibrium (LD) in the genome lethnura elegans. LD
estimates are shown for the first 15 mb of eacbralesome and all unlocalized scaffolds of
chromosome 13. The morph locus is found in thé fir$.5 mb of the unlocalized scaffold 2 of
chromosome 13, which has a total size of ~ 15 mbhElot represent the square correlation
coefficient (R) between two variant sites on the x axis, sepdtayethe number of sites

indicated in the y axis.

Extended Data Figure 6. Evidence of a translocation betwe®andl haplotypes. Mapping and
coverage of long reads from bmsample across the first 5.6 mb of the unlocalsxaffold 2 of
chromosome 13 in th& assembly, showing a signature consistent witreeahb.54 mb

inversion or a translocation of invert@ccontent. Absence of morph divergence beyond ~b.5 m

on theA assembly supports the translocation scenario.
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Extended Data Figure 7. Structural variants betweénandO-like females of. senegalensis
along the morph locus identified inelegans. a Read mapping and sample coveragk of
senengalensis pool-seq data at the start of the unlocalizedfslch? of chromosome 13 in th@
assembly of. elegans. The same ~ 20 kb inversion signature is foundl andl samples of.
elegans (see Extended Data Fig. Byc The A-pool reads mapped to break points on@he
assembly map to multiple locations on thassemblyb Reads from the first breakpoiiwt.
Reads from the second breakpoint. Each row reptesepool of. senegalensis and each circle

an individual read. The x-axis corresponds toAtessembly of. elegans.

Extended Data Figure 8. Morph divergence using the DToL assemlfyh@aplotype) as
mapping referenca SNP-based genome-wide associations in all pairans¢yses between
morphs. Genomic DNA from 19 wild-caught femalega€h colour morph and of unknown
genotype was extracted and sequenced for thesgsagalllumina short reads were aligned
against the DTolL reference assembl closer look of the SNP associations on the
unlocalized scaffold 2 of chromosome 13, which aoréd all highly significant SNPs. Tlye
axis ina andb indicates unadjusted -LagP-values calculated from chi-squared testsst
values averaged across 30 kb windows for the sameipe comparisons as in the SNP based
GWAS. The dashed line marks the 95 percentilelofal-zero Fst values across the entire
genome. The red double arrow shows the regionesbé&td divergence betwedrand bothO
andl samples. Population-level estimatesldfajima’s D, an@ nucleotide diversityr()
averaged across 30 kb windows. The shaded areai®itie 5-95 percentile of all genome-

wide estimates.
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